1
|
Zhang F, Qiao W, Wei JA, Tao Z, Chen C, Wu Y, Lin M, Ng KMC, Zhang L, Yeung KWK, Chow BKC. Secretin-dependent signals in the ventromedial hypothalamus regulate energy metabolism and bone homeostasis in mice. Nat Commun 2024; 15:1030. [PMID: 38310104 PMCID: PMC10838336 DOI: 10.1038/s41467-024-45436-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 01/22/2024] [Indexed: 02/05/2024] Open
Abstract
Secretin, though originally discovered as a gut-derived hormone, is recently found to be abundantly expressed in the ventromedial hypothalamus, from which the central neural system controls satiety, energy metabolism, and bone homeostasis. However, the functional significance of secretin in the ventromedial hypothalamus remains unclear. Here we show that the loss of ventromedial hypothalamus-derived secretin leads to osteopenia in male and female mice, which is primarily induced by diminished cAMP response element-binding protein phosphorylation and upregulation in peripheral sympathetic activity. Moreover, the ventromedial hypothalamus-secretin inhibition also contributes to hyperphagia, dysregulated lipogenesis, and impaired thermogenesis, resulting in obesity in male and female mice. Conversely, overexpression of secretin in the ventromedial hypothalamus promotes bone mass accrual in mice of both sexes. Collectively, our findings identify an unappreciated secretin signaling in the central neural system for the regulation of energy and bone metabolism, which may serve as a new target for the clinical management of obesity and osteoporosis.
Collapse
Affiliation(s)
- Fengwei Zhang
- School of Biological Sciences, the University of Hong Kong, Hong Kong, China
| | - Wei Qiao
- Applied Oral Sciences & Community Dental Care, Faculty of Dentistry, the University of Hong Kong, Hong Kong, China.
- Shenzhen Key Laboratory for Innovative Technology in Orthopaedic Trauma, the University of Hong Kong-Shenzhen Hospital, Shenzhen, China.
| | - Ji-An Wei
- School of Biological Sciences, the University of Hong Kong, Hong Kong, China
- Key Laboratory of CNS Regeneration (Ministry of Education), GHM Institute of CNS Regeneration, Jinan University, Guangzhou, China
| | - Zhengyi Tao
- School of Biological Sciences, the University of Hong Kong, Hong Kong, China
| | - Congjia Chen
- School of Biological Sciences, the University of Hong Kong, Hong Kong, China
| | - Yefeng Wu
- Applied Oral Sciences & Community Dental Care, Faculty of Dentistry, the University of Hong Kong, Hong Kong, China
| | - Minghui Lin
- School of Biological Sciences, the University of Hong Kong, Hong Kong, China
| | - Ka Man Carmen Ng
- School of Biological Sciences, the University of Hong Kong, Hong Kong, China
| | - Li Zhang
- Key Laboratory of CNS Regeneration (Ministry of Education), GHM Institute of CNS Regeneration, Jinan University, Guangzhou, China
- Neuroscience and Neurorehabilitation Institute, University of Health and Rehabilitation Sciences, Qingdao, China
| | - Kelvin Wai-Kwok Yeung
- Shenzhen Key Laboratory for Innovative Technology in Orthopaedic Trauma, the University of Hong Kong-Shenzhen Hospital, Shenzhen, China.
- Department of Orthopaedics and Traumatology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, the University of Hong Kong, Hong Kong, China.
| | | |
Collapse
|
2
|
Guan Z, Yuan W, Jia J, Zhang C, Zhu J, Huang J, Zhang W, Fan D, Leng H, Li Z, Xu Y, Song C. Bone mass loss in chronic heart failure is associated with sympathetic nerve activation. Bone 2023; 166:116596. [PMID: 36307018 DOI: 10.1016/j.bone.2022.116596] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 10/02/2022] [Accepted: 10/18/2022] [Indexed: 11/07/2022]
Abstract
PURPOSE Chronic heart failure causes osteoporosis, but the mechanism remains unclear. The sympathetic nerve plays an important role in both bone metabolism and cardiovascular function. METHODS Thirty-six adult male SD rats were randomly divided into the following four groups: sham surgery (Sham) group, guanethidine (GD) group, abdominal transverse aorta coarctation-induced heart failure + normal saline (TAC) group, and TAC + guanethidine (TAC + GD) group. Normal saline (0.9 % NaCl) or guanethidine (40 mg/kg/ml) was intraperitoneally injected daily for 5 weeks. Then, DXA, micro-CT, ELISA and RT-PCR analyses were performed 12 weeks after treatment. RESULTS The bone loss in rats subjected to TAC-induced chronic heart failure and chemical sympathectomy with guanethidine was increased. Serum norepinephrine levels were increased in rats with TAC-induced heart failure but were decreased in TAC-induced heart failure rats treated with guanethidine. The expression of α2A adrenergic receptor, α2C adrenergic receptor, osteoprotegerin (OPG), and osteocalcin in the tibia decreased in the TAC-induced heart failure group, and the expression of β1 adrenergic receptor, β2 adrenergic receptor, receptor activator of nuclear factor-κ B ligand (RANKL), and RANKL/OPG in the tibia increased in the heart failure group. In addition, these changes in gene expression levels were rescued by chemical sympathectomy with guanethidine. CONCLUSIONS TAC-induced chronic heart failure is associated with bone mass loss, and the sympathetic nerve plays a significant role in heart failure-related bone mass loss. MINI ABSTRACT The present study supports the hypothesis that heart failure is related to bone loss, and the excessive activation of sympathetic nerves participates in this pathophysiological process. The present study suggests a potential pathological mechanism of osteoporosis associated with heart failure and new perspectives for developing strategies for heart failure-related bone loss.
