1
|
Ebrahimzadeh E, Sadjadi SM, Asgarinejad M, Dehghani A, Rajabion L, Soltanian-Zadeh H. Neuroenhancement by repetitive transcranial magnetic stimulation (rTMS) on DLPFC in healthy adults. Cogn Neurodyn 2025; 19:34. [PMID: 39866659 PMCID: PMC11759757 DOI: 10.1007/s11571-024-10195-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Revised: 06/11/2024] [Accepted: 10/27/2024] [Indexed: 01/28/2025] Open
Abstract
The term "neuroenhancement" describes the enhancement of cognitive function associated with deficiencies resulting from a specific condition. Nevertheless, there is currently no agreed-upon definition for the term "neuroenhancement", and its meaning can change based on the specific research being discussed. As humans, our continual pursuit of expanding our capabilities, encompassing both cognitive and motor skills, has led us to explore various tools. Among these, repetitive Transcranial Magnetic Stimulation (rTMS) stands out, yet its potential remains underestimated. Historically, rTMS was predominantly employed in studies focused on rehabilitation objectives. A small amount of research has examined its use on healthy subjects with the goal of improving cognitive abilities like risk-seeking, working memory, attention, cognitive control, learning, computing speed, and decision-making. It appears that the insights gained in this domain largely stem from indirect outcomes of rehabilitation research. This review aims to scrutinize these studies, assessing the effectiveness of rTMS in enhancing cognitive skills in healthy subjects. Given that the dorsolateral prefrontal cortex (DLPFC) has become a popular focus for rTMS in treating psychiatric disorders, corresponding anatomically to Brodmann areas 9 and 46, and considering the documented success of rTMS stimulation on the DLPFC for cognitive improvement, our focus in this review article centers on the DLPFC as the focal point and region of interest. Additionally, recognizing the significance of theta burst magnetic stimulation protocols (TBS) in mimicking the natural firing patterns of the brain to modulate excitability in specific cortical areas with precision, we have incorporated Theta Burst Stimulation (TBS) wave patterns. This inclusion, mirroring brain patterns, is intended to enhance the efficacy of the rTMS method. To ascertain if brain magnetic stimulation consistently improves cognition, a thorough meta-analysis of the existing literature has been conducted. The findings indicate that, after excluding outlier studies, rTMS may improve cognition when compared to appropriate control circumstances. However, there is also a considerable degree of variation among the researches. The navigation strategy used to reach the stimulation site and the stimulation location are important factors that contribute to the variation between studies. The results of this study can provide professional athletes, firefighters, bodyguards, and therapists-among others in high-risk professions-with insightful information that can help them perform better on the job.
Collapse
Affiliation(s)
- Elias Ebrahimzadeh
- CIPCE, School of Electrical and Computer Engineering, College of Engineering, University of Tehran, North Kargar Ave., Tehran, Iran
- School of Cognitive Sciences, Institute for Research in Fundamental Sciences (IPM), Niavaran Ave., Tehran, Iran
| | - Seyyed Mostafa Sadjadi
- CIPCE, School of Electrical and Computer Engineering, College of Engineering, University of Tehran, North Kargar Ave., Tehran, Iran
- School of Cognitive Sciences, Institute for Research in Fundamental Sciences (IPM), Niavaran Ave., Tehran, Iran
| | | | - Amin Dehghani
- Department of Psychological and Brain Sciences, Dartmouth College, Hanover, NH USA
| | - Lila Rajabion
- School of Graduate Studies, SUNY Empire State College, Manhattan, NY USA
| | - Hamid Soltanian-Zadeh
- CIPCE, School of Electrical and Computer Engineering, College of Engineering, University of Tehran, North Kargar Ave., Tehran, Iran
- School of Cognitive Sciences, Institute for Research in Fundamental Sciences (IPM), Niavaran Ave., Tehran, Iran
| |
Collapse
|
2
|
Peng H, Ge Q, Xu T, He Y, Xu L, Yang Y, Wu S, He J, Si J. Repetitive transcranial magnetic stimulation frequency influences the hemodynamic responses in patients with disorders of consciousness. Neurosci Res 2025; 213:72-85. [PMID: 39922287 DOI: 10.1016/j.neures.2025.02.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 01/20/2025] [Accepted: 02/04/2025] [Indexed: 02/10/2025]
Abstract
Repetitive transcranial magnetic stimulation (rTMS) emerges as a promising non-invasive neuromodulation technique for the treatment of patients with disorders of consciousness (DOC). The selection of rTMS parameters significantly influences the clinical therapeutic effects. However, the differences in spatiotemporal responsiveness of the brain under different rTMS stimulation frequencies remain unclear. In this pilot study, functional near-infrared spectroscopy (fNIRS) was used to evaluate the spatiotemporal differences in hemodynamic responses elicited by rTMS at different frequencies (1, 5, 10, 15, and 20 Hz) over left dorsolateral prefrontal cortex (F3). The results showed that the distribution patterns of the rTMS-evoked hemodynamic responses varied across different frequencies, indicating that rTMS frequency influences the hemodynamic responses in patients with DOC. Specifically, 10 Hz rTMS evoked strong positive hemodynamic responses over the frontal cortex, particularly in the right dorsolateral prefrontal cortex (R-DLPFC). Additionally, 20 Hz rTMS produced largepositive hemodynamic responses over the motor-related cortex, especially the right premotor cortex (R-PreM) and right primary sensorimotor cortex (PSMC). The current findings suggested that fNIRS can be used as a promising tool for evaluating the effects of rTMS in patients with DOC. Moreover, it provides useful guidance for the personalized design of rTMS parameters in a clinical environment.
Collapse
Affiliation(s)
- Hao Peng
- School of Instrumentation Science and Opto-electronics Engineering, Beijing Information Science and Technology University, Beijing 100192, China
| | - Qianqian Ge
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China
| | - Tianshuai Xu
- School of Instrumentation Science and Opto-electronics Engineering, Beijing Information Science and Technology University, Beijing 100192, China
| | - Yifang He
- School of Instrumentation Science and Opto-electronics Engineering, Beijing Information Science and Technology University, Beijing 100192, China
| | - Long Xu
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China
| | - Yi Yang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China
| | - Sijin Wu
- School of Instrumentation Science and Opto-electronics Engineering, Beijing Information Science and Technology University, Beijing 100192, China
| | - Jianghong He
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China.
| | - Juanning Si
- School of Instrumentation Science and Opto-electronics Engineering, Beijing Information Science and Technology University, Beijing 100192, China.
| |
Collapse
|
3
|
Wu G, Zhu T, Ma C, Xu L, Qian Z, Kong G, Cui H, Zhang T, Wang J, Tang Y. Association of abnormal cortical inhibition and clinical outcomes in patients at clinical high risk for psychosis. Clin Neurophysiol 2025; 169:65-73. [PMID: 39626344 DOI: 10.1016/j.clinph.2024.11.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 05/27/2024] [Accepted: 11/21/2024] [Indexed: 12/18/2024]
Abstract
OBJECTIVE Cortical inhibition (CI) can be in-vivo measured using transcranial magnetic stimulation (TMS), and patients with schizophrenia had abnormal CI. However, whether the abnormal CI occur early in patients with clinical high risk for psychosis (CHR) or could predict their clinical outcomes remains less known. METHODS We measured short-interval cortical inhibition (SICI), cortical silent period (CSP), and intra-cortical facilitation (ICF) over the motor cortex and neurocognitive performances in 55 CHR, 35 first-episode schizophrenia (FES), and 35 healthy controls (HC). We divided CHR patients into CHR converters (CHR-C) and CHR non-converters (CHR-NC) according to their clinical outcomes within the two-year follow-up. RESULTS CSP was longer in CHR-C (P = 0.033) and FES (P = 0.047) than in HC, while CSP was comparable between CHR-NC and HC. In CHR, CSP was negatively related to their performances in symbol coding and maze tasks. There was no significant between-group difference for either SICI or ICF. CONCLUSIONS Our findings suggested GABAB-mediated CSP was prolonged in CHR, who later converted into schizophrenia, and was associated with poor neurocognitive functions. SIGNIFICANCE CSP is prolonged before the onset of psychosis, particularly in CHR-C patients, suggesting that CSP could be a potential biomarker for predicting transition to schizophrenia.
Collapse
Affiliation(s)
- Guanfu Wu
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Tianyuan Zhu
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Chunyan Ma
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Lihua Xu
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhenying Qian
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Gai Kong
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Huiru Cui
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Tianhong Zhang
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jijun Wang
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Brain Science and Technology Research Center, Shanghai Jiao Tong University, Shanghai, China; CAS Center for Excellence in Brain Science and Intelligence Technology (CEBSIT), Chinese Academy of Science, Shanghai, China.
| | - Yingying Tang
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
4
|
Deng Q, Wu C, Parker E, Zhu J, Liu TCY, Duan R, Yang L. Mystery of gamma wave stimulation in brain disorders. Mol Neurodegener 2024; 19:96. [PMID: 39695746 PMCID: PMC11657232 DOI: 10.1186/s13024-024-00785-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 12/03/2024] [Indexed: 12/20/2024] Open
Abstract
Neuronal oscillations refer to rhythmic and periodic fluctuations of electrical activity in the central nervous system that arise from the cellular properties of diverse neuronal populations and their interactions. Specifically, gamma oscillations play a crucial role in governing the connectivity between distinct brain regions, which are essential in perception, motor control, memory, and emotions. In this context, we recapitulate various current stimulation methods to induce gamma entrainment. These methods include sensory stimulation, optogenetic modulation, photobiomodulation, and transcranial electrical or magnetic stimulation. Simultaneously, we explore the association between abnormal gamma oscillations and central nervous system disorders such as Alzheimer's disease, Parkinson's disease, stroke, schizophrenia, and autism spectrum disorders. Evidence suggests that gamma entrainment-inducing stimulation methods offer notable neuroprotection, although somewhat controversial. This review comprehensively discusses the functional role of gamma oscillations in higher-order brain activities from both physiological and pathological perspectives, emphasizing gamma entrainment as a potential therapeutic approach for neuropsychiatric disorders. Additionally, we discuss future opportunities and challenges in implementing such strategies.
Collapse
Affiliation(s)
- Qianting Deng
- School of Physical Education and Sports Science, South China Normal University, Guangzhou, 510006, China
| | - Chongyun Wu
- School of Physical Education and Sports Science, South China Normal University, Guangzhou, 510006, China
| | - Emily Parker
- Augusta University, 1120 15th Street, Augusta, GA, 30912, USA
| | - Jing Zhu
- Department of Respiratory and Critical Care Medicine, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430000, China
| | - Timon Cheng-Yi Liu
- School of Physical Education and Sports Science, South China Normal University, Guangzhou, 510006, China
| | - Rui Duan
- School of Physical Education and Sports Science, South China Normal University, Guangzhou, 510006, China.
| | - Luodan Yang
- School of Physical Education and Sports Science, South China Normal University, Guangzhou, 510006, China.
| |
Collapse
|
5
|
Yuan LX, Wang XK, Yang C, Zhang QR, Ma SZ, Zang YF, Dong WQ. A systematic review of transcranial magnetic stimulation treatment for autism spectrum disorder. Heliyon 2024; 10:e32251. [PMID: 38933955 PMCID: PMC11200348 DOI: 10.1016/j.heliyon.2024.e32251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 05/29/2024] [Accepted: 05/30/2024] [Indexed: 06/28/2024] Open
Abstract
Autism spectrum disorder (ASD) is a behaviorally defined complex neurodevelopmental syndrome characterized by persistent social communication and interaction deficit. Transcranial magnetic stimulation (TMS) is a promising and emerging tool for the intervention of ASD by reducing both core and associate symptoms. Several reviews have been published regarding TMS-based ASD treatment, however, a systematic review on study characteristics, specific stimulating parameters, localization techniques, stimulated targets, behavioral outcomes, and neuroimage biomarker changes is lagged behind since 2018. Here, we performed a systematic search on literatures published after 2018 in PubMed, Web of Science, and Science Direct. After screening, the final systematic review included 17 articles, composing seven randomized controlled trial studies and ten open-label studies. Two studies are double-blind, while the other studies have a moderate to high risk of bias attributing to inadequate subject- and evaluator-blinding to treatment allocation. Five studies utilize theta-burst stimulation mode, and the others apply repetitive TMS with low frequency (five studies), high frequency (six studies), and combined low and high frequency stimulation (one study). Most researchers prioritize the bilateral dorsolateral prefrontal lobe as stimulation target, while parietal lobule, inferior parietal lobule, and posterior superior temporal sulci have also emerged as new targets of attention. One third of the studies use neuronavigation based on anatomical magnetic resonance imaging to locate the stimulation target. After TMS intervention, discernible enhancements across a spectrum of scales are evident in stereotyped behavior, repetitive behavior, and verbal social domains. A comprehensive review of literature spanning the last five years demonstrates the potential of TMS treatment for ASD in ameliorating the clinical core symptoms.
