1
|
Wilson L, Whiteley P, Stent A, Stockman F, Elloy F, Hobbs EC, Astudillo VG, Jubb K, Loukopoulos P. Causes of mortality in koalas autopsied at the University of Melbourne. Aust Vet J 2025. [PMID: 40345146 DOI: 10.1111/avj.13451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 03/18/2025] [Accepted: 03/19/2025] [Indexed: 05/11/2025]
Abstract
OBJECTIVE To determine the causes of mortality in koalas autopsied at the University of Melbourne based on the retrospective analysis of autopsy reports. METHODS The autopsy reports of 239 koalas examined at the University of Melbourne from 1970 to 2023 were reviewed to determine which of the comorbidities present was the primary cause to which death could be attributed. RESULTS Infectious disease (62 cases) including presumptive chlamydiosis (38 cases), emaciation (38 cases) and trauma (35) were the leading cause of mortality. Death was attributed to other causes in 89 cases, whereas the cause was not definitively determined in 39. Twenty-six different causes of death were identified overall. Presumptive chlamydiosis was the greatest single disease to cause mortality, primarily due to the increased likelihood of leading to euthanasia. Traumatic causes included motor vehicle accidents (16 cases), animal attacks (all from dogs; 5 cases) and malicious acts (1 case). Emaciation resulting in death was attributed to senescence (9), sarcoptic mange (7), starvation (6) and dental disease (6). Sarcoptic mange caused mortality, with or without emaciation, in 16 cases. There was one case each of congenital abdominal hernia, cardiomyopathy, burns and ivermectin toxicosis, and two of oxalate nephropathy. Neoplasms were the cause of mortality in 12 koalas and included five female reproductive tract neoplasms and, importantly, only two lymphomas, in contrast with previous studies in which lymphoma is the most prevalent neoplasm. CONCLUSION This is the most comprehensive data analysis of mortality amongst Victorian koalas, and one of the few autopsy studies on koalas. Infectious disease including presumptive chlamydiosis, emaciation and trauma were the leading causes of mortality amongst koalas submitted for autopsy at this institution.
Collapse
Affiliation(s)
- L Wilson
- Melbourne Veterinary School, Faculty of Science, University of Melbourne, Melbourne, Australia
| | - P Whiteley
- Melbourne Veterinary School, Faculty of Science, University of Melbourne, Melbourne, Australia
| | - A Stent
- Melbourne Veterinary School, Faculty of Science, University of Melbourne, Melbourne, Australia
| | - F Stockman
- Melbourne Veterinary School, Faculty of Science, University of Melbourne, Melbourne, Australia
| | - F Elloy
- Melbourne Veterinary School, Faculty of Science, University of Melbourne, Melbourne, Australia
| | - E C Hobbs
- Melbourne Veterinary School, Faculty of Science, University of Melbourne, Melbourne, Australia
| | - V G Astudillo
- Faculty of Science, School of Veterinary Science, The University of Queensland, Brisbane, Australia
| | - Kvf Jubb
- Melbourne Veterinary School, Faculty of Science, University of Melbourne, Melbourne, Australia
| | - P Loukopoulos
- Melbourne Veterinary School, Faculty of Science, University of Melbourne, Melbourne, Australia
| |
Collapse
|
2
|
Zheng L, Legione AR. A high frequency of detection of koala retrovirus fragments in Victorian koalas suggests historic integration of KoRV. J Gen Virol 2025; 106:002097. [PMID: 40279155 PMCID: PMC12032406 DOI: 10.1099/jgv.0.002097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Accepted: 03/23/2025] [Indexed: 04/26/2025] Open
Abstract
Recombinant koala retrovirus (recKoRV) is a recently discovered variant of koala retrovirus (KoRV), which likely emerged due to recombination with another retrovirus (such as Phascolarctos endogenous retrovirus). KoRV spread and endogenization in Australia were thought to be ongoing in a north to south direction given the low prevalence of the virus in southern koala populations, based on molecular detection of the pol gene. However, recKoRV has highlighted that fragments of KoRV with the pol region missing are present within southern koalas. In this study, a new 5'-region-based KoRV PCR assay was developed, capable of detecting both intact KoRV and all known variants of recKoRV. Using this assay, 319 archived DNA samples from 287 Victorian koalas were retested to investigate KoRV endogenization. We found 98.3% (282/287) of these samples were positive for the KoRV-5' fragment, the majority of which were KoRV-pol negative (222/287) on prior testing. Our findings demonstrate extensive KoRV integration into the Victorian koala populations, suggestive of a historic presence of KoRV in Victorian koalas. This finding makes biological sense relative to the translocation history of Victorian koalas, compared to the prior paradigm of low virus prevalence, and provides new epidemiological and practical management implications.
Collapse
Affiliation(s)
- Louize Zheng
- Asia-Pacific Centre for Animal Health, Melbourne Veterinary School, Faculty of Science, The University of Melbourne, Melbourne, Australia
- School of Biosciences, Faculty of Science, The University of Melbourne, Melbourne, Australia
| | - Alistair R. Legione
- Asia-Pacific Centre for Animal Health, Melbourne Veterinary School, Faculty of Science, The University of Melbourne, Melbourne, Australia
| |
Collapse
|
3
|
Petrohilos C, Peel E, Silver LW, Belov K, Hogg CJ. AMPed up immunity: 418 whole genomes reveal intraspecific diversity of koala antimicrobial peptides. Immunogenetics 2025; 77:11. [PMID: 39779522 PMCID: PMC11711154 DOI: 10.1007/s00251-024-01368-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2024] [Accepted: 12/15/2024] [Indexed: 01/11/2025]
Abstract
Characterising functional diversity is a vital element to understanding a species' immune function, yet many immunogenetic studies in non-model organisms tend to focus on only one or two gene families such as the major histocompatibility complex (MHC) or toll-like receptors (TLR). Another interesting component of the eukaryotic innate immune system is the antimicrobial peptides (AMPs). The two major groups of mammalian AMPs are cathelicidins and defensins, with the former having undergone species-specific expansions in marsupials. Here, we utilised data from 418 koala whole genomes to undertake the first comprehensive analysis of AMP diversity across a mammalian wildlife species' range. Overall, allelic diversity was lower than other immune gene families such as MHC, suggesting that AMPs are more conserved, although balancing selection was observed in PhciDEFB12. Some non-synonymous SNPs in the active peptide are predicted to change AMP function through stop gains, change in structure, and increase in peptide charge. Copy number variants (CNVs) were observed in two defensins and one cathelicidin. Interestingly, the most common CNV was the duplication of PhciCATH5, a cathelicidin with activity against chlamydia, which was more common in the southern part of the species range than the north. AMP copy number is correlated with expression levels, so we hypothesise that there is a selective pressure from chlamydia for duplications in PhciCATH5. Future studies should use phenotypic metadata to assess the functional impacts of this gene duplication.
Collapse
Affiliation(s)
- Cleopatra Petrohilos
- School of Life and Environmental Sciences, The University of Sydney, Sydney, NSW, Australia
- Australian Research Council Centre of Excellence for Innovations in Peptide & Protein Science, The University of Sydney, Sydney, NSW, Australia
| | - Emma Peel
- School of Life and Environmental Sciences, The University of Sydney, Sydney, NSW, Australia
- Australian Research Council Centre of Excellence for Innovations in Peptide & Protein Science, The University of Sydney, Sydney, NSW, Australia
| | - Luke W Silver
- School of Life and Environmental Sciences, The University of Sydney, Sydney, NSW, Australia
- Australian Research Council Centre of Excellence for Innovations in Peptide & Protein Science, The University of Sydney, Sydney, NSW, Australia
| | - Katherine Belov
- School of Life and Environmental Sciences, The University of Sydney, Sydney, NSW, Australia
- Australian Research Council Centre of Excellence for Innovations in Peptide & Protein Science, The University of Sydney, Sydney, NSW, Australia
| | - Carolyn J Hogg
- School of Life and Environmental Sciences, The University of Sydney, Sydney, NSW, Australia.
- Australian Research Council Centre of Excellence for Innovations in Peptide & Protein Science, The University of Sydney, Sydney, NSW, Australia.
| |
Collapse
|
4
|
Cui J, Batley KC, Silver LW, McLennan EA, Hogg CJ, Belov K. Spatial variation in toll-like receptor diversity in koala populations across their geographic distribution. Immunogenetics 2024; 77:5. [PMID: 39614880 PMCID: PMC11608166 DOI: 10.1007/s00251-024-01365-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Accepted: 11/25/2024] [Indexed: 01/29/2025]
Abstract
The koala (Phascolarctos cinereus) is an iconic Australian species that is listed as endangered in the northern parts of its range due to loss of habitat, disease, and road deaths. Diseases contribute significantly to the decline of koala populations, primarily Chlamydia and koala retrovirus. The distribution of these diseases across the species' range, however, is not even. Toll-like receptors (TLRs) play a crucial role in innate immunity by recognising and responding to various pathogens. Variations in TLR genes can influence an individual's susceptibility or resistance to infectious diseases. The aim of this study was to identify koala TLR diversity across the east coast of Australia using 413 re-sequenced genomes at 30 × coverage. We identified 45 single-nucleotide polymorphisms (SNP) leading to 51 alleles within ten TLR genes. Our results show that the diversity of TLR genes in the koala forms four distinct genetic groups, which are consistent with the diversity of the koala major histocompatibility complex (MHC), another key immune gene family. The bioinformatics approach presented here has broad applicability to other threatened species with existing genomic resources.
Collapse
Affiliation(s)
- Jian Cui
- School of Life and Environmental Sciences, The University of Sydney, Sydney, NSW, 2006, Australia
| | - Kimberley C Batley
- School of Life and Environmental Sciences, The University of Sydney, Sydney, NSW, 2006, Australia
| | - Luke W Silver
- School of Life and Environmental Sciences, The University of Sydney, Sydney, NSW, 2006, Australia
- ARC Centre of Excellence for Innovations in Peptide and Protein Science, The University of Sydney, Sydney, NSW, Australia
| | - Elspeth A McLennan
- School of Life and Environmental Sciences, The University of Sydney, Sydney, NSW, 2006, Australia
| | - Carolyn J Hogg
- School of Life and Environmental Sciences, The University of Sydney, Sydney, NSW, 2006, Australia.
- ARC Centre of Excellence for Innovations in Peptide and Protein Science, The University of Sydney, Sydney, NSW, Australia.
| | - Katherine Belov
- School of Life and Environmental Sciences, The University of Sydney, Sydney, NSW, 2006, Australia
- ARC Centre of Excellence for Innovations in Peptide and Protein Science, The University of Sydney, Sydney, NSW, Australia
| |
Collapse
|
5
|
Abajorga M, Yurkovetskiy L, Luban J. piRNA Defense Against Endogenous Retroviruses. Viruses 2024; 16:1756. [PMID: 39599869 PMCID: PMC11599104 DOI: 10.3390/v16111756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 10/30/2024] [Accepted: 11/08/2024] [Indexed: 11/29/2024] Open
Abstract
Infection by retroviruses and the mobilization of transposable elements cause DNA damage that can be catastrophic for a cell. If the cell survives, the mutations generated by retrotransposition may confer a selective advantage, although, more commonly, the effect of new integrants is neutral or detrimental. If retrotransposition occurs in gametes or in the early embryo, it introduces genetic modifications that can be transmitted to the progeny and may become fixed in the germline of that species. PIWI-interacting RNAs (piRNAs) are single-stranded, 21-35 nucleotide RNAs generated by the PIWI clade of Argonaute proteins that maintain the integrity of the animal germline by silencing transposons. The sequence specific manner by which piRNAs and germline-encoded PIWI proteins repress transposons is reminiscent of CRISPR, which retains memory for invading pathogen sequences. piRNAs are processed preferentially from the unspliced transcripts of piRNA clusters. Via complementary base pairing, mature antisense piRNAs guide the PIWI clade of Argonaute proteins to transposon RNAs for degradation. Moreover, these piRNA-loaded PIWI proteins are imported into the nucleus to modulate the co-transcriptional repression of transposons by initiating histone and DNA methylation. How retroviruses that invade germ cells are first recognized as foreign by the piRNA machinery, as well as how endogenous piRNA clusters targeting the sequences of invasive genetic elements are acquired, is not known. Currently, koalas (Phascolarctos cinereus) are going through an epidemic due to the horizontal and vertical transmission of the KoRV-A gammaretrovirus. This provides an unprecedented opportunity to study how an exogenous retrovirus becomes fixed in the genome of its host, and how piRNAs targeting this retrovirus are generated in germ cells of the infected animal. Initial experiments have shown that the unspliced transcript from KoRV-A proviruses in koala testes, but not the spliced KoRV-A transcript, is directly processed into sense-strand piRNAs. The cleavage of unspliced sense-strand transcripts is thought to serve as an initial innate defense until antisense piRNAs are generated and an adaptive KoRV-A-specific genome immune response is established. Further research is expected to determine how the piRNA machinery recognizes a new foreign genetic invader, how it distinguishes between spliced and unspliced transcripts, and how a mature genome immune response is established, with both sense and antisense piRNAs and the methylation of histones and DNA at the provirus promoter.
Collapse
Affiliation(s)
- Milky Abajorga
- Program in Molecular Medicine, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
- Morningside Graduate School of Biomedical Sciences, University of Massachusetts Chan Medical School, Worcester, MA 01655, USA
| | - Leonid Yurkovetskiy
- Program in Molecular Medicine, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - Jeremy Luban
- Program in Molecular Medicine, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
- Department of Biochemistry and Molecular Biotechnology, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
- RNA Therapeutics Institute, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
- Li Weibo Institute for Rare Diseases Research, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA 02139, USA
- Massachusetts Consortium on Pathogen Readiness, Boston, MA 02115, USA
| |
Collapse
|
6
|
Tarlinton R, Greenwood AD. Koala retrovirus and neoplasia: correlation and underlying mechanisms. Curr Opin Virol 2024; 67:101427. [PMID: 39047314 DOI: 10.1016/j.coviro.2024.101427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 07/03/2024] [Accepted: 07/05/2024] [Indexed: 07/27/2024]
Abstract
The koala retrovirus, KoRV, is one of the few models for understanding the health consequences of retroviral colonization of the germline. Such colonization events transition exogenous infectious retroviruses to Mendelian traits or endogenous retroviruses (ERVs). KoRV is currently in a transitional state from exogenous retrovirus to ERV, which in koalas (Phascolarctos cinereus) has been associated with strongly elevated levels of neoplasia. In this review, we describe what is currently known about the associations and underlying mechanisms of KoRV-induced neoplasia.
