1
|
Ivanova A, Munoz DG, Woulfe J. Depletion of nuclear cytoophidia in Alzheimer's disease. FREE NEUROPATHOLOGY 2025; 6:8. [PMID: 40070795 PMCID: PMC11894473 DOI: 10.17879/freeneuropathology-2025-6282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 01/28/2025] [Accepted: 02/26/2025] [Indexed: 03/14/2025]
Abstract
There is considerable evidence for a role for metabolic dysregulation, including disordered purine nucleotide metabolism, in the pathogenesis of Alzheimer's disease (AD). Purine nucleotide synthesis in the brain is regulated with high fidelity to co-ordinate supply with demand. The assembly of some purine biosynthetic enzymes into linear filamentous aggregates called "cytoophidia" (Gk. Cellular "snakes") represents one post-translational mechanism to regulate enzyme activity. Cytoophidia comprised of the nucleotide biosynthetic enzymes inosine monophosphate dehydrogenase (IMPDH) and phosphoribosyl pyrophosphate synthetase (PRPS) have been described in neuronal nuclei (nuclear cytoophidia; NCs). In light of the involvement of purine nucleotide dysmetabolism in AD, the rationale for this study was to determine whether there are disease-specific qualitative or quantitative alterations in PRPS cytoophidia in the AD brain. Double fluorescence immunostaining for PRPS and the neuronal marker MAP2 was performed on tissue microarrays of cores of temporal cortex extracted from post-mortem tissue blocks from a large cohort of participants with neuropathologically confirmed AD, Lewy body disease (LBD), progressive supranuclear palsy, and corticobasal degeneration, as well as age-matched cognitively unimpaired control participants. The latter group included individuals with substantial beta-amyloid deposition. NCs were significantly reduced in frequency in AD samples relative to those from controls, including those with a high beta-amyloid load, or participants with LBD or 4 repeat tauopathies. Moreover, double staining for PRPS and hyperphosphorylated tau revealed evidence for an association between NCs and neurofibrillary tangles. The results of this study contribute to our understanding of metabolic contributions to AD pathogenesis and provide a novel avenue for future studies. Moreover, because PRPS filamentation is responsive to a variety of drugs and metabolites, they may have implications for the development of biologically rational therapies.
Collapse
Affiliation(s)
| | | | - John Woulfe
- Department of Laboratory Medicine, St. Michael’s Hospital, Unity Health & Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
- Department of Pathology and Laboratory Medicine, University of Ottawa, Ottawa, Ontario, Canada
| |
Collapse
|
2
|
Ahangari N, Munoz DG, Coulombe J, Gray DA, Engle EC, Cheng L, Woulfe J. Nuclear IMPDH Filaments in Human Gliomas. J Neuropathol Exp Neurol 2021; 80:944-954. [PMID: 34498062 PMCID: PMC8560559 DOI: 10.1093/jnen/nlab090] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The analysis of nuclear morphology plays an important role in glioma diagnosis and grading. We previously described intranuclear rods (rods) labeled with the SDL.3D10 monoclonal antibody against class III beta-tubulin (TUBB3) in human ependymomas. In a cohort of adult diffuse gliomas, we identified nuclear rods in 71.1% of IDH mutant lower-grade gliomas and 13.7% of IDH wild-type glioblastomas (GBMs). The presence of nuclear rods was associated with significantly longer postoperative survival in younger (≤65) GBM patients. Consistent with this, nuclear rods were mutually exclusive with Ki67 staining and their prevalence in cell nuclei inversely correlated with the Ki67 proliferation index. In addition, rod-containing nuclei showed a relative depletion of lamin B1, suggesting a possible association with senescence. To gain insight into their functional significance, we addressed their antigenic properties. Using a TUBB3-null mouse model, we demonstrate that the SDL.3D10 antibody does not bind TUBB3 in rods but recognizes an unknown antigen. In the present study, we show that rods show immunoreactivity for the nucleotide synthesizing enzymes inosine monophosphate dehydrogenase (IMPDH) and cytidine triphosphate synthetase. By analogy with the IMPDH filaments that have been described previously, we postulate that rods regulate the activity of nucleotide-synthesizing enzymes in the nucleus by sequestration, with important implications for glioma behavior.