Collapse
Affiliation(s)
- Li-Xia Yuan
- School of Physics, Zhejiang University, Hangzhou, China
| | - Xing-Ke Wang
- Center for Cognition and Brain Disorders, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, China
- Institute of Psychological Sciences, Hangzhou Normal University, Hangzhou, Zhejiang, China
- Zhejiang Key Laboratory for Research in Assessment of Cognitive Impairments, Hangzhou, Zhejiang, China
| | - Chen Yang
- Center for Cognition and Brain Disorders, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, China
- Institute of Psychological Sciences, Hangzhou Normal University, Hangzhou, Zhejiang, China
- Zhejiang Key Laboratory for Research in Assessment of Cognitive Impairments, Hangzhou, Zhejiang, China
| | - Qiu-Rong Zhang
- Center for Cognition and Brain Disorders, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, China
- Institute of Psychological Sciences, Hangzhou Normal University, Hangzhou, Zhejiang, China
- Zhejiang Key Laboratory for Research in Assessment of Cognitive Impairments, Hangzhou, Zhejiang, China
| | - Sheng-Zhi Ma
- Center for Cognition and Brain Disorders, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, China
- Institute of Psychological Sciences, Hangzhou Normal University, Hangzhou, Zhejiang, China
- Zhejiang Key Laboratory for Research in Assessment of Cognitive Impairments, Hangzhou, Zhejiang, China
| | - Yu-Feng Zang
- Center for Cognition and Brain Disorders, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, China
- Institute of Psychological Sciences, Hangzhou Normal University, Hangzhou, Zhejiang, China
- Zhejiang Key Laboratory for Research in Assessment of Cognitive Impairments, Hangzhou, Zhejiang, China
- TMS Center, Deqing Hospital of Hangzhou Normal University, Deqing, Zhejiang, China
| | - Wen-Qiang Dong
- Center for Cognition and Brain Disorders, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, China
- Institute of Psychological Sciences, Hangzhou Normal University, Hangzhou, Zhejiang, China
- Zhejiang Key Laboratory for Research in Assessment of Cognitive Impairments, Hangzhou, Zhejiang, China
| |
Collapse
|
6
|
Asgarinejad M, Saviz M, Sadjadi SM, Saliminia S, Kakaei A, Esmaeili P, Hammoud A, Ebrahimzadeh E, Soltanian-Zadeh H. Repetitive transcranial magnetic stimulation (rTMS) as a tool for cognitive enhancement in healthy adults: a review study. Med Biol Eng Comput 2024; 62:653-673. [PMID: 38044385 DOI: 10.1007/s11517-023-02968-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 11/06/2023] [Indexed: 12/05/2023]
Abstract
As human beings, we have always sought to expand on our abilities, including our cognitive and motor skills. One of the still-underrated tools employed to this end is repetitive transcranial magnetic stimulation (rTMS). Until recently, rTMS was almost exclusively used in studies with rehabilitation purposes. Only a small strand of literature has focused on the application of rTMS on healthy people with the aim of enhancing cognitive abilities such as decision-making, working memory, attention, source memory, cognitive control, learning, computational speed, risk-taking, and impulsive behaviors. It, therefore, seems that the findings in this particular field are the indirect results of rehabilitation research. In this review paper, we have set to investigate such studies and evaluate the rTMS effectuality in terms of how it improves the cognitive skills in healthy subjects. Furthermore, since the most common brain site used for rTMS protocols is the dorsolateral prefrontal cortex (DLPFC), we have added theta burst stimulation (TBS) wave patterns that are similar to brain patterns to increase the effectiveness of this method. The results of this study can help people who have high-risk jobs including firefighters, surgeons, and military officers with their job performance.
Collapse
Affiliation(s)
| | - Marzieh Saviz
- Faculty of Psychology and Education, University of Tehran, Tehran, Iran.
| | - Seyyed Mostafa Sadjadi
- CIPCE, School of Electrical and Computer Engineering, College of Engineering, University of Tehran, Tehran, Iran
- School of Cognitive Sciences, Institute for Research in Fundamental Sciences (IPM), Tehran, Iran
| | - Sarah Saliminia
- Biomedical Engineering Department, School of Electrical Engineering, Payame Noor University of North Tehran, Tehran, Iran
| | - Amineh Kakaei
- Department of Clinical Psychology, School of Behavioral Sciences and Mental Health, Iran University of Medical Sciences, Tehran, Iran
| | - Peyman Esmaeili
- Department of Health, Safety and Environment, Shahid Beheshti Medical University, Tehran, Iran
| | - Ahmad Hammoud
- Department of Medical and Technical Information Technology, Bauman Moscow State Technical University, Moscow, Russia
| | - Elias Ebrahimzadeh
- School of Cognitive Sciences, Institute for Research in Fundamental Sciences (IPM), Tehran, Iran.
| | - Hamid Soltanian-Zadeh
- CIPCE, School of Electrical and Computer Engineering, College of Engineering, University of Tehran, Tehran, Iran
- School of Cognitive Sciences, Institute for Research in Fundamental Sciences (IPM), Tehran, Iran
| |
Collapse
|
7
|
Xu P, Wang S, Yang Y, Guragai B, Zhang Q, Zhang J, Jin Z, Li L. cTBS to Right DLPFC Modulates Physiological Correlates of Conflict Processing: Evidence from a Stroop task. Brain Topogr 2024; 37:37-51. [PMID: 37880501 DOI: 10.1007/s10548-023-01015-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 10/13/2023] [Indexed: 10/27/2023]
Abstract
Conflict typically occurs when goal-directed processing competes with more automatic responses. Though previous studies have highlighted the importance of the right dorsolateral prefrontal cortex (rDLPFC) in conflict processing, its causal role remains unclear. In the current study, the behavioral experiment, the continuous theta burst stimulation (cTBS), and the electroencephalography (EEG) were combined to explore the effects of behavioral performance and physiological correlates during conflict processing, after the cTBS over the rDLPFC and vertex (the control condition). Twenty-six healthy participants performed the Stroop task which included congruent and incongruent trials. Although the cTBS did not induce significant changes in the behavioral performance, the cTBS over the rDLPFC reduced the Stroop effects of conflict monitoring-related frontal-central N2 component and theta oscillation, and conflict resolution-related parieto-occipital alpha oscillation, compared to the vertex stimulation. Moreover, a significant hemispheric difference in alpha oscillation was exploratively observed after the cTBS over the rDLPFC. Interestingly, we found the rDLPFC stimulation resulted in significantly reduced Stroop effects of theta and gamma oscillation after response, which may reflect the adjustment of cognitive control for the next trial. In conclusion, our study not only demonstrated the critical involvement of the rDLPFC in conflict monitoring, conflict resolution processing, and conflict adaptation but also revealed the electrophysiological mechanism of conflict processing mediated by the rDLPFC.
Collapse
Affiliation(s)
- Ping Xu
- Key Laboratory for NeuroInformation of Ministry of Education, High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, Center for Information in Medicine, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, 610054, China
| | - Song Wang
- Key Laboratory for NeuroInformation of Ministry of Education, High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, Center for Information in Medicine, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, 610054, China
| | - Yulu Yang
- Key Laboratory for NeuroInformation of Ministry of Education, High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, Center for Information in Medicine, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, 610054, China
| | - Bishal Guragai
- Key Laboratory for NeuroInformation of Ministry of Education, High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, Center for Information in Medicine, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, 610054, China
| | - Qiuzhu Zhang
- Key Laboratory for NeuroInformation of Ministry of Education, High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, Center for Information in Medicine, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, 610054, China
| | - Junjun Zhang
- Key Laboratory for NeuroInformation of Ministry of Education, High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, Center for Information in Medicine, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, 610054, China
| | - Zhenlan Jin
- Key Laboratory for NeuroInformation of Ministry of Education, High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, Center for Information in Medicine, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, 610054, China
| | - Ling Li
- Key Laboratory for NeuroInformation of Ministry of Education, High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, Center for Information in Medicine, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, 610054, China.
| |
Collapse
|
8
|
Arvin S, Yonehara K, Glud AN. Therapeutic Neuromodulation toward a Critical State May Serve as a General Treatment Strategy. Biomedicines 2022; 10:biomedicines10092317. [PMID: 36140418 PMCID: PMC9496064 DOI: 10.3390/biomedicines10092317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 09/11/2022] [Accepted: 09/14/2022] [Indexed: 11/18/2022] Open
Abstract
Brain disease has become one of this century’s biggest health challenges, urging the development of novel, more effective treatments. To this end, neuromodulation represents an excellent method to modulate the activity of distinct neuronal regions to alleviate disease. Recently, the medical indications for neuromodulation therapy have expanded through the adoption of the idea that neurological disorders emerge from deficits in systems-level structures, such as brain waves and neural topology. Connections between neuronal regions are thought to fluidly form and dissolve again based on the patterns by which neuronal populations synchronize. Akin to a fire that may spread or die out, the brain’s activity may similarly hyper-synchronize and ignite, such as seizures, or dwindle out and go stale, as in a state of coma. Remarkably, however, the healthy brain remains hedged in between these extremes in a critical state around which neuronal activity maneuvers local and global operational modes. While it has been suggested that perturbations of this criticality could underlie neuropathologies, such as vegetative states, epilepsy, and schizophrenia, a major translational impact is yet to be made. In this hypothesis article, we dissect recent computational findings demonstrating that a neural network’s short- and long-range connections have distinct and tractable roles in sustaining the critical regime. While short-range connections shape the dynamics of neuronal activity, long-range connections determine the scope of the neuronal processes. Thus, to facilitate translational progress, we introduce topological and dynamical system concepts within the framework of criticality and discuss the implications and possibilities for therapeutic neuromodulation guided by topological decompositions.