Collapse
Affiliation(s)
- Rachael Tarlinton
- School of Veterinary Medicine and Science, University of Nottingham, Nottingham, UK
| | - Alex D Greenwood
- Department of Wildlife Diseases, Leibniz Institute for Zoo and Wildlife Research, Berlin, Germany; School of Veterinary Medicine, Freie Universität Berlin, Berlin, Germany.
| |
Collapse
|
7
|
Lillie M, Pettersson M, Jern P. Contrasting segregation patterns among endogenous retroviruses across the koala population. Commun Biol 2024; 7:350. [PMID: 38514810 PMCID: PMC10957985 DOI: 10.1038/s42003-024-06049-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 03/14/2024] [Indexed: 03/23/2024] Open
Abstract
Koalas (Phascolarctos cinereus) have experienced a history of retroviral epidemics leaving their trace as heritable endogenous retroviruses (ERVs) in their genomes. A recently identified ERV lineage, named phaCin-β, shows a pattern of recent, possibly current, activity with high insertional polymorphism in the population. Here, we investigate geographic patterns of three focal ERV lineages of increasing estimated ages, from the koala retrovirus (KoRV) to phaCin-β and to phaCin-β-like, using the whole-genome sequencing of 430 koalas from the Koala Genome Survey. Thousands of ERV loci were found across the population, with contrasting patterns of polymorphism. Northern individuals had thousands of KoRV integrations and hundreds of phaCin-β ERVs. In contrast, southern individuals had higher phaCin-β frequencies, possibly reflecting more recent activity and a founder effect. Overall, our findings suggest high ERV burden in koalas, reflecting historic retrovirus-host interactions. Importantly, the ERV catalogue supplies improved markers for conservation genetics in this endangered species.
Collapse
Affiliation(s)
- Mette Lillie
- Science for Life Laboratory, Department of Medical Biochemistry and Microbiology, Uppsala University, SE-751 23, Uppsala, Sweden.
- Department of Ecology and Genetics, Animal Ecology, Uppsala University, SE-752 36, Uppsala, Sweden.
| | - Mats Pettersson
- Science for Life Laboratory, Department of Medical Biochemistry and Microbiology, Uppsala University, SE-751 23, Uppsala, Sweden
| | - Patric Jern
- Science for Life Laboratory, Department of Medical Biochemistry and Microbiology, Uppsala University, SE-751 23, Uppsala, Sweden.
| |
Collapse
|
8
|
Chabukswar S, Grandi N, Lin LT, Tramontano E. Envelope Recombination: A Major Driver in Shaping Retroviral Diversification and Evolution within the Host Genome. Viruses 2023; 15:1856. [PMID: 37766262 PMCID: PMC10536682 DOI: 10.3390/v15091856] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 08/21/2023] [Accepted: 08/29/2023] [Indexed: 09/29/2023] Open
Abstract
Endogenous retroviruses (ERVs) are integrated into host DNA as the result of ancient germ line infections, primarily by extinct exogenous retroviruses. Thus, vertebrates' genomes contain thousands of ERV copies, providing a "fossil" record for ancestral retroviral diversity and its evolution within the host genome. Like other retroviruses, the ERV proviral sequence consists of gag, pro, pol, and env genes flanked by long terminal repeats (LTRs). Particularly, the env gene encodes for the envelope proteins that initiate the infection process by binding to the host cellular receptor(s), causing membrane fusion. For this reason, a major element in understanding ERVs' evolutionary trajectory is the characterization of env changes over time. Most of the studies dedicated to ERVs' env have been aimed at finding an "actual" physiological or pathological function, while few of them have focused on how these genes were once acquired and modified within the host. Once acquired into the organism, genome ERVs undergo common cellular events, including recombination. Indeed, genome recombination plays a role in ERV evolutionary dynamics. Retroviral recombination events that might have been involved in env divergence include the acquisition of env genes from distantly related retroviruses, env swapping facilitating multiple cross-species transmission over millions of years, ectopic recombination between the homologous sequences present in different positions in the chromosomes, and template switching during transcriptional events. The occurrence of these recombinational events might have aided in shaping retroviral diversification and evolution until the present day. Hence, this review describes and discusses in detail the reported recombination events involving ERV env to provide the basis for further studies in the field.
Collapse
Affiliation(s)
- Saili Chabukswar
- Laboratory of Molecular Virology, Department of Life and Environmental Sciences, University of Cagliari, 09042 Cagliari, Italy; (S.C.); (N.G.)
- International Ph.D. Program in Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan
| | - Nicole Grandi
- Laboratory of Molecular Virology, Department of Life and Environmental Sciences, University of Cagliari, 09042 Cagliari, Italy; (S.C.); (N.G.)
| | - Liang-Tzung Lin
- Department of Microbiology and Immunology, School of Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan;
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei 110, Taiwan
| | - Enzo Tramontano
- Laboratory of Molecular Virology, Department of Life and Environmental Sciences, University of Cagliari, 09042 Cagliari, Italy; (S.C.); (N.G.)
| |
Collapse
|
9
|
Eisenhofer R, Brice KL, Blyton MDJ, Bevins SE, Leigh K, Singh BK, Helgen KM, Hough I, Daniels CB, Speight N, Moore BD. Individuality and stability of the koala ( Phascolarctos cinereus) faecal microbiota through time. PeerJ 2023; 11:e14598. [PMID: 36710873 PMCID: PMC9879153 DOI: 10.7717/peerj.14598] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 11/29/2022] [Indexed: 01/24/2023] Open
Abstract
Gut microbiota studies often rely on a single sample taken per individual, representing a snapshot in time. However, we know that gut microbiota composition in many animals exhibits intra-individual variation over the course of days to months. Such temporal variations can be a confounding factor in studies seeking to compare the gut microbiota of different wild populations, or to assess the impact of medical/veterinary interventions. To date, little is known about the variability of the koala (Phascolarctos cinereus) gut microbiota through time. Here, we characterise the gut microbiota from faecal samples collected at eight timepoints over a month for a captive population of South Australian koalas (n individuals = 7), and monthly over 7 months for a wild population of New South Wales koalas (n individuals = 5). Using 16S rRNA gene sequencing, we found that microbial diversity was stable over the course of days to months. Each koala had a distinct faecal microbiota composition which in the captive koalas was stable across days. The wild koalas showed more variation across months, although each individual still maintained a distinct microbial composition. Per koala, an average of 57 (±16) amplicon sequence variants (ASVs) were detected across all time points; these ASVs accounted for an average of 97% (±1.9%) of the faecal microbial community per koala. The koala faecal microbiota exhibits stability over the course of days to months. Such knowledge will be useful for future studies comparing koala populations and developing microbiota interventions for this regionally endangered marsupial.
Collapse
Affiliation(s)
- Raphael Eisenhofer
- School of Biological Sciences, The University of Adelaide, Adelaide, South Australia, Australia,Australian Research Council Centre of Excellence for Australian Biodiversity and Heritage, The University of Adelaide, Adelaide, South Australia, Australia
| | - Kylie L. Brice
- Hawkesbury Institute for the Environment, Western Sydney University, Richmond, New South Wales, Australia
| | - Michaela DJ Blyton
- School of Chemistry and Molecular Biosciences, Faculty of Science, University of Queensland, Brisbane, Queensland, Australia
| | - Scott E. Bevins
- Hawkesbury Institute for the Environment, Western Sydney University, Richmond, New South Wales, Australia
| | - Kellie Leigh
- Science for Wildlife Ltd, Sydney, New South Wales, Australia
| | - Brajesh K. Singh
- Hawkesbury Institute for the Environment, Western Sydney University, Richmond, New South Wales, Australia,Global Centre for Land Based Innovation, Western Sydney University, Penrith, New South Wales, Australia
| | - Kristofer M. Helgen
- Australian Museum Research Institute, Sydney, New South Wales, Australia,Australian Research Council Centre of Excellence for Australian Biodiversity and Heritage, University of New South Wales, Sydney, New South Wales, Australia,Koala Life Foundation, Cleland Wildlife Park, Department for Environment and Water, 365c Mt Lofty Summit Road, Adelaide, South Australia, Australia
| | - Ian Hough
- Koala Life Foundation, Cleland Wildlife Park, Department for Environment and Water, 365c Mt Lofty Summit Road, Adelaide, South Australia, Australia
| | - Christopher B. Daniels
- Koala Life Foundation, Cleland Wildlife Park, Department for Environment and Water, 365c Mt Lofty Summit Road, Adelaide, South Australia, Australia
| | - Natasha Speight
- School of Animal and Veterinary Sciences, The University of Adelaide, Adelaide, South Australia, Australia
| | - Ben D. Moore
- Hawkesbury Institute for the Environment, Western Sydney University, Richmond, New South Wales, Australia
| |
Collapse
|
10
|
Cooley M, Whiteley P, Thornton G, Stevenson M. Health surveillance representative of koala (Phascolarctos cinereus) distribution in Victoria, Australia. Aust Vet J 2022; 100:605-612. [PMID: 36261878 PMCID: PMC10092863 DOI: 10.1111/avj.13208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 09/04/2022] [Accepted: 09/09/2022] [Indexed: 11/28/2022]
Abstract
Health surveillance of wildlife populations is essential for conservation and reduction of the impacts of disease. Population declines and areas of overabundance of koalas (Phascolarctos cinereus) can disrupt the overall survival of the species as well as its habitat. This retrospective study was conducted to describe population distributions, identify areas which need increased surveillance and improve koala health surveillance methodology by Wildlife Health Victoria: Surveillance (WHV:S) at the Veterinary School of The University of Melbourne. Twelve years of Victorian koala observation data from the Atlas of Living Australia combined with surveillance data from WHV:S were used to create choropleth maps, using Quantum Geographic Information Systems of populations and surveillance events, visually representing hot spots. This data was further used to calculate health surveillance efforts between 2008 to the beginning of 2020. Analysis ranked postcodes throughout Victoria from low surveillance efforts to high, using standardised surveillance ratio's 95% confidence interval upper limits which were mapped using a colour gradient. This identified postcodes which need increased surveillance effort, corresponding to areas with high koala observations and low surveillance submissions. This analysis can guide surveillance for postcodes with koalas that were under-represented and inform improved methodology of future surveillance by WHV:S. The specific advice for improvements to WHV:S includes utilisation of citizen science and syndromic surveillance, website improvement, increasing community awareness and more. The limitations of this study were discussed.
Collapse
Affiliation(s)
- M Cooley
- School of Veterinary MedicineRoyal Veterinary CollegeHatfieldHertfordshireAL9 7TAUK
| | - P Whiteley
- Melbourne Veterinary School, Faculty of Veterinary and Agricultural SciencesThe University of MelbourneWerribeeVictoria3030Australia
| | - G Thornton
- Melbourne Veterinary School, Faculty of Veterinary and Agricultural SciencesThe University of MelbourneWerribeeVictoria3030Australia
| | - M Stevenson
- Melbourne Veterinary SchoolThe University of MelbourneMelbourneVictoria3010Australia
| |
Collapse
|
11
|
Diversity and transmission of koala retrovirus: a case study in three captive koala populations. Sci Rep 2022; 12:15787. [PMID: 36138048 PMCID: PMC9499970 DOI: 10.1038/s41598-022-18939-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Accepted: 08/22/2022] [Indexed: 11/21/2022] Open
Abstract
Koala retrovirus is a recently endogenized retrovirus associated with the onset of neoplasia and infectious disease in koalas. There are currently twelve described KoRV subtypes (KoRV-A to I, K–M), most of which were identified through recently implemented deep sequencing methods which reveal an animals’ overall KoRV profile. This approach has primarily been carried out on wild koala populations around Australia, with few investigations into the whole-population KoRV profile of captive koala colonies to date. This study conducted deep sequencing on 64 captive koalas of known pedigree, housed in three institutions from New South Wales and South-East Queensland, to provide a detailed analysis of KoRV genetic diversity and transmission. The final dataset included 93 unique KoRV sequences and the first detection of KoRV-E within Australian koala populations. Our analysis suggests that exogenous transmission of KoRV-A, B, D, I and K primarily occurs between dam and joey. Detection of KoRV-D in a neonate sample raises the possibility of this transmission occurring in utero. Overall, the prevalence and abundance of KoRV subtypes was found to vary considerably between captive populations, likely due to their different histories of animal acquisition. Together these findings highlight the importance of KoRV profiling for captive koalas, in particular females, who play a primary role in KoRV exogenous transmission.
Collapse
|
12
|
Geographic patterns of koala retrovirus genetic diversity, endogenization, and subtype distributions. Proc Natl Acad Sci U S A 2022; 119:e2122680119. [PMID: 35943984 PMCID: PMC9388103 DOI: 10.1073/pnas.2122680119] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Koala retrovirus (KoRV) subtype A (KoRV-A) is currently in transition from exogenous virus to endogenous viral element, providing an ideal system to elucidate retroviral-host coevolution. We characterized KoRV geography using fecal DNA from 192 samples across 20 populations throughout the koala's range. We reveal an abrupt change in KoRV genetics and incidence at the Victoria/New South Wales state border. In northern koalas, pol gene copies were ubiquitously present at above five per cell, consistent with endogenous KoRV. In southern koalas, pol copies were detected in only 25.8% of koalas and always at copy numbers below one, while the env gene was detected in all animals and in a majority at copy numbers above one per cell. These results suggest that southern koalas carry partial endogenous KoRV-like sequences. Deep sequencing of the env hypervariable region revealed three putatively endogenous KoRV-A sequences in northern koalas and a single, distinct sequence present in all southern koalas. Among northern populations, env sequence diversity decreased with distance from the equator, suggesting infectious KoRV-A invaded the koala genome in northern Australia and then spread south. The exogenous KoRV subtypes (B to K), two novel subtypes, and intermediate subtypes were detected in all northern koala populations but were strikingly absent from all southern animals tested. Apart from KoRV subtype D, these exogenous subtypes were generally locally prevalent but geographically restricted, producing KoRV genetic differentiation among northern populations. This suggests that sporadic evolution and local transmission of the exogenous subtypes have occurred within northern Australia, but this has not extended into animals within southern Australia.