Collapse
Affiliation(s)
- Zhiyuan Guan
- Department of Orthopedics, Peking University Third Hospital, Beijing, China
| | - Wanqiong Yuan
- Department of Orthopedics, Peking University Third Hospital, Beijing, China
| | - Jialin Jia
- Department of Orthopedics, Peking University Third Hospital, Beijing, China
| | - Chenggui Zhang
- Department of Orthopedics, Peking University Third Hospital, Beijing, China
| | - Junxiong Zhu
- Department of Orthopedics, Peking University Third Hospital, Beijing, China
| | - Jie Huang
- Department of Orthopedics, Peking University Third Hospital, Beijing, China
| | - Wang Zhang
- Department of Orthopedics, Peking University Third Hospital, Beijing, China
| | - Dongwei Fan
- Department of Orthopedics, Peking University Third Hospital, Beijing, China; Beijing Key Laboratory of Spinal Diseases, Beijing, China
| | - Huijie Leng
- Department of Orthopedics, Peking University Third Hospital, Beijing, China; Beijing Key Laboratory of Spinal Diseases, Beijing, China
| | - Zijian Li
- Department of Cardiology, Institute of Vascular Medicine, Peking University Third Hospital, Beijing 100191, China
| | - Yingsheng Xu
- Department of Neurology, Peking University Third Hospital, Beijing 100191, China
| | - Chunli Song
- Department of Orthopedics, Peking University Third Hospital, Beijing, China; Beijing Key Laboratory of Spinal Diseases, Beijing, China.
| |
Collapse
|
3
|
Yuan W, Song C. Crosstalk between bone and other organs. MEDICAL REVIEW (BERLIN, GERMANY) 2022; 2:331-348. [PMID: 37724328 PMCID: PMC10471111 DOI: 10.1515/mr-2022-0018] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 08/06/2022] [Indexed: 09/20/2023]
Abstract
Bone has long been considered as a silent organ that provides a reservoir of calcium and phosphorus, traditionally. Recently, further study of bone has revealed additional functions as an endocrine organ connecting systemic organs of the whole body. Communication between bone and other organs participates in most physiological and pathological events and is responsible for the maintenance of homeostasis. Here, we present an overview of the crosstalk between bone and other organs. Furthermore, we describe the factors mediating the crosstalk and review the mechanisms in the development of potential associated diseases. These connections shed new light on the pathogenesis of systemic diseases and provide novel potential targets for the treatment of systemic diseases.
Collapse
Affiliation(s)
- Wanqiong Yuan
- Department of Orthopedics, Peking University Third Hospital, Beijing, China
- Beijing Key Laboratory of Spinal Disease, Beijing, China
- Engineering Research Center of Bone and Joint Precision Medicine, Beijing, China
| | - Chunli Song
- Department of Orthopedics, Peking University Third Hospital, Beijing, China
- Beijing Key Laboratory of Spinal Disease, Beijing, China
- Engineering Research Center of Bone and Joint Precision Medicine, Beijing, China
| |
Collapse
|
4
|
Wargent ET, Martin-Gronert MS, Cripps RL, Heisler LK, Yeo GSH, Ozanne SE, Arch JRS, Stocker CJ. Developmental programming of appetite and growth in male rats increases hypothalamic serotonin (5-HT)5A receptor expression and sensitivity. Int J Obes (Lond) 2020; 44:1946-1957. [PMID: 32719434 DOI: 10.1038/s41366-020-0643-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Revised: 06/23/2020] [Accepted: 07/16/2020] [Indexed: 11/08/2022]
Abstract
BACKGROUND Though it is well established that neonatal nutrition plays a major role in lifelong offspring health, the mechanisms underpinning this have not been well defined. Early postnatal accelerated growth resulting from maternal nutritional status is associated with increased appetite and body weight. Likewise, slow growth correlates with decreased appetite and body weight. Food consumption and food-seeking behaviour are directly modulated by central serotonergic (5-hydroxytryptamine, 5-HT) pathways. This study examined the effect of a rat maternal postnatal low protein (PLP) diet on 5-HT receptor mediated food intake in offspring. METHODS Microarray analyses, in situ hybridization or laser capture microdissection of the ARC followed by RT-PCR were used to identify genes up- or down-regulated in the arcuate nucleus of the hypothalamus (ARC) of 3-month-old male PLP rats. Third ventricle cannulation was used to identify altered sensitivity to serotonin receptor agonists and antagonists with respect to food intake. RESULTS Male PLP offspring consumed less food and had lower growth rates up to 3 months of age compared with Control offspring from dams fed a normal diet. In total, 97 genes were upregulated including the 5-HT5A receptor (5-HT5AR) and 149 downregulated genes in PLP rats compared with Controls. The former obesity medication fenfluramine and the 5-HT receptor agonist 5-Carboxamidotryptamine (5-CT) significantly suppressed food intake in both groups, but the PLP offspring were more sensitive to d-fenfluramine and 5-CT compared with Controls. The effect of 5-CT was antagonized by the 5-HT5AR antagonist SB699551. 5-CT also reduced NPY-induced hyperphagia in both Control and PLP rats but was more effective in PLP offspring. CONCLUSIONS Postnatal low protein programming of growth in rats enhances the central effects of serotonin on appetite by increasing hypothalamic 5-HT5AR expression and sensitivity. These findings provide insight into the possible mechanisms through which a maternal low protein diet during lactation programs reduced growth and appetite in offspring.