Collapse
Affiliation(s)
- Simon Arvin
- Center for Experimental Neuroscience—CENSE, Department of Neurosurgery, Aarhus University Hospital, Palle Juul-Jensens Boulevard 165, 8200 Aarhus N, Denmark
- Danish Research Institute of Translational Neuroscience—DANDRITE, Nordic-EMBL Partnership for Molecular Medicine, Department of Biomedicine, Aarhus University, Ole Worms Allé 8, 8000 Aarhus C, Denmark
- Department of Neurosurgery, Department of Clinical Medicine, Aarhus University, Palle Juul-Jensens Boulevard 11 Building A, 8200 Aarhus N, Denmark
- Correspondence: ; Tel.: +45 6083-1275
| | - Keisuke Yonehara
- Danish Research Institute of Translational Neuroscience—DANDRITE, Nordic-EMBL Partnership for Molecular Medicine, Department of Biomedicine, Aarhus University, Ole Worms Allé 8, 8000 Aarhus C, Denmark
- Multiscale Sensory Structure Laboratory, National Institute of Genetics, Mishima, Shizuoka 411-8540, Japan
- Department of Genetics, The Graduate University for Advanced Studies (SOKENDAI), Mishima, Shizuoka 411-8540, Japan
| | - Andreas Nørgaard Glud
- Center for Experimental Neuroscience—CENSE, Department of Neurosurgery, Aarhus University Hospital, Palle Juul-Jensens Boulevard 165, 8200 Aarhus N, Denmark
- Department of Neurosurgery, Department of Clinical Medicine, Aarhus University, Palle Juul-Jensens Boulevard 11 Building A, 8200 Aarhus N, Denmark
| |
Collapse
|
9
|
Arvin S, Glud AN, Yonehara K. Short- and Long-Range Connections Differentially Modulate the Dynamics and State of Small-World Networks. Front Comput Neurosci 2022; 15:783474. [PMID: 35145389 PMCID: PMC8821822 DOI: 10.3389/fncom.2021.783474] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Accepted: 12/03/2021] [Indexed: 11/13/2022] Open
Abstract
The human brain contains billions of neurons that flexibly interconnect to support local and global computational spans. As neuronal activity propagates through the neural medium, it approaches a critical state hedged between ordered and disordered system regimes. Recent work demonstrates that this criticality coincides with the small-world topology, a network arrangement that accommodates both local (subcritical) and global (supercritical) system properties. On one hand, operating near criticality is thought to offer several neurocomputational advantages, e.g., high-dynamic range, efficient information capacity, and information transfer fidelity. On the other hand, aberrations from the critical state have been linked to diverse pathologies of the brain, such as post-traumatic epileptiform seizures and disorders of consciousness. Modulation of brain activity, through neuromodulation, presents an attractive mode of treatment to alleviate such neurological disorders, but a tractable neural framework is needed to facilitate clinical progress. Using a variation on the generative small-world model of Watts and Strogatz and Kuramoto's model of coupled oscillators, we show that the topological and dynamical properties of the small-world network are divided into two functional domains based on the range of connectivity, and that these domains play distinct roles in shaping the behavior of the critical state. We demonstrate that short-range network connections shape the dynamics of the system, e.g., its volatility and metastability, whereas long-range connections drive the system state, e.g., a seizure. Together, these findings lend support to combinatorial neuromodulation approaches that synergistically normalize the system dynamic while mobilizing the system state.
Collapse
Affiliation(s)
- Simon Arvin
- Department of Neurosurgery, Center for Experimental Neuroscience – CENSE, Institute of Clinical Medicine, Aarhus University Hospital, Aarhus C, Denmark
- Department of Biomedicine, Danish Research Institute of Translational Neuroscience – DANDRITE, Nordic-EMBL Partnership for Molecular Medicine, Aarhus University, Aarhus C, Denmark
- *Correspondence: Simon Arvin
| | - Andreas Nørgaard Glud
- Department of Neurosurgery, Center for Experimental Neuroscience – CENSE, Institute of Clinical Medicine, Aarhus University Hospital, Aarhus C, Denmark
| | - Keisuke Yonehara
- Department of Biomedicine, Danish Research Institute of Translational Neuroscience – DANDRITE, Nordic-EMBL Partnership for Molecular Medicine, Aarhus University, Aarhus C, Denmark
- Multiscale Sensory Structure Laboratory, National Institute of Genetics, Mishima, Japan
- Department of Genetics, The Graduate University for Advanced Studies (SOKENDAI), Mishima, Japan
- Keisuke Yonehara
| |
Collapse
|
10
|
Wang Y, Bai Y, Xia X, Niu Z, Yang Y, He J, Li X. Comparison of synchrosqueezing transform to alternative methods for time-frequency analysis of TMS-evoked EEG oscillations. Biomed Signal Process Control 2021. [DOI: 10.1016/j.bspc.2021.102975] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
11
|
Byron N, Semenova A, Sakata S. Mutual Interactions between Brain States and Alzheimer's Disease Pathology: A Focus on Gamma and Slow Oscillations. BIOLOGY 2021; 10:707. [PMID: 34439940 PMCID: PMC8389330 DOI: 10.3390/biology10080707] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 07/17/2021] [Accepted: 07/21/2021] [Indexed: 12/26/2022]
Abstract
Brain state varies from moment to moment. While brain state can be defined by ongoing neuronal population activity, such as neuronal oscillations, this is tightly coupled with certain behavioural or vigilant states. In recent decades, abnormalities in brain state have been recognised as biomarkers of various brain diseases and disorders. Intriguingly, accumulating evidence also demonstrates mutual interactions between brain states and disease pathologies: while abnormalities in brain state arise during disease progression, manipulations of brain state can modify disease pathology, suggesting a therapeutic potential. In this review, by focusing on Alzheimer's disease (AD), the most common form of dementia, we provide an overview of how brain states change in AD patients and mouse models, and how controlling brain states can modify AD pathology. Specifically, we summarise the relationship between AD and changes in gamma and slow oscillations. As pathological changes in these oscillations correlate with AD pathology, manipulations of either gamma or slow oscillations can modify AD pathology in mouse models. We argue that neuromodulation approaches to target brain states are a promising non-pharmacological intervention for neurodegenerative diseases.
Collapse
Affiliation(s)
- Nicole Byron
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, 161 Cathedral Street, Glasgow G4 0RE, UK
| | - Anna Semenova
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, 161 Cathedral Street, Glasgow G4 0RE, UK
| | - Shuzo Sakata
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, 161 Cathedral Street, Glasgow G4 0RE, UK
| |
Collapse
|
12
|
Takeuchi Y, Nagy AJ, Barcsai L, Li Q, Ohsawa M, Mizuseki K, Berényi A. The Medial Septum as a Potential Target for Treating Brain Disorders Associated With Oscillopathies. Front Neural Circuits 2021; 15:701080. [PMID: 34305537 PMCID: PMC8297467 DOI: 10.3389/fncir.2021.701080] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Accepted: 06/14/2021] [Indexed: 12/14/2022] Open
Abstract
The medial septum (MS), as part of the basal forebrain, supports many physiological functions, from sensorimotor integration to cognition. With often reciprocal connections with a broad set of peers at all major divisions of the brain, the MS orchestrates oscillatory neuronal activities throughout the brain. These oscillations are critical in generating sensory and emotional salience, locomotion, maintaining mood, supporting innate anxiety, and governing learning and memory. Accumulating evidence points out that the physiological oscillations under septal influence are frequently disrupted or altered in pathological conditions. Therefore, the MS may be a potential target for treating neurological and psychiatric disorders with abnormal oscillations (oscillopathies) to restore healthy patterns or erase undesired ones. Recent studies have revealed that the patterned stimulation of the MS alleviates symptoms of epilepsy. We discuss here that stimulus timing is a critical determinant of treatment efficacy on multiple time scales. On-demand stimulation may dramatically reduce side effects by not interfering with normal physiological functions. A precise pattern-matched stimulation through adaptive timing governed by the ongoing oscillations is essential to effectively terminate pathological oscillations. The time-targeted strategy for the MS stimulation may provide an effective way of treating multiple disorders including Alzheimer's disease, anxiety/fear, schizophrenia, and depression, as well as pain.
Collapse
Affiliation(s)
- Yuichi Takeuchi
- Department of Physiology, Osaka City University Graduate School of Medicine, Osaka, Japan
| | - Anett J. Nagy
- MTA-SZTE ‘Momentum’ Oscillatory Neuronal Networks Research Group, Department of Physiology, University of Szeged, Szeged, Hungary
| | - Lívia Barcsai
- MTA-SZTE ‘Momentum’ Oscillatory Neuronal Networks Research Group, Department of Physiology, University of Szeged, Szeged, Hungary
| | - Qun Li
- MTA-SZTE ‘Momentum’ Oscillatory Neuronal Networks Research Group, Department of Physiology, University of Szeged, Szeged, Hungary
| | - Masahiro Ohsawa
- Department of Neuropharmacology, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya, Japan
| | - Kenji Mizuseki
- Department of Physiology, Osaka City University Graduate School of Medicine, Osaka, Japan
| | - Antal Berényi
- MTA-SZTE ‘Momentum’ Oscillatory Neuronal Networks Research Group, Department of Physiology, University of Szeged, Szeged, Hungary
- Neurocybernetics Excellence Center, University of Szeged, Szeged, Hungary
- HCEMM-USZ Magnetotherapeutics Research Group, University of Szeged, Szeged, Hungary
- Neuroscience Institute, New York University, New York, NY, United States
| |
Collapse
|
13
|
TMS-EEG Research to Elucidate the Pathophysiological Neural Bases in Patients with Schizophrenia: A Systematic Review. J Pers Med 2021; 11:jpm11050388. [PMID: 34068580 PMCID: PMC8150818 DOI: 10.3390/jpm11050388] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 04/29/2021] [Accepted: 05/06/2021] [Indexed: 12/16/2022] Open
Abstract
Schizophrenia (SCZ) is a serious mental disorder, and its pathogenesis is complex. Recently, the glutamate hypothesis and the excitatory/inhibitory (E/I) imbalance hypothesis have been proposed as new pathological hypotheses for SCZ. Combined transcranial magnetic stimulation (TMS) and electroencephalography (EEG) is a non-invasive novel method that enables us to investigate the cortical activity in humans, and this modality is a suitable approach to evaluate these hypotheses. In this study, we systematically reviewed TMS-EEG studies that investigated the cortical dysfunction of SCZ to examine the emerging hypotheses for SCZ. The following search terms were set in this systematic review: (TMS or ‘transcranial magnetic stimulation’) and (EEG or electroencephalog*) and (schizophrenia). We inspected the articles written in English that examined humans and were published by March 2020 via MEDLINE, Embase, PsycINFO, and PubMed. The initial search generated 379 studies, and 14 articles were finally identified. The current review noted that patients with SCZ demonstrated the E/I deficits in the prefrontal cortex, whose dysfunctions were also associated with cognitive impairment and clinical severity. Moreover, TMS-induced gamma activity in the prefrontal cortex was related to positive symptoms, while theta/delta band activities were associated with negative symptoms in SCZ. Thus, this systematic review discusses aspects of the pathophysiological neural basis of SCZ that are not explained by the traditional dopamine hypothesis exclusively, based on the findings of previous TMS-EEG research, mainly in terms of the E/I imbalance hypothesis. In conclusion, TMS-EEG neurophysiology can be applied to establish objective biomarkers for better diagnosis as well as to develop new therapeutic strategies for patients with SCZ.
Collapse
|
14
|
Casanova MF, Shaban M, Ghazal M, El-Baz AS, Casanova EL, Sokhadze EM. Ringing Decay of Gamma Oscillations and Transcranial Magnetic Stimulation Therapy in Autism Spectrum Disorder. Appl Psychophysiol Biofeedback 2021; 46:161-173. [PMID: 33877491 DOI: 10.1007/s10484-021-09509-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Research suggest that in autism spectrum disorder (ASD) a disturbance in the coordinated interactions of neurons within local networks gives rise to abnormal patterns of brainwave activity in the gamma bandwidth. Low frequency transcranial magnetic stimulation (TMS) over the dorsolateral prefrontal cortex (DLPFC) has been proven to normalize gamma oscillation abnormalities, executive functions, and repetitive behaviors in high functioning ASD individuals. In this study, gamma frequency oscillations in response to a visual classification task (Kanizsa figures) were analyzed and compared in 19 ASD (ADI-R diagnosed, 14.2 ± 3.61 years old, 5 girls) and 19 (14.8 ± 3.67 years old, 5 girls) age/gender matched neurotypical individuals. The ASD group was treated with low frequency TMS (1.0 Hz, 90% motor threshold, 18 weekly sessions) targeting the DLPFC. In autistic subjects, as compared to neurotypicals, significant differences in event-related gamma oscillations were evident in amplitude (higher) pre-TMS. In addition, recordings after TMS treatment in our autistic subjects revealed a significant reduction in the time period to reach peak amplitude and an increase in the decay phase (settling time). The use of a novel metric for gamma oscillations. i.e., envelope analysis, and measurements of its ringing decay allowed us to characterize the impedance of the originating neuronal circuit. The ringing decay or dampening of gamma oscillations is dependent on the inhibitory tone generated by networks of interneurons. The results suggest that the ringing decay of gamma oscillations may provide a biomarker reflective of the excitatory/inhibitory balance of the cortex and a putative outcome measure for interventions in autism.