Collapse
|
13
|
Hashem MA, Kayesh MEH, Maetani F, Goto A, Nagata N, Kasori A, Imanishi T, Tsukiyama-Kohara K. Subtype distribution and expression of the koala retrovirus in the Japanese zoo koala population. INFECTION, GENETICS AND EVOLUTION : JOURNAL OF MOLECULAR EPIDEMIOLOGY AND EVOLUTIONARY GENETICS IN INFECTIOUS DISEASES 2022; 102:105297. [PMID: 35533919 DOI: 10.1016/j.meegid.2022.105297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 04/26/2022] [Accepted: 05/01/2022] [Indexed: 10/18/2022]
Abstract
We investigated the proviral copies and RNA expression in koala retrovirus (KoRV)-infected koalas. To ascertain any variation in viral load by institution, age, sex, or body condition score, we quantified KoRV proviral DNA and RNA loads in captive koalas (n = 37) reared in Japanese zoos. All koalas were positive for KoRV genes (pol, LTRs, and env of KoRV-A) in genomic DNA (gDNA), and 91.89% were positive for the pol gene in RNA. In contrast, the distribution rates of KoRV-B, KoRV-C, KoRV-D, and KoRV-F env genes in gDNA were 94.59%, 27.03%, 67.57%, and 54.05%, respectively. A wide inter-individual variation and/or a significant inter-institutional difference in proviral DNA (p < 0.0001) and RNA (p < 0.001) amounts (copies/103 koala β-actin copies) were observed in Awaji Farm England Hill Zoo koalas, which were obtained from southern koala populations, suggesting exogenous incorporation of KoRV in these koalas. Significant (p < 0.05) age differences were noted in KoRV RNA load (p < 0.05) and median total RNA load (p < 0.001), with loads higher in younger koalas (joeys and juveniles). Thus, the current study provides the distribution of KoRV subtypes in Japanese zoo koala populations and identifies several additional risk factors (sex, age, and body condition) associated with KoRV expression.
Collapse
Affiliation(s)
- Md Abul Hashem
- Transboundary Animal Diseases Centre, Joint Faculty of Veterinary Medicine, Kagoshima University, Kagoshima, Japan; Department of Animal Hygiene, Joint Faculty of Veterinary Medicine, Kagoshima University, Kagoshima, Japan; Department of Health Chattogram City Corporation, Chattogram 4000, Bangladesh
| | - Mohammad Enamul Hoque Kayesh
- Transboundary Animal Diseases Centre, Joint Faculty of Veterinary Medicine, Kagoshima University, Kagoshima, Japan; Department of Microbiology and Public Health, Patuakhali Science and Technology University, Babuganj, Barishal 8210, Bangladesh
| | | | | | | | | | | | - Kyoko Tsukiyama-Kohara
- Transboundary Animal Diseases Centre, Joint Faculty of Veterinary Medicine, Kagoshima University, Kagoshima, Japan; Department of Animal Hygiene, Joint Faculty of Veterinary Medicine, Kagoshima University, Kagoshima, Japan.
| |
Collapse
|
14
|
Abstract
Retroviruses have left their legacy in host genomes over millions of years as endogenous retroviruses (ERVs), and their structure, diversity, and prevalence provide insights into the historical dynamics of retrovirus-host interactions. In bioinformatic analyses of koala (Phascolarctos cinereus) whole-genome sequences, we identify a recently expanded ERV lineage (phaCin-β) that is related to the New World squirrel monkey retrovirus. This ERV expansion shares many parallels with the ongoing koala retrovirus (KoRV) invasion of the koala genome, including highly similar and mostly intact sequences, and polymorphic ERV loci in the sampled koala population. The recent phaCin-β ERV colonization of the koala genome appears to predate the current KoRV invasion, but polymorphic ERVs and divergence comparisons between these two lineages predict a currently uncharacterized, possibly still extant, phaCin-β retrovirus. The genomics approach to ERV-guided discovery of novel retroviruses in host species provides a strong incentive to search for phaCin-β retroviruses in the Australasian fauna.
Collapse
|
15
|
Tarlinton RE, Legione AR, Sarker N, Fabijan J, Meers J, McMichael L, Simmons G, Owen H, Seddon JM, Dick G, Ryder JS, Hemmatzedah F, Trott DJ, Speight N, Holmes N, Loose M, Emes RD. Differential and defective transcription of koala retrovirus indicates the complexity of host and virus evolution. J Gen Virol 2022; 103. [PMID: 35762858 DOI: 10.1099/jgv.0.001749] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Koala retrovirus (KoRV) is unique amongst endogenous (inherited) retroviruses in that its incorporation to the host genome is still active, providing an opportunity to study what drives this fundamental process in vertebrate genome evolution. Animals in the southern part of the natural range of koalas were previously thought to be either virus-free or to have only exogenous variants of KoRV with low rates of KoRV-induced disease. In contrast, animals in the northern part of their range universally have both endogenous and exogenous KoRV with very high rates of KoRV-induced disease such as lymphoma. In this study we use a combination of sequencing technologies, Illumina RNA sequencing of 'southern' (south Australian) and 'northern' (SE QLD) koalas and CRISPR enrichment and nanopore sequencing of DNA of 'southern' (South Australian and Victorian animals) to retrieve full-length loci and intregration sites of KoRV variants. We demonstrate that koalas that tested negative to the KoRV pol gene qPCR, used to detect replication-competent KoRV, are not in fact KoRV-free but harbour defective, presumably endogenous, 'RecKoRV' variants that are not fixed between animals. This indicates that these populations have historically been exposed to KoRV and raises questions as to whether these variants have arisen by chance or whether they provide a protective effect from the infectious forms of KoRV. This latter explanation would offer the intriguing prospect of being able to monitor and selectively breed for disease resistance to protect the wild koala population from KoRV-induced disease.
Collapse
Affiliation(s)
- R E Tarlinton
- School of Veterinary Medicine and Science, University of Nottingham, Nottingham, UK
| | - A R Legione
- Faculty of Veterinary and Agricultural Sciences, University of Melbourne, Melbourne, Australia
| | - N Sarker
- School of Veterinary Science, The University of Queensland, Brisbane, Australia
| | - J Fabijan
- Longleat Safari Park, Durrel Wildlife Conservation Trust, UK
| | - J Meers
- School of Veterinary Science, The University of Queensland, Brisbane, Australia
| | - L McMichael
- School of Veterinary Science, The University of Queensland, Brisbane, Australia
| | - G Simmons
- School of Veterinary Science, The University of Queensland, Brisbane, Australia
| | - H Owen
- School of Veterinary Science, The University of Queensland, Brisbane, Australia
| | - J M Seddon
- School of Veterinary Science, The University of Queensland, Brisbane, Australia
| | - G Dick
- Longleat Safari Park, Durrel Wildlife Conservation Trust, UK
| | - J S Ryder
- Garston Veterinary Group, Somerset, UK
| | - F Hemmatzedah
- School of Animal and Veterinary Sciences, University of Adelaide, Adelaide, Australia
| | - D J Trott
- School of Animal and Veterinary Sciences, University of Adelaide, Adelaide, Australia
| | - N Speight
- School of Animal and Veterinary Sciences, University of Adelaide, Adelaide, Australia
| | - N Holmes
- School of Life Sciences, University of Nottingham, Nottingham, UK
| | - M Loose
- School of Life Sciences, University of Nottingham, Nottingham, UK
| | - R D Emes
- School of Veterinary Medicine and Science, University of Nottingham, Nottingham, UK
| |
Collapse
|
16
|
Blyton MDJ, Pyne M, Young P, Chappell K. Koala retrovirus load and non-A subtypes are associated with secondary disease among wild northern koalas. PLoS Pathog 2022; 18:e1010513. [PMID: 35588407 PMCID: PMC9119473 DOI: 10.1371/journal.ppat.1010513] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 04/08/2022] [Indexed: 01/17/2023] Open
Abstract
Koala Retrovirus (KoRV) has been associated with neoplasia in the vulnerable koala (Phascolarctos cinereus). However, there are conflicting findings regarding its association with secondary disease. We undertook a large-scale assessment of how the different KoRV subtypes and viral load are associated with Chlamydia pecorum infection and a range of disease pathologies in 151 wild koalas admitted for care to Currumbin Wildlife Hospital, Australia. Viral load (KoRV pol copies per ml of plasma) was the best predictor of more disease pathologies than any other KoRV variable. The predicted probability of a koala having disease symptoms increased from 25% to over 85% across the observed range of KoRV load, while the predicted probability of C. pecorum infection increased from 40% to over 80%. We found a negative correlation between the proportion of env deep sequencing reads that were endogenous KoRV-A and total KoRV load. This is consistent with suppression of endogenous KoRV-A, while the exogenous KoRV subtypes obtain high infection levels. Additionally, we reveal evidence that the exogenous subtypes are directly associated with secondary disease, with the proportion of reads that were the endogenous KoRV-A sequence a negative predictor of overall disease probability after the effect of KoRV load was accounted for. Further, koalas that were positive for KoRV-D or KoRV-D/F were more likely to have urogenital C. pecorum infection or low body condition score, respectively, irrespective of KoRV load. By contrast, our findings do not support previous findings that KoRV-B in particular is associated with Chlamydial disease. Based on these findings we suggest that koala research and conservation programs should target understanding what drives individual differences in KoRV load and limiting exogenous subtype diversity within populations, rather than seeking to eliminate any particular subtype.
Collapse
Affiliation(s)
- Michaela D. J. Blyton
- The University of Queensland, School of Chemistry and Molecular Biosciences, St Lucia, Queensland, Australia
| | - Michael Pyne
- Currumbin Wildlife Hospital and Foundation, Currumbin, Queensland, Australia
| | - Paul Young
- The University of Queensland, School of Chemistry and Molecular Biosciences, St Lucia, Queensland, Australia
| | - Keith Chappell
- The University of Queensland, School of Chemistry and Molecular Biosciences, St Lucia, Queensland, Australia
- The University of Queensland, Australian Institute of Bioengineering and Nanotechnology, St Lucia, Queensland, Australia
| |
Collapse
|
17
|
Bowater RO, Horwood PF, Picard J, Huisman I, Hayes L, Mackie T, Taylor JD. A novel alphaherpesvirus and concurrent respiratory cryptococcosis in a captive koala (
Phascolarctos cinereus
). Aust Vet J 2022; 100:329-335. [PMID: 35490398 PMCID: PMC9544133 DOI: 10.1111/avj.13164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 03/29/2022] [Accepted: 04/10/2022] [Indexed: 11/30/2022]
Abstract
A novel alphaherpesvirus was detected in a captive adult, lactating, female koala (Phascolarctos cinereus) admitted to James Cook University Veterinary Emergency Teaching & Clinical Hospital in March 2019, showing signs of anorexia and severe respiratory disease. Postmortem examination revealed gross pathology indicative of pneumonia. Histopathology demonstrated a chronic interstitial pneumonia, multifocal necrotising adrenalitis and hepatitis. Intranuclear inclusion bodies were detected by light microscopy in the respiratory epithelium of the bronchi, bronchioles, alveoli, and hepatocytes, biliary epithelium and adrenal gland associated with foci of necrosis. Cryptococcus gattii was isolated from fresh lung on necropsy, positively identified by PCR, and detected histologically by light microscopy, only in the lung tissue. A universal viral family‐level PCR indicated that the virus was a member of the Herpesviruses. Sequence analysis in comparison to other known and published herpesviruses, indicated the virus was a novel alphaherpesvirus, with 97% nucleotide identity to macropodid alphaherpesvirus 1. We provisionally name the novel virus phascolarctid alphaherpesvirus 3 (PhaHV‐3). Further research is needed to determine the distribution of this novel alphaherpesvirus in koala populations and establish associations with disease in this host species.
Collapse
Affiliation(s)
- RO Bowater
- College of Public Health, Medical and Veterinary Sciences, Division of Tropical Health & Medicine James Cook University Townsville Queensland Australia
| | - PF Horwood
- College of Public Health, Medical and Veterinary Sciences, Division of Tropical Health & Medicine James Cook University Townsville Queensland Australia
| | - J Picard
- College of Public Health, Medical and Veterinary Sciences, Division of Tropical Health & Medicine James Cook University Townsville Queensland Australia
| | - I Huisman
- Melrose Veterinary Hospital Wodonga Victoria Australia
| | - L Hayes
- College of Public Health, Medical and Veterinary Sciences, Division of Tropical Health & Medicine James Cook University Townsville Queensland Australia
| | - T Mackie
- College of Public Health, Medical and Veterinary Sciences, Division of Tropical Health & Medicine James Cook University Townsville Queensland Australia
| | - JD Taylor
- College of Public Health, Medical and Veterinary Sciences, Division of Tropical Health & Medicine James Cook University Townsville Queensland Australia
| |
Collapse
|
18
|
A Possible Link between the Environment and Cryptococcus gattii Nasal Colonisation in Koalas ( Phascolarctos cinereus) in the Liverpool Plains, New South Wales. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19084603. [PMID: 35457470 PMCID: PMC9028200 DOI: 10.3390/ijerph19084603] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 03/30/2022] [Accepted: 04/06/2022] [Indexed: 01/25/2023]
Abstract
Cryptococcosis caused by yeasts of the Cryptococcus gattii species complex is an increasingly important mycological disease in humans and other mammals. In Australia, cases of C. gattii-related cryptococcosis are more prevalent in the koala (Phascolarctos cinereus) compared to humans and other animals, likely due to the close association that both C. gattii and koalas have with Eucalyptus species. This provides a cogent opportunity to investigate the epidemiology of spontaneous C. gattii infections in a free-living mammalian host, thereby offering insights into similar infections in humans. This study aimed to establish a link between nasal colonisation by C. gattii in free-ranging koalas and the tree hollows of Eucalyptus species, the key environmental source of the pathogen. We (i) detected and genotyped C. gattii from nine out of 169 free-ranging koalas and representative tree hollows within their home range in the Liverpool Plains, New South Wales, and (ii) examined potential environmental predictors of nasal colonisation in koalas and the presence of C. gattii in tree hollows. Phylogenetic analyses based on multi-locus sequence typing (MLST) revealed that the koalas were most likely colonised by the most abundant C. gattii genotypes found in the Eucalyptus species, or closely related genotypes. Importantly, the likelihood of the presence of C. gattii in tree hollows was correlated with increasing hollow size.
Collapse
|
19
|
Abstract
Bats are infamous reservoirs of deadly human viruses. While retroviruses, such as the human immunodeficiency virus (HIV), are among the most significant of virus families that have jumped from animals into humans, whether bat retroviruses have the potential to infect and cause disease in humans remains unknown. Recent reports of retroviruses circulating in bat populations builds on two decades of research describing the fossil records of retroviral sequences in bat genomes and of viral metagenomes extracted from bat samples. The impact of the global COVID-19 pandemic demands that we pay closer attention to viruses hosted by bats and their potential as a zoonotic threat. Here we review current knowledge of bat retroviruses and explore the question of whether they represent a threat to humans.