Collapse
Affiliation(s)
- Edward T Wargent
- Buckingham Institute of Translational Medicine, University of Buckingham, Hunter Street, Buckingham, MK18 1EG, UK
| | - Malgorzata S Martin-Gronert
- Metabolic Research Laboratories, Wellcome Trust-MRC Institute of Metabolic Science, University of Cambridge, Addenbrooke's Hospital, Cambridge, CB2 0QQ, UK
| | - Roselle L Cripps
- Metabolic Research Laboratories, Wellcome Trust-MRC Institute of Metabolic Science, University of Cambridge, Addenbrooke's Hospital, Cambridge, CB2 0QQ, UK
| | - Lora K Heisler
- The Rowett, Institute, University of Aberdeen, Aberdeen, AB25 2ZD, UK
| | - Giles S H Yeo
- Metabolic Research Laboratories, Wellcome Trust-MRC Institute of Metabolic Science, University of Cambridge, Addenbrooke's Hospital, Cambridge, CB2 0QQ, UK
| | - Susan E Ozanne
- Metabolic Research Laboratories, Wellcome Trust-MRC Institute of Metabolic Science, University of Cambridge, Addenbrooke's Hospital, Cambridge, CB2 0QQ, UK
| | - Jonathan R S Arch
- Buckingham Institute of Translational Medicine, University of Buckingham, Hunter Street, Buckingham, MK18 1EG, UK
| | - Claire J Stocker
- Buckingham Institute of Translational Medicine, University of Buckingham, Hunter Street, Buckingham, MK18 1EG, UK.
| |
Collapse
|
5
|
The role of GPCRs in bone diseases and dysfunctions. Bone Res 2019; 7:19. [PMID: 31646011 PMCID: PMC6804689 DOI: 10.1038/s41413-019-0059-6] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2019] [Revised: 05/22/2019] [Accepted: 05/27/2019] [Indexed: 12/13/2022] Open
Abstract
The superfamily of G protein-coupled receptors (GPCRs) contains immense structural and functional diversity and mediates a myriad of biological processes upon activation by various extracellular signals. Critical roles of GPCRs have been established in bone development, remodeling, and disease. Multiple human GPCR mutations impair bone development or metabolism, resulting in osteopathologies. Here we summarize the disease phenotypes and dysfunctions caused by GPCR gene mutations in humans as well as by deletion in animals. To date, 92 receptors (5 glutamate family, 67 rhodopsin family, 5 adhesion, 4 frizzled/taste2 family, 5 secretin family, and 6 other 7TM receptors) have been associated with bone diseases and dysfunctions (36 in humans and 72 in animals). By analyzing data from these 92 GPCRs, we found that mutation or deletion of different individual GPCRs could induce similar bone diseases or dysfunctions, and the same individual GPCR mutation or deletion could induce different bone diseases or dysfunctions in different populations or animal models. Data from human diseases or dysfunctions identified 19 genes whose mutation was associated with human BMD: 9 genes each for human height and osteoporosis; 4 genes each for human osteoarthritis (OA) and fracture risk; and 2 genes each for adolescent idiopathic scoliosis (AIS), periodontitis, osteosarcoma growth, and tooth development. Reports from gene knockout animals found 40 GPCRs whose deficiency reduced bone mass, while deficiency of 22 GPCRs increased bone mass and BMD; deficiency of 8 GPCRs reduced body length, while 5 mice had reduced femur size upon GPCR deletion. Furthermore, deficiency in 6 GPCRs induced osteoporosis; 4 induced osteoarthritis; 3 delayed fracture healing; 3 reduced arthritis severity; and reduced bone strength, increased bone strength, and increased cortical thickness were each observed in 2 GPCR-deficiency models. The ever-expanding number of GPCR mutation-associated diseases warrants accelerated molecular analysis, population studies, and investigation of phenotype correlation with SNPs to elucidate GPCR function in human diseases.