Collapse
Affiliation(s)
- Manuel F Casanova
- Department of Biomedical Sciences, University of South Carolina School of Medicine Greenville, 701 Grove Rd, Greenville, SC, 29605, USA
| | - Mohamed Shaban
- Electrical and Computer Engineering, University of South Alabama, Mobile, AL, USA
| | - Mohammed Ghazal
- Electrical and Computer Engineering Department, Abu Dhabi University, Abu Dhabi, United Arab Emirates
| | - Ayman S El-Baz
- Department of Bioengineering, Speed School of Engineering, University of Louisville, Louisville, KY, USA
| | - Emily L Casanova
- Department of Biomedical Sciences, University of South Carolina School of Medicine Greenville, 701 Grove Rd, Greenville, SC, 29605, USA
| | - Estate M Sokhadze
- Department of Biomedical Sciences, University of South Carolina School of Medicine Greenville, 701 Grove Rd, Greenville, SC, 29605, USA.
| |
Collapse
|
15
|
Casanova MF, Sokhadze EM, Casanova EL, Li X. Transcranial Magnetic Stimulation in Autism Spectrum Disorders: Neuropathological Underpinnings and Clinical Correlations. Semin Pediatr Neurol 2020; 35:100832. [PMID: 32892959 PMCID: PMC7477302 DOI: 10.1016/j.spen.2020.100832] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Despite growing knowledge about autism spectrum disorder (ASD), research findings have not been translated into curative treatment. At present, most therapeutic interventions provide for symptomatic treatment. Outcomes of interventions are judged by subjective endpoints (eg, behavioral assessments) which alongside the highly heterogeneous nature of ASD account for wide variability in the effectiveness of treatments. Transcranial magnetic stimulation (TMS) is one of the first treatments that targets a putative core pathologic feature of autism, specifically the cortical inhibitory imbalance that alters gamma frequency synchronization. Studies show that low frequency TMS over the dorsolateral prefrontal cortex of individuals with ASD decreases the power of gamma activity and increases the difference between gamma responses to target and nontarget stimuli. TMS improves executive function skills related to self-monitoring behaviors and the ability to apply corrective actions. These improvements manifest themselves as a reduction of stimulus bound behaviors and diminished sympathetic arousal. Results become more significant with increasing number of sessions and bear synergism when used along with neurofeedback. When applied at low frequencies in individuals with ASD, TMS appears to be safe and to improve multiple patient-oriented outcomes. Future studies should be conducted in large populations to establish predictors of outcomes (eg, genetic profiling), length of persistence of benefits, and utility of booster sessions.
Collapse
Affiliation(s)
- Manuel F. Casanova
- Director of Childhood Neurotherapeutics, Greenville Health System, Departments of Pediatrics, Division of Developmental Behavioral Pediatrics, Greenville, SC, USA and Professor of Biomedical Sciences, University of South Carolina School of Medicine Greenville, Greenville, SC, USA
| | - Estate M. Sokhadze
- Research Professor, University of South Carolina School of Medicine Greenville, Greenville, SC, USA
| | - Emily L. Casanova
- Research Assistant Professor, University of South Carolina School of Medicine Greenville, Greenville, SC, USA
| | - Xiaoli Li
- Director, State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China; Center for Collaboration and Innovation in Brain and Learning Sciences, Beijing Normal University, Beijing, China
| |
Collapse
|
16
|
Kayarian FB, Jannati A, Rotenberg A, Santarnecchi E. Targeting Gamma-Related Pathophysiology in Autism Spectrum Disorder Using Transcranial Electrical Stimulation: Opportunities and Challenges. Autism Res 2020; 13:1051-1071. [PMID: 32468731 PMCID: PMC7387209 DOI: 10.1002/aur.2312] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Revised: 04/15/2020] [Accepted: 04/22/2020] [Indexed: 12/12/2022]
Abstract
A range of scalp electroencephalogram (EEG) abnormalities correlates with the core symptoms of autism spectrum disorder (ASD). Among these are alterations of brain oscillations in the gamma-frequency EEG band in adults and children with ASD, whose origin has been linked to dysfunctions of inhibitory interneuron signaling. While therapeutic interventions aimed to modulate gamma oscillations are being tested for neuropsychiatric disorders such as schizophrenia, Alzheimer's disease, and frontotemporal dementia, the prospects for therapeutic gamma modulation in ASD have not been extensively studied. Accordingly, we discuss gamma-related alterations in the setting of ASD pathophysiology, as well as potential interventions that can enhance gamma oscillations in patients with ASD. Ultimately, we argue that transcranial electrical stimulation modalities capable of entraining gamma oscillations, and thereby potentially modulating inhibitory interneuron circuitry, are promising methods to study and mitigate gamma alterations in ASD. Autism Res 2020, 13: 1051-1071. © 2020 International Society for Autism Research, Wiley Periodicals, Inc. LAY SUMMARY: Brain functions are mediated by various oscillatory waves of neuronal activity, ranging in amplitude and frequency. In certain neuropsychiatric disorders, such as schizophrenia and Alzheimer's disease, reduced high-frequency oscillations in the "gamma" band have been observed, and therapeutic interventions to enhance such activity are being explored. Here, we review and comment on evidence of reduced gamma activity in ASD, arguing that modalities used in other disorders may benefit individuals with ASD as well.
Collapse
Affiliation(s)
- Fae B. Kayarian
- Berenson-Allen Center for Noninvasive Brain Stimulation and Division of Cognitive Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Ali Jannati
- Berenson-Allen Center for Noninvasive Brain Stimulation and Division of Cognitive Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
- Neuromodulation Program and Division of Epilepsy and Clinical Neurophysiology, Department of Neurology, Boston Children’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Alexander Rotenberg
- Berenson-Allen Center for Noninvasive Brain Stimulation and Division of Cognitive Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
- Neuromodulation Program and Division of Epilepsy and Clinical Neurophysiology, Department of Neurology, Boston Children’s Hospital, Harvard Medical School, Boston, MA, USA
- F.M. Kirby Neurobiology Center, Department of Neurology, Boston Children’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Emiliano Santarnecchi
- Berenson-Allen Center for Noninvasive Brain Stimulation and Division of Cognitive Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
17
|
Casanova MF, Sokhadze EM, Casanova EL, Opris I, Abujadi C, Marcolin MA, Li X. Translational Neuroscience in Autism: From Neuropathology to Transcranial Magnetic Stimulation Therapies. Psychiatr Clin North Am 2020; 43:229-248. [PMID: 32439019 PMCID: PMC7245584 DOI: 10.1016/j.psc.2020.02.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The presence of heterotopias, increased regional density of neurons at the gray-white matter junction, and focal cortical dysplasias all suggest an abnormality of neuronal migration in autism spectrum disorder (ASD). The abnormality is borne from a dissonance in timing between radial and tangentially migrating neuroblasts to the developing cortical plate. The uncoupling of excitatory and inhibitory cortical cells disturbs the coordinated interactions of neurons within local networks, thus providing abnormal patterns of brainwave activity in the gamma bandwidth. In ASD, gamma oscillation abnormalities and autonomic markers offer measures of therapeutic progress and help in the identification of subgroups.
Collapse
Affiliation(s)
- Manuel F Casanova
- Department of Pediatrics, Division of Developmental Behavioral Pediatrics, Greenville Health System, 200 Patewood Drive, Suite A200, Greenville, SC 29615, USA.
| | - Estate M Sokhadze
- University of South Carolina School of Medicine Greenville, 200 Patewood Drive, Greenville, SC 29615, USA
| | - Emily L Casanova
- University of South Carolina School of Medicine Greenville, 200 Patewood Drive, Greenville, SC 29615, USA. https://twitter.com/EmLyWill
| | - Ioan Opris
- University of Miami, Miller School of Medicine, Department Miami Project to Cure Paralysis, Miami, FL 33136, USA
| | - Caio Abujadi
- Department of Psychiatry, Faculty of Medicine, University of São Paulo, São Paulo, Brazil
| | - Marco Antonio Marcolin
- Department of Neurology, Faculty of Medicine, University of São Paulo, São Paulo, Brazil
| | - Xiaoli Li
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China
| |
Collapse
|
18
|
Takeuchi Y, Berényi A. Oscillotherapeutics - Time-targeted interventions in epilepsy and beyond. Neurosci Res 2020; 152:87-107. [PMID: 31954733 DOI: 10.1016/j.neures.2020.01.002] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 12/18/2019] [Accepted: 12/19/2019] [Indexed: 02/09/2023]
Abstract
Oscillatory brain activities support many physiological functions from motor control to cognition. Disruptions of the normal oscillatory brain activities are commonly observed in neurological and psychiatric disorders including epilepsy, Parkinson's disease, Alzheimer's disease, schizophrenia, anxiety/trauma-related disorders, major depressive disorders, and drug addiction. Therefore, these disorders can be considered as common oscillation defects despite having distinct behavioral manifestations and genetic causes. Recent technical advances of neuronal activity recording and analysis have allowed us to study the pathological oscillations of each disorder as a possible biomarker of symptoms. Furthermore, recent advances in brain stimulation technologies enable time- and space-targeted interventions of the pathological oscillations of both neurological disorders and psychiatric disorders as possible targets for regulating their symptoms.
Collapse
Affiliation(s)
- Yuichi Takeuchi
- MTA-SZTE 'Momentum' Oscillatory Neuronal Networks Research Group, Department of Physiology, University of Szeged, Szeged, 6720, Hungary; Department of Neuropharmacology, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya, 467-8603, Japan.
| | - Antal Berényi
- MTA-SZTE 'Momentum' Oscillatory Neuronal Networks Research Group, Department of Physiology, University of Szeged, Szeged, 6720, Hungary; HCEMM-SZTE Magnetotherapeutics Research Group, University of Szeged, Szeged, 6720, Hungary; Neuroscience Institute, New York University, New York, NY 10016, USA.
| |
Collapse
|
19
|
Sokolenko E, Hudson MR, Nithianantharajah J, Jones NC. The mGluR 2/3 agonist LY379268 reverses NMDA receptor antagonist effects on cortical gamma oscillations and phase coherence, but not working memory impairments, in mice. J Psychopharmacol 2019; 33:1588-1599. [PMID: 31580222 DOI: 10.1177/0269881119875976] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
BACKGROUND Abnormalities in neural oscillations that occur in the gamma frequency range (30-80 Hz) may underlie cognitive deficits in schizophrenia. Both cognitive impairments and gamma oscillatory disturbances can be induced in healthy people and rodents by administration of N-methyl-D-aspartate receptor (NMDAr) antagonists. AIMS We studied relationships between cognitive impairment and gamma abnormalities following NMDAr antagonism, and attempted to reverse deficits with the metabotropic glutamate receptor type 2/3 (mGluR2/3) agonist LY379268. METHODS C57/Bl6 mice were trained to perform the Trial-Unique Nonmatching to Location (TUNL) touchscreen test for working memory. They were then implanted with local field potential (LFP) recording electrodes in prefrontal cortex and dorsal hippocampus. Mice were administered either LY379268 (3 mg/kg) or vehicle followed by the NMDAr antagonist MK-801 (0.3 or 1 mg/kg) or vehicle prior to testing on the TUNL task, or recording LFPs during the presentation of an auditory stimulus. RESULTS MK-801 impaired working memory and increased perseveration, but these behaviours were not improved by LY379268 treatment. MK-81 increased the power of ongoing gamma and high gamma (130-180 Hz) oscillations in both brain regions and regional coherence between regions, and these signatures were augmented by LY379268. However, auditory-evoked gamma oscillation deficits caused by MK-801 were not affected by LY379268 pretreatment. CONCLUSIONS NMDA receptor antagonism impairs working memory in mice, but this is not reversed by stimulation of mGluR2/3. Since elevations in ongoing gamma power and regional coherence caused by MK-801 were improved by LY379268, it appears unlikely that these specific oscillatory abnormalities underlie the working memory impairment caused by NMDAr antagonism.