Collapse
Affiliation(s)
- Joshua A. Hayward
- Health Security Program, Life Sciences Discipline, Burnet Institute, Melbourne, VIC, Australia
- Department of Microbiology, Monash University, Clayton, VIC, Australia
| | - Gilda Tachedjian
- Health Security Program, Life Sciences Discipline, Burnet Institute, Melbourne, VIC, Australia
- Department of Microbiology, Monash University, Clayton, VIC, Australia
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, VIC, Australia
| |
Collapse
|
20
|
Koala retrovirus genetic diversity and transmission dynamics within captive koala populations. Proc Natl Acad Sci U S A 2021; 118:2024021118. [PMID: 34493581 DOI: 10.1073/pnas.2024021118] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Accepted: 05/18/2021] [Indexed: 12/27/2022] Open
Abstract
Koala populations are currently in rapid decline across Australia, with infectious diseases being a contributing cause. The koala retrovirus (KoRV) is a gammaretrovirus present in both captive and wild koala colonies that presents an additional challenge for koala conservation in addition to habitat loss, climate change, and other factors. Currently, nine different subtypes (A to I) have been identified; however, KoRV genetic diversity analyses have been limited. KoRV is thought to be exogenously transmitted between individuals, with KoRV-A also being endogenous and transmitted through the germline. The mechanisms of exogenous KoRV transmission are yet to be extensively investigated. Here, deep sequencing was employed on 109 captive koalas of known pedigree, housed in two institutions from Southeast Queensland, to provide a detailed analysis of KoRV transmission dynamics and genetic diversity. The final dataset included 421 unique KoRV sequences, along with the finding of an additional subtype (KoRV-K). Our analysis suggests that exogenous transmission of KoRV occurs primarily between dam and joey, with evidence provided for multiple subtypes, including nonendogenized KoRV-A. No evidence of sexual transmission was observed, with mating partners found to share a similar number of sequences as unrelated koala pairs. Importantly, both distinct captive colonies showed similar trends. These findings indicate that breeding strategies or antiretroviral treatment of females could be employed as effective management approaches in combating KoRV transmission.
Collapse
|
21
|
Stephenson T, Speight N, Low WY, Woolford L, Tearle R, Hemmatzadeh F. Molecular Diagnosis of Koala Retrovirus (KoRV) in South Australian Koalas ( Phascolarctos cinereus). Animals (Basel) 2021; 11:ani11051477. [PMID: 34065572 PMCID: PMC8161083 DOI: 10.3390/ani11051477] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 05/06/2021] [Accepted: 05/16/2021] [Indexed: 12/20/2022] Open
Abstract
Simple Summary Koala retrovirus (KoRV) is a significant threat to koalas across Australia. Koalas in northern koala populations (from New South Wales and Queensland) have KoRV inserted into their DNA and inherited to their offspring. Southern koala populations (from Victoria and South Australia) have KoRV infection spread through close contact of koalas. As such, there are koalas within South Australia that are not infected with KoRV. Accurate diagnosis of the infection of each koala is therefore fundamental for disease studies. Previous studies have shown differences in prevalence of different KoRV genes in the Mount Lofty Ranges Koala population; therefore, clarification is necessary. This study uses a large cohort (n = 216) and defines the diagnostic regions of the KoRV genome within the South Australian population. Using multiple molecular techniques, it demonstrates strong evidence for two clear groupings of koalas: KoRV positive and KoRV negative. Within this study, a population of 41% were shown to be KoRV positive and 57% were KoRV negative, with 2% inconclusive. This differentiation is of great importance when examining the clinical importance of KoRV infection within southern koalas. Abstract Koala retrovirus, a recent discovery in Australian koalas, is endogenised in 100% of northern koalas but has lower prevalence in southern populations, with lower proviral and viral loads, and an undetermined level of endogenisation. KoRV has been associated with lymphoid neoplasia, e.g., lymphoma. Recent studies have revealed high complexity in southern koala retroviral infections, with a need to clarify what constitutes positive and negative cases. This study aimed to define KoRV infection status in Mount Lofty Ranges koalas in South Australia using RNA-seq and proviral analysis (n = 216). The basis for positivity of KoRV was deemed the presence of central regions of the KoRV genome (gag 2, pol, env 1, and env 2) and based on this, 41% (89/216) koalas were positive, 57% (124/216) negative, and 2% inconclusive. These genes showed higher expression in lymph node tissue from KoRV positive koalas with lymphoma compared with other KoRV positive koalas, which showed lower, fragmented expression. Terminal regions (LTRs, partial gag, and partial env) were present in SA koalas regardless of KoRV status, with almost all (99.5%, 215/216) koalas positive for gag 1 by proviral PCR. Further investigation is needed to understand the differences in KoRV infection in southern koala populations.
Collapse
Affiliation(s)
- Tamsyn Stephenson
- School of Animal and Veterinary Sciences, University of Adelaide, Roseworthy 5371, Australia; (N.S.); (L.W.); (F.H.)
- Correspondence:
| | - Natasha Speight
- School of Animal and Veterinary Sciences, University of Adelaide, Roseworthy 5371, Australia; (N.S.); (L.W.); (F.H.)
| | - Wai Yee Low
- The Davies Livestock Research Centre, School of Animal and Veterinary Sciences, University of Adelaide, Roseworthy 5371, Australia; (W.Y.L.); (R.T.)
| | - Lucy Woolford
- School of Animal and Veterinary Sciences, University of Adelaide, Roseworthy 5371, Australia; (N.S.); (L.W.); (F.H.)
- Veterinary Diagnostics Laboratory, School of Animal and Veterinary Sciences, University of Adelaide, Roseworthy 5371, Australia
| | - Rick Tearle
- The Davies Livestock Research Centre, School of Animal and Veterinary Sciences, University of Adelaide, Roseworthy 5371, Australia; (W.Y.L.); (R.T.)
| | - Farhid Hemmatzadeh
- School of Animal and Veterinary Sciences, University of Adelaide, Roseworthy 5371, Australia; (N.S.); (L.W.); (F.H.)
| |
Collapse
|
22
|
Kayesh MEH, Hashem MA, Tsukiyama-Kohara K. Toll-Like Receptor and Cytokine Responses to Infection with Endogenous and Exogenous Koala Retrovirus, and Vaccination as a Control Strategy. Curr Issues Mol Biol 2021; 43:52-64. [PMID: 33946297 PMCID: PMC8928999 DOI: 10.3390/cimb43010005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 04/28/2021] [Accepted: 04/28/2021] [Indexed: 02/07/2023] Open
Abstract
Koala populations are currently declining and under threat from koala retrovirus (KoRV) infection both in the wild and in captivity. KoRV is assumed to cause immunosuppression and neoplastic diseases, favoring chlamydiosis in koalas. Currently, 10 KoRV subtypes have been identified, including an endogenous subtype (KoRV-A) and nine exogenous subtypes (KoRV-B to KoRV-J). The host’s immune response acts as a safeguard against pathogens. Therefore, a proper understanding of the immune response mechanisms against infection is of great importance for the host’s survival, as well as for the development of therapeutic and prophylactic interventions. A vaccine is an important protective as well as being a therapeutic tool against infectious disease, and several studies have shown promise for the development of an effective vaccine against KoRV. Moreover, CRISPR/Cas9-based genome editing has opened a new window for gene therapy, and it appears to be a potential therapeutic tool in many viral infections, which could also be investigated for the treatment of KoRV infection. Here, we discuss the recent advances made in the understanding of the immune response in KoRV infection, as well as the progress towards vaccine development against KoRV infection in koalas.
Collapse
Affiliation(s)
- Mohammad Enamul Hoque Kayesh
- Transboundary Animal Diseases Centre, Joint Faculty of Veterinary Medicine, Kagoshima University, Kagoshima 890-0065, Japan; (M.E.H.K.); (M.A.H.)
- Department of Microbiology and Public Health, Faculty of Animal Science and Veterinary Medicine, Patuakhali Science and Technology University, Barishal 8210, Bangladesh
| | - Md Abul Hashem
- Transboundary Animal Diseases Centre, Joint Faculty of Veterinary Medicine, Kagoshima University, Kagoshima 890-0065, Japan; (M.E.H.K.); (M.A.H.)
- Department of Health, Chattogram City Corporation, Chattogram 4000, Bangladesh
- Laboratory of Animal Hygiene, Joint Faculty of Veterinary Medicine, Kagoshima University, Kagoshima 890-0065, Japan
| | - Kyoko Tsukiyama-Kohara
- Transboundary Animal Diseases Centre, Joint Faculty of Veterinary Medicine, Kagoshima University, Kagoshima 890-0065, Japan; (M.E.H.K.); (M.A.H.)
- Laboratory of Animal Hygiene, Joint Faculty of Veterinary Medicine, Kagoshima University, Kagoshima 890-0065, Japan
- Correspondence: ; Tel.: +81-99-285-3589
| |
Collapse
|
23
|
Gonzalez‐Astudillo V, Palmieri C, Shaw S, Allavena R. Oculocutaneous albinism in a wild koala (
Phascolarctos cinereus
) with unusual renal impairment. VETERINARY RECORD CASE REPORTS 2021. [DOI: 10.1002/vrc2.42] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
| | - Chiara Palmieri
- School of Veterinary Science, The University of Queensland Gatton Queensland Australia
| | - Stephanie Shaw
- Queensland Department of Environment and Science Brisbane Queensland Australia
| | - Rachel Allavena
- School of Veterinary Science, The University of Queensland Gatton Queensland Australia
| |
Collapse
|
24
|
McEwen GK, Alquezar-Planas DE, Dayaram A, Gillett A, Tarlinton R, Mongan N, Chappell KJ, Henning J, Tan M, Timms P, Young PR, Roca AL, Greenwood AD. Retroviral integrations contribute to elevated host cancer rates during germline invasion. Nat Commun 2021; 12:1316. [PMID: 33637755 PMCID: PMC7910482 DOI: 10.1038/s41467-021-21612-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Accepted: 02/01/2021] [Indexed: 12/16/2022] Open
Abstract
Repeated retroviral infections of vertebrate germlines have made endogenous retroviruses ubiquitous features of mammalian genomes. However, millions of years of evolution obscure many of the immediate repercussions of retroviral endogenisation on host health. Here we examine retroviral endogenisation during its earliest stages in the koala (Phascolarctos cinereus), a species undergoing germline invasion by koala retrovirus (KoRV) and affected by high cancer prevalence. We characterise KoRV integration sites (IS) in tumour and healthy tissues from 10 koalas, detecting 1002 unique IS, with hotspots of integration occurring in the vicinity of known cancer genes. We find that tumours accumulate novel IS, with proximate genes over-represented for cancer associations. We detect dysregulation of genes containing IS and identify a highly-expressed transduced oncogene. Our data provide insights into the tremendous mutational load suffered by the host during active retroviral germline invasion, a process repeatedly experienced and overcome during the evolution of vertebrate lineages.
Collapse
Affiliation(s)
- Gayle K McEwen
- Department of Wildlife Diseases, Leibniz Institute for Zoo and Wildlife Research, Berlin, Germany
| | - David E Alquezar-Planas
- Department of Wildlife Diseases, Leibniz Institute for Zoo and Wildlife Research, Berlin, Germany
- Australian Museum Research Institute, Australian Museum, Sydney, NSW, Australia
| | - Anisha Dayaram
- Department of Wildlife Diseases, Leibniz Institute for Zoo and Wildlife Research, Berlin, Germany
- Institute for Neurophysiology, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Amber Gillett
- Australia Zoo Wildlife Hospital, Beerwah, QLD, Australia
| | - Rachael Tarlinton
- Faculty of Medicine and Health Sciences, University of Nottingham, Leicestershire, UK
| | - Nigel Mongan
- Faculty of Medicine and Health Sciences, University of Nottingham, Leicestershire, UK
| | - Keith J Chappell
- School of Chemistry & Molecular Biosciences, University of Queensland, Brisbane, QLD, Australia
| | - Joerg Henning
- School of Veterinary Science, University of Queensland, Brisbane, QLD, Australia
| | - Milton Tan
- Illinois Natural History Survey, University of Illinois at Urbana-Champaign, Champaign, IL, USA
| | - Peter Timms
- Genecology Research Center, University of the Sunshine Coast, Sippy Downs, QLD, Australia
| | - Paul R Young
- School of Chemistry & Molecular Biosciences, University of Queensland, Brisbane, QLD, Australia
| | - Alfred L Roca
- Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Alex D Greenwood
- Department of Wildlife Diseases, Leibniz Institute for Zoo and Wildlife Research, Berlin, Germany.
- Department of Veterinary Medicine, Freie Universität, Berlin, Germany.
| |
Collapse
|
25
|
Tarlinton RE, Fabijan J, Hemmatzadeh F, Meers J, Owen H, Sarker N, Seddon JM, Simmons G, Speight N, Trott DJ, Woolford L, Emes RD. Transcriptomic and genomic variants between koala populations reveals underlying genetic components to disorders in a bottlenecked population. CONSERV GENET 2021. [DOI: 10.1007/s10592-021-01340-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
AbstractHistorical hunting pressures on koalas in the southern part of their range in Australia have led to a marked genetic bottleneck when compared with their northern counterparts. There are a range of suspected genetic disorders such as testicular abnormalities, oxalate nephrosis and microcephaly reported at higher prevalence in these genetically restricted southern animals. This paper reports analysis of differential expression of genes from RNAseq of lymph nodes, SNPs present in genes and the fixation index (population differentiation due to genetic structure) of these SNPs from two populations, one in south east Queensland, representative of the northern genotype and one in the Mount Lofty Ranges South Australia, representative of the southern genotype. SNPs that differ between these two populations were significantly enriched in genes associated with brain diseases. Genes which were differentially expressed between the two populations included many associated with brain development or disease, and in addition a number associated with testicular development, including the androgen receptor. Finally, one of the 8 genes both differentially expressed and with a statistical difference in SNP frequency between populations was SLC26A6 (solute carrier family 26 member 6), an anion transporter that was upregulated in SA koalas and is associated with oxalate transport and calcium oxalate uroliths in humans. Together the differences in SNPs and gene expression described in this paper suggest an underlying genetic basis for several disorders commonly seen in southern Australian koalas, supporting the need for further research into the genetic basis of these conditions, and highlighting that genetic selection in managed populations may need to be considered in the future.