Collapse
|
6
|
Riva G. Neurobiology of Anorexia Nervosa: Serotonin Dysfunctions Link Self-Starvation with Body Image Disturbances through an Impaired Body Memory. Front Hum Neurosci 2016; 10:600. [PMID: 27932968 PMCID: PMC5121233 DOI: 10.3389/fnhum.2016.00600] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2016] [Accepted: 11/10/2016] [Indexed: 12/21/2022] Open
Abstract
The etiology of anorexia nervosa (AN) is still unclear, despite that it is a critical and potentially mortal illness. A recent neurobiological model considers AN as the outcome of dysfunctions in the neuronal processes related to appetite and emotionality (Kaye et al., 2009, 2013). However, this model still is not able to answer a critical question: What is behind body image disturbances (BIDs) in AN? The article starts its analysis from reviewing some of the studies exploring the effects of the serotonin systems in memory (episodic, working, and spatial) and its dysfunctions. The review suggests that serotonin disturbances may: (a) facilitate the encoding of third person (allocentric) episodic memories; (b) facilitate the consolidation of emotional episodic memories (e.g., teasing), if preceded by repeated stress; (c) reduce voluntary inhibition of mnestic contents; (d) impair allocentric spatial memory. If we discuss these results within the interpretative frame suggested by the “Allocentric Lock Hypothesis” (Riva, 2012, 2014), we can hypothesize that altered serotoninergic activity in AN patients: (i) improves their ability to store and consolidate negative autobiographical memories, including those of their body, in allocentric perspective; (ii) impairs their ability to trigger voluntary inhibition of the previously stored negative memory of the body; (iii) impairs their capacity to retrieve/update allocentric information. Taken together, these points suggest a possible link between serotonin dysfunctions, memory impairments and BIDs: the impossibility of updating a disturbed body memory using real time experiential data—I'm locked to a wrong body stored in long term memory—pushes AN patients to control body weight and shape even when underweight.
Collapse
Affiliation(s)
- Giuseppe Riva
- Applied Technology for Neuro-Psychology Lab, Istituto Auxologico ItalianoMilan, Italy; Centro Studi e Ricerche di Psicologia della Comunicazione, Università Cattolica del Sacro CuoreMilano, Italy
| |
Collapse
|
7
|
Abstract
UNLABELLED Adaptive decision making to eat is crucial for survival, but in anorexia nervosa, the brain persistently supports reduced food intake despite a growing need for energy. How the brain persists in reducing food intake, sometimes even to the point of death and despite the evolution of multiple mechanisms to ensure survival by governing adaptive eating behaviors, remains mysterious. Neural substrates belong to the reward-habit system, which could differ among the eating disorders. The present review provides an overview of neural circuitry of restrictive food choice, binge eating, and the contribution of specific serotonin receptors. One possibility is that restrictive food intake critically engages goal-directed (decision making) systems and "habit," supporting the view that persistent caloric restriction mimics some aspects of addiction to drugs of abuse. SIGNIFICANCE STATEMENT An improved understanding of the neural basis of eating disorders is a timely challenge because these disorders can be deadly. Up to 70 million of people in the world suffer from eating disorders. Anorexia nervosa affects 1-4% of women in United States and is the first cause of death among adolescents in Europe. Studies relying on animal models suggest that decision making to eat (or not) can prevail over actual energy requirements due to emotional disturbances resulting in abnormal habitual behavior, mimicking dependence. These recent studies provide a foundation for developing more specific and effective interventions for these disorders.
Collapse
|
8
|
Motyl KJ, DeMambro VE, Barlow D, Olshan D, Nagano K, Baron R, Rosen CJ, Houseknecht KL. Propranolol Attenuates Risperidone-Induced Trabecular Bone Loss in Female Mice. Endocrinology 2015; 156:2374-83. [PMID: 25853667 PMCID: PMC4475716 DOI: 10.1210/en.2015-1099] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Atypical antipsychotic (AA) drugs cause significant metabolic side effects, and clinical data are emerging that demonstrate increased fracture risk and bone loss after treatment with the AA, risperidone (RIS). The pharmacology underlying the adverse effects on bone is unknown. However, RIS action in the central nervous system could be responsible because the sympathetic nervous system (SNS) is known to uncouple bone remodeling. RIS treatment in mice significantly lowered trabecular bone volume fraction (bone volume/total volume), owing to increased osteoclast-mediated erosion and reduced osteoblast-mediated bone formation. Daytime energy expenditure was also increased and was temporally associated with the plasma concentration of RIS. Even a single dose of RIS transiently elevated expression of brown adipose tissue markers of SNS activity and thermogenesis, Pgc1a and Ucp1. Rankl, an osteoclast recruitment factor regulated by the SNS, was also increased 1 hour after a single dose of RIS. Thus, we inferred that bone loss from RIS was regulated, at least in part, by the SNS. To test this, we administered RIS or vehicle to mice that were also receiving the nonselective β-blocker propranolol. Strikingly, RIS did not cause any changes in trabecular bone volume/total volume, erosion, or formation while propranolol was present. Furthermore, β2-adrenergic receptor null (Adrb2(-/-)) mice were also protected from RIS-induced bone loss. This is the first report to demonstrate SNS-mediated bone loss from any AA. Because AA medications are widely prescribed, especially to young adults, clinical studies are needed to assess whether β-blockers will prevent bone loss in this vulnerable population.