Collapse
Affiliation(s)
- Elysia Sokolenko
- Department of Medicine, Royal Melbourne Hospital, University of Melbourne, Melbourne Brain Centre, Parkville, VIC, Australia
| | - Matthew R Hudson
- Department of Medicine, Royal Melbourne Hospital, University of Melbourne, Melbourne Brain Centre, Parkville, VIC, Australia.,Department of Neuroscience, Central Clinical School, Monash University, The Alfred Hospital, Melbourne, VIC, Australia
| | - Jess Nithianantharajah
- The Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, VIC, Australia
| | - Nigel C Jones
- Department of Medicine, Royal Melbourne Hospital, University of Melbourne, Melbourne Brain Centre, Parkville, VIC, Australia.,Department of Neuroscience, Central Clinical School, Monash University, The Alfred Hospital, Melbourne, VIC, Australia
| |
Collapse
|
20
|
Kang JN, Song JJ, Casanova MF, Sokhadze EM, Li XL. Effects of repetitive transcranial magnetic stimulation on children with low-function autism. CNS Neurosci Ther 2019; 25:1254-1261. [PMID: 31228356 PMCID: PMC6834922 DOI: 10.1111/cns.13150] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Revised: 04/17/2019] [Accepted: 04/25/2019] [Indexed: 01/09/2023] Open
Abstract
Background Autism spectrum disorder (ASD) is a very complex neurodevelopmental disorder, characterized by social difficulties and stereotypical or repetitive behavior. Some previous studies using low‐frequency repetitive transcranial magnetic stimulation (rTMS) have proven of benefit in ASD children. Methods In this study, 32 children (26 males and six females) with low‐function autism were enrolled, 16 children (three females and 13 males; mean ± SD age: 7.8 ± 2.1 years) received rTMS treatment twice every week, while the remaining 16 children (three females and 13 males; mean ± SD age: 7.2 ± 1.6 years) served as waitlist group. This study investigated the effects of rTMS on brain activity and behavioral response in the autistic children. Results Peak alpha frequency (PAF) is an electroencephalographic measure of cognitive preparedness and might be a neural marker of cognitive function for the autism. Coherence is one way to assess the brain functional connectivity of ASD children, which has proven abnormal in previous studies. The results showed significant increases in the PAF at the frontal region, the left temporal region, the right temporal region and the occipital region and a significant increase of alpha coherence between the central region and the right temporal region. Autism Behavior Checklist (ABC) scores were also compared before and after receiving rTMS with positive effects shown on behavior. Conclusion These findings supported our hypothesis by demonstration of positive effects of combined rTMS neurotherapy in active treatment group as compared to the waitlist group, as the rTMS group showed significant improvements in behavioral and functional outcomes as compared to the waitlist group.
Collapse
Affiliation(s)
- Jian-Nan Kang
- College of Electronic & Information Engineering, Hebei University, Baoding, China
| | - Jia-Jia Song
- College of Electronic & Information Engineering, Hebei University, Baoding, China
| | - Manuel F Casanova
- Department of Biomedical Sciences, University of South Carolina School of Medicine Greenville Campus, Greenville Health System, Greenville, South Carolina
| | - Estate M Sokhadze
- Department of Biomedical Sciences, University of South Carolina School of Medicine Greenville Campus, Greenville Health System, Greenville, South Carolina
| | - Xiao-Li Li
- State Key Laboratory of Cognitive Neuroscience and Learning and IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China
| |
Collapse
|
21
|
Banerjee S, Grover S, Sridharan D. Unraveling Causal Mechanisms of Top-Down and Bottom-Up Visuospatial Attention with Non-invasive Brain Stimulation. J Indian Inst Sci 2019; 97:451-475. [PMID: 31231154 PMCID: PMC6588534 DOI: 10.1007/s41745-017-0046-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2017] [Accepted: 09/29/2017] [Indexed: 12/22/2022]
Abstract
Attention is a process of selection that allows us to intelligently navigate the abundance of information in our world. Attention can be either directed voluntarily based on internal goals-"top-down" or goal-directed attention-or captured automatically, by salient stimuli-"bottom-up" or stimulus-driven attention. Do these two modes of attention control arise from same or different brain circuits? Do they share similar or distinct neural mechanisms? In this review, we explore this dichotomy between the neural bases of top-down and bottom-up attention control, with a special emphasis on insights gained from non-invasive neurostimulation techniques, specifically, transcranial magnetic stimulation (TMS). TMS enables spatially focal and temporally precise manipulation of brain activity. We explore a significant literature devoted to investigating the role of fronto-parietal brain regions in top-down and bottom-up attention with TMS, and highlight key areas of convergence and debate. We also discuss recent advances in combinatorial paradigms that combine TMS with other imaging modalities, such as functional magnetic resonance imaging or electroencephalography. These paradigms are beginning to bridge essential gaps in our understanding of the neural pathways by which TMS affects behavior, and will prove invaluable for unraveling mechanisms of attention control, both in health and in disease.
Collapse
Affiliation(s)
- Sanjna Banerjee
- Centre for Neuroscience, Indian Institute of Science, Bangalore, 560012 India
| | - Shrey Grover
- Centre for Neuroscience, Indian Institute of Science, Bangalore, 560012 India
| | - Devarajan Sridharan
- Centre for Neuroscience, Indian Institute of Science, Bangalore, 560012 India
| |
Collapse
|
22
|
Kim TD, Hong G, Kim J, Yoon S. Cognitive Enhancement in Neurological and Psychiatric Disorders Using Transcranial Magnetic Stimulation (TMS): A Review of Modalities, Potential Mechanisms and Future Implications. Exp Neurobiol 2019; 28:1-16. [PMID: 30853820 PMCID: PMC6401552 DOI: 10.5607/en.2019.28.1.1] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Revised: 02/07/2019] [Accepted: 02/15/2019] [Indexed: 02/06/2023] Open
Abstract
Cognitive enhancement refers to the improvement of cognitive function related to deficits that occurred as part of a certain illness. However, the term cognitive enhancement does not yet have a definitive meaning, and its connotations often vary depending on the research of interest. Recently, research interests are growing towards enhancing human cognition beyond what has traditionally been considered necessary using various brain devices. The phenomenon of exceeding the cognitive abilities of individuals who are already functional has also introduced new terminologies as means to classify between cognitive enhancing procedures that are part of treatment versus simply supplementary. Of the many devices used to attain cognitive enhancement, transcranial magnetic stimulation (TMS) is a unique neurostimulatory device that has demonstrated significant improvements in various cognitive domains including memory and cognitive processing skills. While many studies have supported the safety and efficacy of TMS in treatment, there has yet to be an optimization in parameter for TMS that is catered to a certain target group. The current paper aims to review with perspective the many studies that have used TMS for the purpose of cognitive enhancement and provide further insight on the development of an optimal stimulation parameter. The paper reviews 41 peer-reviewed articles that used TMS for cognitive enhancement, summarizes the findings that were apparent for each distinct parameter, and discusses future directions regarding TMS as an elective tool for healthy individuals while considering some of the ethical perspectives that may be warranted.
Collapse
Affiliation(s)
- Tammy D Kim
- Department of Brain and Cognitive Sciences, Ewha Womans University, Seoul 03760, Korea.,Ewha Brain Institute, Ewha Womans University, Seoul 03760, Korea
| | - Gahae Hong
- Ewha Brain Institute, Ewha Womans University, Seoul 03760, Korea
| | - Jungyoon Kim
- Department of Brain and Cognitive Sciences, Ewha Womans University, Seoul 03760, Korea.,Ewha Brain Institute, Ewha Womans University, Seoul 03760, Korea
| | - Sujung Yoon
- Department of Brain and Cognitive Sciences, Ewha Womans University, Seoul 03760, Korea.,Ewha Brain Institute, Ewha Womans University, Seoul 03760, Korea
| |
Collapse
|
23
|
Osoegawa C, Gomes JS, Grigolon RB, Brietzke E, Gadelha A, Lacerda ALT, Dias ÁM, Cordeiro Q, Laranjeira R, de Jesus D, Daskalakis ZJ, Brunelin J, Cordes J, Trevizol AP. Non-invasive brain stimulation for negative symptoms in schizophrenia: An updated systematic review and meta-analysis. Schizophr Res 2018; 197:34-44. [PMID: 29397282 DOI: 10.1016/j.schres.2018.01.010] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Revised: 01/17/2018] [Accepted: 01/17/2018] [Indexed: 12/18/2022]
Abstract
BACKGROUND Schizophrenia is a mental disorder with significant socioeconomic burden. Although current pharmacological treatments are effective for treating positive symptoms, medications have little-to-no effect in the treatment of negative symptoms. OBJECTIVE To assess the efficacy of non-invasive brain stimulation (NIBS) for negative symptoms in schizophrenia in randomized clinical trials (RCTs). METHODS A systematic review in Medline and Cochrane Library databases was performed up to May 31, 2017. The primary outcome was Hedges' g for continuous scores in a random-effects model. Heterogeneity was evaluated with the I2 and χ2 tests. Publication bias was assessed using Begg's funnel plot. RESULTS 31 RCTs (n = 1272) were included, most with small-to-modest sample sizes. Both repetitive transcranial magnetic stimulation (rTMS) and transcranial direct current stimulation (tDCS) were superior to sham (Hedges' g = 0.19; 95% CI 0.07-0.32; and 0.5; 0.02-0.97, respectively). Only one study evaluated the use of transcutaneous auricular vagus nerve stimulation (taVNS). The funnel plot and Eggers test showed that the risk of publication bias was low. In relation to heterogeneity, we found an I2 of 0% (p = 0.749) and 51.3% (0.055) for rTMS and tDCS, respectively. CONCLUSION Both rTMS and tDCS were superior to sham stimulation for ameliorating negative symptoms in schizophrenia. We found no considerable heterogeneity or publication bias in our analysis, corroborating the strength of our findings. Not enough studies on other NIBS techniques, such as taVNS, were found for an isolated analysis. Further RCTs with larger sample sizes are needed to clarify the specific impact of NIBS on negative symptoms in schizophrenia.