Collapse
|
26
|
Quigley BL, Wedrowicz F, Hogan F, Timms P. Phylogenetic and geographical analysis of a retrovirus during the early stages of endogenous adaptation and exogenous spread in a new host. Mol Ecol 2020; 30:2626-2640. [PMID: 33219558 PMCID: PMC8246579 DOI: 10.1111/mec.15735] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 10/14/2020] [Accepted: 11/06/2020] [Indexed: 12/26/2022]
Abstract
Most retroviral endogenization and host adaptation happened in the distant past, with the opportunity to study these processes as they occurred lost to time. An exception exists with the discovery that koala retrovirus (KoRV) has recently begun its endogenization into the koala (Phascolarctos cinereus) genome. What makes this opportunity remarkable is the fact that Northern Australian koalas appear to be undergoing endogenization with one KoRV subtype (KoRV‐A), while all subtypes (KoRV‐A‐I) coexist exogenously, and Southern Australian koalas appear to carry all KoRV subtypes as an exogenous virus. To understand the distribution and relationship of all KoRV variants in koalas, the proviral KoRV envelope gene receptor binding domain was assessed across the koala's natural range. Examination of KoRV subtype‐specific proviral copy numbers per cell found that KoRV‐A proviral integration levels were consistent with endogenous incorporation in Northern Australia (southeast Queensland and northeast New South Wales) while revealing lower levels of KoRV‐A proviral integration (suggestive of exogenous incorporation) in southern regions (southeast New South Wales and Victoria). Phylogeographical analysis indicated that several major KoRV‐A variants were distributed uniformly across the country, while non‐KoRV‐A variants appeared to have undergone lineage diversification in geographically distinct regions. Further analysis of the major KoRV‐A variants revealed a distinct shift in variant proportions in southeast New South Wales, suggesting this as the geographical region where KoRV‐A transitions from being predominantly endogenous to exogenous in Australian koalas. Collectively, these findings advance both our understanding of KoRV in koalas and of retroviral endogenization and diversification in general. see also the Perspective by Elliott S. Chiu and Roderick B. Gagne.
Collapse
Affiliation(s)
- Bonnie L Quigley
- Genecology Research Centre, University of the Sunshine Coast, Sippy Downs, QLD, Australia
| | - Faye Wedrowicz
- School of Science, Psychology and Sport, Federation University Australia, Churchill, Vic., Australia
| | - Fiona Hogan
- School of Science, Psychology and Sport, Federation University Australia, Churchill, Vic., Australia
| | - Peter Timms
- Genecology Research Centre, University of the Sunshine Coast, Sippy Downs, QLD, Australia
| |
Collapse
|
27
|
Kayesh MEH, Hashem MA, Maetani F, Eiei T, Mochizuki K, Ochiai S, Ito A, Ito N, Sakurai H, Asai T, Tsukiyama-Kohara K. CD4, CD8b, and Cytokines Expression Profiles in Peripheral Blood Mononuclear Cells Infected with Different Subtypes of KoRV from Koalas ( Phascolarctos cinereus) in a Japanese Zoo. Viruses 2020; 12:v12121415. [PMID: 33316950 PMCID: PMC7764738 DOI: 10.3390/v12121415] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 12/06/2020] [Accepted: 12/07/2020] [Indexed: 12/13/2022] Open
Abstract
Koala retrovirus (KoRV) poses a major threat to koala health and conservation, and currently has 10 identified subtypes: an endogenous subtype (KoRV-A) and nine exogenous subtypes (KoRV-B to KoRV-J). However, subtype-related variations in koala immune response to KoRV are uncharacterized. In this study, we investigated KoRV-related immunophenotypic changes in a captive koala population (Hirakawa zoo, Japan) with a range of subtype infection profiles (KoRV-A only vs. KoRV-A with KoRV-B and/or -C), based on qPCR measurements of CD4, CD8b, IL-6, IL-10 and IL-17A mRNA expression in unstimulated and concanavalin (Con)-A-stimulated peripheral blood mononuclear cells (PBMCs). Although CD4, CD8b, and IL-17A expression did not differ between KoRV subtype infection profiles, IL-6 expression was higher in koalas with exogenous infections (both KoRV-B and KoRV-C) than those with the endogenous subtype only. IL-10 expression did not significantly differ between subtype infection profiles but did show a marked increase—accompanying decreased CD4:CD8b ratio—in a koala with lymphoma and co-infected with KoRV-A and -B, thus suggesting immunosuppression. Taken together, the findings of this study provide insights into koala immune response to multiple KoRV subtypes, which can be exploited for the development of prophylactic and therapeutic interventions for this iconic marsupial species.
Collapse
Affiliation(s)
- Mohammad Enamul Hoque Kayesh
- Transboundary Animal Diseases Centre, Joint Faculty of Veterinary Medicine, Kagoshima University, Kagoshima 890-0065, Japan; (M.E.H.K.); (M.A.H.)
- Department of Microbiology and Public Health, Faculty of Animal Science and Veterinary Medicine, Patuakhali Science and Technology University, Barishal 8210, Bangladesh
| | - Md Abul Hashem
- Transboundary Animal Diseases Centre, Joint Faculty of Veterinary Medicine, Kagoshima University, Kagoshima 890-0065, Japan; (M.E.H.K.); (M.A.H.)
- Department of Health, Chattogram City Corporation, Chattogram 4000, Bangladesh
| | - Fumie Maetani
- Hirakawa Zoological Park, Kagoshima 891-0133, Japan; (F.M.); (T.E.); (K.M.); (S.O.); (A.I.); (N.I.); (H.S.); (T.A.)
| | - Taiki Eiei
- Hirakawa Zoological Park, Kagoshima 891-0133, Japan; (F.M.); (T.E.); (K.M.); (S.O.); (A.I.); (N.I.); (H.S.); (T.A.)
| | - Kyoya Mochizuki
- Hirakawa Zoological Park, Kagoshima 891-0133, Japan; (F.M.); (T.E.); (K.M.); (S.O.); (A.I.); (N.I.); (H.S.); (T.A.)
| | - Shinsaku Ochiai
- Hirakawa Zoological Park, Kagoshima 891-0133, Japan; (F.M.); (T.E.); (K.M.); (S.O.); (A.I.); (N.I.); (H.S.); (T.A.)
| | - Ayaka Ito
- Hirakawa Zoological Park, Kagoshima 891-0133, Japan; (F.M.); (T.E.); (K.M.); (S.O.); (A.I.); (N.I.); (H.S.); (T.A.)
| | - Nanao Ito
- Hirakawa Zoological Park, Kagoshima 891-0133, Japan; (F.M.); (T.E.); (K.M.); (S.O.); (A.I.); (N.I.); (H.S.); (T.A.)
| | - Hiroko Sakurai
- Hirakawa Zoological Park, Kagoshima 891-0133, Japan; (F.M.); (T.E.); (K.M.); (S.O.); (A.I.); (N.I.); (H.S.); (T.A.)
| | - Takayuki Asai
- Hirakawa Zoological Park, Kagoshima 891-0133, Japan; (F.M.); (T.E.); (K.M.); (S.O.); (A.I.); (N.I.); (H.S.); (T.A.)
| | - Kyoko Tsukiyama-Kohara
- Transboundary Animal Diseases Centre, Joint Faculty of Veterinary Medicine, Kagoshima University, Kagoshima 890-0065, Japan; (M.E.H.K.); (M.A.H.)
- Correspondence: ; Tel.: +81-99-285-3589
| |
Collapse
|
28
|
Chiu ES, VandeWoude S. Endogenous Retroviruses Drive Resistance and Promotion of Exogenous Retroviral Homologs. Annu Rev Anim Biosci 2020; 9:225-248. [PMID: 33290087 DOI: 10.1146/annurev-animal-050620-101416] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Endogenous retroviruses (ERVs) serve as markers of ancient viral infections and provide invaluable insight into host and viral evolution. ERVs have been exapted to assist in performing basic biological functions, including placentation, immune modulation, and oncogenesis. A subset of ERVs share high nucleotide similarity to circulating horizontally transmitted exogenous retrovirus (XRV) progenitors. In these cases, ERV-XRV interactions have been documented and include (a) recombination to result in ERV-XRV chimeras, (b) ERV induction of immune self-tolerance to XRV antigens, (c) ERV antigen interference with XRV receptor binding, and (d) interactions resulting in both enhancement and restriction of XRV infections. Whereas the mechanisms governing recombination and immune self-tolerance have been partially determined, enhancement and restriction of XRV infection are virus specific and only partially understood. This review summarizes interactions between six unique ERV-XRV pairs, highlighting important ERV biological functions and potential evolutionary histories in vertebrate hosts.
Collapse
Affiliation(s)
- Elliott S Chiu
- Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, Colorado 80523, USA; ,
| | - Sue VandeWoude
- Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, Colorado 80523, USA; ,
| |
Collapse
|
29
|
Kayesh MEH, Hashem MA, Tsukiyama-Kohara K. Koala retrovirus epidemiology, transmission mode, pathogenesis, and host immune response in koalas (Phascolarctos cinereus): a review. Arch Virol 2020; 165:2409-2417. [PMID: 32770481 PMCID: PMC7413838 DOI: 10.1007/s00705-020-04770-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Accepted: 07/07/2020] [Indexed: 12/21/2022]
Abstract
Koala retrovirus (KoRV) is a major threat to koala health and conservation. It also represents a series of challenges across the fields of virology, immunology, and epidemiology that are of great potential interest to any researcher in the field of retroviral diseases. KoRV is a gammaretrovirus that is present in both endogenous and exogenous forms in koala populations, with a still-active endogenization process. KoRV may induce immunosuppression and neoplastic conditions such as lymphoma and leukemia and play a role in chlamydiosis and other diseases in koalas. KoRV transmission modes, pathogenesis, and host immune response still remain unclear, and a clear understanding of these areas is critical for devising effective preventative and therapeutic strategies. Research on KoRV is clearly critical for koala conservation. In this review, we provide an overview of the current understanding and future challenges related to KoRV epidemiology, transmission mode, pathogenesis, and host immune response and discuss prospects for therapeutic and preventive vaccines.
Collapse
Affiliation(s)
- Mohammad Enamul Hoque Kayesh
- Transboundary Animal Diseases Centre, Joint Faculty of Veterinary Medicine, Kagoshima University, 1-21-24 Korimoto, Kagoshima, 890-0065, Japan
- Department of Microbiology and Public Health, Faculty of Animal Science and Veterinary Medicine, Patuakhali Science and Technology University, Barishal, 8210, Bangladesh
| | - Md Abul Hashem
- Transboundary Animal Diseases Centre, Joint Faculty of Veterinary Medicine, Kagoshima University, 1-21-24 Korimoto, Kagoshima, 890-0065, Japan
- Department of Health, Chattogram City Corporation, Chattogram, 4000, Bangladesh
| | - Kyoko Tsukiyama-Kohara
- Transboundary Animal Diseases Centre, Joint Faculty of Veterinary Medicine, Kagoshima University, 1-21-24 Korimoto, Kagoshima, 890-0065, Japan.
| |
Collapse
|
30
|
Zheng H, Pan Y, Tang S, Pye GW, Stadler CK, Vogelnest L, Herrin KV, Rideout BA, Switzer WM. Koala retrovirus diversity, transmissibility, and disease associations. Retrovirology 2020; 17:34. [PMID: 33008414 PMCID: PMC7530975 DOI: 10.1186/s12977-020-00541-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Accepted: 09/21/2020] [Indexed: 11/12/2022] Open
Abstract
Background Koalas are infected with the koala retrovirus (KoRV) that exists as exogenous or endogenous viruses. KoRV is genetically diverse with co-infection with up to ten envelope subtypes (A-J) possible; KoRV-A is the prototype endogenous form. KoRV-B, first found in a small number of koalas with an increased leukemia prevalence at one US zoo, has been associated with other cancers and increased chlamydial disease. To better understand the molecular epidemiology of KoRV variants and the effect of increased viral loads (VLs) on transmissibility and pathogenicity we developed subtype-specific quantitative PCR (qPCR) assays and tested blood and tissue samples from koalas at US zoos (n = 78), two Australian zoos (n = 27) and wild-caught (n = 21) in Australia. We analyzed PCR results with available clinical, demographic, and pedigree data. Results All koalas were KoRV-A-infected. A small number of koalas (10.3%) at one US zoo were also infected with non-A subtypes, while a higher non-A subtype prevalence (59.3%) was found in koalas at Australian zoos. Wild koalas from one location were only infected with KoRV-A. We observed a significant association of infection and plasma VLs of non-A subtypes in koalas that died of leukemia/lymphoma and other neoplasias and report cancer diagnoses in KoRV-A-positive animals. Infection and VLs of non-A subtypes was not associated with age or sex. Transmission of non-A subtypes occurred from dam-to-offspring and likely following adult-to-adult contact, but associations with contact type were not evaluated. Brief antiretroviral treatment of one leukemic koala infected with high plasma levels of KoRV-A, -B, and -F did not affect VL or disease progression. Conclusions Our results show a significant association of non-A KoRV infection and plasma VLs with leukemia and other cancers. Although we confirm dam-to-offspring transmission of these variants, we also show other routes are possible. Our validated qPCR assays will be useful to further understand KoRV epidemiology and its zoonotic transmission potential for humans exposed to koalas because KoRV can infect human cells.
Collapse
Affiliation(s)
- HaoQiang Zheng
- Laboratory Branch, Division of HIV/AIDS Prevention, Center for Disease Control and Prevention, 1600 Clifton Rd, Atlanta, GA, MS G4530329, USA
| | - Yi Pan
- Quantitative Sciences and Data Management Branch, Division of HIV/AIDS Prevention, Center for Disease Control and Prevention, Atlanta, GA, 30329, USA
| | - Shaohua Tang
- Laboratory Branch, Division of HIV/AIDS Prevention, Center for Disease Control and Prevention, 1600 Clifton Rd, Atlanta, GA, MS G4530329, USA
| | - Geoffrey W Pye
- San Diego Zoo Global, San Diego, CA, 92112, USA.,Disney's Animals, Science, and Environment, Bay Lake, FL, 32830, USA
| | | | - Larry Vogelnest
- Taronga Conservation Society Australia, Taronga Zoo, Mosman, NSW, 2088, Australia
| | | | | | - William M Switzer
- Laboratory Branch, Division of HIV/AIDS Prevention, Center for Disease Control and Prevention, 1600 Clifton Rd, Atlanta, GA, MS G4530329, USA.
| |
Collapse
|
31
|
Quigley BL, Timms P. Helping koalas battle disease - Recent advances in Chlamydia and koala retrovirus (KoRV) disease understanding and treatment in koalas. FEMS Microbiol Rev 2020; 44:583-605. [PMID: 32556174 PMCID: PMC8600735 DOI: 10.1093/femsre/fuaa024] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Accepted: 06/14/2020] [Indexed: 12/31/2022] Open
Abstract
The iconic Australian marsupial, the koala (Phascolarctos cinereus), has suffered dramatic population declines as a result of habitat loss and fragmentation, disease, vehicle collision mortality, dog attacks, bushfires and climate change. In 2012, koalas were officially declared vulnerable by the Australian government and listed as a threatened species. In response, research into diseases affecting koalas has expanded rapidly. The two major pathogens affecting koalas are Chlamydia pecorum, leading to chlamydial disease and koala retrovirus (KoRV). In the last eight years, these pathogens and their diseases have received focused study regarding their sources, genetics, prevalence, disease presentation and transmission. This has led to vast improvements in pathogen detection and treatment, including the ongoing development of vaccines for each as a management and control strategy. This review will summarize and highlight the important advances made in understanding and combating C. pecorum and KoRV in koalas, since they were declared a threatened species. With complementary advances having also been made from the koala genome sequence and in our understanding of the koala immune system, we are primed to make a significant positive impact on koala health into the future.