Collapse
Affiliation(s)
- Katherine J Motyl
- Center for Clinical and Translational Research (K.J.M., V.E.D., D.O., C.J.R.), Maine Medical Center Research Institute, Scarborough, Maine 04074; Department of Pharmaceutical Sciences (D.B., K.L.H.), College of Pharmacy, University of New England, Portland, Maine 04005; and Department of Oral Medicine (K.N., R.B.), Infection and Immunity, Harvard School of Dental Medicine, Harvard University, Boston, Massachusetts 02115
| | - Victoria E DeMambro
- Center for Clinical and Translational Research (K.J.M., V.E.D., D.O., C.J.R.), Maine Medical Center Research Institute, Scarborough, Maine 04074; Department of Pharmaceutical Sciences (D.B., K.L.H.), College of Pharmacy, University of New England, Portland, Maine 04005; and Department of Oral Medicine (K.N., R.B.), Infection and Immunity, Harvard School of Dental Medicine, Harvard University, Boston, Massachusetts 02115
| | - Deborah Barlow
- Center for Clinical and Translational Research (K.J.M., V.E.D., D.O., C.J.R.), Maine Medical Center Research Institute, Scarborough, Maine 04074; Department of Pharmaceutical Sciences (D.B., K.L.H.), College of Pharmacy, University of New England, Portland, Maine 04005; and Department of Oral Medicine (K.N., R.B.), Infection and Immunity, Harvard School of Dental Medicine, Harvard University, Boston, Massachusetts 02115
| | - David Olshan
- Center for Clinical and Translational Research (K.J.M., V.E.D., D.O., C.J.R.), Maine Medical Center Research Institute, Scarborough, Maine 04074; Department of Pharmaceutical Sciences (D.B., K.L.H.), College of Pharmacy, University of New England, Portland, Maine 04005; and Department of Oral Medicine (K.N., R.B.), Infection and Immunity, Harvard School of Dental Medicine, Harvard University, Boston, Massachusetts 02115
| | - Kenichi Nagano
- Center for Clinical and Translational Research (K.J.M., V.E.D., D.O., C.J.R.), Maine Medical Center Research Institute, Scarborough, Maine 04074; Department of Pharmaceutical Sciences (D.B., K.L.H.), College of Pharmacy, University of New England, Portland, Maine 04005; and Department of Oral Medicine (K.N., R.B.), Infection and Immunity, Harvard School of Dental Medicine, Harvard University, Boston, Massachusetts 02115
| | - Roland Baron
- Center for Clinical and Translational Research (K.J.M., V.E.D., D.O., C.J.R.), Maine Medical Center Research Institute, Scarborough, Maine 04074; Department of Pharmaceutical Sciences (D.B., K.L.H.), College of Pharmacy, University of New England, Portland, Maine 04005; and Department of Oral Medicine (K.N., R.B.), Infection and Immunity, Harvard School of Dental Medicine, Harvard University, Boston, Massachusetts 02115
| | - Clifford J Rosen
- Center for Clinical and Translational Research (K.J.M., V.E.D., D.O., C.J.R.), Maine Medical Center Research Institute, Scarborough, Maine 04074; Department of Pharmaceutical Sciences (D.B., K.L.H.), College of Pharmacy, University of New England, Portland, Maine 04005; and Department of Oral Medicine (K.N., R.B.), Infection and Immunity, Harvard School of Dental Medicine, Harvard University, Boston, Massachusetts 02115
| | - Karen L Houseknecht
- Center for Clinical and Translational Research (K.J.M., V.E.D., D.O., C.J.R.), Maine Medical Center Research Institute, Scarborough, Maine 04074; Department of Pharmaceutical Sciences (D.B., K.L.H.), College of Pharmacy, University of New England, Portland, Maine 04005; and Department of Oral Medicine (K.N., R.B.), Infection and Immunity, Harvard School of Dental Medicine, Harvard University, Boston, Massachusetts 02115
| |
Collapse
|
9
|
Abstract
In numerous pathological states, the brain can restrict food intake to a lethal level despite mounting requirements for energy as seen in adolescents with anorexia nervosa. How the brain reduces food intake to the point of death while eating is a cornerstone of survival that remains just as ‘cryptic’ as the association between anorexia and overeating. This review provides a recent snapshot of the neural underpinnings of the rewarding effects of anorexia that may compete with the adaptive decision-making process to eat, and with survival instinct. Among a plethora of factors, impaired activity of the serotonin receptors in the reward system underlies the ability of animals to self-impose food restriction, and the transition from under- to over-eating. However, the triumvirate association between serotonin, overeating and addiction appears unlikely. Considering the implication of the serotonin receptors in the hypothalamus, anorexia and bulimia nervosa could result from an impairment of a ‘synchronic activity’ between the autonomic and voluntary nervous systems.