Collapse
Affiliation(s)
| | - July Silveira Gomes
- Federal University of São Paulo, Brazil; Schizophrenia Program, Federal University of São Paulo (PROESQ), Brazil
| | | | - Elisa Brietzke
- Federal University of São Paulo, Brazil; Mood Disorders Psychopharmacology Unit, University Health Network, Toronto, Canada; University of Toronto, Canada
| | - Ary Gadelha
- Federal University of São Paulo, Brazil; Schizophrenia Program, Federal University of São Paulo (PROESQ), Brazil
| | - Acioly L T Lacerda
- Federal University of São Paulo, Brazil; Center for Research and Clinical Trials Sinapse-Bairral, Instituto Bairral de Psiquiatria, Brazil
| | | | | | | | | | | | - Jerome Brunelin
- Lyon Neuroscience Research Center, Lyon 1 University, Lyon, France
| | - Joachim Cordes
- Department of Psychiatry and Psychotherapy, Heinrich-Heine University of Düsseldorf, Germany
| | - Alisson Paulino Trevizol
- Mood Disorders Psychopharmacology Unit, University Health Network, Toronto, Canada; University of Toronto, Canada.
| |
Collapse
|
24
|
Gomes J, Trevizol A, Ducos D, Gadelha A, Ortiz B, Fonseca A, Akiba H, Azevedo C, Guimaraes L, Shiozawa P, Cordeiro Q, Lacerda A, Dias A. Effects of transcranial direct current stimulation on working memory and negative symptoms in schizophrenia: a phase II randomized sham-controlled trial. Schizophr Res Cogn 2018; 12:20-28. [PMID: 29552509 PMCID: PMC5852322 DOI: 10.1016/j.scog.2018.02.003] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Revised: 02/01/2018] [Accepted: 02/04/2018] [Indexed: 12/17/2022]
Abstract
BACKGROUND The lack of efficacy of pharmacological treatments for cognitive and negative symptoms in schizophrenia highlights the need for new interventions. We investigated the effects of tDCS on working memory and negative symptoms in patients with schizophrenia. METHOD Double-blinded, randomized, sham-controlled clinical trial, investigating the effects of 10 sessions of tDCS in schizophrenia subjects. Stimulation used 2 mA, for 20 min, with electrodes of 25 cm2 wrapped in cotton material soaked in saline solution. Anode was positioned over the left DLPFC and the cathode in the contralateral area. Twenty-four participants were assessed at baseline, after intervention and in a three-months follow-up. The primary outcome was the working memory score from MATRICS and the secondary outcome the negative score from PANSS. Data were analyzed using generalized estimating equations. RESULTS We did not find group ∗ time interaction for the working memory (p = 0.720) score or any other cognitive variable (p > 0.05). We found a significant group ∗ time interaction for PANSS negative (p < 0.001, d = 0.23, CI.95 = -0.59-1.02), general (p = 0.011) and total scores (p < 0.001). Exploratory analysis of PANSS 5 factors suggests tDCS effect on PANSS negative (p = 0.012), cognitive (p = 0.016) and depression factors (p = 0.029). CONCLUSION The results from this trial highlight the therapeutic effects of tDCS for treatment of persistent symptoms in schizophrenia, with reduction of negative symptoms. We were not able to confirm the superiority of active tDCS over sham to improve working memory performance. Larger sample size studies are needed to confirm these findings.
Collapse
Affiliation(s)
- J.S. Gomes
- Interdisciplinary Laboratory of Clinical Neurosciences, Federal University of Sao Paulo, Sao Paulo, Brazil
- Center for Neuromodulation Studies, Dep. of Psychiatry, Federal University of Sao Paulo, Sao Paulo, Brazil
| | - A.P. Trevizol
- Center for Neuromodulation Studies, Dep. of Psychiatry, Federal University of Sao Paulo, Sao Paulo, Brazil
- Reference Center for Alcohol, Tobacco and Other Drugs (CRATOD), Sao Paulo State Secretariat of Health, Sao Paulo, Brazil
| | - D.V. Ducos
- Interdisciplinary Laboratory of Clinical Neurosciences, Federal University of Sao Paulo, Sao Paulo, Brazil
- Center for Neuromodulation Studies, Dep. of Psychiatry, Federal University of Sao Paulo, Sao Paulo, Brazil
| | - A. Gadelha
- Interdisciplinary Laboratory of Clinical Neurosciences, Federal University of Sao Paulo, Sao Paulo, Brazil
- Center for Neuromodulation Studies, Dep. of Psychiatry, Federal University of Sao Paulo, Sao Paulo, Brazil
| | - B.B. Ortiz
- Interdisciplinary Laboratory of Clinical Neurosciences, Federal University of Sao Paulo, Sao Paulo, Brazil
| | - A.O. Fonseca
- Interdisciplinary Laboratory of Clinical Neurosciences, Federal University of Sao Paulo, Sao Paulo, Brazil
| | - H.T. Akiba
- Interdisciplinary Laboratory of Clinical Neurosciences, Federal University of Sao Paulo, Sao Paulo, Brazil
- Center for Neuromodulation Studies, Dep. of Psychiatry, Federal University of Sao Paulo, Sao Paulo, Brazil
| | - C.C. Azevedo
- Interdisciplinary Laboratory of Clinical Neurosciences, Federal University of Sao Paulo, Sao Paulo, Brazil
- Center for Neuromodulation Studies, Dep. of Psychiatry, Federal University of Sao Paulo, Sao Paulo, Brazil
| | - L.S.P. Guimaraes
- Epidemiology and Biostatistics Unity, Clinical Hospital of Porto Alegre, Federal University of Rio Grande do Sul, Rio Grande do Sul, Brazil
| | - P. Shiozawa
- Department of Psychiatry, Santa Casa School of Medicine, Sao Paulo, Brazil
| | - Q. Cordeiro
- Interdisciplinary Laboratory of Clinical Neurosciences, Federal University of Sao Paulo, Sao Paulo, Brazil
- Center for Neuromodulation Studies, Dep. of Psychiatry, Federal University of Sao Paulo, Sao Paulo, Brazil
| | - A. Lacerda
- Interdisciplinary Laboratory of Clinical Neurosciences, Federal University of Sao Paulo, Sao Paulo, Brazil
- Center for Neuromodulation Studies, Dep. of Psychiatry, Federal University of Sao Paulo, Sao Paulo, Brazil
- Center for Research and Clinical Trials Sinapse-Bairral, Instituto Bairral de Psiquiatria, Itapira, Brazil
| | - A.M. Dias
- Interdisciplinary Laboratory of Clinical Neurosciences, Federal University of Sao Paulo, Sao Paulo, Brazil
- Center for Neuromodulation Studies, Dep. of Psychiatry, Federal University of Sao Paulo, Sao Paulo, Brazil
| |
Collapse
|
25
|
Ameis SH, Daskalakis ZJ, Blumberger DM, Desarkar P, Drmic I, Mabbott DJ, Lai MC, Croarkin PE, Szatmari P. Repetitive Transcranial Magnetic Stimulation for the Treatment of Executive Function Deficits in Autism Spectrum Disorder: Clinical Trial Approach. J Child Adolesc Psychopharmacol 2017; 27:413-421. [PMID: 28346865 PMCID: PMC5510034 DOI: 10.1089/cap.2016.0146] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
OBJECTIVE Executive function (EF) deficits in patients with autism spectrum disorder (ASD) are ubiquitous and understudied. Further, there are no effective, neuroscience-based treatments to address this impairing feature of ASD. Repetitive transcranial magnetic stimulation (rTMS) has demonstrated promise in addressing EF deficits in adult neuropsychiatric disorders. This article will outline the design of a novel randomized-controlled trial of bilateral, 20 Hz, rTMS applied to the dorsolateral prefrontal cortex (DLPFC) for treatment of EF deficits in ASD that is currently ongoing. We describe prior therapeutic rTMS research for ASD and prior rTMS trials targeting EFs in adult neuropsychiatric disorders. A neurophysiological rationale for rTMS treatment of EF deficits in ASD is presented. METHODS An ongoing protocol will enroll participants aged 16-35 with ASD and no intellectual disability. Psychotropic medications will be continued during the 4-week trial of active 20 Hz versus sham rTMS applied to the DLPFC. Twenty, active treatment sessions consisting of 25 stimulation trains at a 90% motor threshold will be administered. The primary outcome measure is the Cambridge Neuropsychological Test Automated Battery (CANTAB) spatial working memory task. At present, recruitment, enrollment, and treatment within the described clinical trial are ongoing. CONCLUSIONS EF deficits are common and impairing symptoms of ASD. There are no evidence-based treatments for EF deficits in ASD. The protocol described here will provide important preliminary data on the feasibility and efficacy of 20 Hz rTMS to DLPFC for EF deficits in ASD.
Collapse
Affiliation(s)
- Stephanie H. Ameis
- Centre for Brain and Mental Health, The Hospital for Sick Children, Toronto, Canada.,The Margaret and Wallace McCain Centre for Child, Youth and Family Mental Health, Campbell Family Mental Health Research Institute, The Centre for Addiction and Mental Health, University of Toronto, Toronto, Canada.,Department of Psychiatry, Faculty of Medicine, University of Toronto, Toronto, Canada
| | - Zafiris J. Daskalakis
- Department of Psychiatry, Faculty of Medicine, University of Toronto, Toronto, Canada.,Temerty Centre for Therapeutic Brain Intervention, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Ontario, Canada
| | - Daniel M. Blumberger
- Department of Psychiatry, Faculty of Medicine, University of Toronto, Toronto, Canada.,Temerty Centre for Therapeutic Brain Intervention, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Ontario, Canada
| | - Pushpal Desarkar
- Department of Psychiatry, Faculty of Medicine, University of Toronto, Toronto, Canada.,Temerty Centre for Therapeutic Brain Intervention, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Ontario, Canada
| | - Irene Drmic
- Genetics and Genome Biology and Autism Research Unit, The Centre for Applied Genomics, The Hospital for Sick Children, Toronto, Canada
| | - Donald J. Mabbott
- Program in Neurosciences and Mental Health, Research Institute, The Hospital for Sick Children, Toronto, Canada.,Department of Psychology, Faculty of Graduate Studies, University of Toronto, Toronto, Canada
| | - Meng-Chuan Lai
- Centre for Brain and Mental Health, The Hospital for Sick Children, Toronto, Canada.,The Margaret and Wallace McCain Centre for Child, Youth and Family Mental Health, Campbell Family Mental Health Research Institute, The Centre for Addiction and Mental Health, University of Toronto, Toronto, Canada.,Department of Psychiatry, Faculty of Medicine, University of Toronto, Toronto, Canada
| | - Paul E. Croarkin
- Division of Child and Adolescent Psychiatry, Department of Psychiatry and Psychology, Mayo Clinic, Rochester, Minnesota
| | - Peter Szatmari
- Centre for Brain and Mental Health, The Hospital for Sick Children, Toronto, Canada.,The Margaret and Wallace McCain Centre for Child, Youth and Family Mental Health, Campbell Family Mental Health Research Institute, The Centre for Addiction and Mental Health, University of Toronto, Toronto, Canada.,Department of Psychiatry, Faculty of Medicine, University of Toronto, Toronto, Canada
| |
Collapse
|
26
|
Foss-Feig JH, Adkinson BD, Ji JL, Yang G, Srihari VH, McPartland JC, Krystal JH, Murray JD, Anticevic A. Searching for Cross-Diagnostic Convergence: Neural Mechanisms Governing Excitation and Inhibition Balance in Schizophrenia and Autism Spectrum Disorders. Biol Psychiatry 2017; 81:848-861. [PMID: 28434615 PMCID: PMC5436134 DOI: 10.1016/j.biopsych.2017.03.005] [Citation(s) in RCA: 191] [Impact Index Per Article: 23.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/08/2016] [Revised: 02/06/2017] [Accepted: 03/05/2017] [Indexed: 01/08/2023]
Abstract
Recent theoretical accounts have proposed excitation and inhibition (E/I) imbalance as a possible mechanistic, network-level hypothesis underlying neural and behavioral dysfunction across neurodevelopmental disorders, particularly autism spectrum disorder (ASD) and schizophrenia (SCZ). These two disorders share some overlap in their clinical presentation as well as convergence in their underlying genes and neurobiology. However, there are also clear points of dissociation in terms of phenotypes and putatively affected neural circuitry. We highlight emerging work from the clinical neuroscience literature examining neural correlates of E/I imbalance across children and adults with ASD and adults with both chronic and early-course SCZ. We discuss findings from diverse neuroimaging studies across distinct modalities, conducted with electroencephalography, magnetoencephalography, proton magnetic resonance spectroscopy, and functional magnetic resonance imaging, including effects observed both during task and at rest. Throughout this review, we discuss points of convergence and divergence in the ASD and SCZ literature, with a focus on disruptions in neural E/I balance. We also consider these findings in relation to predictions generated by theoretical neuroscience, particularly computational models predicting E/I imbalance across disorders. Finally, we discuss how human noninvasive neuroimaging can benefit from pharmacological challenge studies to reveal mechanisms in ASD and SCZ. Collectively, we attempt to shed light on shared and divergent neuroimaging effects across disorders with the goal of informing future research examining the mechanisms underlying the E/I imbalance hypothesis across neurodevelopmental disorders. We posit that such translational efforts are vital to facilitate development of neurobiologically informed treatment strategies across neuropsychiatric conditions.