Collapse
Affiliation(s)
- Bonnie L Quigley
- Genecology Research Centre, University of the Sunshine Coast,
90 Sippy Downs Drive, Sippy Downs, Queensland, 4556, Australia
| | - Peter Timms
- Genecology Research Centre, University of the Sunshine Coast,
90 Sippy Downs Drive, Sippy Downs, Queensland, 4556, Australia
| |
Collapse
|
32
|
Olagoke O, Quigley BL, Hemmatzadeh F, Tzipori G, Timms P. Therapeutic vaccination of koalas harbouring endogenous koala retrovirus (KoRV) improves antibody responses and reduces circulating viral load. NPJ Vaccines 2020; 5:60. [PMID: 32699650 PMCID: PMC7367292 DOI: 10.1038/s41541-020-0210-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Accepted: 06/23/2020] [Indexed: 02/06/2023] Open
Abstract
The long-term survival of the koala is under serious threat from multiple factors, including infectious disease agents such as Chlamydia and koala retrovirus (KoRV). KoRV is present in both exogenous and endogenous forms, depending on the geographical location of the population. In the northern half of Australia, it is present as an endogenous infection in all koalas, making a case for an urgent need to develop a therapeutic vaccine that might prevent KoRV-associated pathologies in these koalas. To this end, we determined the therapeutic effects of vaccinating koalas harbouring endogenous KoRV with a recombinant KoRV Env protein combined with a Tri-adjuvant. We found that vaccination led to a significant increase in circulating anti-KoRV IgG levels, as well as increase in neutralising antibodies. Our study also showed that post-vaccination antibodies were able to recognize epitopes on the Env protein that were unrecognised pre-vaccination, as well as resulting in an increase in the recognition of the previously recognised epitopes. The vaccine also induced antibodies that were cross-reactive against multiple KoRV-subtypes. Finally, we found a complete clearance of KoRV-A in plasma from koalas that had detectable levels of KoRV-A pre-vaccination. Similarly, there was a significant reduction in the expression of KoRV-B viral RNA levels post-vaccination. Collectively, this study showed that koalas harbouring endogenous KoRV can benefit from prophylactic vaccination against KoRV using a recombinant KoRV-A Env protein and that the mechanism of this protection might be through the boosting of natural anti-KoRV antibodies and expanding the breadth of the recognised epitopes.
Collapse
Affiliation(s)
- Olusola Olagoke
- Genecology Research Center, Faculty of Science, Health, Education and Engineering, University of the Sunshine Coast, 90 Sippy Downs Drive, Sippy Downs, QLD 4556 Australia
| | - Bonnie L Quigley
- Genecology Research Center, Faculty of Science, Health, Education and Engineering, University of the Sunshine Coast, 90 Sippy Downs Drive, Sippy Downs, QLD 4556 Australia
| | - Farhid Hemmatzadeh
- School of Animal and Veterinary Sciences, The University of Adelaide, Roseworthy, SA 5371 Australia
| | - Galit Tzipori
- Lone Pine Koala Sanctuary, Fig Tree Pocket, Queensland, Australia
| | - Peter Timms
- Genecology Research Center, Faculty of Science, Health, Education and Engineering, University of the Sunshine Coast, 90 Sippy Downs Drive, Sippy Downs, QLD 4556 Australia
| |
Collapse
|
33
|
Transmission of Koala Retrovirus from Parent Koalas to a Joey in a Japanese Zoo. J Virol 2020; 94:JVI.00019-20. [PMID: 32188730 PMCID: PMC7269447 DOI: 10.1128/jvi.00019-20] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2020] [Accepted: 03/07/2020] [Indexed: 01/05/2023] Open
Abstract
KoRV is unique among retroviruses in that one strain (KoRV-A) is undergoing endogenization, whereas the other main subtype (KoRV-B) and another subtype (KoRV-C) are reportedly exogenous strains. Its transmission and pathogenesis are of interest in the study of retroviruses and are crucial for any conservation strategy geared toward koala health. This study provides new evidence on the modes of KoRV transmission from parent koalas to their joey. We found vertical transmission of KoRV-A, confirming its endogenization, but with closer conservation between the joey and its sire than its dam (previous reports on joeys are rare but have postulated dam-to-joey vertical transmission). This is also the first report of a KoRV-B-negative joey from KoRV-B-positive parents, contrasting with the few previous reports of 100% transmission of KoRV-B from dams to joeys. Thus, the results in this study give some novel insights for the transmission mode of KoRV. Koala retrovirus (KoRV) is of an interest to virologists due to its currently active endogenization into the koala (Phascolarctos cinereus) genome. Although KoRV has frequently been isolated in wild and captive koala populations, its pathogenesis and transmission remain to be fully characterized, and most previous research has concentrated on adult koalas rather than on joeys. Here, we characterized KoRV isolates obtained from a deceased male joey and its parents (animals reared in a Japanese zoo) to investigate KoRV transmission mode and pathogenesis. We sequenced the KoRV long terminal repeat (LTR) and envelope genes isolated from the joey and its parents and found KoRV-A and KoRV-C in genomic DNA from both the parents and the joey. Notably, both parents were also positive for KoRV-B, whereas the joey was KoRV-B negative, further confirming that KoRV-B is an exogenous strain. The KoRV LTR sequence of the joey was considerably closer to that of its sire than its dam. For further characterization, total KoRV, KoRV-A, KoRV-B, and KoRV-C proviral loads were quantified in peripheral blood mononuclear cells from the parents and in blood samples from the joey. Total KoRV, KoRV-A, and KoRV-C proviral loads were also quantified for different tissues (bone, liver, kidney, lung, spleen, heart, and muscle) from the joey, revealing differences suggestive of a distinct tissue tropism (highest total KoRV proviral load in the spleen and lowest in bone). The amount of KoRV-C in the parents was less than that in the joey. Our findings contribute to an improved understanding of KoRV pathogenesis and transmission mode and highlight useful areas for future research. IMPORTANCE KoRV is unique among retroviruses in that one strain (KoRV-A) is undergoing endogenization, whereas the other main subtype (KoRV-B) and another subtype (KoRV-C) are reportedly exogenous strains. Its transmission and pathogenesis are of interest in the study of retroviruses and are crucial for any conservation strategy geared toward koala health. This study provides new evidence on the modes of KoRV transmission from parent koalas to their joey. We found vertical transmission of KoRV-A, confirming its endogenization, but with closer conservation between the joey and its sire than its dam (previous reports on joeys are rare but have postulated dam-to-joey vertical transmission). This is also the first report of a KoRV-B-negative joey from KoRV-B-positive parents, contrasting with the few previous reports of 100% transmission of KoRV-B from dams to joeys. Thus, the results in this study give some novel insights for the transmission mode of KoRV.
Collapse
|
34
|
Abstract
Bats are reservoirs of emerging viruses that are highly pathogenic to other mammals, including humans. Despite the diversity and abundance of bat viruses, to date they have not been shown to harbor exogenous retroviruses. Here we report the discovery and characterization of a group of koala retrovirus-related (KoRV-related) gammaretroviruses in Australian and Asian bats. These include the Hervey pteropid gammaretrovirus (HPG), identified in the scat of the Australian black flying fox (Pteropus alecto), which is the first reproduction-competent retrovirus found in bats. HPG is a close relative of KoRV and the gibbon ape leukemia virus (GALV), with virion morphology and Mn2+-dependent virion-associated reverse transcriptase activity typical of a gammaretrovirus. In vitro, HPG is capable of infecting bat and human cells, but not mouse cells, and displays a similar pattern of cell tropism as KoRV-A and GALV. Population studies reveal the presence of HPG and KoRV-related sequences in several locations across northeast Australia, as well as serologic evidence for HPG in multiple pteropid bat species, while phylogenetic analysis places these bat viruses as the basal group within the KoRV-related retroviruses. Taken together, these results reveal bats to be important reservoirs of exogenous KoRV-related gammaretroviruses.
Collapse
|
35
|
Fabijan J, Sarker N, Speight N, Owen H, Meers J, Simmons G, Seddon J, Emes RD, Tarlinton R, Hemmatzadeh F, Woolford L, Trott DJ. Pathological Findings in Koala Retrovirus-positive Koalas (Phascolarctos cinereus) from Northern and Southern Australia. J Comp Pathol 2020; 176:50-66. [PMID: 32359636 DOI: 10.1016/j.jcpa.2020.02.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Revised: 01/29/2020] [Accepted: 02/06/2020] [Indexed: 01/05/2023]
Abstract
Koala retrovirus (KoRV) infection shows differences in prevalence and load between northern and southern Australian koala populations; however, the effect of this on diseases such as lymphoma and chlamydial disease is unclear. This study compared clinicopathological findings, haematology and splenic lymphoid area of KoRV-positive koalas from northern (Queensland [Qld], n = 67) and southern (South Australia [SA], n = 92) populations in order to provide further insight into KoRV pathogenesis. Blood was collected for routine haematology and for measurement of KoRV proviral load by quantitative polymerase chain reaction (qPCR). Plasma samples were assessed for KoRV viral load by reverse transcriptase qPCR and conjunctival and cloacal swabs were collected for measurement of the load of Chlamydia pecorum (qPCR). During necropsy examination, spleen was collected for lymphoid area analysis. Lymphoma was morphologically similar between the populations and occurred in koalas with the highest KoRV proviral and viral loads. Severe ocular chlamydial disease was observed in both populations, but urinary tract disease was more severe in Qld, despite similar C. pecorum loads. No associations between KoRV and chlamydial disease severity or load were observed, except in SA where viral load correlated positively with chlamydial disease severity. In both populations, proviral and viral loads correlated positively with lymphocyte and metarubricyte counts and correlated negatively with erythrocyte and neutrophil counts. Splenic lymphoid area was correlated positively with viral load. This study has shown further evidence for KoRV-induced oncogenesis and highlighted that lymphocytes and splenic lymphoid tissue may be key sites for KoRV replication. However, KoRV infection appears to be highly complex and continued investigation is required to fully understand its pathogenesis.
Collapse
Affiliation(s)
- J Fabijan
- School of Animal and Veterinary Sciences, The University of Adelaide, Roseworthy, South Australia, Australia.
| | - N Sarker
- School of Veterinary Sciences, The University of Queensland, Gatton, Queensland, Australia
| | - N Speight
- School of Animal and Veterinary Sciences, The University of Adelaide, Roseworthy, South Australia, Australia
| | - H Owen
- School of Veterinary Sciences, The University of Queensland, Gatton, Queensland, Australia
| | - J Meers
- School of Veterinary Sciences, The University of Queensland, Gatton, Queensland, Australia
| | - G Simmons
- School of Veterinary Sciences, The University of Queensland, Gatton, Queensland, Australia
| | - J Seddon
- School of Veterinary Sciences, The University of Queensland, Gatton, Queensland, Australia
| | - R D Emes
- School of Veterinary Medicine and Science, University of Nottingham, Sutton Bonington Campus, Leicestershire, UK
| | - R Tarlinton
- School of Veterinary Medicine and Science, University of Nottingham, Sutton Bonington Campus, Leicestershire, UK
| | - F Hemmatzadeh
- School of Animal and Veterinary Sciences, The University of Adelaide, Roseworthy, South Australia, Australia
| | - L Woolford
- School of Animal and Veterinary Sciences, The University of Adelaide, Roseworthy, South Australia, Australia
| | - D J Trott
- School of Animal and Veterinary Sciences, The University of Adelaide, Roseworthy, South Australia, Australia
| |
Collapse
|
36
|
Butcher RG, Pettett LM, Fabijan J, Ebrahimie E, Mohammadi-Dehcheshmeh M, Speight KN, Boardman W, Bird PS, Trott DJ. Periodontal disease in free-ranging koalas (Phascolarctos cinereus) from the Mount Lofty Ranges, South Australia, and its association with koala retrovirus infection. Aust Vet J 2020; 98:200-206. [PMID: 31971256 DOI: 10.1111/avj.12919] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Revised: 01/04/2020] [Accepted: 01/05/2020] [Indexed: 11/29/2022]
Abstract
BACKGROUND In northern Australian koala populations (Queensland and New South Wales), periodontal disease (gingivitis and periodontitis) is common while koala retrovirus subtype A is endogenous, with other subtypes transmitted exogenously. Koala retrovirus has been hypothesised to cause immune suppression and may predispose koalas to diseases caused by concurrent infections. In southern Australia populations (Victoria and South Australia) periodontal disease has not been investigated, and koala retrovirus is presumably exogenously transmitted. This study described oral health in South Australian koalas and investigated if an association between periodontal disease and koala retrovirus exists. METHODS Oral health was examined for wild-caught koalas from the Mount Lofty Ranges (n = 75). Koala retrovirus provirus was detected in whole blood using nested PCR and proviral load determined with qPCR. Periodontal disease severity was recorded and used to calculate the Final Oral Health Index (0-normal, 24-severe).Results Periodontal disease was observed in 84% (63/75) of koalas; 77% had gingivitis (58/75) and 65% (49/75) had periodontitis. The average Final Oral Health Index was 5.47 (s.d 3.13). Most cases of periodontal disease were associated with the incisors. Koala retrovirus-infected koalas were more likely to present with periodontitis (p = 0.042) and the Final Oral Health Index was negatively correlated with proviral load (ρ = -0.353, p = 0.017). CONCLUSION South Australian koalas had a high prevalence of gingivitis and periodontitis. Periodontal disease was more prevalent in the incisors. Exogenous koala retrovirus infection may also facilitate the development of periodontitis by modulation of the immune response to concurrent oral bacterial infections.
