1
|
Zhang Y, Luo W, Zhao M, Li Y, Wu X. Advances in understanding the effects of cardiopulmonary bypass on gut microbiota during cardiac surgery. Int J Artif Organs 2025; 48:51-63. [PMID: 39878195 DOI: 10.1177/03913988251313881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2025]
Abstract
Cardiopulmonary bypass (CPB) is an indispensable technique in cardiac surgery; however, its impact on gut microbiota and metabolites remains insufficiently studied. CPB may disrupt the intestinal mucosal barrier, altering the composition and function of gut microbiota, thereby triggering local immune responses and systemic inflammation, which may lead to postoperative complications. This narrative review examines relevant literature from PubMed, Web of Science, Google Scholar, and CNKI databases over the past decade. Keywords such as "gut microbiota," "cardiopulmonary bypass," "cardiac surgery," and "postoperative complications" were employed, with Boolean operators used to refine the search results. The review examines changes in gut microbiota before and after CPB, their role in postoperative complications, and potential strategies for modulation to improve outcomes.
Collapse
Affiliation(s)
- Yinchang Zhang
- Department of Cardiac surgery, The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou, China
| | - Wei Luo
- Department of Cardiac surgery, The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou, China
| | - Maomao Zhao
- Department of Cardiology, First Hospital of Lanzhou University, Lanzhou University, Lanzhou, China
| | - Yongnan Li
- Department of Cardiac surgery, The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou, China
| | - Xiangyang Wu
- Department of Cardiac surgery, The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou, China
| |
Collapse
|
2
|
Tan ESS, Zaman R, Memon MA, Tan CK. Effect of Fermented Soybean (FSB) Supplementation on Gastroesophageal Reflux Disease (GERD). Nutrients 2024; 16:2779. [PMID: 39203915 PMCID: PMC11356962 DOI: 10.3390/nu16162779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 07/31/2024] [Accepted: 08/06/2024] [Indexed: 09/03/2024] Open
Abstract
Gastroesophageal reflux disease (GERD) is a prevalent chronic condition affecting the well-being of both adults and children in general medical practice. Research on the effects of fermented soybean (SB) supplementation in managing GERD is relatively new, with limited studies available. The existing research often lacks sufficient dosing regimens and study durations to differentiate between transient placebo effects and sustained benefits. In this study, the beneficial effects of FSB supplementation were investigated in 110 voluntary participants (NCT06524271). The participants were required to take 1 g of FSB supplement once daily for 12 weeks. GERD symptoms were evaluated using the Reflux Disease Questionnaire (RDQ), while inflammatory markers, including interleukin-4 (IL-4), interleukin-6 (IL-6), and interleukin-8 (IL-8), were measured to assess inflammation. The Quality of Life in Reflux and Dyspepsia (QOLRAD) questionnaire was used to evaluate participants' quality of life. The results indicated that FSB supplementation significantly (p < 0.05) alleviated heartburn and regurgitation symptoms and reduced levels of IL-4, IL-6, and IL-8, indicating a notable anti-inflammatory effect. Additionally, significant (p < 0.05) improvements were observed in QOLRAD scores, particularly in vitality, emotional distress, and physical/social functioning. Collectively, our findings support the use of FSB as an adjuvant approach in managing GERD, with notable improvements in patients' quality of life.
Collapse
Affiliation(s)
- Eugenie Sin Sing Tan
- Faculty of Medicine and Health Science, UCSI University, Kuala Lumpur 56000, Malaysia; (E.S.S.T.); (R.Z.)
| | - Rahela Zaman
- Faculty of Medicine and Health Science, UCSI University, Kuala Lumpur 56000, Malaysia; (E.S.S.T.); (R.Z.)
| | - Muhammad Akbar Memon
- Faculty of Medicine and Allied Medical Sciences, Isra University, New Hala-Mirpur Khas Rd Link, Hyderabad 71000, Pakistan;
| | - Chung Keat Tan
- Faculty of Medicine and Health Science, UCSI University, Kuala Lumpur 56000, Malaysia; (E.S.S.T.); (R.Z.)
| |
Collapse
|
3
|
Kuijer EJ, Steenbergen L. The microbiota-gut-brain axis in hippocampus-dependent learning and memory: current state and future challenges. Neurosci Biobehav Rev 2023; 152:105296. [PMID: 37380040 DOI: 10.1016/j.neubiorev.2023.105296] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 05/15/2023] [Accepted: 06/23/2023] [Indexed: 06/30/2023]
Abstract
A fundamental shift in neuroscience suggests bidirectional interaction of gut microbiota with the healthy and dysfunctional brain. This microbiota-gut-brain axis has mainly been investigated in stress-related psychopathology (e.g. depression, anxiety). The hippocampus, a key structure in both the healthy brain and psychopathologies, is implicated by work in rodents that suggests gut microbiota substantially impact hippocampal-dependent learning and memory. However, understanding microbiota-hippocampus mechanisms in health and disease, and translation to humans, is hampered by the absence of a coherent evaluative approach. We review the current knowledge regarding four main gut microbiota-hippocampus routes in rodents: through the vagus nerve; via the hypothalamus-pituitary-adrenal-axis; by metabolism of neuroactive substances; and through modulation of host inflammation. Next, we suggest an approach including testing (biomarkers of) the four routes as a function of the influence of gut microbiota (composition) on hippocampal-dependent (dys)functioning. We argue that such an approach is necessary to proceed from the current state of preclinical research to beneficial application in humans to optimise microbiota-based strategies to treat and enhance hippocampal-dependent memory (dys)functions.
Collapse
Affiliation(s)
- Eloise J Kuijer
- Leiden University Medical Centre, Leiden, the Netherlands; Department of Life Sciences, University of Bath, United Kingdom.
| | - Laura Steenbergen
- Clinical Psychology Unit, Leiden University & Leiden Institute for Brain and Cognition, Leiden, the Netherlands
| |
Collapse
|
4
|
The Influence of Probiotic Supplementation on the Severity of Anxiety and Depressive Symptoms; Function and Composition of Gut Microbiota; and Metabolic, Inflammation, and Oxidative Stress Markers in Patients with Depression-A Study Protocol. Metabolites 2023; 13:metabo13020182. [PMID: 36837799 PMCID: PMC9966580 DOI: 10.3390/metabo13020182] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 01/11/2023] [Accepted: 01/20/2023] [Indexed: 01/27/2023] Open
Abstract
This article aims to present the theoretical basis, methodology, and design of a clinical trial we will conduct. The study will be prospective, randomized, placebo-controlled, and double-blind. Each intervention period will last 8 weeks and the trial will be conducted on 100 patients in total, who will be randomly divided into two groups consisting of 50 patients each. We plan to investigate the impact of Lactobacillus helveticus Rosell and Bifidobacterium longum Rosell on the depressive, anxiety, and stress levels in patients with depressive disorders with possible comorbid anxiety. In addition to assessing the influence of probiotics on the clinical condition, we also plan to study the clinical and biochemical parameters of metabolic syndrome, which often coexists with depression. Both depressive and metabolic issues may have part of their etiopathology in common, e.g., inflammation, oxidative stress, and dysbiosis. This is why we will additionally investigate the parameters related to gut microbiota, inflammatory, and oxidative statuses. Thus, the primary endpoint of the study will be the change in depression score measured with the Montgomery-Åsberg Depression Rating Scale. The secondary endpoints will include changes in anxiety and stress levels, as well as metabolic, inflammation, and oxidative stress parameters.