Collapse
Affiliation(s)
- Valérie Compan
- Centre National de la Recherche Scientifique, UnitéMixte de Recherche-5203, Institut de Génomique Fonctionnelle, Montpellier, F-34094, France and Institut National de la Santé et de la Recherche Médicale, U661, Montpellier, F-34094, France and Universités de Montpellier 1 & 2, UMR-5203, Montpellier, F-34094, France and Université de Nîmes, Nîmes, F-30000, France
| |
Collapse
|
10
|
Jean A, Laurent L, Bockaert J, Charnay Y, Dusticier N, Nieoullon A, Barrot M, Neve R, Compan V. The nucleus accumbens 5-HTR₄-CART pathway ties anorexia to hyperactivity. Transl Psychiatry 2012; 2:e203. [PMID: 23233022 PMCID: PMC3565192 DOI: 10.1038/tp.2012.131] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
In mental diseases, the brain does not systematically adjust motor activity to feeding. Probably, the most outlined example is the association between hyperactivity and anorexia in Anorexia nervosa. The neural underpinnings of this 'paradox', however, are poorly elucidated. Although anorexia and hyperactivity prevail over self-preservation, both symptoms rarely exist independently, suggesting commonalities in neural pathways, most likely in the reward system. We previously discovered an addictive molecular facet of anorexia, involving production, in the nucleus accumbens (NAc), of the same transcripts stimulated in response to cocaine and amphetamine (CART) upon stimulation of the 5-HT(4) receptors (5-HTR(4)) or MDMA (ecstasy). Here, we tested whether this pathway predisposes not only to anorexia but also to hyperactivity. Following food restriction, mice are expected to overeat. However, selecting hyperactive and addiction-related animal models, we observed that mice lacking 5-HTR(1B) self-imposed food restriction after deprivation and still displayed anorexia and hyperactivity after ecstasy. Decryption of the mechanisms showed a gain-of-function of 5-HTR(4) in the absence of 5-HTR(1B), associated with CART surplus in the NAc and not in other brain areas. NAc-5-HTR(4) overexpression upregulated NAc-CART, provoked anorexia and hyperactivity. NAc-5-HTR(4) knockdown or blockade reduced ecstasy-induced hyperactivity. Finally, NAc-CART knockdown suppressed hyperactivity upon stimulation of the NAc-5-HTR(4). Additionally, inactivating NAc-5-HTR(4) suppressed ecstasy's preference, strengthening the rewarding facet of anorexia. In conclusion, the NAc-5-HTR(4)/CART pathway establishes a 'tight-junction' between anorexia and hyperactivity, suggesting the existence of a primary functional unit susceptible to limit overeating associated with resting following homeostasis rules.
Collapse
Affiliation(s)
- A Jean
- Institut de Génomique Fonctionnelle, Montpellier, France,INSERM, U661, Montpellier, France,Universités de Montpellier 1 and 2, UMR-5203, Montpellier, France,Université de Nîmes, Nîmes, France
| | - L Laurent
- Institut de Génomique Fonctionnelle, Montpellier, France,INSERM, U661, Montpellier, France,Universités de Montpellier 1 and 2, UMR-5203, Montpellier, France
| | - J Bockaert
- Institut de Génomique Fonctionnelle, Montpellier, France,INSERM, U661, Montpellier, France,Universités de Montpellier 1 and 2, UMR-5203, Montpellier, France
| | - Y Charnay
- Hôpitaux Universitaires de Genève, Division de Neuropsychiatrie, Chêne-Bourg, Switzerland
| | - N Dusticier
- Université d'Aix-Marseille, Marseille, France
| | - A Nieoullon
- Université d'Aix-Marseille, Marseille, France
| | - M Barrot
- Institut des Neurosciences Cellulaires et Intégratives, Strasbourg, France
| | - R Neve
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - V Compan
- Institut de Génomique Fonctionnelle, Montpellier, France,INSERM, U661, Montpellier, France,Universités de Montpellier 1 and 2, UMR-5203, Montpellier, France,Université de Nîmes, Nîmes, France,Neurobiology, Institut de Génomique Fonctionnelle, 141, rue de la Cardonille, Montpellier 34094, France. E-mail:
| |
Collapse
|
11
|
Bär KJ. [The processing of pain in psychiatric diseases]. DER NERVENARZT 2012; 83:1385-1390. [PMID: 23104599 DOI: 10.1007/s00115-012-3583-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
The perception and processing of pain is disturbed in many psychiatric diseases. Some diseases are known to show decreased perception of pain (e.g. borderline personality disorder), while others are associated with augmented pain perception (e.g. alcohol and drug dependence). The close relationship between psychiatric diseases and pain is most probably caused by aberrant processing of pain in brain structures, known to be involved in psychiatric disorders as well. Aberrant perception and processing of pain in patients with anorexia nervosa (AN) will be used to demonstrate this close relationship. Dysfunction within the insula has been suggested to account for many features of AN and might contribute to reduced pain perception. Moreover, it might lead to increased adrenergic descending inhibition associated with increased sympathetic modulation. Thus, pain research might be able to alter our view on autonomic regulation, which is putatively associated with increased cardiac mortality of the disease.