Collapse
Affiliation(s)
- R G Butcher
- School of Animal and Veterinary Sciences, The University of Adelaide, Roseworthy, South Australia, 5371, Australia
| | - L M Pettett
- School of Veterinary Science, Faculty of Science, The University of Queensland, Gatton, Queensland, 4343, Australia
| | - J Fabijan
- School of Animal and Veterinary Sciences, The University of Adelaide, Roseworthy, South Australia, 5371, Australia
| | - E Ebrahimie
- Australian Centre for Antimicrobial Resistance Ecology, School of Animal and Veterinary Sciences, The University of Adelaide, Adelaide, South Australia, Australia.,Genomics Research Platform, School of Life Sciences, La Trobe University, Melbourne, Victoria, 3086, Australia
| | - M Mohammadi-Dehcheshmeh
- Australian Centre for Antimicrobial Resistance Ecology, School of Animal and Veterinary Sciences, The University of Adelaide, Adelaide, South Australia, Australia
| | - K N Speight
- School of Animal and Veterinary Sciences, The University of Adelaide, Roseworthy, South Australia, 5371, Australia
| | - Wsj Boardman
- School of Animal and Veterinary Sciences, The University of Adelaide, Roseworthy, South Australia, 5371, Australia.,Australian Centre for Antimicrobial Resistance Ecology, School of Animal and Veterinary Sciences, The University of Adelaide, Adelaide, South Australia, Australia
| | - P S Bird
- School of Veterinary Science, Faculty of Science, The University of Queensland, Gatton, Queensland, 4343, Australia
| | - D J Trott
- School of Animal and Veterinary Sciences, The University of Adelaide, Roseworthy, South Australia, 5371, Australia.,Australian Centre for Antimicrobial Resistance Ecology, School of Animal and Veterinary Sciences, The University of Adelaide, Adelaide, South Australia, Australia
| |
Collapse
|
37
|
Koala retrovirus viral load and disease burden in distinct northern and southern koala populations. Sci Rep 2020; 10:263. [PMID: 31937823 PMCID: PMC6959342 DOI: 10.1038/s41598-019-56546-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Accepted: 12/13/2019] [Indexed: 11/09/2022] Open
Abstract
Koala retrovirus (KoRV) displays features of both an endogenous and exogenous virus and is linked to neoplasia and immunosuppression in koalas. This study explores the apparent differences in the nature and impact of KoRV infection between geographically and genetically separated "northern" and "southern" koala populations, by investigating the disease status, completeness of the KoRV genome and the proviral (DNA) and viral (RNA) loads of 71 northern and 97 southern koalas. All northern animals were positive for all KoRV genes (gag, pro-pol and env) in both DNA and RNA forms, whereas many southern animals were missing one or more KoRV genes. There was a significant relationship between the completeness of the KoRV genome and clinical status in this population. The proviral and viral loads of the northern population were significantly higher than those of the southern population (P < 0.0001), and many provirus-positive southern animals failed to express any detectable KoRV RNA. Across both populations there was a positive association between proviral load and neoplasia (P = 0.009). Potential reasons for the differences in the nature of KoRV infection between the two populations are discussed.
Collapse
|
38
|
Hashem MA, Kayesh MEH, Yamato O, Maetani F, Eiei T, Mochizuki K, Sakurai H, Ito A, Kannno H, Kasahara T, Amano Y, Tsukiyama-Kohara K. Coinfection with koala retrovirus subtypes A and B and its impact on captive koalas in Japanese zoos. Arch Virol 2019; 164:2735-2745. [PMID: 31486907 DOI: 10.1007/s00705-019-04392-w] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Accepted: 08/04/2019] [Indexed: 01/25/2023]
Abstract
Koala retrovirus (KoRV) is unique among endogenous retroviruses because its endogenization is still active. Two major KoRV subtypes, KoRV-A and B, have been described, and KoRV-B is associated with disease and poses a health threat to koalas. Here, we investigated the co-prevalence of KoRV-A and KoRV-B, detected by type-specific PCR and sequencing, and their impact on the health of koalas in three Japanese zoos. We also investigated KoRV proviral loads and found varying amounts of genomic DNA (gDNA) in peripheral blood mononuclear cells (PBMCs). We found that 100% of the koalas examined were infected with KoRV-A and 60% (12/20) were coinfected with KoRV-B. The KoRV-A sequence was highly conserved, whereas the KoRV-B sequence varied among individuals. Interestingly, we observed possible vertical transmission of KoRV-B in one offspring in which the KoRV-B sequence was similar to that of the father but not the mother. Moreover, we characterized the KoRV growth patterns in concanavalin-A-stimulated PBMCs isolated from KoRV-B-coinfected or KoRV-B-uninfected koalas. We quantified the KoRV provirus in gDNA and the KoRV RNA copy numbers in cells and culture supernatants by real-time PCR at days 4, 7, and 14 post-seeding. As the study population is housed in captivity, a longitudinal study of these koalas may provide an opportunity to study the transmission mode of KoRV-B. In addition, we characterized KoRV isolates by infecting tupaia cells. The results suggested that tupaia may be used as an infection model for KoRV. Thus, this study may enhance our understanding of KoRV-B coinfection and transmission in the captive koalas.
Collapse
Affiliation(s)
- Md Abul Hashem
- Laboratory of Animal Hygiene, Joint Faculty of Veterinary Medicine, Kagoshima University, Kagoshima, Japan.,Transboundary Animal Diseases Centre, Department of Animal Hygiene, Joint Faculty of Veterinary Medicine, Kagoshima University, 1-21-24 Korimoto, Kagoshima, 890-0065, Japan.,Department of Health, Chittagong City Corporation, Chittagong, 4000, Bangladesh
| | - Mohammad Enamul Hoque Kayesh
- Laboratory of Animal Hygiene, Joint Faculty of Veterinary Medicine, Kagoshima University, Kagoshima, Japan.,Transboundary Animal Diseases Centre, Department of Animal Hygiene, Joint Faculty of Veterinary Medicine, Kagoshima University, 1-21-24 Korimoto, Kagoshima, 890-0065, Japan.,Department of Pathological and Preventive Veterinary Science, The United Graduate School of Veterinary Science, Yamaguchi University, Yamaguchi, Japan.,Department of Microbiology and Public Health, Patuakhali Science and Technology University, Babugonj, Barishal, 8210, Bangladesh
| | - Osamu Yamato
- Department of Clinical Pathology, Joint Faculty of Veterinary Medicine, Kagoshima University, Kagoshima, Japan
| | | | - Taiki Eiei
- Hirakawa Zoological Park, Kagoshima, Japan
| | | | | | - Ayaka Ito
- Hirakawa Zoological Park, Kagoshima, Japan
| | | | | | | | - Kyoko Tsukiyama-Kohara
- Laboratory of Animal Hygiene, Joint Faculty of Veterinary Medicine, Kagoshima University, Kagoshima, Japan. .,Transboundary Animal Diseases Centre, Department of Animal Hygiene, Joint Faculty of Veterinary Medicine, Kagoshima University, 1-21-24 Korimoto, Kagoshima, 890-0065, Japan. .,Department of Pathological and Preventive Veterinary Science, The United Graduate School of Veterinary Science, Yamaguchi University, Yamaguchi, Japan.
| |
Collapse
|
39
|
Changes in Endogenous and Exogenous Koala Retrovirus Subtype Expression over Time Reflect Koala Health Outcomes. J Virol 2019; 93:JVI.00849-19. [PMID: 31243137 DOI: 10.1128/jvi.00849-19] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Accepted: 06/13/2019] [Indexed: 01/23/2023] Open
Abstract
Koala retrovirus (KoRV) is unique in that it exists as both an exogenous and actively endogenizing gamma retrovirus of koalas. While nine subtypes of KoRV have been recognized, focused study of these subtypes in koalas over time and with different health outcomes has been lacking. Therefore, in this study, three wild koala cohorts were established and monitored to examine KoRV proviral and expression data from koalas that either remained healthy over time, began healthy before developing chlamydial cystitis, or presented with chlamydial cystitis and were treated with antibiotics. Deep sequencing of the proviral KoRV envelope gene revealed KoRV-A, -B, -D, and -F to be the major subtypes in this population and allowed for subtype-specific assays to be created. Quantification of KoRV transcripts revealed that KoRV-D expression mirrored the total KoRV expression levels (106 copies/ml of plasma), with KoRV-A and KoRV-F expression being ∼10-fold less and KoRV-B expression being ∼100-fold less, when detected. Strikingly, there was significantly higher expression of KoRV-D in healthy koalas than in koalas that developed chlamydial cystitis, with healthy koalas expressing a major KoRV-D/minor KoRV-A profile, whereas koalas that developed cystitis had variable KoRV expression profiles. Total anti-KoRV IgG antibody levels were found not to correlate with the expression of total KoRV or any individual KoRV subtype. Finally, KoRV expression was consistent between systemic and mucosal body sites and during antibiotic treatment. Collectively, this gives a comprehensive picture of KoRV dynamics during several important koala health states.IMPORTANCE The long-term survival of the koala is under serious threat, with this iconic marsupial being declared "vulnerable" by the Australian Government and officially listed as a threatened species. KoRV is clearly contributing to the overall health status of koalas, and research into this virus has been lacking detailed study of the multiple subtypes at both the proviral and expressed viral levels over time. By designing new subtype-specific assays and following well-defined koala cohorts over time, this study has generated a new more complete picture of KoRV and its relationship to koala health outcomes in the wild. Only by building a comprehensive picture of KoRV during both koala health and disease can we bring meaningful koala health interventions into better focus.
Collapse
|
40
|
Olagoke O, Quigley BL, Eiden MV, Timms P. Antibody response against koala retrovirus (KoRV) in koalas harboring KoRV-A in the presence or absence of KoRV-B. Sci Rep 2019; 9:12416. [PMID: 31455828 PMCID: PMC6711960 DOI: 10.1038/s41598-019-48880-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Accepted: 08/13/2019] [Indexed: 01/13/2023] Open
Abstract
Koala retrovirus (KoRV) is in the process of endogenization into the koala (Phascolarctos cinereus) genome and is currently spreading through the Australian koala population. Understanding how the koala's immune system responds to KoRV infection is critical for developing an efficacious vaccine to protect koalas. To this end, we analyzed the antibody response of 235 wild koalas, sampled longitudinally over a four-year period, that harbored KoRV-A, and with or without KoRV-B. We found that the majority of the sampled koalas were able to make anti-KoRV antibodies, and that there was a linear increase in anti-KoRV IgG levels in koalas up to approximately seven years of age and then a gradual decrease thereafter. Koalas infected with both KoRV-A and KoRV-B were found to have slightly higher anti-KoRV IgG titers than koalas with KoRV-A alone and there was an inverse relationship between anti-KoRV IgG levels and circulating KoRV viral load. Finally, we identified distinct epitopes on the KoRV envelope protein that were recognized by antibodies. Together, these findings provide insight into the koala's immune response to KoRV and may be useful in the development of a therapeutic KoRV vaccine.
Collapse
Affiliation(s)
- O Olagoke
- Genecology Research Center, University of the Sunshine Coast, 90 Sippy Downs Drive, Sippy Downs, 4556, Queensland, Australia
| | - B L Quigley
- Genecology Research Center, University of the Sunshine Coast, 90 Sippy Downs Drive, Sippy Downs, 4556, Queensland, Australia
| | - M V Eiden
- Section on Directed Gene Transfer, Laboratory of Cellular and Molecular Regulation, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland, USA
| | - P Timms
- Genecology Research Center, University of the Sunshine Coast, 90 Sippy Downs Drive, Sippy Downs, 4556, Queensland, Australia.
| |
Collapse
|
41
|
Altered immune parameters associated with Koala Retrovirus (KoRV) and Chlamydial infection in free ranging Victorian koalas (Phascolarctos cinereus). Sci Rep 2019; 9:11170. [PMID: 31371797 PMCID: PMC6673689 DOI: 10.1038/s41598-019-47666-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Accepted: 07/18/2019] [Indexed: 01/29/2023] Open
Abstract
Koala Retrovirus (KoRV) has been widely speculated to cause immune suppression in koalas (Phascolarctos cinereus) and to underlie the koala's susceptibility to infectious disease, however evidence for immunomodulation is limited. The aim of this study is to determine whether immunophenotypic changes are associated with KoRV infection in free ranging Victorian koalas. qPCR was used to examine mRNA expression for Th1 (IFNγ), Th2-promoting (IL6, IL10) and Th17 (IL17A) cytokines, along with CD4 and CD8 in whole blood of koalas (n = 74) from Mt Eccles and Raymond Island in Victoria, Australia, with and without natural chlamydial infection. KoRV positive koalas had significantly lower levels of IL17A (p`0.023) and IFNγ (p = 0.044) gene expression along with a decreased CD4:CD8 gene expression ratio (p = 0.025) compared to negative koalas. No effect of chlamydial infection or combined effect of KoRV and chlamydial infection was detected in these populations. The decreased expression of IFNγ could make KoRV infected koalas more susceptible to persistent chlamydial infection, and a decrease in IL17A could make them more susceptible to gram negative bacterial, fungal and mycobacterial infection; but more tolerant of chlamydial infection.
Collapse
|
42
|
Sarker N, Fabijan J, Seddon J, Tarlinton R, Owen H, Simmons G, Thia J, Blanchard AM, Speight N, Kaler J, Emes RD, Woolford L, Trott D, Hemmatzadeh F, Meers J. Genetic diversity of Koala retrovirus env gene subtypes: insights into northern and southern koala populations. J Gen Virol 2019; 100:1328-1339. [PMID: 31329088 DOI: 10.1099/jgv.0.001304] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Koala retrovirus (KoRV) is a recently endogenized retrovirus associated with neoplasia and immunosuppression in koala populations. The virus is known to display sequence variability and to be present at varying prevalence in different populations, with animals in southern Australia displaying lower prevalence and viral loads than northern animals. This study used a PCR and next-generation sequencing strategy to examine the diversity of the KoRV env gene in both proviral DNA and viral RNA forms in two distinct populations representative of the 'northern' and 'southern' koala genotypes. The current study demonstrated that the full range of KoRV subtypes is present across both populations, and in both healthy and sick animals. KoRV-A was the predominant proviral subtype in both populations, but there was marked diversity of DNA and RNA subtypes within individuals. Many of the northern animals displayed a higher RNA viral diversity than evident in their proviral DNA, indicating relatively higher replication efficiency of non-KoRV-A subtypes. The southern animals displayed a lower absolute copy number of KoRV than the northern animals as reported previously and a higher preponderance of KoRV-A in individual animals. These discrepancies in viral replication and diversity remain unexplained but may indicate relative protection of the southern population from KoRV replication due to either viral or host factors and may represent an important protective effect for the host in KoRV's ongoing entry into the koala genome.