Collapse
|
5
|
Roux E, Nicolas A, Valence F, Siekaniec G, Chuat V, Nicolas J, Le Loir Y, Guédon E. The genomic basis of the Streptococcus thermophilus health-promoting properties. BMC Genomics 2022; 23:210. [PMID: 35291951 PMCID: PMC8925076 DOI: 10.1186/s12864-022-08459-y] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 03/08/2022] [Indexed: 12/20/2022] Open
Abstract
Background Streptococcus thermophilus is a Gram-positive bacterium widely used as starter in the dairy industry as well as in many traditional fermented products. In addition to its technological importance, it has also gained interest in recent years as beneficial bacterium due to human health-promoting functionalities. The objective of this study was to inventory the main health-promoting properties of S. thermophilus and to study their intra-species diversity at the genomic and genetic level within a collection of representative strains. Results In this study various health-related functions were analyzed at the genome level from 79 genome sequences of strains isolated over a long time period from diverse products and different geographic locations. While some functions are widely conserved among isolates (e.g., degradation of lactose, folate production) suggesting their central physiological and ecological role for the species, others including the tagatose-6-phosphate pathway involved in the catabolism of galactose, and the production of bioactive peptides and gamma-aminobutyric acid are strain-specific. Most of these strain-specific health-promoting properties seems to have been acquired via horizontal gene transfer events. The genetic basis for the phenotypic diversity between strains for some health related traits have also been investigated. For instance, substitutions in the galK promoter region correlate with the ability of some strains to catabolize galactose via the Leloir pathway. Finally, the low occurrence in S. thermophilus genomes of genes coding for biogenic amine production and antibiotic resistance is also a contributing factor to its safety status. Conclusions The natural intra-species diversity of S. thermophilus, therefore, represents an interesting source for innovation in the field of fermented products enriched for healthy components that can be exploited to improve human health. A better knowledge of the health-promoting properties and their genomic and genetic diversity within the species may facilitate the selection and application of strains for specific biotechnological and human health-promoting purpose. Moreover, by pointing out that a substantial part of its functional potential still defies us, our work opens the way to uncover additional health-related functions through the intra-species diversity exploration of S. thermophilus by comparative genomics approaches. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-022-08459-y.
Collapse
Affiliation(s)
- Emeline Roux
- INRAE, Institut Agro, STLO, Rennes, France.,Université de Lorraine, CALBINOTOX, Nancy, France.,Université de Rennes, INRIA, Campus de Beaulieu, Rennes, France
| | | | | | - Grégoire Siekaniec
- INRAE, Institut Agro, STLO, Rennes, France.,Université de Rennes, INRIA, Campus de Beaulieu, Rennes, France
| | | | - Jacques Nicolas
- Université de Rennes, INRIA, Campus de Beaulieu, Rennes, France
| | | | | |
Collapse
|
6
|
Zhao X, Xiang F, Tang F, Cai W, Guo Z, Hou Q, Yang X, Song W, Shan C. Bacterial Communities and Prediction of Microbial Metabolic Pathway in Rice Wine Koji From Different Regions in China. Front Microbiol 2022; 12:748779. [PMID: 35046909 PMCID: PMC8762310 DOI: 10.3389/fmicb.2021.748779] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Accepted: 11/05/2021] [Indexed: 02/01/2023] Open
Abstract
Rice wine koji, a traditional homemade starter culture in China, is nutritious and delicious. The final quality of rice wine koji is closely related to the structure of its microbial community. However, the diversity of natural microorganisms in rice wine koji from different regions has not been evaluated. In this study, the microbial population of 92 naturally fermented rice koji samples collected from Hubei, Guangxi, and Sichuan was systematically analyzed by high-throughput sequencing. From all the rice wine koji samples, 22 phyla and 479 bacterial genera were identified. Weissella, Pediococcus, Lactobacillus, Enterobacter, Lactococcus, Pantoea, Bacillus, Staphylococcus, and Leuconostoc were the dominant genera in rice wine koji. The bacterial community structure of rice wine koji samples from different regions was significantly different (p < 0.05). The bacterial community composition of the samples from Hubei and Guangxi was similar, but significantly different from that of SC samples (p < 0.05). These differences may be caused by variations in geography, environment, or manufacturing. In addition, the results of microbial phenotype prediction by BugBase and bacterial functional potential prediction by PICRUSt showed that eight of the nine predicted phenotypic functions of rice wine koji samples from different regions were significantly different (p < 0.05) and that vigorous bacterial metabolism occurred in rice wine koji samples.
Collapse
Affiliation(s)
- Xinxin Zhao
- School of Food Science, Shihezi University, Shihezi, China.,Engineering Research Center for Storage and Processing of Xinjiang Characteristic Fruits and Vegetables, Ministry of Education, Shihezi University, Shihezi, China
| | - Fanshu Xiang
- School of Food Science, Shihezi University, Shihezi, China.,Engineering Research Center for Storage and Processing of Xinjiang Characteristic Fruits and Vegetables, Ministry of Education, Shihezi University, Shihezi, China
| | - Fengxian Tang
- School of Food Science, Shihezi University, Shihezi, China.,Engineering Research Center for Storage and Processing of Xinjiang Characteristic Fruits and Vegetables, Ministry of Education, Shihezi University, Shihezi, China
| | - Wenchao Cai
- School of Food Science, Shihezi University, Shihezi, China.,Engineering Research Center for Storage and Processing of Xinjiang Characteristic Fruits and Vegetables, Ministry of Education, Shihezi University, Shihezi, China
| | - Zhuang Guo
- Hubei Provincial Engineering and Technology Research Center for Food Ingredients, Hubei University of Arts and Sciences, Xiangyang, China
| | - Qiangchuan Hou
- Hubei Provincial Engineering and Technology Research Center for Food Ingredients, Hubei University of Arts and Sciences, Xiangyang, China
| | - Xinquan Yang
- School of Food Science, Shihezi University, Shihezi, China
| | - Wen Song
- School of Food Science, Shihezi University, Shihezi, China.,Engineering Research Center for Storage and Processing of Xinjiang Characteristic Fruits and Vegetables, Ministry of Education, Shihezi University, Shihezi, China
| | - Chunhui Shan
- School of Food Science, Shihezi University, Shihezi, China.,Engineering Research Center for Storage and Processing of Xinjiang Characteristic Fruits and Vegetables, Ministry of Education, Shihezi University, Shihezi, China
| |
Collapse
|
7
|
Liu SL, Chen CY, Chen YS. Characteristic properties of spray-drying Bifidobacterium adolescentis microcapsules with biosurfactant. J Biosci Bioeng 2022; 133:250-257. [PMID: 35012877 DOI: 10.1016/j.jbiosc.2021.12.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 11/09/2021] [Accepted: 12/06/2021] [Indexed: 12/15/2022]
Abstract
The surfactants used for emulsion is one of the best techniques for microencapsulation of lactic acid bacteria (LAB) since it is economical. The biosurfactants have many advantages such as lower toxicity, higher biodegradability. In this study, microcapsules were prepared via spray drying using Bifidobacterium adolescentis species cultured in soy milk extract with biosurfactant prepared using Alcaligenes piechaudii CC-ESB2 to improve their powder properties. The soy milk was used to increase the health benefits instead of the milk. The optimum bacterial strain viability, water activity, and moisture content of the microcapsules were achieved at a spray dryer inlet/outlet temperature of 120/60°C. The composition of the carrier affects the particle size of the microcapsules. Using 90% maltodextrin (MD), 5% isomalto-oligosaccharide syrup (IMOS) and 5% biosurfactant as a carrier increased the viability of the LAB. Scanning electron microscope observations showed that the LAB microcapsules were able to effectively retain their completeness. Furthermore, microcapsules added with a biosurfactant prepared using A. piechaudii CC-ESB2 displayed significantly better flow properties than those without the surfactant and biosurfactant, which indicates that the biosurfactant assists in enhancing the powder properties of the microcapsules. It also has sufficient biological activity as a LAB product because the probiotics exceed 106 CFU/mL The spray-dried abandoned supernatant with biosurfactant exhibited superior bacteriostasis, which suggests that the supernatant of B. adolescentis during microencapsulation not only retains its bacteriostatic effect under high spray drying temperatures, but also provides additional antibacterial effects for the microcapsules.