Collapse
Affiliation(s)
- Narges Ahangari
- From the Department of Pathology, St. Michael's Hospital, Toronto, Ontario, Canada
| | - David G Munoz
- From the Department of Pathology, St. Michael's Hospital, Toronto, Ontario, Canada
| | - Josee Coulombe
- Center for Cancer Therapeutics, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
| | - Douglas A Gray
- Center for Cancer Therapeutics, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
| | - Elizabeth C Engle
- Departments of Neurology and Ophthalmology, Boston Children's Hospital and Harvard Medical School, Boston, Massachusetts
| | - Long Cheng
- Departments of Neurology and Ophthalmology, Boston Children's Hospital and Harvard Medical School, Boston, Massachusetts
| | - John Woulfe
- Center for Cancer Therapeutics and Neurosciences, Ottawa Hospital Research Institute and Department of Pathology and Laboratory Medicine, University of Ottawa, Ottawa, Ontario, Canada
| |
Collapse
|
3
|
Cosín-Tomás M, Álvarez-López MJ, Companys-Alemany J, Kaliman P, González-Castillo C, Ortuño-Sahagún D, Pallàs M, Griñán-Ferré C. Temporal Integrative Analysis of mRNA and microRNAs Expression Profiles and Epigenetic Alterations in Female SAMP8, a Model of Age-Related Cognitive Decline. Front Genet 2018; 9:596. [PMID: 30619445 PMCID: PMC6297390 DOI: 10.3389/fgene.2018.00596] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2018] [Accepted: 11/15/2018] [Indexed: 01/05/2023] Open
Abstract
A growing body of research shows that epigenetic mechanisms are critically involved in normal and pathological aging. The Senescence-Accelerated Mouse Prone 8 (SAMP8) can be considered a useful tool to better understand the dynamics of the global epigenetic landscape during the aging process since its phenotype is not fully explained by genetic factors. Here we investigated dysfunctional age-related transcriptional profiles and epigenetic programming enzymes in the hippocampus of 2- and 9-month-old SAMP8 female mice using the Senescent-Accelerated Resistant 1 (SAMR1) mouse strain as control. SAMP8 mice presented 1,062 genes dysregulated at 2 months of age, and 1,033 genes at 9 months, with 92 genes concurrently dysregulated at both ages compared to age-matched SAMR1. SAMP8 mice showed a significant decrease in global DNA methylation (5-mC) at 2 months while hydroxymethylation (5-hmC) levels were increased in SAMP8 mice at 2 and 9 months of age compared to SAMR1. These changes were accompanied by changes in the expression of several enzymes that regulate 5-mC and methylcytosine oxidation. Acetylated H3 and H4 histone levels were significantly diminished in SAMP8 mice at 2-month-old compared to SAMR1 and altered Histone DeACetylase (HDACs) profiles were detected in both young and old SAMP8 mice. We analyzed 84 different mouse miRNAs known to be altered in neurological diseases or involved in neuronal development. Compared with SAMR1, SAMP8 mice showed 28 and 17 miRNAs differentially expressed at 2 and 9 months of age, respectively; 6 of these miRNAs overlapped at both ages. We used several bioinformatic approaches to integrate our data in mRNA:miRNA regulatory networks and functional predictions for young and aged animals. In sum, our study reveals interplay between epigenetic mechanisms and gene networks that seems to be relevant for the progression toward a pathological aging and provides several potential markers and therapeutic candidates for Alzheimer's Disease (AD) and age-related cognitive impairment.
Collapse
Affiliation(s)
- Marta Cosín-Tomás
- Department of Pharmacology and Therapeutic Chemistry, Institute of Neuroscience, University of Barcelona, Barcelona, Spain.,Departments of Human Genetics and Pediatrics, Research Institute of the McGill University Health Centre, Montreal, QC, Canada
| | - María Jesús Álvarez-López
- Department of Pharmacology and Therapeutic Chemistry, Institute of Neuroscience, University of Barcelona, Barcelona, Spain
| | - Júlia Companys-Alemany
- Department of Pharmacology and Therapeutic Chemistry, Institute of Neuroscience, University of Barcelona, Barcelona, Spain
| | - Perla Kaliman
- Department of Pharmacology and Therapeutic Chemistry, Institute of Neuroscience, University of Barcelona, Barcelona, Spain.,Faculty of Health Sciences, Universitat Oberta de Catalunya, Barcelona, Spain
| | | | - Daniel Ortuño-Sahagún
- Centro Universitario de Ciencias de la Salud, Instituto de Investigación en Ciencias Biomédicas, Universidad de Guadalajara, Guadalajara, Mexico
| | - Mercè Pallàs
- Department of Pharmacology and Therapeutic Chemistry, Institute of Neuroscience, University of Barcelona, Barcelona, Spain
| | - Christian Griñán-Ferré
- Department of Pharmacology and Therapeutic Chemistry, Institute of Neuroscience, University of Barcelona, Barcelona, Spain
| |
Collapse
|
4
|
Zhou YY, El Hallani S, Balaa F, Mohammad W, Gray DA, Woulfe J. Depletion of Beta Cell Intranuclear Rodlets in Human Type II Diabetes. Endocr Pathol 2017; 28:282-286. [PMID: 28770422 DOI: 10.1007/s12022-017-9499-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Intranuclear rodlets (INRs) are rod-shaped intranuclear bodies of unknown function present in the nuclei of pancreatic beta cells. Previous studies have demonstrated a significant depletion of INRs from beta cells in mouse models of type II diabetes, suggesting that they may have pathological significance. The objective of the present study was to determine whether beta cell INRs show quantitative alterations in human type II diabetes. In sections of non-neoplastic pancreas from 23 diabetic patients and 23 controls who had undergone complete or partial pancreatectomy, we detected a significant reduction in the proportion of INRs in insulin-immunoreactive beta cells. In addition, we showed that beta cell INRs are immunoreactive for the RNA-binding protein HuR. The results of this study confirm and extend our previous study and implicate this enigmatic nuclear structure in the cellular pathophysiological mechanisms underlying the development of type II diabetes in humans.
Collapse
Affiliation(s)
- Yi Yuan Zhou
- Department of Pathology, Case Western Reserve University, Cleveland, OH, USA
| | - Soufiane El Hallani
- Department of Pathology, Stanford University, 300 Pasteur Drive, Palo Alto, CA, USA
| | - Fady Balaa
- Department of Surgery, The Ottawa Hospital, Ottawa, Ontario, Canada
| | - Waleed Mohammad
- Department of Surgery, Jaber Al-Ahmed Armed Forces Hospital, Kuwait City, Kuwait
| | - Douglas A Gray
- Department of Biochemistry, The Ottawa Hospital Research Institute, Microbiology and Immunology, University of Ottawa, Ottawa, Canada
| | - John Woulfe
- Department of Pathology and Laboratory Medicine, Ottawa Hospital Research Institute, Centre for Neurosciences, University of Ottawa, Ottawa, Canada.