Collapse
Affiliation(s)
- K-J Bär
- Klinik für Psychiatrie und Psychotherapie, AG Pain & Autonomic Integrative Research (PAIR), Universitätsklinikum Jena, Philosophenweg 3, 07743 Jena, Deutschland.
| |
Collapse
|
12
|
Abstract
Osteoporosis is less common in individuals with high fat mass. This putative osteoprotection is likely an adaptive mechanism that allows obese individuals to better carry their increased body mass. Recent studies have focused on hormones that link fat to bone. Adipokines, such as leptin, modulate bone cells through both direct and indirect actions, whereas molecules activating peroxisome proliferator-activated receptor γ drive mesenchymal stem cell differentiation towards adipocytes away from the osteoblastic lineage. There is emerging evidence that bone-derived osteocalcin regulates insulin release and insulin sensitivity and, hence, might indirectly affect fat mass. Despite these molecular connections between fat and bone, animal and human studies call into question a primary role for body fat in determining bone mass. Mice devoid of fat do not have a skeletal phenotype, and in humans, the observed correlations between bone and body mass are not just due to adipose tissue. An improved understanding of the integrative physiology at the fat-bone interface should allow us develop therapies for both osteoporosis and obesity.
Collapse
Affiliation(s)
- Mone Zaidi
- Mount Sinai Bone Program and Department of Medicine, Mount Sinai School of Medicine, New York, New York 10029, USA.
| | | | | | | |
Collapse
|
13
|
Immunotherapy of genitourinary malignancies. JOURNAL OF ONCOLOGY 2012; 2012:397267. [PMID: 22481927 PMCID: PMC3317259 DOI: 10.1155/2012/397267] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 10/08/2011] [Accepted: 12/26/2011] [Indexed: 11/18/2022]
Abstract
Most cancer patients are treated with some combination of surgery, radiation, and chemotherapy. Despite recent advances in local therapy with curative intent, chemotherapeutic treatments for metastatic disease often remain unsatisfying due to severe side effects and incomplete long-term remission. Therefore, the evaluation of novel therapeutic options is of great interest. Conventional, along with newer treatment strategies target the immune system that suppresses genitourinary (GU) malignancies. Metastatic renal cell carcinoma and non-muscle-invasive bladder caner represent the most immune-responsive types of all human cancer. This review examines the rationale and emerging evidence supporting the anticancer activity of immunotherapy, against GU malignancies.
Collapse
|
14
|
Motyl KJ, Dick-de-Paula I, Maloney AE, Lotinun S, Bornstein S, de Paula FJA, Baron R, Houseknecht KL, Rosen CJ. Trabecular bone loss after administration of the second-generation antipsychotic risperidone is independent of weight gain. Bone 2012; 50:490-8. [PMID: 21854880 PMCID: PMC3261344 DOI: 10.1016/j.bone.2011.08.005] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/21/2011] [Revised: 08/04/2011] [Accepted: 08/04/2011] [Indexed: 01/08/2023]
Abstract
Second generation antipsychotics (SGAs) have been linked to metabolic and bone disorders in clinical studies, but the mechanisms of these side effects remain unclear. Additionally, no studies have examined whether SGAs cause bone loss in mice. Using in vivo and in vitro modeling we examined the effects of risperidone, the most commonly prescribed SGA, on bone in C57BL6/J (B6) mice. Mice were treated with risperidone orally by food supplementation at a dose of 1.25 mg/kg daily for 5 and 8 weeks, starting at 3.5 weeks of age. Risperidone reduced trabecular BV/TV, trabecular number and percent cortical area. Trabecular histomorphometry demonstrated increased resorption parameters, with no change in osteoblast number or function. Risperidone also altered adipose tissue distribution such that white adipose tissue mass was reduced and liver had significantly higher lipid infiltration. Next, in order to tightly control risperidone exposure, we administered risperidone by chronic subcutaneous infusion with osmotic minipumps (0.5 mg/kg daily for 4 weeks) in 7 week old female B6 mice. Similar trabecular and cortical bone differences were observed compared to the orally treated groups (reduced trabecular BV/TV, and connectivity density, and reduced percent cortical area) with no change in body mass, percent body fat, glucose tolerance or insulin sensitivity. Unlike in orally treated mice, risperidone infusion reduced bone formation parameters (serum P1NP, MAR and BFR/BV). Resorption parameters were elevated, but this increase did not reach statistical significance. To determine if risperidone could directly affect bone cells, primary bone marrow cells were cultured with osteoclast or osteoblast differentiation media. Risperidone was added to culture medium in clinically relevant doses of 0, 2.5 or 25 ng/ml. The number of osteoclasts was significantly increased by addition in vitro of risperidone while osteoblast differentiation was not altered. These studies indicate that risperidone treatment can have negative skeletal consequences by direct activation of osteoclast activity and by indirect non-cell autonomous mechanisms. Our findings further support the tenet that the negative side effects of SGAs on bone mass should be considered when weighing potential risks and benefits, especially in children and adolescents who have not yet reached peak bone mass.