Collapse
Affiliation(s)
- Shih-Lun Liu
- Department of Food Science and Technology, HungKuang University, Shalu District, Taichung, Taiwan, ROC
| | - Chun-Yeh Chen
- Department of Food Science and Technology, HungKuang University, Shalu District, Taichung, Taiwan, ROC
| | - Yuh-Shuen Chen
- Department of Food Science and Technology, HungKuang University, Shalu District, Taichung, Taiwan, ROC.
| |
Collapse
|
8
|
KESIKA P, SIVAMARUTHI BS, CHAIYASUT C. A review on the functional properties of fermented soymilk. FOOD SCIENCE AND TECHNOLOGY 2022. [DOI: 10.1590/fst.10721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
9
|
Protective Role of Natural and Semi-Synthetic Tocopherols on TNFα-Induced ROS Production and ICAM-1 and Cl-2 Expression in HT29 Intestinal Epithelial Cells. Antioxidants (Basel) 2021; 10:antiox10020160. [PMID: 33499140 PMCID: PMC7911239 DOI: 10.3390/antiox10020160] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 12/31/2020] [Accepted: 01/19/2021] [Indexed: 12/12/2022] Open
Abstract
Vitamin E, a fat-soluble compound, possesses both antioxidant and non-antioxidant properties. In this study we evaluated, in intestinal HT29 cells, the role of natural tocopherols, α-Toc and δ-Toc, and two semi-synthetic derivatives, namely bis-δ-Toc sulfide (δ-Toc)2S and bis-δ-Toc disulfide (δ-Toc)2S2, on TNFα-induced oxidative stress, and intercellular adhesion molecule-1 (ICAM-1) and claudin-2 (Cl-2) expression. The role of tocopherols was compared to that of N-acetylcysteine (NAC), an antioxidant precursor of glutathione synthesis. The results show that all tocopherol containing derivatives used, prevented TNFα-induced oxidative stress and the increase of ICAM-1 and Cl-2 expression, and that (δ-Toc)2S and (δ-Toc)2S2 are more effective than δ-Toc and α-Toc. The beneficial effects demonstrated were due to tocopherol antioxidant properties, but suppression of TNFα-induced Cl-2 expression seems not only to be related with antioxidant ability. Indeed, while ICAM-1 expression is strongly related to the intracellular redox state, Cl-2 expression is TNFα-up-regulated by both redox and non-redox dependent mechanisms. Since ICAM-1 and Cl-2 increase intestinal bowel diseases, and cause excessive recruitment of immune cells and alteration of the intestinal barrier, natural and, above all, semi-synthetic tocopherols may have a potential role as a therapeutic support against intestinal chronic inflammation, in which TNFα represents an important proinflammatory mediator.
Collapse
|
10
|
Adams C, Sawh F, Green-Johnson J, Jones Taggart H, Strap J. Characterization of casein-derived peptide bioactivity: Differential effects on angiotensin-converting enzyme inhibition and cytokine and nitric oxide production. J Dairy Sci 2020; 103:5805-5815. [DOI: 10.3168/jds.2019-17976] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Accepted: 03/16/2020] [Indexed: 12/20/2022]
|
11
|
Jeffrey MP, Jones Taggart H, Strap JL, Edun G, Green-Johnson JM. Milk fermented with Lactobacillus rhamnosus R0011 induces a regulatory cytokine profile in LPS-challenged U937 and THP-1 macrophages. Curr Res Food Sci 2020; 3:51-58. [PMID: 32914120 PMCID: PMC7473351 DOI: 10.1016/j.crfs.2020.02.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Fermented dairy products have become attractive functional foods for the delivery of probiotics and their biologically active metabolites. The aim of this study was to examine the immunomodulatory activity of milk fermented with the probiotic lactic acid bacterium Lactobacillus rhamnosus R0011 (LrF) on macrophages challenged with lipopolysaccharide (LPS), a potent pro-inflammatory stimulus. To this end, human THP-1 or U937 monocytes were differentiated into resting macrophages then stimulated with LPS and co-incubated with the LrF or with milk controls. Levels of pro-inflammatory and immunoregulatory cytokines were determined by enzyme-linked immunosorbent assays. Culturing of LPS-stimulated U937 macrophages with either the whole or filtered LrF resulted in an increase in Interleukin (IL)-1Ra production relative to the negative control. THP-1 macrophages cultured with the LrF demonstrated an increase in LPS-induced IL-10 and IL-1β production, while production of LPS-induced IL-6, sCD54, IL-8, IL-1β, TNF-α, IL-12p70 and Transforming Growth Factor-β (TGF-β) was unaffected. Further, the LrF induced the expression of DC-SIGN and CD206, markers of immunoregulatory M2 macrophage polarization, in LPS-challenged THP-1 macrophages. Taken together, milk fermented with L. rhamnosus R0011 increased regulatory cytokine production from LPS-challenged U937 and THP-1 macrophages, while simultaneously up-regulating the production of IL-1β and expression of DC-SIGN and CD206, a profile characteristic of polarization into the immunoregulatory M2 macrophage phenotype. Milk fermented with Lactobacillus rhamnosus R0011 (Lrf) induces a regulatory macrophage phenotype. Modulation of cytokine profiles induced by lipopolysaccharide challenge consistent with an alternatively activated (M2) macrophage phenotype. Fermented milk conditioning induced macrophage expression of genes characteristic of M2 macrophage polarization (DC-SIGN and CD206).
Collapse
Affiliation(s)
- Michael P. Jeffrey
- Applied Bioscience Graduate Program, Ontario Technical University, Oshawa, ON, Canada
| | - Holly Jones Taggart
- Applied Bioscience Graduate Program, Ontario Technical University, Oshawa, ON, Canada
- Faculty of Health Sciences, Ontario Technical University, Oshawa, ON, L1G 0C5, Canada
| | - Janice L. Strap
- Applied Bioscience Graduate Program, Ontario Technical University, Oshawa, ON, Canada
- Faculty of Science, Ontario Technical University, Oshawa, ON, L1G 0C5, Canada
| | - Gibran Edun
- Faculty of Science, Ontario Technical University, Oshawa, ON, L1G 0C5, Canada
| | - Julia M. Green-Johnson
- Applied Bioscience Graduate Program, Ontario Technical University, Oshawa, ON, Canada
- Faculty of Science, Ontario Technical University, Oshawa, ON, L1G 0C5, Canada
- Corresponding author. Faculty of Science, Ontario Technical University, 2000 Simcoe Street North, Oshawa, ON, Canada.
| |
Collapse
|
12
|
Yu W, Gao D, Jin W, Wang Z, Li Y, Peng X, Cong Y, Li C, Zhao A, Liu S, Qi S. Intestinal Flora Dysbiosis Aggravates Cognitive Dysfunction Associated With Neuroinflammation in Heart Failure. J Card Fail 2020; 26:885-894. [PMID: 32105821 DOI: 10.1016/j.cardfail.2020.02.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Revised: 01/23/2020] [Accepted: 02/14/2020] [Indexed: 12/20/2022]
Abstract
BACKGROUND Cognitive dysfunction after heart failure (HF) is characterized by neuroinflammation, which plays an important role in the occurrence and development of cognitive dysfunction. Recent studies have shown that an intestinal flora imbalance may also trigger neuroinflammation in Alzheimer's disease. The present study was designed to reveal that intestinal flora dysbiosis caused by HF aggravates neuroinflammation-associated cognitive impairment. METHODS AND RESULTS Adult male Sprague-Dawley rats were fed daily for 2 weeks with probiotics or placebo until the day of surgery. HF was then triggered by 8 weeks of sustained coronary artery occlusion. 16S rDNA sequencing was used to confirm intestinal flora dysbiosis after HF and demonstrate that the changes paralleled intestinal pathology scores. The permeability of the blood-brain barrier was increased after HF, and such an increase in permeability may increase the levels of inflammatory cytokines caused by intestinal flora disorders. The changes in the intestinal flora caused by probiotics significantly reduced the level of neuroinflammation. In addition, probiotic administration considerably improved the impaired spatial memory in HF rats. CONCLUSIONS We conclude that intestinal flora dysbiosis plays a potential role in aggravating the impaired cognition associated with neuroinflammation and that these effects may be attenuated by probiotics.
Collapse
Affiliation(s)
- Wei Yu
- Department of Anesthesiology, The Fourth Affiliated Hospital of Harbin Medical University, Harbin 150001, Heilongjiang Province, China
| | - Dapeng Gao
- Department of Anesthesiology, The Fourth Affiliated Hospital of Harbin Medical University, Harbin 150001, Heilongjiang Province, China
| | - Wen Jin
- Department of Anesthesiology, The Fourth Affiliated Hospital of Harbin Medical University, Harbin 150001, Heilongjiang Province, China
| | - Zijian Wang
- Department of Anesthesiology, The Fourth Affiliated Hospital of Harbin Medical University, Harbin 150001, Heilongjiang Province, China
| | - Yan Li
- Department of Anesthesiology, The Fourth Affiliated Hospital of Harbin Medical University, Harbin 150001, Heilongjiang Province, China
| | - Xiaowei Peng
- Department of Anesthesiology, The Fourth Affiliated Hospital of Harbin Medical University, Harbin 150001, Heilongjiang Province, China
| | - Yushuang Cong
- Department of Anesthesiology, The Fourth Affiliated Hospital of Harbin Medical University, Harbin 150001, Heilongjiang Province, China
| | - Chenglong Li
- Department of Anesthesiology, The Fourth Affiliated Hospital of Harbin Medical University, Harbin 150001, Heilongjiang Province, China
| | - Ayang Zhao
- Department of Anesthesiology, The Fourth Affiliated Hospital of Harbin Medical University, Harbin 150001, Heilongjiang Province, China
| | - Shuai Liu
- Department of Anesthesiology, The Fourth Affiliated Hospital of Harbin Medical University, Harbin 150001, Heilongjiang Province, China
| | - Sihua Qi
- Department of Anesthesiology, The Fourth Affiliated Hospital of Harbin Medical University, Harbin 150001, Heilongjiang Province, China.