| |
Collapse
|
5
|
Fernández‐Nogales M, Santos‐Galindo M, Merchán‐Rubira J, Hoozemans JJM, Rábano A, Ferrer I, Avila J, Hernández F, Lucas JJ. Tau-positive nuclear indentations in P301S tauopathy mice. Brain Pathol 2017; 27:314-322. [PMID: 27338164 PMCID: PMC8029483 DOI: 10.1111/bpa.12407] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2016] [Accepted: 06/14/2016] [Indexed: 12/23/2022] Open
Abstract
Increased incidence of neuronal nuclear indentations is a well-known feature of the striatum of Huntington's disease (HD) brains and, in Alzheimer's disease (AD), neuronal nuclear indentations have recently been reported to correlate with neurotoxicity caused by improper cytoskeletal/nucleoskeletal coupling. Initial detection of rod-shaped tau immunostaining in nuclei of cortical and striatal neurons of HD brains and in hippocampal neurons of early Braak stage AD led us to coin the term "tau nuclear rods (TNRs)." Although TNRs traverse nuclear space, they in fact occupy narrow cytoplasmic extensions that fill indentations of the nuclear envelope and we will here refer to this histological hallmark as Tau-immunopositive nuclear indentations (TNIs). We reasoned that TNI formation is likely secondary to tau alterations as TNI detection in HD correlates with an increase in total tau, particularly of the isoforms with four tubulin binding repeats (4R-tau). Here we analyze transgenic mice that overexpress human 4R-tau with a frontotemporal lobar degeneration-tau point mutation (P301S mice) to explore whether tau alteration is sufficient for TNI formation. Immunohistochemistry with various tau antibodies, immunoelectron microscopy and double tau-immunofluorescence/DAPI-nuclear counterstaining confirmed that excess 4R-tau in P301S mice is sufficient for the detection of abundant TNIs that fill nuclear indentations. Interestingly, this does not correlate with an increase in the number of nuclear indentations, thus suggesting that excess total tau or an isoform imbalance in favor of 4R-tau facilitates tau detection inside preexisting nuclear indentations but does not induce formation of the latter. In summary, here we demonstrate that tau alteration is sufficient for TNI detection and our results suggest that the neuropathological finding of TNIs becomes a possible indicator of increased total tau and/or increased 4R/3R-tau ratio in the affected neurons apart from being an efficient way to monitor pathology-associated nuclear indentations.
Collapse
Affiliation(s)
- Marta Fernández‐Nogales
- Center for Molecular Biology “Severo Ochoa” (CBMSO) CSIC/UAM28049MadridSpain
- Networking Research Center on Neurodegenerative Diseases (CIBERNED), Instituto de Salud Carlos IIISpain
| | - María Santos‐Galindo
- Center for Molecular Biology “Severo Ochoa” (CBMSO) CSIC/UAM28049MadridSpain
- Networking Research Center on Neurodegenerative Diseases (CIBERNED), Instituto de Salud Carlos IIISpain
| | - Jesús Merchán‐Rubira
- Center for Molecular Biology “Severo Ochoa” (CBMSO) CSIC/UAM28049MadridSpain
- Networking Research Center on Neurodegenerative Diseases (CIBERNED), Instituto de Salud Carlos IIISpain
| | - Jeroen J. M. Hoozemans
- Department of PathologyVU University Medical Center, Neuroscience Campus Amsterdam1007 MB Amsterdamthe Netherlands
| | - Alberto Rábano
- Networking Research Center on Neurodegenerative Diseases (CIBERNED), Instituto de Salud Carlos IIISpain
- Departamento de Neuropatología y Banco de TejidosFundación CIENMadridSpain
| | - Isidro Ferrer
- Networking Research Center on Neurodegenerative Diseases (CIBERNED), Instituto de Salud Carlos IIISpain
- Institute of Neuropathology; IDIBELL‐University Hospital BellvitgeUniversity of Barcelona; Hospitalet de LlobregatBarcelona08908Spain
| | - Jesús Avila
- Center for Molecular Biology “Severo Ochoa” (CBMSO) CSIC/UAM28049MadridSpain
- Networking Research Center on Neurodegenerative Diseases (CIBERNED), Instituto de Salud Carlos IIISpain
| | - Félix Hernández
- Center for Molecular Biology “Severo Ochoa” (CBMSO) CSIC/UAM28049MadridSpain
- Networking Research Center on Neurodegenerative Diseases (CIBERNED), Instituto de Salud Carlos IIISpain
| | - José J. Lucas
- Center for Molecular Biology “Severo Ochoa” (CBMSO) CSIC/UAM28049MadridSpain
- Networking Research Center on Neurodegenerative Diseases (CIBERNED), Instituto de Salud Carlos IIISpain
| |
Collapse
|
6
|
Hamadi N, Sheikh A, Madjid N, Lubbad L, Amir N, Shehab SADS, Khelifi-Touhami F, Adem A. Increased pro-inflammatory cytokines, glial activation and oxidative stress in the hippocampus after short-term bilateral adrenalectomy. BMC Neurosci 2016; 17:61. [PMID: 27586269 PMCID: PMC5009504 DOI: 10.1186/s12868-016-0296-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2016] [Accepted: 08/25/2016] [Indexed: 12/22/2022] Open
Abstract
Background Bilateral adrenalectomy has been shown to damage the hippocampal neurons. Although the effects of long-term adrenalectomy have been studied extensively there are few publications on the effects of short-term adrenalectomy. In the present study we aimed to investigate the effects of short-term bilateral adrenalectomy on the levels of pro-inflammatory cytokines IL-1β, IL-6 and TNF-α; the response of microglia and astrocytes to neuronal cell death as well as oxidative stress markers GSH, SOD and MDA over the course of time (4 h, 24 h, 3 days, 1 week and 2 weeks) in the hippocampus of Wistar rats. Results Our results showed a transient significant elevation of pro-inflammatory cytokines IL-1β and IL-6 from 4 h to 3 days in the adrenalectomized compared to sham operated rats. After 1 week, the elevation of both cytokines returns to the sham levels. Surprisingly, TNF-α levels were significantly elevated at 4 h only in adrenalectomized compared to sham operated rats. The occurrence of neuronal cell death in the hippocampus following adrenalectomy was confirmed by Fluoro-Jade B staining. Our results showed a time dependent increase in degenerated neurons in the dorsal blade of the dentate gyrus from 3 days to 2 weeks after adrenalectomy. Our results revealed an early activation of microglia on day three whereas activation of astroglia in the hippocampus was observed at 1 week postoperatively. A progression of microglia and astroglia activation all over the dentate gyrus and their appearance for the first time in CA3 of adrenalectomized rats hippocampi compared to sham operated was seen after 2 weeks of surgery. Quantitative analysis revealed a significant increase in the number of microglia (3, 7 and 14 days) and astrocytes (7 and 14 days) of ADX compared to sham operated rats. Our study revealed no major signs of oxidative stress until 2 weeks after adrenalectomy when a significant decrease of GSH levels and SOD activity as well as an increase in MDA levels were found in adrenalectomized compared to sham rats. Conclusion Our study showed an early increase in the pro-inflammatory cytokines followed by neurodegeneration and activation of glial cells as well as oxidative stress. Taking these findings together it could be speculated that the early inflammatory components might contribute to the initiation of the biological cascade responsible for subsequent neuronal death in the current neurodegenerative animal model. These findings suggest that inflammatory mechanisms precede neurodegeneration and glial activation.