Collapse
Affiliation(s)
- Jennifer H Foss-Feig
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai Hospital, New York, New York; Seaver Autism Center, Icahn School of Medicine at Mount Sinai Hospital, New York, New York; Child Study Center, Yale University School of Medicine, New Haven, Connecticut; Department of Psychiatry, Yale University School of Medicine, New Haven, Connecticut.
| | - Brendan D Adkinson
- Department of Psychiatry, Yale University School of Medicine, New Haven, Connecticut
| | - Jie Lisa Ji
- Department of Psychiatry, Yale University School of Medicine, New Haven, Connecticut; Interdepartmental Neuroscience Program, Yale University, New Haven, Connecticut
| | - Genevieve Yang
- Department of Psychiatry, Yale University School of Medicine, New Haven, Connecticut; Interdepartmental Neuroscience Program, Yale University, New Haven, Connecticut
| | - Vinod H Srihari
- Department of Psychiatry, Yale University School of Medicine, New Haven, Connecticut
| | - James C McPartland
- Child Study Center, Yale University School of Medicine, New Haven, Connecticut; Department of Psychology, Yale University, New Haven, Connecticut
| | - John H Krystal
- Department of Psychiatry, Yale University School of Medicine, New Haven, Connecticut; Division of Neurocognition, Neurocomputation, & Neurogenetics (N3), Yale University School of Medicine, New Haven, Connecticut; Department of Neurobiology, Yale University School of Medicine, New Haven, Connecticut; Interdepartmental Neuroscience Program, Yale University, New Haven, Connecticut; Abraham Ribicoff Research Facilities, Connecticut Mental Health Center, New Haven, Connecticut
| | - John D Murray
- Department of Psychiatry, Yale University School of Medicine, New Haven, Connecticut; Division of Neurocognition, Neurocomputation, & Neurogenetics (N3), Yale University School of Medicine, New Haven, Connecticut; Department of Neurobiology, Yale University School of Medicine, New Haven, Connecticut
| | - Alan Anticevic
- Department of Psychiatry, Yale University School of Medicine, New Haven, Connecticut; Division of Neurocognition, Neurocomputation, & Neurogenetics (N3), Yale University School of Medicine, New Haven, Connecticut; Interdepartmental Neuroscience Program, Yale University, New Haven, Connecticut; Department of Psychology, Yale University, New Haven, Connecticut
| |
Collapse
|
27
|
Safety and Efficacy of Adjunctive Θ Burst Repetitive Transcranial Magnetic Stimulation to Right Inferior Parietal Lobule in Schizophrenia Patients With First-Rank Symptoms: A Pilot, Exploratory Study. J ECT 2017; 33:43-51. [PMID: 27428476 DOI: 10.1097/yct.0000000000000343] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND First-rank symptoms (FRS) in schizophrenia have been found to be associated with various cognitive and biological markers. Repetitive transcranial magnetic stimulation (rTMS) has been shown to modulate such factors. We hypothesized that rTMS adjunctive to antipsychotics will be safe and effective in treatment of FRS in schizophrenia. METHODS Schizophrenia patients with FRS randomly received either active or sham-magnetic resonance imaging navigated continuous Θ burst stimulation (cTBS)-rTMS to right inferior parietal lobule for 2 weeks; assessments were repeated. While primary outcome variables were safety profile, FRS and overall psychopathology; secondary outcomes were γ oscillatory activity, brain-derived neurotrophic factor levels, and self-monitoring function. RESULTS No significant adverse events were reported in either group. None of the outcome measures showed sufficient power on the time by group analysis. CONCLUSIONS This study fails to demonstrate whether or not adjunctive cTBS to right inferior parietal lobule could significantly alleviate FRS. We also fail to provide evidence for whether this protocol has any effect on brain-derived neurotrophic factor levels, self-monitoring function, and right hemispheric γ oscillations.
Collapse
|
28
|
Murphy E, Benítez-Burraco A. Bridging the Gap between Genes and Language Deficits in Schizophrenia: An Oscillopathic Approach. Front Hum Neurosci 2016; 10:422. [PMID: 27601987 PMCID: PMC4993770 DOI: 10.3389/fnhum.2016.00422] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2016] [Accepted: 08/08/2016] [Indexed: 12/11/2022] Open
Abstract
Schizophrenia is characterized by marked language deficits, but it is not clear how these deficits arise from the alteration of genes related to the disease. The goal of this paper is to aid the bridging of the gap between genes and schizophrenia and, ultimately, give support to the view that the abnormal presentation of language in this condition is heavily rooted in the evolutionary processes that brought about modern language. To that end we will focus on how the schizophrenic brain processes language and, particularly, on its distinctive oscillatory profile during language processing. Additionally, we will show that candidate genes for schizophrenia are overrepresented among the set of genes that are believed to be important for the evolution of the human faculty of language. These genes crucially include (and are related to) genes involved in brain rhythmicity. We will claim that this translational effort and the links we uncover may help develop an understanding of language evolution, along with the etiology of schizophrenia, its clinical/linguistic profile, and its high prevalence among modern populations.
Collapse
Affiliation(s)
- Elliot Murphy
- Division of Psychology and Language Sciences, University College London London, UK
| | | |
Collapse
|
29
|
Abstract
PURPOSE OF REVIEW We review our current understanding of abnormal γ band oscillations in schizophrenia, their association with symptoms and the underlying cortical circuit abnormality, with a particular focus on the role of fast-spiking parvalbumin gamma-aminobutyric acid (GABA) neurons in the disease state. RECENT FINDINGS Clinical electrophysiological studies of schizophrenia patients and pharmacological models of the disorder show an increase in spontaneous γ band activity (not stimulus-evoked) measures. These findings provide a crucial link between preclinical and clinical work examining the role of γ band activity in schizophrenia. MRI-based experiments measuring cortical GABA provides evidence supporting impaired GABAergic neurotransmission in schizophrenia patients, which is correlated with γ band activity level. Several studies suggest that stimulation of the cortical circuitry, directly or via subcortical structures, has the potential to modulate cortical γ activity, and improve cognitive function. SUMMARY Abnormal γ band activity is observed in patients with schizophrenia and disease models in animals, and is suggested to underlie the psychosis and cognitive/perceptual deficits. Convergent evidence from both clinical and preclinical studies suggest the central factor in γ band abnormalities is impaired GABAergic neurotransmission, particularly in a subclass of neurons which express parvalbumin. Rescue of γ band abnormalities presents an intriguing option for therapeutic intervention.
Collapse
|
30
|
Negrón-Oyarzo I, Lara-Vásquez A, Palacios-García I, Fuentealba P, Aboitiz F. Schizophrenia and reelin: a model based on prenatal stress to study epigenetics, brain development and behavior. Biol Res 2016; 49:16. [PMID: 26968981 PMCID: PMC4787713 DOI: 10.1186/s40659-016-0076-5] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2015] [Accepted: 02/22/2016] [Indexed: 11/20/2022] Open
Abstract
Schizophrenia is a severe psychiatric disorder that results in a significant disability for the patient. The disorder is characterized by impairment of the adaptive orchestration of actions, a cognitive function that is mainly dependent on the prefrontal cortex. This behavioral deficit, together with cellular and neurophysiological alterations in the prefrontal cortex, as well as reduced density of GABAergic cells and aberrant oscillatory activity, all indicate structural and functional deficits of the prefrontal cortex in schizophrenia. Among the several risk factors for the development of schizophrenia, stress during the prenatal period has been identified as crucial. Thus, it is proposed that prenatal stress induces neurodevelopmental alterations in the prefrontal cortex that are expressed as cognitive impairment observed in schizophrenia. However, the precise mechanisms that link prenatal stress with the impairment of prefrontal cortex function is largely unknown. Reelin is an extracellular matrix protein involved in the development of cortical neural connectivity at embryonic stages, and in synaptic plasticity at postnatal stages. Interestingly, down-regulation of reelin expression has been associated with epigenetic changes in the reelin gene of the prefrontal cortex of schizophrenic patients. We recently showed that, similar to schizophrenic patients, prenatal stress induces down-expression of reelin associated with the methylation of its promoter in the rodent prefrontal cortex. These alterations were paralleled with altered prefrontal cortex functional connectivity and impairment in prefrontal cortex-dependent behavioral tasks. Therefore, considering molecular, cellular, physiological and behavioral evidence, we propose a unifying framework that links prenatal stress and prefrontal malfunction through epigenetic alterations of the reelin gene.
Collapse
Affiliation(s)
- Ignacio Negrón-Oyarzo
- Departamento de Psiquiatría, Escuela de Medicina, and Centro Interdisciplinario de Neurociencia, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Ariel Lara-Vásquez
- Departamento de Psiquiatría, Escuela de Medicina, and Centro Interdisciplinario de Neurociencia, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Ismael Palacios-García
- Departamento de Psiquiatría, Escuela de Medicina, and Centro Interdisciplinario de Neurociencia, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Pablo Fuentealba
- Departamento de Psiquiatría, Escuela de Medicina, and Centro Interdisciplinario de Neurociencia, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Francisco Aboitiz
- Departamento de Psiquiatría, Escuela de Medicina, and Centro Interdisciplinario de Neurociencia, Pontificia Universidad Católica de Chile, Santiago, Chile
| |
Collapse
|
31
|
Dysfunctional prefrontal gamma-band oscillations reflect working memory and other cognitive deficits in schizophrenia. Biol Psychiatry 2015; 77:1010-9. [PMID: 25847179 DOI: 10.1016/j.biopsych.2015.02.034] [Citation(s) in RCA: 120] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2014] [Revised: 01/22/2015] [Accepted: 02/24/2015] [Indexed: 12/30/2022]
Abstract
Impairments in working memory (WM) and other cognitive functions are cardinal neuropsychological symptoms in schizophrenia (ScZ). The prefrontal cortex (PFC) is important for mediating and executing these functions. Functional neuroimaging and molecular studies have consistently shown PFC abnormalities in ScZ. In addition, recent studies have suggested that impairments in oscillatory activity, especially in the gamma band (approximately 30-80 Hz), reflect disturbed cortical information processing in this patient group. Here we review evidence that dysfunctional gamma-band responses (GBR) in the PFC could be a factor contributing to WM and other cognitive deficits in ScZ. We provide an overview of noninvasive electrophysiological studies reporting frontal GBR abnormalities in ScZ patients during WM and other cognitive tasks. In agreement with the often-reported hypofrontality in functional neuroimaging studies, the majority of reviewed studies revealed reduced amplitudes or reduced phase locking of GBR over frontal areas in this patient group. Clinical implications derived from these findings and possibilities to foster future studies on GBR abnormalities in ScZ patients, are discussed. Since oscillatory activity in the gamma band has previously been linked to a variety of neurotransmitters, such as the gamma-aminobutyric acid-ergic system, the study of prefrontal GBR could also have implications for pharmacologic approaches in the treatment of WM and other cognitive deficits in ScZ.