| |
Collapse
|
13
|
Gastrointestinal survival and potential bioactivities of Lactobacillus curieae CCTCC M2011381 in the fermentation of plant food. Process Biochem 2020. [DOI: 10.1016/j.procbio.2019.10.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
14
|
Zhang JS, Corredig M, Morales-Rayas R, Hassan A, Griffiths MW, LaPointe G. Downregulation of Salmonella Virulence Gene Expression During Invasion of Epithelial Cells Treated with Lactococcus lactis subsp. cremoris JFR1 Requires OppA. Probiotics Antimicrob Proteins 2019; 12:577-588. [PMID: 31377945 DOI: 10.1007/s12602-019-09574-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Invasion of Salmonella into host intestinal epithelial cells requires the expression of virulence genes. In this study, cell culture models of human intestinal cells (mucus-producing HT29-MTX cells, absorptive Caco-2 cells, and combined cocultures of the two) were used to determine the effects of Lactococcus lactis subsp. cremoris treatments (exopolysaccharide producing and nonproducing strains) on the virulence gene expression of Salmonella Typhimurium and its mutant lacking the oligopeptide permease subunit A (ΔoppA). During the course of epithelial cell (HT29-MTX, Caco-2, and combined) infection by Salmonella Typhimurium DT104, improved barrier function was reflected by increased transepithelial electrical resistance in cells treated with both strains of L. lactis subsp. cremoris. In addition, virulence gene expression was downregulated, accompanied with lower numbers of invasive bacteria into epithelial cells in the presence of L. lactis subsp. cremoris treatments. Similarly, virulence gene expression of Salmonella was also suppressed when coincubated with overnight cultures of both L. lactis subsp. cremoris strains in the absence of epithelial cells. However, in medium or in the presence of cell cultures, Salmonella lacking the OppA permease function remained virulent. HT29-MTX cells and combined cultures stimulated by Salmonella Typhimurium DT104 showed significantly lower secretion levels of pro-inflammatory cytokine IL-8 after treatment with L. lactis subsp. cremoris cell suspensions. Contrarily, these responses were not observed during infection with S. Typhimurium ΔoppA. Both the exopolysaccharide producing and nonproducing strains of L. lactis subsp. cremoris JFR1 exhibited an antivirulence effect against S. Typhimurium DT104 although no significant difference between the two strains was observed. Our results show that an intact peptide transporter is essential for the suppression of Salmonella virulence genes which leads to the protection of the barrier function in the cell culture models studied.
Collapse
Affiliation(s)
- J S Zhang
- Canadian Research Institute for Food Safety, Department of Food Science, University of Guelph, Guelph, ON, N1G 2W1, Canada
| | - M Corredig
- Department of Food Science, University of Guelph, Guelph, ON, N1G 2W1, Canada
| | - R Morales-Rayas
- Canadian Research Institute for Food Safety, Department of Food Science, University of Guelph, Guelph, ON, N1G 2W1, Canada
| | - A Hassan
- Daisy Brand, Dallas, TX, 75251, USA
| | - M W Griffiths
- Canadian Research Institute for Food Safety, Department of Food Science, University of Guelph, Guelph, ON, N1G 2W1, Canada
| | - Gisèle LaPointe
- Canadian Research Institute for Food Safety, Department of Food Science, University of Guelph, Guelph, ON, N1G 2W1, Canada.
| |
Collapse
|
15
|
Zhang JS, Corredig M, Morales-Rayas R, Hassan A, Griffiths MW, LaPointe G. Effect of fermented milk from Lactococcus lactis ssp. cremoris strain JFR1 on Salmonella invasion of intestinal epithelial cells. J Dairy Sci 2019; 102:6802-6819. [PMID: 31202650 DOI: 10.3168/jds.2018-15669] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2018] [Accepted: 04/05/2019] [Indexed: 12/18/2022]
Abstract
The process of fermentation contributes to the organoleptic properties, preservation, and nutritional benefits of food. Fermented food may interfere with pathogen infections through a variety of mechanisms, including competitive exclusion or improving intestinal barrier integrity. In this study, the effect of milk fermented with Lactococcus lactis ssp. cremoris JFR1 on Salmonella invasion of intestinal epithelial cell cultures was investigated. Epithelial cells (HT29-MTX, Caco-2, and cocultures of the 2) were treated for 1 h with Lactococcus lactis ssp. cremoris JFR1 fermented milk before infection with Salmonella enterica ssp. enterica Typhimurium. Treatment with fermented milk resulted in increased transepithelial electrical resistance, which remained constant for the duration of infection (up to 3 h), illustrating a protective effect. After gentamicin treatment to remove adhered bacterial cells, enumeration revealed a reduction in numbers of intracellular Salmonella. Quantitative reverse-transcription PCR data indicated a downregulation of Salmonella virulence genes hilA, invA, and sopD after treatment with fermented milk. Fermented milk treatment of epithelial cells also exhibited an immunomodulatory effect reducing the production of proinflammatory IL-8. In contrast, chemically acidified milk (glucono delta-lactone) failed to show the same effect on monolayer integrity, Salmonella Typhimurium invasion, and gene expression as well as immune modulation. Furthermore, an oppA knockout mutant of Salmonella Typhimurium infecting treated epithelial cells did not show suppressed virulence gene expression. Collectively, these results suggest that milk fermented with Lactococcus lactis ssp. cremoris JFR1 is effective in vitro in the reduction of Salmonella invasion into intestinal epithelial cells. A functional OppA permease in Salmonella is required to obtain the antivirulence effect of fermented milk.
Collapse
Affiliation(s)
- J S Zhang
- Canadian Research Institute for Food Safety, Department of Food Science, University of Guelph, Guelph, ON, N1G 2W1, Canada
| | - M Corredig
- Department of Food Science, University of Guelph, Guelph, ON, N1G 2W1, Canada
| | - R Morales-Rayas
- Canadian Research Institute for Food Safety, Department of Food Science, University of Guelph, Guelph, ON, N1G 2W1, Canada
| | | | - M W Griffiths
- Canadian Research Institute for Food Safety, Department of Food Science, University of Guelph, Guelph, ON, N1G 2W1, Canada
| | - G LaPointe
- Canadian Research Institute for Food Safety, Department of Food Science, University of Guelph, Guelph, ON, N1G 2W1, Canada.
| |
Collapse
|
16
|
Cao ZH, Green-Johnson JM, Buckley ND, Lin QY. Bioactivity of soy-based fermented foods: A review. Biotechnol Adv 2019; 37:223-238. [PMID: 30521852 DOI: 10.1016/j.biotechadv.2018.12.001] [Citation(s) in RCA: 130] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Revised: 09/29/2018] [Accepted: 12/02/2018] [Indexed: 12/13/2022]
Abstract
For centuries, fermented soy foods have been dietary staples in Asia and, now, in response to consumer demand, they are available throughout the world. Fermentation bestows unique flavors, boosts nutritional values and increases or adds new functional properties. In this review, we describe the functional properties and underlying action mechanisms of soy-based fermented foods such as Natto, fermented soy milk, Tempeh and soy sauce. When possible, the contribution of specific bioactive components is highlighted. While numerous studies with in vitro and animal models have hinted at the functionality of fermented soy foods, ascribing health benefits requires well-designed, often complex human studies with analysis of diet, lifestyle, family and medical history combined with long-term follow-ups for each subject. In addition, the contribution of the microbiome to the bioactivities of fermented soy foods, possibly mediated through direct action or bioactive metabolites, needs to be studied. Potential synergy or other interactions among the microorganisms carrying out the fermentation and the host's microbial community may also contribute to food functionality, but the details still require elucidation. Finally, safety evaluation of fermented soy foods has been limited, but is essential in order to provide guidelines for consumption and confirm lack of toxicity.