Collapse
Affiliation(s)
- Naserddine Hamadi
- Department of Pharmacology, College of Medicine and Health Science, United Arab Emirates University, 17666, Maqam, Al Ain, United Arab Emirates.,Ethnobotany-Palynology and Ethnopharmacology-Toxicology Laboratory, Department of Animal Biology, Constantine-1 University, 25000, Constantine, Algeria
| | - Azimullah Sheikh
- Department of Pharmacology, College of Medicine and Health Science, United Arab Emirates University, 17666, Maqam, Al Ain, United Arab Emirates
| | - Nather Madjid
- Department of Neuroscience, Karolinska Institutet, 171 77, Stockholm, Sweden
| | - Loai Lubbad
- Department of Surgery, College of Medicine and Health Science, United Arab Emirates University, 17666, Maqam, Al Ain, United Arab Emirates
| | - Naheed Amir
- Department of Pharmacology, College of Medicine and Health Science, United Arab Emirates University, 17666, Maqam, Al Ain, United Arab Emirates
| | - Safa Al-Deen Saudi Shehab
- Department of Anatomy, College of Medicine and Health Science, United Arab Emirates University, 17666, Maqam, Al Ain, United Arab Emirates
| | - Fatima Khelifi-Touhami
- Ethnobotany-Palynology and Ethnopharmacology-Toxicology Laboratory, Department of Animal Biology, Constantine-1 University, 25000, Constantine, Algeria
| | - Abdu Adem
- Department of Pharmacology, College of Medicine and Health Science, United Arab Emirates University, 17666, Maqam, Al Ain, United Arab Emirates.
| |
Collapse
|
7
|
Han B, Yu L, Geng Y, Shen L, Wang H, Wang Y, Wang J, Wang M. Chronic Stress Aggravates Cognitive Impairment and Suppresses Insulin Associated Signaling Pathway in APP/PS1 Mice. J Alzheimers Dis 2016; 53:1539-52. [PMID: 27392857 DOI: 10.3233/jad-160189] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Bing Han
- Department of Neurology, The First Hospital of Hebei Medical University, Shijiazhuang, Hebei, PR China
| | - Lulu Yu
- Department of Psychiatry, The First Hospital of Hebei Medical University, Shijiazhuang, Hebei, PR China
| | - Yuan Geng
- Brain Aging and Cognitive Neuroscience Laboratory of Hebei province, Shijiazhuang, Hebei, PR China
| | - Li Shen
- Clinical Laboratory, The First Hospital of Hebei Medical University, Shijiazhuang, Hebei, PR China
| | - Hualong Wang
- Department of Neurology, The First Hospital of Hebei Medical University, Shijiazhuang, Hebei, PR China
| | - Yanyong Wang
- Department of Neurology, The First Hospital of Hebei Medical University, Shijiazhuang, Hebei, PR China
| | - Jinhua Wang
- Department of Neurology, The First Hospital of Hebei Medical University, Shijiazhuang, Hebei, PR China
| | - Mingwei Wang
- Department of Neurology, The First Hospital of Hebei Medical University, Shijiazhuang, Hebei, PR China
- Brain Aging and Cognitive Neuroscience Laboratory of Hebei province, Shijiazhuang, Hebei, PR China
| |
Collapse
|
8
|
Karch CM, Ezerskiy LA, Bertelsen S, Goate AM. Alzheimer's Disease Risk Polymorphisms Regulate Gene Expression in the ZCWPW1 and the CELF1 Loci. PLoS One 2016; 11:e0148717. [PMID: 26919393 PMCID: PMC4769299 DOI: 10.1371/journal.pone.0148717] [Citation(s) in RCA: 74] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2015] [Accepted: 12/17/2015] [Indexed: 11/18/2022] Open
Abstract
Late onset Alzheimer’s disease (LOAD) is a genetically complex and clinically heterogeneous disease. Recent large-scale genome wide association studies (GWAS) have identified more than twenty loci that modify risk for AD. Despite the identification of these loci, little progress has been made in identifying the functional variants that explain the association with AD risk. Thus, we sought to determine whether the novel LOAD GWAS single nucleotide polymorphisms (SNPs) alter expression of LOAD GWAS genes and whether expression of these genes is altered in AD brains. The majority of LOAD GWAS SNPs occur in gene dense regions under large linkage disequilibrium (LD) blocks, making it unclear which gene(s) are modified by the SNP. Thus, we tested for brain expression quantitative trait loci (eQTLs) between LOAD GWAS SNPs and SNPs in high LD with the LOAD GWAS SNPs in all of the genes within the GWAS loci. We found a significant eQTL between rs1476679 and PILRB and GATS, which occurs within the ZCWPW1 locus. PILRB and GATS expression levels, within the ZCWPW1 locus, were also associated with AD status. Rs7120548 was associated with MTCH2 expression, which occurs within the CELF1 locus. Additionally, expression of several genes within the CELF1 locus, including MTCH2, were highly correlated with one another and were associated with AD status. We further demonstrate that PILRB, as well as other genes within the GWAS loci, are most highly expressed in microglia. These findings together with the function of PILRB as a DAP12 receptor supports the critical role of microglia and neuroinflammation in AD risk.