Collapse
Affiliation(s)
- Katherine J Motyl
- Maine Medical Center Research Institute, 81 Research Drive, Scarborough, ME 04074, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Inamoto T, Komura K, Watsuji T, Azuma H. Specific body mass index cut-off value in relation to survival of patients with upper urinary tract urothelial carcinomas. Int J Clin Oncol 2011; 17:256-62. [PMID: 21739125 DOI: 10.1007/s10147-011-0284-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2011] [Accepted: 06/23/2011] [Indexed: 12/01/2022]
Abstract
PURPOSE We studied the prognostic value of body mass index (BMI) in patients with upper tract urothelial carcinoma (UTUC) of the kidney and ureter. METHODS We evaluated 153 patients who underwent surgery for UTUC (any T stage, N0-1, M0) between 1996 and 2009 at our institution. Of the 153 patients screened for the study, 103 patients were found to have comprehensive clinical and pathologic data available, and were included in the analysis. Patients were stratified by BMI = 22 kg/m(2) or greater versus less than 22. Overall survival (OS), cancer-specific survival (CSS), and recurrence-free survival was estimated using the Kaplan-Meier method. Multivariate analysis was performed with the Cox regression model. RESULTS The mean age and BMI of all patients was 68.62 ± 10.06 years and 22.97 ± 3.44 kg/m(2), respectively. The patient population comprised 71 (68.9%) males and 32 (31.1%) females. The BMI was <22 in 38 (36.9%) patients and >22 in 65 (63.1%). The differences between BMI categories in gender (p = 0.013) was statistically significant, but not in other relevant parameters. The median follow-up was 29 months (interquartile range 14-63). Among other relevant descriptive preoperative characteristics, including gender, age, bladder tumor at diagnosis, tumor focality, and tumor side, smaller BMI remained an independent predictor for worse CSS (p = 0.047, HR 2.210) on multivariate analysis. CONCLUSIONS Our findings identify increasing BMI as an independent predictor for favorable OS and CSS in patients with UTUC.
Collapse
Affiliation(s)
- Teruo Inamoto
- Department of Urology, Osaka Medical College, 2-7 Daigaku-machi, Takatsuki, Osaka, 569-8686, Japan.
| | | | | | | |
Collapse
|
16
|
He JY, Jiang LS, Dai LY. The roles of the sympathetic nervous system in osteoporotic diseases: A review of experimental and clinical studies. Ageing Res Rev 2011; 10:253-63. [PMID: 21262391 DOI: 10.1016/j.arr.2011.01.002] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2010] [Revised: 01/10/2011] [Accepted: 01/11/2011] [Indexed: 02/04/2023]
Abstract
With the rapid aging of the world population, the issue of skeletal health is becoming more prominent and urgent. The bone remodeling mechanism has sparked great interest among bone research societies. At the same time, increasing clinical and experimental evidence has driven attention towards the pivotal role of the sympathetic nervous system (SNS) in bone remodeling. Bone remodeling is thought to be partially controlled by the hypothalamus, a process which is mediated by the adrenergic nerves and neurotransmitters. Currently, new knowledge about the role of the SNS in the development and pathophysiology of osteoporosis is being generated. The aim of this review is to summarize the evidence that proves the involvement of the SNS in bone metabolism and to outline some common osteoporotic diseases that occur under different circumstances. The adrenergic signaling pathway and its neurotransmitters are involved to various degrees of importance in the development of osteoporosis in postmenopause, as well as in spinal cord injury, depression, unloading and the complex regional pain syndrome. In addition, clinical and pharmacological studies have helped to increase the comprehension of the adrenergic signaling pathway. We try to individually examine the contributions of the SNS in osteoporotic diseases from a different perspective. It is our hope that a further understanding of the adrenergic signaling by the SNS will pave the way for conceptualizing optimal treatment regimens for osteoporosis in the near future.
Collapse
Affiliation(s)
- Ji-Ye He
- Department of Orthopedic Surgery, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, China
| | | | | |
Collapse
|
17
|
Abstract
Various data from scientific research studies conducted over the past three decades suggest that central neurotransmitters play a key role in the modulation of aggression in all mammalian species, including humans. Specific neurotransmitter systems involved in mammalian aggression include serotonin, dopamine, norepinephrine, GABA, and neuropeptides such as vasopressin and oxytocin. Neurotransmitters not only help to execute basic behavioral components but also serve to modulate these preexisting behavioral states by amplifying or reducing their effects. This chapter reviews the currently available data to present a contemporary view of how central neurotransmitters influence the vulnerability for aggressive behavior and/or initiation of aggressive behavior in social situations. Data reviewed in this chapter include emoiric information from neurochemical, pharmaco-challenge, molecular genetic and neuroimaging studies.
Collapse
Affiliation(s)
- Rachel Yanowitch
- Clinical Neuroscience Research Unit, Department of Psychiatry, The University of Chicago Pritzker School of Medicine, Chicago, Illinois, USA
| | | |
Collapse
|