Collapse
Affiliation(s)
- Zhen-Hui Cao
- Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming 650201, China
| | - Julia M Green-Johnson
- Faculty of Science, University of Ontario Institute of Technology (UOIT), Oshawa L1H 7K4, Canada
| | | | - Qiu-Ye Lin
- College of Food Science and Technology, Yunnan Agricultural University, Kunming 650201, China.
| |
Collapse
|
17
|
Mohammadi G, Dargahi L, Naserpour T, Mirzanejad Y, Alizadeh SA, Peymani A, Nassiri-Asl M. Probiotic mixture of Lactobacillus helveticus R0052 and Bifidobacterium longum R0175 attenuates hippocampal apoptosis induced by lipopolysaccharide in rats. Int Microbiol 2018; 22:317-323. [PMID: 30810993 DOI: 10.1007/s10123-018-00051-3] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2018] [Revised: 11/11/2018] [Accepted: 11/29/2018] [Indexed: 02/07/2023]
Abstract
In recent years, the beneficial impact of targeted gut microbiota manipulation in various neurological disorders has become more evident. Therefore, probiotics have been considered as a promising approach to modulate brain gene expression and neuronal pathways even in some neurodegenerative diseases. The purpose of this study was to determine the effect of probiotic biotherapy with combination of Lactobacillus helveticus R0052 and Bifidobacterium longum R0175 on the expression levels of proteins critical to neuronal apoptosis in hippocampus of lipopolysaccharide (LPS)-exposed rats. Four groups of animals (Control, LPS, Probiotic + LPS, and Probiotic) were treated with maltodextrin (placebo) or probiotic (109 CFU/ml/rat) for 2 weeks by gavage. On the 15th day, a single intraperitoneal dose of saline or LPS (1 mg/kg) was injected and 4 h later, protein assessment was performed by western blotting in hippocampal tissues. LPS significantly increased the Bax, Bax/Bcl-2 ratio, and cleaved caspase-3 expression along with decreased the Bcl-2 and procaspase-3 protein levels. However, probiotic pretreatment (L. helveticus R0052 + B. longum R0175) significantly downregulated the Bax and Bax/Bcl-2 ratio accompanied with upregulated Bcl-2 expression. Prophylactic treatment with these bacteria also attenuated LPS-induced caspase-3 activation by remarkably increasing the expression of procaspase-3 while reducing the level of cleaved caspase-3 in target tissues. Our data indicate that probiotic formulation (L. helveticus R0052 + B. longum R0175) alleviated hippocampal apoptosis induced by LPS in rats via the gut-brain axis and suggest that this probiotic could play a beneficial role in some neurodegenerative conditions.
Collapse
Affiliation(s)
- Ghazaleh Mohammadi
- Cellular and Molecular Research Center, Department of Molecular Medicine, Qazvin University of Medical Sciences, Qazvin, Iran
| | - Leila Dargahi
- NeuroBiology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Taghi Naserpour
- Medical Microbiology Research Center, Qazvin University of Medical Sciences, Qazvin, Iran
| | - Yazdan Mirzanejad
- Division of Infectious Diseases, University of British Columbia, Vancouver, Canada
| | - Safar Ali Alizadeh
- Medical Microbiology Research Center, Qazvin University of Medical Sciences, Qazvin, Iran
| | - Amir Peymani
- Medical Microbiology Research Center, Qazvin University of Medical Sciences, Qazvin, Iran.
| | - Marjan Nassiri-Asl
- Cellular and Molecular Research Center, Department of Pharmacology, Qazvin University of Medical Sciences, P.O. Box 341197-5981, Qazvin, Iran.
| |
Collapse
|
18
|
Mohammadi G, Dargahi L, Peymani A, Mirzanejad Y, Alizadeh SA, Naserpour T, Nassiri-Asl M. The Effects of Probiotic Formulation Pretreatment (Lactobacillus helveticus R0052 and Bifidobacterium longum R0175) on a Lipopolysaccharide Rat Model. J Am Coll Nutr 2018; 38:209-217. [PMID: 30307792 DOI: 10.1080/07315724.2018.1487346] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
OBJECTIVE The role of gut microbiota in the pathogenesis of several neurodegenerative disorders, including Alzheimer's disease (AD), via the gut-brain axis has recently been demonstrated; hence, modification of the intestinal microbiota composition by probiotic biotherapy could be a therapeutic target for these conditions. The aim of this study was to assess the effects of a probiotic formulation (Lactobacillus helveticus R0052 and Bifidobacterium longum R0175) on inflammatory and memory processes in lipopolysaccharide (LPS)-induced rats, one of the animal models used in peripherally induced neuroinflammation and neurodegeneration. METHODS Rats were randomly divided into four groups (Control, LPS, Probiotic + LPS, and Probiotic). All experimental groups were orally administrated maltodextrin (placebo) or probiotic (109 CFU/ml/rat) for 14 consecutive days and then were injected with saline or LPS (1 mg/kg, intraperitoneally [i.p.], single dose) 20 hours later. Memory retention ability and systemic and neuroinflammatory markers were assessed 4 hours after the injections. RESULTS Systemic exposure to LPS resulted in significant elevation of both the circulating and hippocampal levels of proinflammatory cytokines, which decreased remarkably following probiotic pretreatment. Oral bacteriotherapy with a combination of L. helveticus R0052 and B. longum R0175 also attenuated the decremental effect of LPS on memory through brain-derived neurotrophic factor (BDNF) expression at the molecular level; however, this effect was not significant in the passive avoidance test at the behavioral level. CONCLUSIONS These results suggest that the management of gut microbiota with this probiotic formulation could be a promising intervention to improve neuroinflammation-associated disorders such as AD.
Collapse
Affiliation(s)
- Ghazaleh Mohammadi
- a Department of Molecular Medicine , Qazvin University of Medical Sciences , Qazvin , Iran
| | - Leila Dargahi
- b NeuroBiology Research Center , Shahid Beheshti University of Medical Sciences , Tehran , Iran
| | - Amir Peymani
- c Medical Microbiology Research Center , Qazvin University of Medical Sciences , Qazvin , Iran
| | - Yazdan Mirzanejad
- d Division of Infectious Diseases , University of British Columbia , Vancouver , Canada
| | - Safar Ali Alizadeh
- c Medical Microbiology Research Center , Qazvin University of Medical Sciences , Qazvin , Iran
| | - Taghi Naserpour
- e Cellular and Molecular Research Center, Department of Pharmacology , Qazvin University of Medical Sciences , Qazvin , Iran
| | - Marjan Nassiri-Asl
- e Cellular and Molecular Research Center, Department of Pharmacology , Qazvin University of Medical Sciences , Qazvin , Iran
| |
Collapse
|
19
|
Myocardial infarction and gut microbiota: An incidental connection. Pharmacol Res 2018; 129:308-317. [DOI: 10.1016/j.phrs.2017.11.008] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/08/2017] [Revised: 11/05/2017] [Accepted: 11/09/2017] [Indexed: 02/06/2023]
|
20
|
Dynamic profile of the microbiota during coconut water pre-fermentation for nata de coco production. Lebensm Wiss Technol 2017. [DOI: 10.1016/j.lwt.2017.03.036] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
21
|
Bergsveinson J, Kajala I, Ziola B. Next-generation sequencing approaches for improvement of lactic acid bacteria-fermented plant-based beverages. AIMS Microbiol 2017; 3:8-24. [PMID: 31294146 PMCID: PMC6604971 DOI: 10.3934/microbiol.2017.1.8] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2016] [Accepted: 01/12/2017] [Indexed: 12/31/2022] Open
Abstract
Plant-based beverages and milk alternatives produced from cereals and legumes have grown in popularity in recent years due to a range of consumer concerns over dairy products. These plant-based products can often have undesirable physiochemical properties related to flavour, texture, and nutrient availability and/or deficiencies. Lactic acid bacteria (LAB) fermentation offers potential remediation for many of these issues, and allows consumers to retain their perception of the resultant products as natural and additive-free. Using next-generation sequencing (NGS) or omics approaches to characterize LAB isolates to find those that will improve properties of plant-based beverages is the most direct way to product improvement. Although NGS/omics approaches have been extensively used for selection of LAB for use in the dairy industry, a comparable effort has not occurred for selecting LAB for fermenting plant raw substrates, save those used in producing wine and certain types of beer. Here we review the few and recent applications of NGS/omics to profile and improve LAB fermentation of various plant-based substrates for beverage production. We also identify specific issues in the production of various LAB fermented plant-based beverages that such NGS/omics applications have the power to resolve.