Collapse
Affiliation(s)
- Celeste M. Karch
- Department of Psychiatry, Washington University School of Medicine, St. Louis, Missouri, United States of America
- Hope Center Program on Protein Aggregation and Neurodegeneration, Washington University School of Medicine, St. Louis, Missouri, United States of America
- * E-mail: (CMK); (AMG)
| | - Lubov A. Ezerskiy
- Department of Psychiatry, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Sarah Bertelsen
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai, 1425 Madison Avenue, New York, NY 10029, United States of America
| | | | - Alison M. Goate
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai, 1425 Madison Avenue, New York, NY 10029, United States of America
- * E-mail: (CMK); (AMG)
| |
Collapse
|
9
|
Milman P, Woulfe J. Novel variant of neuronal intranuclear rodlet immunoreactive for 40 kDa huntingtin associated protein and ubiquitin in the mouse brain. J Comp Neurol 2014; 521:3832-46. [PMID: 23749422 DOI: 10.1002/cne.23381] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2012] [Revised: 04/11/2012] [Accepted: 05/23/2013] [Indexed: 11/11/2022]
Abstract
Intranuclear rodlets (INRs), also known as rodlets of Roncoroni, are poorly understood intranuclear bodies originally identified within neuronal nuclei on the basis of their unique morphology. The mechanisms of their formation, their biochemical composition and their physiological significance remain unknown. Using double immunofluorescence staining of mouse brain sections, we identified a novel variant of INR that is immunoreactive for the 40 kDa huntingtin associated protein (Hap40) and ubiquitin, and provide evidence for the existence of additional INR subtypes sharing ubiquitin immunoreactivity as a common feature. We describe a selective association of these INRs with melanin concentrating hormone (MCH) and tyrosine hydroxylase immunoreactive neurons of the hypothalamus and the locus coeruleus, respectively. We also demonstrate for the first time that biochemically distinct INR subtypes can coexist within a single nucleus where they engage in nonrandom spatial interactions. Our findings highlight the biochemical diversity and cell type-specific expression of these enigmatic intranuclear structures.
Collapse
Affiliation(s)
- Pavel Milman
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Ontario, Canada; Centre for Cancer Therapeutics, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
| | | |
Collapse
|
10
|
Abstract
Intranuclear rodlets (INRs) are structures present within the nuclei of human insulin-secreting beta cells of the endocrine pancreas. Their physiological significance, and whether they are altered in disease, is unknown. In the present study, the proportion of pancreatic beta cells containing INRs was examined in mouse models of type II diabetes and in a model with improved beta cell function. To gain insights into the molecular regulators of INR formation, mice with a conditional adult beta cell-specific knockout of the serine/threonine protein kinase Lkb1 (Lkb1 adult beta cell knockout (LABKO) mice) were studied. To investigate INR changes in a pathophysiological context, beta cell INRs were examined in two models of human metabolic syndrome: (1) mice maintained on a high-fat diet and (2) leptin-deficient ob/ob mice. The proportion of beta cells containing INRs was significantly reduced in LABKO mice. This reduction was not mediated by two key downstream effectors of Lkb1, mTor and Mark2. High-fat diet regimen reduced beta cell INR frequency by more than 40%, and leptin-deficient ob/ob mice exhibited a dramatically (19-fold) reduced INR frequency relative to wild-type mice. Taken together, our results support the view that INR formation in pancreatic beta cells is a dynamic and regulated process. The substantial depletion of beta cell INRs in LABKO and diabetic mice suggests their relationship to beta cell function and potential involvement in diabetes pathogenesis.
Collapse
Affiliation(s)
- Pavel Milman
- Department of Biochemistry, Microbiology, and Immunology, University of Ottawa, Ottawa, Ontario, Canada
| | | | | | | |
Collapse
|
11
|
Escribano L, Simón AM, Pérez-Mediavilla A, Salazar-Colocho P, Del Río J, Frechilla D. Rosiglitazone reverses memory decline and hippocampal glucocorticoid receptor down-regulation in an Alzheimer's disease mouse model. Biochem Biophys Res Commun 2008; 379:406-10. [PMID: 19109927 DOI: 10.1016/j.bbrc.2008.12.071] [Citation(s) in RCA: 104] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2008] [Accepted: 12/13/2008] [Indexed: 12/28/2022]
Abstract
Clinical trials with rosiglitazone, a potent agonist at peroxisome proliferator-activated receptor gamma (PPARgamma) suggest an improvement of cognitive function in Alzheimer's disease (AD) patients. The mechanisms mediating this potential beneficial effect remain to be fully elucidated. In mice overexpressing mutant human amyloid precursor protein (hAPP), a model of AD, we found that memory impairment in the object recognition test was prevented and also reversed by chronic rosiglitazone treatment. Given the possible involvement of glucocorticoid receptors (GR) in the actions of PPARgamma-ligands, we studied the effect of chronic rosiglitazone treatment on GR levels in the hippocampus of hAPP mice. An early down-regulation of GR, not related to elevated plasma corticosterone levels, was found in different hippocampal subfields of the transgenic mice and this decrease was prevented by rosiglitazone. In parallel with behavioural studies, rosiglitazone also normalized GR levels in older animals. This effect may contribute to explain the attenuation of memory decline by PPARgamma activation in an AD mouse model.