Collapse
|
32
|
Thibaut F, Boutros NN, Jarema M, Oranje B, Hasan A, Daskalakis ZJ, Wichniak A, Schmitt A, Riederer P, Falkai P. Consensus paper of the WFSBP Task Force on Biological Markers: Criteria for biomarkers and endophenotypes of schizophrenia part I: Neurophysiology. World J Biol Psychiatry 2015; 16:280-290. [PMID: 26213111 DOI: 10.3109/15622975.2015.1050061] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
The neurophysiological components that have been proposed as biomarkers or as endophenotypes for schizophrenia can be measured through electroencephalography (EEG) and magnetoencephalography (MEG), transcranial magnetic stimulation (TMS), polysomnography (PSG), registration of event-related potentials (ERPs), assessment of smooth pursuit eye movements (SPEM) and antisaccade paradigms. Most of them demonstrate deficits in schizophrenia, show at least moderate stability over time and do not depend on clinical status, which means that they fulfil the criteria as valid endophenotypes for genetic studies. Deficits in cortical inhibition and plasticity measured using non-invasive brain stimulation techniques seem promising markers of outcome and prognosis. However the utility of these markers as biomarkers for predicting conversion to psychosis, response to treatments, or for tracking disease progression needs to be further studied.
Collapse
Affiliation(s)
- Florence Thibaut
- Department of Psychiatry, University Hospital Cochin (site Tarnier), University of Paris-Descartes, INSERM U 894 Centre Psychiatry and Neurosciences , Paris , France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Tang Y, Zhang T, Edelman B, Zeng B, Zhao S, Li C, Zhuo K, Qian Z, Li H, Guo Q, Cui H, Zhu Y, Jiang L, Li C, Yu D, Wang J. Prolonged cortical silent period among drug-naive subjects at ultra-high risk of psychosis. Schizophr Res 2014; 160:124-30. [PMID: 25458861 DOI: 10.1016/j.schres.2014.10.004] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2014] [Revised: 09/09/2014] [Accepted: 10/07/2014] [Indexed: 11/19/2022]
Abstract
BACKGROUND Deficits in gamma-aminobutyric acid (GABA) inhibitory neurotransmission have been associated with pathophysiological mechanisms underlying schizophrenia. However, little is known about whether these deficits occur before or after the onset of psychosis. METHOD We recruited 16 drug-naive subjects at ultra-high risk of psychosis (UHR), 17 schizophrenia patients and 28 healthy controls. Cortical inhibition was determined using transcranial magnetic stimulation (TMS) over the left primary motor cortex. TMS markers such as short-interval cortical inhibition (SICI), cortical silent period (CSP) and intracortical facilitation (ICF) were obtained from each subject. While SICI can reflect GABA type A (GABAA) mediated inhibition, CSP is thought to indicate GABA type B (GABAB) mediated inhibitory circuits. RESULTS As compared with healthy controls, UHR subjects showed a prolonged CSP with no change in SICI, whereas schizophrenia patients demonstrated both a prolonged CSP and a reduced SICI. No group differences were found for ICF. CSP in schizophrenia patients also had a positive correlation with positive symptom score of the positive and negative symptom scale (PANSS). CONCLUSIONS Cortical inhibitory deficits among UHR subjects were relatively limited compared to those among schizophrenia patients. Alterations might occur in some subgroup of GABA-mediated neurotransmitter systems before the onset of psychosis, while alterations in both GABAA and GABAB networks might contribute to full-blown psychosis.
Collapse
Affiliation(s)
- Yingying Tang
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, PR China; Department of EEG and Imaging, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, PR China
| | - Tianhong Zhang
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, PR China; Department of EEG and Imaging, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, PR China
| | - Bradley Edelman
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN, USA
| | - Botao Zeng
- Department of EEG and Imaging, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, PR China
| | - Shanshan Zhao
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, PR China
| | - Chunyan Li
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, PR China
| | - Kaiming Zhuo
- Department of EEG and Imaging, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, PR China
| | - Zhenying Qian
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, PR China
| | - Hui Li
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, PR China
| | - Qian Guo
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, PR China
| | - Huiru Cui
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, PR China
| | - Yikang Zhu
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, PR China
| | - Lijuan Jiang
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, PR China
| | - Chunbo Li
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, PR China; Department of EEG and Imaging, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, PR China
| | - Dehua Yu
- Department of Psychiatry, Yangpu Hospital, Medical School of Tongji University, Shanghai 200090, PR China.
| | - Jijun Wang
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, PR China; Department of EEG and Imaging, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, PR China.
| |
Collapse
|
34
|
Tikka SK, Nizamie SH, Goyal N, Pradhan N, Tikka DL, Katshu MZUH. Evaluation of spontaneous dense array gamma oscillatory activity and minor physical anomalies as a composite neurodevelopmental endophenotype in schizophrenia. Int J Dev Neurosci 2014; 40:43-51. [PMID: 25450528 DOI: 10.1016/j.ijdevneu.2014.11.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2014] [Revised: 10/14/2014] [Accepted: 11/09/2014] [Indexed: 12/15/2022] Open
Abstract
OBJECTIVE Minor physical anomalies (MPAs) and gamma oscillatory activity have been proposed as associated endophenotypes in schizophrenia. Combining these endophenotypes to create a composite endophenotype may help identify those at risk for schizophrenia better. The present study aims to investigate MPAs and gamma oscillatory activity in schizophrenia patients, their unaffected first degree relatives and healthy controls and appreciate whether they can be used together as a composite endophenotype. METHODS This was a cross sectional family study conducted at a tertiary care mental health setup. Ninety participants including schizophrenia patients, their first degree relatives and controls (thirty each) were assessed for MPAs on the Extended Waldrop Scale. All participants underwent an awake, resting 192-channel EEG recording. Spectral power and coherence in 30-100Hz gamma bands were estimated using Welch's averaged periodogram method. One-way ANOVA, chi square test were used for comparing socio-demographic-clinical variables. MANOVA supplemented by one-way ANOVAs (post hoc Tukey HSD) were done for comparison of spectral measures. Pearson's correlation, step-by-step linear discriminant functional and intra-familial correlation analysis were subsequently performed. RESULTS An endophenotype pattern of finding was found for MPAs in the craniofacial region, the total number of MPAs, spectral power in right temporal region on all bands and in the right parietal region in 50-70Hz and 70-100Hz gamma bands. The three groups were most accurately classified when MPA total score, right temporal 30-50Hz gamma power and right occipital 'intra hemispheric' 50-70Hz gamma coherence were considered together than when considered independently. Significant intra familial correlation was seen for MPA total score and right temporal gamma 30-50Hz power. CONCLUSION Composite evaluation of two developmentally linked markers i.e. MPAs and gamma spectral measures may prove useful in categorizing schizophrenia and identifying at-risk individuals.
Collapse
Affiliation(s)
- Sai Krishna Tikka
- KS Mani Center for Cognitive Neurosciences and Department of Psychiatry, Central Institute of Psychiatry, Kanke, Ranchi, Jharkhand 834006, India.
| | - S Haque Nizamie
- KS Mani Center for Cognitive Neurosciences and Department of Psychiatry, Central Institute of Psychiatry, Kanke, Ranchi, Jharkhand 834006, India
| | - Nishant Goyal
- KS Mani Center for Cognitive Neurosciences and Department of Psychiatry, Central Institute of Psychiatry, Kanke, Ranchi, Jharkhand 834006, India
| | - N Pradhan
- Department of Psychopharmacology, National Institute of Mental Health and Neurosciences, Bengaluru, Karnataka 560029, India
| | - Deyashini Lahiri Tikka
- Department of Clinical Psychology, Central Institute of Psychiatry, Kanke, Ranchi, Jharkhand 834006, India
| | - Mohammad Zia Ul Haq Katshu
- Division of Psychiatry and Applied Psychology, School of Medicine, University of Nottingham, NG7 2TU, United Kingdom
| |
Collapse
|
35
|
Tregellas JR. Neuroimaging biomarkers for early drug development in schizophrenia. Biol Psychiatry 2014; 76:111-9. [PMID: 24094513 PMCID: PMC4026337 DOI: 10.1016/j.biopsych.2013.08.025] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2013] [Revised: 08/27/2013] [Accepted: 08/29/2013] [Indexed: 11/18/2022]
Abstract
Given the relative inability of currently available antipsychotic treatments to adequately provide sustained recovery and improve quality of life for patients with schizophrenia, new treatment strategies are urgently needed. One way to improve the therapeutic development process may be an increased use of biomarkers in early clinical trials. Reliable biomarkers that reflect aspects of disease pathophysiology can be used to determine if potential treatment strategies are engaging their desired biological targets. This review evaluates three potential neuroimaging biomarkers: hippocampal hyperactivity, gamma-band deficits, and default network abnormalities. These deficits have been widely replicated in the illness, correlate with measures of positive symptoms, are consistent with models of disease pathology, and have shown initial promise as biomarkers of biological response in early studies of potential treatment strategies. Two key features of these deficits, and a guiding rationale for the focus of this review, are that the deficits are not dependent upon patients' performance of specific cognitive tasks and they have analogues in animal models of schizophrenia, greatly increasing their appeal for use as biomarkers. Using neuroimaging biomarkers such as those proposed here to establish early in the therapeutic development process if treatment strategies are having their intended biological effect in humans may facilitate development of new treatments for schizophrenia.
Collapse
Affiliation(s)
- Jason R Tregellas
- Research Service, Denver Veterans Affairs Medical Center, and Department of Psychiatry, University of Colorado Medical School, Aurora, Colorado.
| |
Collapse
|
36
|
Abstract
The observation that antagonists of the N-methyl-D-aspartate receptor (NMDAR), such as phencyclidine (PCP) and ketamine, transiently induce symptoms of acute schizophrenia had led to a paradigm shift from dopaminergic to glutamatergic dysfunction in pharmacological models of schizophrenia. The glutamate hypothesis can explain negative and cognitive symptoms of schizophrenia better than the dopamine hypothesis, and has the potential to explain dopamine dysfunction itself. The pharmacological and psychomimetic effects of ketamine, which is safer for human subjects than phencyclidine, are herein reviewed. Ketamine binds to a variety of receptors, but principally acts at the NMDAR, and convergent genetic and molecular evidence point to NMDAR hypofunction in schizophrenia. Furthermore, NMDAR hypofunction can explain connectional and oscillatory abnormalities in schizophrenia in terms of both weakened excitation of inhibitory γ-aminobutyric acidergic (GABAergic) interneurons that synchronize cortical networks and disinhibition of principal cells. Individuals with prenatal NMDAR aberrations might experience the onset of schizophrenia towards the completion of synaptic pruning in adolescence, when network connectivity drops below a critical value. We conclude that ketamine challenge is useful for studying the positive, negative, and cognitive symptoms, dopaminergic and GABAergic dysfunction, age of onset, functional dysconnectivity, and abnormal cortical oscillations observed in acute schizophrenia.
Collapse
Affiliation(s)
- Joel Frohlich
- Neuroscience Research Program, 1506D Gonda Center, University of California, Los Angeles Box 951761, Los Angeles, CA 90095-1761
| | - John Darrell Van Horn
- The Institute for Neuroimaging and Informatics, Keck School of Medicine, University of Southern California, 2001 North Soto Street – SSB1-102, Los Angeles, CA 90032, Phone: (323) 442-7246
| |
Collapse
|
37
|
Affiliation(s)
- John Smythies
- Center for Brain and Cognition, University of California San Diego La Jolla, CA, USA
| |
Collapse
|
38
|
Leuchter B, Pedley TA, Lisanby SH, Mayberg HS, Schiff ND. Brain stimulation in neurology and psychiatry: perspectives on an evolving field. Ann N Y Acad Sci 2012; 1265:vii-x. [PMID: 22882334 DOI: 10.1111/j.1749-6632.2012.06740.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Bruce Leuchter
- Department of Psychiatry, Weill Cornell Medical College of Cornell University, USA
| | | | | | | | | |
Collapse
|