Collapse
Affiliation(s)
- Jordyn Bergsveinson
- Department of Pathology and Laboratory Medicine, College of Medicine, University of Saskatchewan, 2841 Royal University Hospital, 103 Hospital Drive, Saskatoon, SK Canada S7N 0W8
| | - Ilkka Kajala
- VTT Technical Research Centre of Finland Ltd., PL1000, 02044VTT, Espoo, Finland
| | - Barry Ziola
- Department of Pathology and Laboratory Medicine, College of Medicine, University of Saskatchewan, 2841 Royal University Hospital, 103 Hospital Drive, Saskatoon, SK Canada S7N 0W8
| |
Collapse
|
22
|
Metagenomic approach reveals microbial diversity and predictive microbial metabolic pathways in Yucha, a traditional Li fermented food. Sci Rep 2016; 6:32524. [PMID: 27578483 PMCID: PMC5006176 DOI: 10.1038/srep32524] [Citation(s) in RCA: 68] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2016] [Accepted: 08/10/2016] [Indexed: 11/23/2022] Open
Abstract
Yucha is a typical traditional fermented food of the Li population in the Hainan province of China, and it is made up of cooked rice and fresh fish. In the present study, metagenomic approach and culture-dependent technology were applied to describe the diversity of microbiota and identify beneficial microbes in the Yucha. At the genus level, Lactobacillus was the most abundant genus (43.82% of the total reads), followed by Lactococcus, Enterococcus, Vibrio, Weissella, Pediococcus, Enterobacter, Salinivibrio, Acinetobacter, Macrococcus, Kluyvera and Clostridium; this result was confirmed by q-PCR. PCoA based on Weighted UniFrac distances showed an apparent clustering pattern for Yucha samples from different locations, and Lactobacillus sakei, Lactobacillus saniviri and Staphylococcus sciuri represented OTUs according to the major identified markers. At the microbial functional level, it was observed that there was an enrichment of metabolic functional features, including amino acid and carbohydrate metabolism, which implied that the microbial metabolism in the Yucha samples tended to be vigorous. Accordingly, we further investigated the correlation between the predominant microbes and metabolic functional features. Thirteen species of Lactobacillus (147 strains) were isolated, and Lactobacillus plantarum (60 isolates) and Lactobacillus pentosus (34 isolates) were isolated from every sample.
Collapse
|
23
|
Santiago-López L, Hernández-Mendoza A, Vallejo-Cordoba B, Mata-Haro V, González-Córdova AF. Food-derived immunomodulatory peptides. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2016; 96:3631-3641. [PMID: 26940008 DOI: 10.1002/jsfa.7697] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2015] [Revised: 02/25/2016] [Accepted: 02/27/2016] [Indexed: 06/05/2023]
Abstract
Food proteins contain specific amino acid sequences within their structures that may positively impact bodily functions and have multiple immunomodulatory effects. The functional properties of these specific sequences, also referred to as bioactive peptides, are revealed only after the degradation of native proteins during digestion processes. Currently, milk proteins have been the most explored source of bioactive peptides, which presents an interesting opportunity for the dairy industry. However, plant- and animal-derived proteins have also been shown to be important sources of bioactive peptides. This review summarizes the in vitro and in vivo evidence of the role of various food proteins as sources of immunomodulatory peptides and discusses the possible pathways involving these properties. © 2016 Society of Chemical Industry.
Collapse
Affiliation(s)
- Lourdes Santiago-López
- Laboratorio de Química y Biotecnología de Productos Lácteos, Centro de Investigación en Alimentación y Desarrollo, AC (CIAD), Carretera a La Victoria Km 0.6, 83304, Hermosillo, Sonora, Mexico
| | - Adrián Hernández-Mendoza
- Laboratorio de Química y Biotecnología de Productos Lácteos, Centro de Investigación en Alimentación y Desarrollo, AC (CIAD), Carretera a La Victoria Km 0.6, 83304, Hermosillo, Sonora, Mexico
| | - Belinda Vallejo-Cordoba
- Laboratorio de Química y Biotecnología de Productos Lácteos, Centro de Investigación en Alimentación y Desarrollo, AC (CIAD), Carretera a La Victoria Km 0.6, 83304, Hermosillo, Sonora, Mexico
| | - Verónica Mata-Haro
- Laboratorio de Microbiología e Inmunología, Centro de Investigación en Alimentación y Desarrollo, AC (CIAD), Carretera a La Victoria Km 0.6, 83304, Hermosillo, Sonora, Mexico
| | - Aarón F González-Córdova
- Laboratorio de Química y Biotecnología de Productos Lácteos, Centro de Investigación en Alimentación y Desarrollo, AC (CIAD), Carretera a La Victoria Km 0.6, 83304, Hermosillo, Sonora, Mexico
| |
Collapse
|
24
|
Lin Q, Mathieu O, Tompkins TA, Buckley ND, Green-Johnson JM. Modulation of the TNFα-induced gene expression profile of intestinal epithelial cells by soy fermented with lactic acid bacteria. J Funct Foods 2016. [DOI: 10.1016/j.jff.2016.02.047] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
|
25
|
Walia S, Kamal R, Kanwar SS, Dhawan DK. Cyclooxygenase as a Target in Chemoprevention by Probiotics During 1,2-Dimethylhydrazine Induced Colon Carcinogenesis in Rats. Nutr Cancer 2015; 67:603-11. [DOI: 10.1080/01635581.2015.1011788] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
26
|
Karlton-Senaye BD, Tahergorabi R, Giddings VL, Ibrahim SA. Effect of gums on viability and β-galactosidase activity ofLactobacillusspp. in milk drink during refrigerated storage. Int J Food Sci Technol 2014. [DOI: 10.1111/ijfs.12633] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Affiliation(s)
- Bernice D. Karlton-Senaye
- Energy and Environmental Systems; North Carolina Agricultural and Technical State University; Greensboro NC USA
| | - Reza Tahergorabi
- Energy and Environmental Systems; North Carolina Agricultural and Technical State University; Greensboro NC USA
| | - Valerie L. Giddings
- Department of Family and Consumer Sciences; North Carolina Agricultural and Technical State University; Greensboro NC USA
| | - Salam A. Ibrahim
- Energy and Environmental Systems; North Carolina Agricultural and Technical State University; Greensboro NC USA
| |
Collapse
|
27
|
Yamashita M, Ukibe K, Uenishi H, Hosoya T, Sakai F, Kadooka Y. Lactobacillus helveticus SBT2171, a cheese starter, regulates proliferation and cytokine production of immune cells. J Dairy Sci 2014; 97:4772-9. [DOI: 10.3168/jds.2014-8041] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2014] [Accepted: 04/22/2014] [Indexed: 01/21/2023]
|
28
|
Rapid and real-time prediction of lactic acid bacteria (LAB) in farmed salmon flesh using near-infrared (NIR) hyperspectral imaging combined with chemometric analysis. Food Res Int 2014. [DOI: 10.1016/j.foodres.2014.03.064] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
29
|
Afiati F, - Y, R.A. Maheswari R. PEMANFAATAN BAKTERI PROBIOTIK INDIGENUS DALAM PEMBUATAN KEJU LUNAK. JURNAL TEKNOLOGI DAN INDUSTRI PANGAN 2014. [DOI: 10.6066/jtip.2014.25.1.7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
|
30
|
Ohland CL, Kish L, Bell H, Thiesen A, Hotte N, Pankiv E, Madsen KL. Effects of Lactobacillus helveticus on murine behavior are dependent on diet and genotype and correlate with alterations in the gut microbiome. Psychoneuroendocrinology 2013; 38:1738-47. [PMID: 23566632 DOI: 10.1016/j.psyneuen.2013.02.008] [Citation(s) in RCA: 192] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/04/2012] [Revised: 02/08/2013] [Accepted: 02/08/2013] [Indexed: 12/19/2022]
Abstract
Modulation of the gut microbiota with diet and probiotic bacteria can restore intestinal homeostasis in inflammatory conditions and alter behavior via the gut-brain axis. The purpose of this study was to determine whether the modulatory effects of probiotics differ depending on diet and mouse genotype. At weaning, wild type (WT) and IL-10 deficient (IL-10(-/-)) 129/SvEv mice were placed on a standard mouse chow or a Western-style diet (fat 33%, refined carbohydrate 49%)±Lactobacillus helveticus ROO52 (10(9)cfu/d) for 21 days. Animal weight and food eaten were monitored weekly. Intestinal immune function was analysed for cytokine expression using the Meso Scale Discovery platform. Spatial memory and anxiety-like behavior was assessed in a Barnes maze. Terminal restriction fragment length polymorphism (TRFLP) was used to analyze the fecal microbiota. Both WT and IL-10(-/-) mice on a Western diet had increased weight gain along with changes in gut microbiota and cytokine expression and altered anxiety-like behavior. The ability of L. helveticus to modulate these factors was genotype- and diet-dependent. Anxiety-like behavior and memory were negatively affected by Western-style diet depending on inflammatory state, but this change was prevented with L. helveticus administration. However, probiotics alone decreased anxiety-like behavior in WT mice on a chow diet. Mice on the Western diet had decreased inflammation and fecal corticosterone, but these markers did not correlate with changes in behavior. Analysis of bacterial phyla from WT and IL-10(-/-)mice showed discrete clustering of the groups to be associated with both diet and probiotic supplementation, with the diet-induced shift normalized to some degree by L. helveticus. These findings suggest that the type of diet consumed by the host and the presence or absence of active inflammation may significantly alter the ability of probiotics to modulate host physiological function.