Collapse
Affiliation(s)
- Luis Escribano
- Division of Neurosciences, CIMA, University of Navarra, Av. Pio XII 55, 31008 Pamplona, CIBERNED, Spain
| | | | | | | | | | | |
Collapse
|
12
|
Woulfe J. Nuclear bodies in neurodegenerative disease. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2008; 1783:2195-206. [PMID: 18539152 DOI: 10.1016/j.bbamcr.2008.05.005] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2008] [Revised: 03/31/2008] [Accepted: 05/08/2008] [Indexed: 12/12/2022]
Abstract
Neurodegenerative diseases are characterized by a relentlessly progressive loss of the functional and structural integrity of the central nervous system. In many cases, these diseases arise sporadically and the causes are unknown. The abnormal aggregation of protein within the cytoplasm or the nucleus of brain cells represents a unifying pathological feature of these diseases. There is increasing evidence for nuclear dysfunction in neurodegenerative diseases. How this relates to protein aggregation in the context of "cause and effect" remains to be determined in most cases. Co-ordinated nuclear function is predicated on the activity of distinct nuclear subdomains, or nuclear bodies, each responsible for a specific function. If nuclear dysfunction represents an important etiopathological feature in neurodegenerative disease, then this should be reflected by functional and/or morphological alterations in this nuclear compartmentalization. For most neurodegenerative diseases, evidence for nuclear dysfunction, with attendant consequences for nuclear architecture, is only beginning to emerge. In this review, I will discuss neurodegenerative diseases in the context of nuclear dysfunction and, more specifically, alterations in nuclear bodies. Although research in this field is in its infancy, identifying alterations in the nucleus in neurodegenerative disease has potentially profound implications for elucidating the pathogenesis of these disorders.
Collapse
Affiliation(s)
- John Woulfe
- Department of Pathology, The Ottawa Hospital, Civic Campus, 1053 Carling Avenue, Ottawa, Ontario, Canada K1Y 4E9.
| |
Collapse
|
13
|
Abstract
OBJECTIVES Intranuclear rodlets (INRs) are rod-shaped intranuclear inclusions that we have described in neurons of the human brain. We recently identified these structures in pancreatic islet cells. The objectives of this study are to describe the light microscopic features and cellular pattern of distribution of INRs in human pancreatic islet cells. METHODS Double immunofluorescence staining was performed on 5 human pancreatic tissue samples for the detection of class III beta tubulin (C3T) to detect INRs and for promyelocytic leukemia (PML) protein to examine the relationship between PML and INRs. RESULTS Intranuclear rodlets were detected in 22.99% of pancreatic B cells compared with only 3.11%, 1.80%, and 1.60% of A, D, and PP cells, respectively. Twenty-four percent of C3T-immunoreactive INRs showed partial or complete immunoreactivity for PML. Promyelocytic leukemia staining within the nuclei of B cells was confined to INRs and was not present in the typical PML bodies present in other cell types. Spatially, PML and C3T staining of islet cell INRs appeared to be mutually exclusive within individual INRs. CONCLUSIONS Intranuclear rodlets are present within the nuclei of pancreatic islet cells, where they reside predominantly but not exclusively in B cells. Immunoreactivity of B-cell INRs for PML suggests that the functional significance of INRs may be related to that of PML and/or PML bodies. Conversely, the exclusive localization of PML staining to INRs in B cells indicates that PML's function in B cells is selectively associated with INRs. The mutually exclusive pattern of PML and C3T staining suggests dynamic interactions between these 2 proteins in B-cell INRs. In light of evidence for the involvement of INRs and of PML bodies in disease, it will be of interest to investigate these structures in animal models of diabetes and in human diabetes.
Collapse
Affiliation(s)
- Wendy Prichett
- Centre for Cancer Therapeutics, The Ottawa Health Research Institute, Ottawa, Ontario, Canada
| | | | | | | | | |
Collapse
|
14
|
Dhikav V, Anand KS. Glucocorticoids may initiate Alzheimer's disease: a potential therapeutic role for mifepristone (RU-486). Med Hypotheses 2006; 68:1088-92. [PMID: 17107752 DOI: 10.1016/j.mehy.2006.09.038] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2006] [Accepted: 09/10/2006] [Indexed: 11/24/2022]
Abstract
Alzheimer's disease (AD) is a relentless neurodegenerative disease of uncertain etiology affecting millions worldwide. Stress is an important etiological factor associated with AD. Stress and glucocorticoids (GCs) are intimately related; so much so that stress is considered to be "a condition that is able to liberate GCs". Normally, GCs are required for various bodily functions but their excess is deleterious. Hippocampus has highest density of GC receptors in brain, is particularly vulnerable to their damaging effects and undergoes reversible atrophy under their influence. Hippocampal atrophy is an initial event for the development of AD, the most common form of dementia. Apart from atrophy, GCs are able to produce a variety of other initial structural and functional changes in hippocampus. For example, these down regulate GC receptors, leading to disruption in negative feedback loop, alter dendtritic morphology and impair axonal transport. Impaired axon transport is probably an initial event that leads to the formation of paired helical filaments. Additionally, they inhibit insulin-degrading enzyme, which degrades A-beta; consequently reducing its clearance. Since GCs mediate a number of initial events in AD pathogenesis, therefore GC antagonists (e.g. mifepristone) can be tried. Mifepristone has intrinsic neuroprotective and antioxidant potential which could offer additional benefits as well. Use of this drug therefore, in those with mild AD or with milder cognitive impairment can be useful. Appropriate dose, duration, safety and efficacy need to be worked out.
Collapse
Affiliation(s)
- Vikas Dhikav
- All India Institute of Medical Sciences, 82\4, Gautam Nagar, New Delhi 110049, India.
| | | |
Collapse
|
15
|
Mielke JG, Comas T, Woulfe J, Monette R, Chakravarthy B, Mealing GAR. Cytoskeletal, synaptic, and nuclear protein changes associated with rat interface organotypic hippocampal slice culture development. BRAIN RESEARCH. DEVELOPMENTAL BRAIN RESEARCH 2005; 160:275-86. [PMID: 16271399 DOI: 10.1016/j.devbrainres.2005.09.009] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2005] [Revised: 09/27/2005] [Accepted: 09/29/2005] [Indexed: 11/27/2022]
Abstract
Although organotypic hippocampal slice cultures (OHSCs) are used to study function within the hippocampus, the effect of maintenance in vitro upon protein expression is not fully understood. Therefore, we examined developmental changes in cultures prepared from P8 rats and maintained on porous membranes between medium and atmosphere. Between 7 and 28 days following explantation, altered hippocampal morphology could not be detected despite a significant decrease in both MAP-2c and a mid-range tau isoform by 21 DIV. During the same period, lower GFAP expression was observed, and GFAP labeling suggested a migration of astrocytes to the slice-atmosphere interface. In contrast, levels of the synaptic proteins synaptophysin and PSD-95 were significantly increased, but GAP-43 was not. The preservation of myelinated axons and synapses, along with glial and endothelial cells, was confirmed by ultrastructural analysis. Furthermore, intranuclear inclusion bodies, which are associated with normal aging in vivo, were detected in the CA1 pyramidal layer in cultures older than 14 DIV. When OHSCs were maintained for approximately 3, 4, and 10 weeks, a rise and then fall in the expression of synaptophysin and, especially, PSD-95 were found, and the biphasic trend paralleled by significant changes in Schaffer collateral-evoked excitatory post-synaptic potentials from CA1 neurons. Our data not only describe changes in cytoskeletal, synaptic, and nuclear proteins related to the maintenance of interface OHSCs, but also emphasize the potential of the model for the study of age-related phenomena within the hippocampus.
Collapse
Affiliation(s)
- John G Mielke
- Neurobiology Program, Institute for Biological Sciences, National Research Council of Canada, 1200 Montreal Rd., Building M-54, Ottawa, Ontario, Canada K1A 0R6.
| | | | | | | | | | | |
Collapse
|
16
|
Villagra NT, Navascues J, Casafont I, Val-Bernal JF, Lafarga M, Berciano MT. The PML-nuclear inclusion of human supraoptic neurons: a new compartment with SUMO-1- and ubiquitin-proteasome-associated domains. Neurobiol Dis 2005; 21:181-93. [PMID: 16125395 DOI: 10.1016/j.nbd.2005.07.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2005] [Revised: 06/30/2005] [Accepted: 07/06/2005] [Indexed: 12/12/2022] Open
Abstract
It is well known that the cell nucleus is organized in structural and functional compartments involved in transcription, RNA processing and protein modifications such as conjugation with SUMO-1 and proteolysis. Promyelocytic leukaemia (PML) bodies are dynamic nuclear structures that concentrate PML protein, SUMO-1 and several sumoylated and non-sumoylated protein regulators of nuclear functions. PML bodies and their associated CBP has been involved in neuronal survival. By light and electron microscopy immunocytochemistry and in situ hybridization we reported the presence, in non-pathological conditions, of a large PML-nuclear inclusion (PML-NI) in human supraoptic neurons. This inclusion appears as a single nuclear structure composed of a capsule enriched in PML, SUMO-1 and CBP proteins and a central lattice of filaments immunoreactive for class III beta-tubulin, ubiquitinated proteins and proteasomes. Furthermore, the PML-NI concentrates the SUMO-conjugating enzyme E2 (UBC9). The PML-NI may be considered a nuclear factory involved in sumoylation and proteolysis via ubiquitin-proteasome system, two nuclear pathways engaged in the control of the nucleoplasmic concentration of active transcriptional regulators. Interestingly, the structural and molecular organization of the PML-NI is related to the Marinesco bodies, age-associated ubiquitinated intranuclear inclusions, and to the intranuclear rodlets enriched in class III beta-tubulin, which are nuclear structures markedly decreased in Alzheimer's disease.
Collapse
Affiliation(s)
- Nuria T Villagra
- Department of Anatomic Pathology, Marqués de Valdecilla University Hospital, University of Cantabria, Santander, Spain
| | | | | | | | | | | |
Collapse
|
17
|
Wickham L, Benjannet S, Marcinkiewicz E, Chretien M, Seidah NG. Beta-amyloid protein converting enzyme 1 and brain-specific type II membrane protein BRI3: binding partners processed by furin. J Neurochem 2005; 92:93-102. [PMID: 15606899 DOI: 10.1111/j.1471-4159.2004.02840.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Using a yeast two-hybrid system, we screened a human brain cDNA library for possible interacting proteins with the C-terminal cytosolic tail of the beta-secretase beta-amyloid protein converting enzyme (BACE)1. This identified seven potential candidates, including the brain-specific type II membrane protein BRI3. Co-localization and co-immunoprecipitation experiments confirmed that BACE1 and BRI3 co-localize and interact with each other via the cytosolic tail of BACE1. Furthermore, pulse and pulse-chase analyses revealed that the pro-protein convertases furin, and to a lesser extent PC7 and PC5A, process BRI3 into a C-terminal secreted approximately 4-kDa product. Thus, furin efficiently processes both pro-BACE1 and its novel interacting protein pro-BRI3.