Collapse
|
31
|
Maganha LC, Rosim RE, Corassin CH, Cruz AG, Faria JAF, Oliveira CAF. Viability of probiotic bacteria in fermented skim milk produced with different levels of milk powder and sugar. INT J DAIRY TECHNOL 2013. [DOI: 10.1111/1471-0307.12087] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Luciana C Maganha
- Departamento de Engenharia de Alimentos; Faculdade de Zootecnia e Engenharia de Alimentos; Universidade de São Paulo; Av. Duque de Caxias Norte 225, CEP 13635-900 Pirassununga SP Brazil
| | - Roice E Rosim
- Departamento de Engenharia de Alimentos; Faculdade de Zootecnia e Engenharia de Alimentos; Universidade de São Paulo; Av. Duque de Caxias Norte 225, CEP 13635-900 Pirassununga SP Brazil
| | - Carlos H Corassin
- Departamento de Engenharia de Alimentos; Faculdade de Zootecnia e Engenharia de Alimentos; Universidade de São Paulo; Av. Duque de Caxias Norte 225, CEP 13635-900 Pirassununga SP Brazil
| | - Adriano G Cruz
- Departamento de Tecnologia de Alimentos; Faculdade de Engenharia de Alimentos; Universidade Estadual de Campinas; Campinas SP Brazil
| | - José A F Faria
- Departamento de Tecnologia de Alimentos; Faculdade de Engenharia de Alimentos; Universidade Estadual de Campinas; Campinas SP Brazil
| | - Carlos A F Oliveira
- Departamento de Engenharia de Alimentos; Faculdade de Zootecnia e Engenharia de Alimentos; Universidade de São Paulo; Av. Duque de Caxias Norte 225, CEP 13635-900 Pirassununga SP Brazil
| |
Collapse
|
32
|
Zambrowicz A, Timmer M, Polanowski A, Lubec G, Trziszka T. Manufacturing of peptides exhibiting biological activity. Amino Acids 2013; 44:315-20. [PMID: 22914979 PMCID: PMC3549240 DOI: 10.1007/s00726-012-1379-7] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2012] [Accepted: 07/26/2012] [Indexed: 12/20/2022]
Abstract
Numerous studies have shown that food proteins may be a source of bioactive peptides. Those peptides are encrypted in the protein sequence. They stay inactive within the parental protein until release by proteolytic enzymes (Mine and Kovacs-Nolan in Worlds Poult Sci J 62(1):87-95, 2006; Hartman and Miesel in Curr Opin Biotechnol 18:163-169, 2007). Once released the bioactive peptides exhibit several biofunctionalities and may serve therapeutic roles in body systems. Opioid peptides, peptides lowering high blood pressure, inhibiting platelet aggregation as well as being carriers of metal ions and peptides with immunostimulatory, antimicrobial and antioxidant activities have been described (Hartman and Miesel in Curr Opin Biotechnol 18:163-169, 2007). The biofunctional abilities of the peptides have therefore aroused a lot of scientific, technological and consumer interest with respect to the role of dietary proteins in controlling and influencing health (Möller et al. in Eur J Nutr 47(4):171-182, 2008). Biopeptides may find wide application in food production, the cosmetics industry as well as in the prevention and treatment of various medical conditions. They are manufactured by chemical and biotechnological methods (Marx in Chem Eng News 83(11):17-24. 2005; Hancock and Sahl in Nat Biotechnol 24(12):1551-1557, 2006). Depending on specific needs (food or pharmaceutical industry) different degrees of peptide purifications are required. This paper discusses the practicability of manufacturing bioactive peptides, especially from food proteins.
Collapse
Affiliation(s)
- Aleksandra Zambrowicz
- Department of Animal Products Technology and Quality Management, Wroclaw University of Environmental and Life Sciences, Chelmonskiego 37/41, 51-630 Wroclaw, Poland
| | - Monika Timmer
- Department of Animal Products Technology and Quality Management, Wroclaw University of Environmental and Life Sciences, Chelmonskiego 37/41, 51-630 Wroclaw, Poland
| | - Antoni Polanowski
- Department of Animal Products Technology and Quality Management, Wroclaw University of Environmental and Life Sciences, Chelmonskiego 37/41, 51-630 Wroclaw, Poland
| | - Gert Lubec
- Department of Pediatrics, Medical University of Vienna, Waehringer Guertel 18, 1090 Vienna, Austria
| | - Tadeusz Trziszka
- Department of Animal Products Technology and Quality Management, Wroclaw University of Environmental and Life Sciences, Chelmonskiego 37/41, 51-630 Wroclaw, Poland
| |
Collapse
|
33
|
Abstract
Lactobacillus helveticus is an important industrial thermophilic starter that is predominantly employed in the fermentation of milk for the manufacture of several cheeses. In addition to its technological importance, a growing body of scientific evidence shows that strains belonging to the L. helveticus species have health-promoting properties. In this review, we synthesize the results of numerous primary literature papers concerning the ability of L. helveticus strains to positively influence human health. Several in vitro studies showed that L. helveticus possesses many common probiotic properties, such as the ability to survive gastrointestinal transit, adhere to epithelial cells, and antagonize pathogens. In vivo studies in murine models showed that L. helveticus could prevent gastrointestinal infections, enhance protection against pathogens, modulate host immune responses, and affect the composition of the intestinal microbiota. Interventional studies and clinical trials have also demonstrated a number of health-promoting properties of L. helveticus. Finally, several studies suggested that specific enzymatic activities of L. helveticus could indirectly benefit the human host by enhancing the bioavailability of nutrients, removing allergens and other undesired molecules from food, and producing bioactive peptides through the digestion of food proteins. In conclusion, this review demonstrates that in light of the scientific literature presented, L. helveticus can be included among the bacterial species that are generally considered to be probiotic.
Collapse
Affiliation(s)
- Valentina Taverniti
- Division of Food Microbiology and Bioprocesses, Department of Food Environmental and Nutritional Sciences, Università degli Studi di Milano Milan, Italy
| | | |
Collapse
|
34
|
Attenuation of post-myocardial infarction depression in rats by n-3 fatty acids or probiotics starting after the onset of reperfusion. Br J Nutr 2012; 109:50-6. [PMID: 23068715 DOI: 10.1017/s0007114512003807] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Proinflammatory cytokines play a central role in depression-like behaviour and apoptosis in the limbic system after myocardial infarction (MI). A PUFA n-3 diet or the combination of Lactobacillus helveticus R0052 and Bifidobacterium longum R0175 probiotics, when given before the ischaemic period, reduce circulating proinflammatory cytokines as well as apoptosis in the limbic system. The present study was designed to determine if the same nutritional interventions maintain their beneficial effects when started after the onset of the reperfusion period and attenuate depression-like behaviour observed after MI. MI was induced by the occlusion of the left anterior descending coronary artery for 40 min in rats. After the onset of reperfusion, animals were fed with a high- or low-PUFA n-3 diet, combined or not with one billion live bacteria of L. helveticus and B. longum. At 3 d post-MI, caspase-3 enzymatic activities and terminal 2'-deoxyuridine, 5'-triphosphate (dUTP) nick-end labelling (TUNEL)-positive cells were decreased in the CA1, dentate gyrus (DG) and amygdala with the high-PUFA n-3 diet, as compared to the three other diets. Probiotics attenuated caspase-3 activity and TUNEL-positive cells in the DG and the medial amygdala. At 2 weeks post-MI, depression-like behaviour was observed in the low-PUFA n-3 diet without probiotics-group, and this behaviour was attenuated with the high-PUFA n-3 diet or/and probiotics. These results indicate that a high-PUFA n-3 diet or the administration of probiotics, starting after the onset of reperfusion, are beneficial to attenuate apoptosis in the limbic system and post-MI depression in the rat.