Collapse
Affiliation(s)
- Louise Wickham
- Laboratory of Biochemical Neuroendocrinology, Clinical Research Institute of Montreal, Montreal, Quebec, Canada
| | | | | | | | | |
Collapse
|
18
|
Woulfe J, Gray D, Prichett-Pejic W, Munoz DG, Chretien M. Intranuclear Rodlets in the Substantia Nigra: Interactions with Marinesco Bodies, Ubiquitin, and Promyelocytic Leukemia Protein. J Neuropathol Exp Neurol 2004; 63:1200-7. [PMID: 15581187 DOI: 10.1093/jnen/63.11.1200] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
There is growing appreciation that the nucleus is organized into an array of discrete structural domains, each subserving a specific function. These functional nuclear bodies are to be distinguished from pathological intranuclear inclusions which have been described in a variety of neurodegenerative diseases. Marinesco bodies (MBs) are eosinophilic ubiquitinated intranuclear inclusions found in pigmented neurons of the human substantia nigra and locus coeruleus. Traditionally considered non-pathological entities, more recent studies have indicated that MBs are associated with the age-associated degenerative changes in the substantia nigra and striatal loss of dopaminergic terminals. In the present morphological study of the human substantia nigra, we demonstrate colocalization, contiguity, and focally shared immunoreactivity between MBs and neuronal intranuclear rodlets (INRs). The latter nuclear structures of uncertain function are markedly decreased in the cortex of Alzheimer's disease, but not dementia with Lewy bodies. In addition, we demonstrate an interaction between INRs and promyelocytic leukemia (PML) protein, the signature protein of PML nuclear bodies. These results suggest that structures which subserve the functional compartmentalization of the neuronal nucleus may be relevant to elucidating cellular mechanisms of age-related motor dysfunction.
Collapse
Affiliation(s)
- John Woulfe
- The Ottawa Hospital, Ottawa, Ontario, Canada.
| | | | | | | | | |
Collapse
|
19
|
Wharton SB, McDermott CJ, Grierson AJ, Wood JD, Gelsthorpe C, Ince PG, Shaw PJ. The cellular and molecular pathology of the motor system in hereditary spastic paraparesis due to mutation of the spastin gene. J Neuropathol Exp Neurol 2004; 62:1166-77. [PMID: 14656074 DOI: 10.1093/jnen/62.11.1166] [Citation(s) in RCA: 76] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Hereditary spastic paraparesis (HSP) is a genetically heterogeneous disorder, the most common cause of which is mutation of the spastin gene. Recent evidence suggests a role for spastin in microtubule dynamics, but the distribution of the protein within the CNS is unknown. The core neuropathology of HSP is distal degeneration of the lateral corticospinal tract and of fasciculus gracilis, but there are few neuropathological studies of cases with a defined mutation. We aimed to determine the distribution of spastin expression in the human CNS and to investigate the cellular pathology of the motor system in HSP due to mutation of the spastin gene. Using an antibody to spastin, we have carried out immunohistochemistry on postmortem brain. We have demonstrated that spastin is a neuronal protein. It is widely expressed in the CNS so that the selectivity of the degeneration in HSP is not due to the normal cellular distribution of the protein. We have identified mutation of the spastin gene in 3 autopsy cases of HSP. Distal degeneration of long tracts in the spinal cord, consistent with a dying back axonopathy, was accompanied by a microglial reaction. The presence of novel hyaline inclusions in anterior horn cells and an alteration in immunostaining for cytoskeletal proteins and mitochondria indicates that long tract degeneration is accompanied by cytopathology in the motor system and may support a role for derangement of cytoskeletal function. All 3 cases also demonstrated evidence of tau pathology outside the motor system, suggesting that the neuropathology is not confined to the motor system in spastin-related HSP.
Collapse
Affiliation(s)
- Stephen B Wharton
- Academic Unit of Pathology, University of Sheffield, Sheffield, United Kingdom.
| | | | | | | | | | | | | |
Collapse
|
20
|
Gutala RV, Reddy PH. The use of real-time PCR analysis in a gene expression study of Alzheimer’s disease post-mortem brains. J Neurosci Methods 2004; 132:101-7. [PMID: 14687679 DOI: 10.1016/j.jneumeth.2003.09.005] [Citation(s) in RCA: 93] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The measurement of gene expressions in brains with neurodegenerative diseases is a major area of brain research. The objective of our research was to determine whether quantitative real-time PCR could measure messenger RNA (mRNA) expression in brains with post-mortem intervals beyond 12h. In the present paper, we examined the quality of RNA from brain specimens of both Alzheimer's disease (AD) patients (n = 13) and non-demented normal control subjects (n = 6). To determine a unregulated endogenous reference gene in AD, we measured mRNA expressions of the commonly used reference genes beta-actin, 18S rRNA, and GAPDH. In addition, we determined whether post-mortem interval, brain weight, or age at death influences mRNA expression. Our real-time PCR analysis results indicate that mRNA expression can be detected in all brain specimens for beta-actin, 18S rRNA, GAPDH, and also synaptophysin, a known marker for AD. Further, using real-time PCR analysis, we found that beta-actin and 18S rRNA are differentially expressed in the brain specimens of both AD and control subjects, while GAPDH is similarly expressed in AD and control brain specimens. These findings suggest that GAPDH can be used as a endogenous reference gene in the study of AD brains. A comparative gene expression analysis also suggests that synaptophysin is down-regulated in AD brain specimens compared to control brain specimens.
Collapse
Affiliation(s)
- Ramana V Gutala
- Neurogenetics Laboratory, Neurological Sciences Institute, Oregon Health & Science University, Beaverton, OR 97006, USA
| | | |
Collapse
|