Collapse
|
35
|
|
36
|
Combination of Lactobacillus helveticus R0052 and Bifidobacterium longum R0175 reduces post-myocardial infarction depression symptoms and restores intestinal permeability in a rat model. Br J Nutr 2011; 107:1793-9. [PMID: 21933458 DOI: 10.1017/s0007114511005137] [Citation(s) in RCA: 147] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Myocardial infarction (MI) in rats is accompanied by apoptosis in the limbic system and a behavioural syndrome similar to models of depression. We have already shown that probiotics can reduce post-MI apoptosis and designed the present study to determine if probiotics can also prevent post-MI depressive behaviour. We also tested the hypothesis that probiotics achieve their central effects through changes in the intestinal barrier. MI was induced in anaesthetised rats via 40-min transient occlusion of the left anterior coronary artery. Sham rats underwent the same surgical procedure without actual coronary occlusion. For 7 d before MI and between the seventh post-MI day and euthanasia, half the MI and sham rats were given one billion live bacterial cells of Lactobacillus helveticus R0052 and Bifidobacterium longum R0175 per d dissolved in water, while the remaining animals received only the vehicle (maltodextrin). Depressive behaviour was evaluated 2 weeks post-MI in social interaction, forced swimming and passive avoidance step-down tests. Intestinal permeability was evaluated by oral administration with fluorescein isothiocyanate-dextran, 4 h before euthanasia. MI rats displayed less social interaction and impaired performance in the forced swimming and passive avoidance step-down tests compared to the sham controls (P < 0·05). Probiotics reversed the behavioural effects of MI (P < 0·05), but did not alter the behaviour of sham rats. Intestinal permeability was increased in MI rats and reversed by probiotics. In conclusion, L. helveticus R0052 and B. longum R0175 combination interferes with the development of post-MI depressive behaviour and restores intestinal barrier integrity in MI rats.
Collapse
|
37
|
Fortin MH, Champagne CP, St-Gelais D, Britten M, Fustier P, Lacroix M. Effect of time of inoculation, starter addition, oxygen level and salting on the viability of probiotic cultures during Cheddar cheese production. Int Dairy J 2011. [DOI: 10.1016/j.idairyj.2010.09.007] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
38
|
Sato T, Shinohara Y, Kaneko D, Nishimura I, Matsuyama A. Fermented soymilk increases voluntary wheel running activity and sexual behavior in male rats. Appl Physiol Nutr Metab 2010; 35:749-54. [DOI: 10.1139/h10-069] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Wheel running by rodents is thought to reflect voluntary exercise in humans. The present study examined the effect of fermented soymilk (FSM) on voluntary wheel running in rats. FSM was prepared from soymilk (SM) using the bacteria Leuconostoc pseudomesenteroides . The rats were fed a normal diet for 3 weeks followed by a 3-week administration of diet containing FSM or SM (5% w/w), and then the diets were switched back to a normal diet for 3 weeks. The voluntary wheel running activity was increased by FSM administration, although no changes were observed by SM administration. This effect was observed 2 weeks after FSM administration and lasted 1 week after deprivation of FSM. Then we evaluated the effect of FSM on sexual behavior in male rats. FSM administration for 10 days significantly increased the number of mounts. The protein expression of tyrosine hydroxylase (TH) increased in the hippocampus by FSM administration and it is suggested that FSM may change norepinephrine or dopamine signaling in the brain. Our study provides the first evidence that FSM increases voluntary wheel running activity and sexual behavior and suggests that TH may be involved in these effects.
Collapse
Affiliation(s)
- Takuya Sato
- Kikkoman USA R&D Laboratory Inc., 505 South Rosa Road, Suite 107, Madison, WI 53719, USA
- Noda Institute for Scientific Research, 399 Noda, Noda, Chiba 278-0037, Japan
- Research and Development Division, Kikkoman Corporation, 399 Noda, Noda, Chiba 278-0037, Japan
| | - Yasutomo Shinohara
- Kikkoman USA R&D Laboratory Inc., 505 South Rosa Road, Suite 107, Madison, WI 53719, USA
- Noda Institute for Scientific Research, 399 Noda, Noda, Chiba 278-0037, Japan
- Research and Development Division, Kikkoman Corporation, 399 Noda, Noda, Chiba 278-0037, Japan
| | - Daisuke Kaneko
- Kikkoman USA R&D Laboratory Inc., 505 South Rosa Road, Suite 107, Madison, WI 53719, USA
- Noda Institute for Scientific Research, 399 Noda, Noda, Chiba 278-0037, Japan
- Research and Development Division, Kikkoman Corporation, 399 Noda, Noda, Chiba 278-0037, Japan
| | - Ikuko Nishimura
- Kikkoman USA R&D Laboratory Inc., 505 South Rosa Road, Suite 107, Madison, WI 53719, USA
- Noda Institute for Scientific Research, 399 Noda, Noda, Chiba 278-0037, Japan
- Research and Development Division, Kikkoman Corporation, 399 Noda, Noda, Chiba 278-0037, Japan
| | - Asahi Matsuyama
- Kikkoman USA R&D Laboratory Inc., 505 South Rosa Road, Suite 107, Madison, WI 53719, USA
- Noda Institute for Scientific Research, 399 Noda, Noda, Chiba 278-0037, Japan
- Research and Development Division, Kikkoman Corporation, 399 Noda, Noda, Chiba 278-0037, Japan
| |
Collapse
|
39
|
Di Cagno R, Mazzacane F, Rizzello CG, Vincentini O, Silano M, Giuliani G, De Angelis M, Gobbetti M. Synthesis of isoflavone aglycones and equol in soy milks fermented by food-related lactic acid bacteria and their effect on human intestinal Caco-2 cells. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2010; 58:10338-10346. [PMID: 20822177 DOI: 10.1021/jf101513r] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
One hundred and three strains of lactic acid bacteria, isolated from various food ecosystems, were assayed for β-glucosidase activity toward p-nitrophenyl-β-D-glucopyranoside substrate. Lactobacillus plantarum DPPMA24W and DPPMASL33, Lactobacillus fermentum DPPMA114, and Lactobacillus rhamnosus DPPMAAZ1 showed the highest activities and were selected as the mixed starter to ferment various soy milk preparations, which mainly differed for chemical composition, protein dispersibility index, and size dimension. The soy milk made with organically farmed soybeans (OFS) was selected as the best preparation. All selected strains grew well in OFS soy milk, reaching almost the same values of cell density (ca. 8.5 log cfu/mL). After 96 h of fermentation with the selected mixed starter, OFS soy milk contained 57.0 μM daidzein, 140.3 μM genistein, 20.4 μM glycitein, and 37.3 μM equol. Fermented and nonfermented OFS soy milks were used for the in vitro assays on intestinal human Caco-2/TC7 cells. Fermented OFS soy milk markedly inhibited the inflammatory status of Caco-2/TC7 cells as induced by treatment with interferon-γ (IFN-γ) (1000 U/mL) and lipopolysaccharide (LPS) (100 ng/mL), maintained the integrity of the tight junctions, even if subjected to negative stimulation by IFN-γ, and markedly inhibited the synthesis of IL-8, after treatment with interleukin-1β (2 ng/mL). As shown by using chemical standards, these effects were due to the concomitant activities of isoflavone aglycones and, especially, equol, which were synthesized in the fermented OFS soy milk preparation.
Collapse
Affiliation(s)
- Raffaella Di Cagno
- Department of Biologia e Chimica Agro-Forestale ed Ambientale, University of Bari Aldo Moro, 70126 Bari, Italy
| | | | | | | | | | | | | | | |
Collapse
|
40
|
Granato D, Branco GF, Cruz AG, Faria JDAF, Shah NP. Probiotic Dairy Products as Functional Foods. Compr Rev Food Sci Food Saf 2010; 9:455-470. [DOI: 10.1111/j.1541-4337.2010.00120.x] [Citation(s) in RCA: 192] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
41
|
Granato D, Branco GF, Nazzaro F, Cruz AG, Faria JA. Functional Foods and Nondairy Probiotic Food Development: Trends, Concepts, and Products. Compr Rev Food Sci Food Saf 2010; 9:292-302. [DOI: 10.1111/j.1541-4337.2010.00110.x] [Citation(s) in RCA: 419] [Impact Index Per Article: 27.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|