Collapse
Affiliation(s)
- Nishat Sarker
- Laboratory Sciences & Services Division, International Centre for Diarrhoeal Disease Research, Bangladesh.,School of Veterinary Science, The University of Queensland, Queensland, Australia
| | - Jessica Fabijan
- School of Animal and Veterinary Sciences, The University of Adelaide, Adelaide, Australia
| | - Jennifer Seddon
- School of Veterinary Science, The University of Queensland, Queensland, Australia
| | - Rachael Tarlinton
- School of Veterinary Medicine and Science, University of Nottingham, Nottingham, UK
| | - Helen Owen
- School of Veterinary Science, The University of Queensland, Queensland, Australia
| | - Greg Simmons
- School of Veterinary Science, The University of Queensland, Queensland, Australia
| | - Joshua Thia
- School of Biological Sciences, The University of Queensland, Queensland, Australia
| | - Adam Mark Blanchard
- School of Animal, Rural and. Environmental Sciences, Nottingham Trent University, Nottingham NG1 4FQ, UK
| | - Natasha Speight
- School of Animal and Veterinary Sciences, The University of Adelaide, Adelaide, Australia
| | - Jasmeet Kaler
- School of Veterinary Medicine and Science, University of Nottingham, Nottingham, UK
| | - Richard David Emes
- Advanced Data Analysis Centre (ADAC), University of Nottingham, Nottingham, UK.,School of Veterinary Medicine and Science, University of Nottingham, Nottingham, UK
| | - Lucy Woolford
- School of Animal and Veterinary Sciences, The University of Adelaide, Adelaide, Australia
| | - Darren Trott
- School of Animal and Veterinary Sciences, The University of Adelaide, Adelaide, Australia
| | - Farhid Hemmatzadeh
- School of Animal and Veterinary Sciences, The University of Adelaide, Adelaide, Australia
| | - Joanne Meers
- School of Veterinary Science, The University of Queensland, Queensland, Australia
| |
Collapse
|
43
|
Fabijan J, Miller D, Olagoke O, Woolford L, Boardman W, Timms P, Polkinghorne A, Simmons G, Hemmatzadeh F, Trott DJ, Speight KN. Prevalence and clinical significance of koala retrovirus in two South Australian koala (Phascolarctos cinereus) populations. J Med Microbiol 2019; 68:1072-1080. [PMID: 31162024 DOI: 10.1099/jmm.0.001009] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
PURPOSE Koala retrovirus (KoRV-A) is 100 % prevalent in northern Australian (Queensland and New South Wales) koala populations, where KoRV-B has been associated with Chlamydia pecorum disease and the development of lymphosarcoma. In southern populations (Victoria and South Australia), KoRV-A is less prevalent and KoRV-B has not been detected in Victoria, while the current prevalence in South Australian populations is unknown but is thought to be low. This study aimed to determine (i) the prevalence of KoRV in the two largest South Australian koala populations [Kangaroo Island (KI) and Mount Lofty Ranges (MLR)], (ii) KoRV subtype and (iii) if an association between KoRV and C. pecorum exists. METHODOLOGY Wild koalas were sampled in KI ( n =170) between 2014 and 2017 and in MLR ( n =75) in 2016. Clinical examinations were performed, with blood collected for KoRV detection and typing by PCR. RESULTS KoRV prevalence was 42.4 % [72/170, 95 % confidence interval (CI): 34.9-49.8 %] in KI and 65.3 % (49/75, 95 % CI: 54.6-76.1 %) in MLR. Only KoRV-A, and not KoRV-B, was detected in both populations. In MLR, there was no statistical association between KoRV and C. pecorum infection (P =0.740), or KoRV and C. pecorum disease status ( P=0.274), although KoRV-infected koalas were more likely to present with overt C. pecorum disease than subclinical infection (odds ratio: 3.15, 95 % CI: 0.91-5.39). CONCLUSION KoRV-A is a prevalent pathogen in wild South Australian koala populations. Future studies should continue to investigate KoRV and C. pecorum associations, as the relationship is likely to be complex and to differ between the northern and southern populations.
Collapse
Affiliation(s)
- Jessica Fabijan
- School of Animal and Veterinary Sciences, The University of Adelaide, Roseworthy, South Australia, Australia
| | - Darren Miller
- School of Animal and Veterinary Sciences, The University of Adelaide, Roseworthy, South Australia, Australia
| | - Olusola Olagoke
- University of the Sunshine Coast, Sippy Downs, Queensland, Australia
| | - Lucy Woolford
- School of Animal and Veterinary Sciences, The University of Adelaide, Roseworthy, South Australia, Australia
| | - Wayne Boardman
- School of Animal and Veterinary Sciences, The University of Adelaide, Roseworthy, South Australia, Australia
| | - Peter Timms
- University of the Sunshine Coast, Sippy Downs, Queensland, Australia
| | - Adam Polkinghorne
- University of the Sunshine Coast, Sippy Downs, Queensland, Australia
| | - Greg Simmons
- School of Veterinary Sciences, The University of Queensland, Gatton, Queensland, Australia
| | - Farhid Hemmatzadeh
- School of Animal and Veterinary Sciences, The University of Adelaide, Roseworthy, South Australia, Australia
| | - Darren J Trott
- School of Animal and Veterinary Sciences, The University of Adelaide, Roseworthy, South Australia, Australia
| | - K Natasha Speight
- School of Animal and Veterinary Sciences, The University of Adelaide, Roseworthy, South Australia, Australia
| |
Collapse
|
44
|
Boman J, Frankl-Vilches C, da Silva Dos Santos M, de Oliveira EHC, Gahr M, Suh A. The Genome of Blue-Capped Cordon-Bleu Uncovers Hidden Diversity of LTR Retrotransposons in Zebra Finch. Genes (Basel) 2019; 10:E301. [PMID: 31013951 PMCID: PMC6523648 DOI: 10.3390/genes10040301] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Revised: 04/05/2019] [Accepted: 04/05/2019] [Indexed: 02/02/2023] Open
Abstract
Avian genomes have perplexed researchers by being conservative in both size and rearrangements, while simultaneously holding the blueprints for a massive species radiation during the last 65 million years (My). Transposable elements (TEs) in bird genomes are relatively scarce but have been implicated as important hotspots for chromosomal inversions. In zebra finch (Taeniopygia guttata), long terminal repeat (LTR) retrotransposons have proliferated and are positively associated with chromosomal breakpoint regions. Here, we present the genome, karyotype and transposons of blue-capped cordon-bleu (Uraeginthus cyanocephalus), an African songbird that diverged from zebra finch at the root of estrildid finches 10 million years ago (Mya). This constitutes the third linked-read sequenced genome assembly and fourth in-depth curated TE library of any bird. Exploration of TE diversity on this brief evolutionary timescale constitutes a considerable increase in resolution for avian TE biology and allowed us to uncover 4.5 Mb more LTR retrotransposons in the zebra finch genome. In blue-capped cordon-bleu, we likewise observed a recent LTR accumulation indicating that this is a shared feature of Estrildidae. Curiously, we discovered 25 new endogenous retrovirus-like LTR retrotransposon families of which at least 21 are present in zebra finch but were previously undiscovered. This highlights the importance of studying close relatives of model organisms.
Collapse
Affiliation(s)
- Jesper Boman
- Department of Evolutionary Biology, Evolutionary Biology Centre (EBC), Science for Life Laboratory, Uppsala University, SE-752 36 Uppsala, Sweden.
| | - Carolina Frankl-Vilches
- Department of Behavioral Neurobiology, Max Planck Institute for Ornithology, 82319 Seewiesen, Germany.
| | - Michelly da Silva Dos Santos
- Laboratório de Cultura de Tecidos e Citogenética, SAMAM, Instituto Evandro Chagas, Ananindeua, Pará, and Faculdade de Ciências Naturais (ICEN), Universidade Federal do Pará, Belém 66075-110, Brazil.
| | - Edivaldo H C de Oliveira
- Laboratório de Cultura de Tecidos e Citogenética, SAMAM, Instituto Evandro Chagas, Ananindeua, Pará, and Faculdade de Ciências Naturais (ICEN), Universidade Federal do Pará, Belém 66075-110, Brazil.
| | - Manfred Gahr
- Department of Behavioral Neurobiology, Max Planck Institute for Ornithology, 82319 Seewiesen, Germany.
| | - Alexander Suh
- Department of Evolutionary Biology, Evolutionary Biology Centre (EBC), Science for Life Laboratory, Uppsala University, SE-752 36 Uppsala, Sweden.
| |
Collapse
|
45
|
Molecular dynamics of koala retrovirus infection in captive koalas in Japan. Arch Virol 2019; 164:757-765. [DOI: 10.1007/s00705-019-04149-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2018] [Accepted: 12/17/2018] [Indexed: 10/27/2022]
|
46
|
Schmertmann LJ, Stalder K, Hudson D, Martin P, Makara M, Meyer W, Malik R, Krockenberger MB. Cryptococcosis in the koala (Phascolarctos cinereus): pathogenesis and treatment in the context of two atypical cases. Med Mycol 2019. [PMID: 29529308 DOI: 10.1093/mmy/myx146] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Disseminated cryptococcosis caused by Cryptococcus gattii (molecular type VGI) was diagnosed in an adult free-ranging female koala (Phascolarctos cinereus). Subclinical cryptococcosis was later diagnosed in this koala's joey. In the adult koala, a pathological fracture of the tibia was associated with the bone lysis of marked focal cryptococcal osteomyelitis. Limb-sparing orthopedic intervention, in the setting of disseminated cryptococcosis, was judged to have a poor prognosis, and the adult koala was euthanized. The joey was removed and hand-reared. Serological testing revealed persistent and increasing cryptococcal capsular antigenemia in the absence of clinical signs of disease and it was subsequently treated with oral fluconazole for approximately 16 months, rehabilitated and released into the wild. It was sighted 3 months post-release in a good state of health and again at 18 months post-release but was not recaptured on either occasion. This is the first published report of cryptococcal appendicular osteomyelitis in a koala. It is also the first report of concurrent disease in a dependent juvenile and the successful treatment of subclinical cryptococcosis to full resolution of the cryptococcal antigenemia in a free-ranging koala. This paper provides a discussion of cryptococcal osteomyelitis in animals, host-pathogen-environment interactions and treatment and monitoring protocols for cryptococcosis in koalas. Published reports describing the treatment of cryptococcosis in koalas are also collated and summarised.
Collapse
Affiliation(s)
- Laura J Schmertmann
- Sydney School of Veterinary Science, The University of Sydney, Sydney, New South Wales, Australia.,Molecular Mycology Research Laboratory, Centre for Infectious Diseases and Microbiology, Westmead Clinical School, Sydney Medical School, The University of Sydney, Sydney, New South Wales, Australia.,The Westmead Institute for Medical Research, Westmead, New South Wales, Australia
| | - Kathryn Stalder
- Noah's Ark Veterinary Services, Nelson Bay, New South Wales, Australia
| | - Donald Hudson
- Noah's Ark Veterinary Services, Nelson Bay, New South Wales, Australia
| | - Patricia Martin
- Sydney School of Veterinary Science, The University of Sydney, Sydney, New South Wales, Australia.,Veterinary Pathology Diagnostic Services, B14, The University of Sydney, Sydney, New South Wales, Australia 2006
| | - Mariano Makara
- Sydney School of Veterinary Science, The University of Sydney, Sydney, New South Wales, Australia
| | - Wieland Meyer
- Molecular Mycology Research Laboratory, Centre for Infectious Diseases and Microbiology, Westmead Clinical School, Sydney Medical School, The University of Sydney, Sydney, New South Wales, Australia.,The Westmead Institute for Medical Research, Westmead, New South Wales, Australia.,Marie Bashir Institute for Infectious Diseases and Biosecurity, The University of Sydney, Sydney, New South Wales, Australia
| | - Richard Malik
- Centre for Veterinary Education, The University of Sydney, Sydney, New South Wales, Australia
| | - Mark B Krockenberger
- Sydney School of Veterinary Science, The University of Sydney, Sydney, New South Wales, Australia.,Veterinary Pathology Diagnostic Services, B14, The University of Sydney, Sydney, New South Wales, Australia 2006.,Marie Bashir Institute for Infectious Diseases and Biosecurity, The University of Sydney, Sydney, New South Wales, Australia
| |
Collapse
|
47
|
Nyari S, Booth R, Quigley BL, Waugh CA, Timms P. Therapeutic effect of a Chlamydia pecorum recombinant major outer membrane protein vaccine on ocular disease in koalas (Phascolarctos cinereus). PLoS One 2019; 14:e0210245. [PMID: 30615687 PMCID: PMC6322743 DOI: 10.1371/journal.pone.0210245] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2018] [Accepted: 12/19/2018] [Indexed: 12/29/2022] Open
Abstract
Chlamydia pecorum is responsible for causing ocular infection and disease which can lead to blindness in koalas (Phascolarctos cinereus). Antibiotics are the current treatment for chlamydial infection and disease in koalas, however, they can be detrimental for the koala’s gastrointestinal tract microbiota and in severe cases, can lead to dysbiosis and death. In this study, we evaluated the therapeutic effects provided by a recombinant chlamydial major outer membrane protein (MOMP) vaccine on ocular disease in koalas. Koalas with ocular disease (unilateral or bilateral) were vaccinated and assessed for six weeks, evaluating any changes to the conjunctival tissue and discharge. Samples were collected pre- and post-vaccination to evaluate both humoral and cell-mediated immune responses. We further assessed the infecting C. pecorum genotype, host MHC class II alleles and presence of koala retrovirus type (KoRV-B). Our results clearly showed an improvement in the clinical ocular disease state of all seven koalas, post-vaccination. We observed increases in ocular mucosal IgA antibodies to whole C. pecorum elementary bodies, post-vaccination. We found that systemic cell-mediated immune responses to interferon-γ, interleukin-6 and interleukin-17A were not significantly predictive of ocular disease in koalas. Interestingly, one koala did not have as positive a clinical response (in one eye primarily) and this koala was infected with a C. pecorum genotype (E’) that was not used as part of the vaccine formula (MOMP genotypes A, F and G). The predominant MHC class II alleles identified were DAb*19, DAb*21 and DBb*05, with no two koalas identified with the same genetic sequence. Additionally, KoRV-B, which is associated with chlamydial disease outcome, was identified in two (29%) ocular diseased koalas, which still produced vaccine-induced immune responses and clinical ocular improvements post-vaccination. Our findings show promise for the use of a recombinant chlamydial MOMP vaccine for the therapeutic treatment of ocular disease in koalas.
Collapse
Affiliation(s)
- Sharon Nyari
- University of the Sunshine Coast, Sippy Downs, Queensland, Australia
| | - Rosemary Booth
- Australia Zoo Wildlife Hospital, Beerwah, Queensland, Australia
| | - Bonnie L. Quigley
- University of the Sunshine Coast, Sippy Downs, Queensland, Australia
| | - Courtney A. Waugh
- University of the Sunshine Coast, Sippy Downs, Queensland, Australia
| | - Peter Timms
- University of the Sunshine Coast, Sippy Downs, Queensland, Australia
- * E-mail:
| |
Collapse
|
48
|
STRECK CELL PRESERVATIVE STABILIZES KOALA (PHASCOLARCTOS CINEREUS) WHOLE BLOOD FOR COMPLETE BLOOD COUNTS. J Zoo Wildl Med 2018; 49:813-819. [DOI: 10.1638/2017-171.1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
49
|
Degradation and remobilization of endogenous retroviruses by recombination during the earliest stages of a germ-line invasion. Proc Natl Acad Sci U S A 2018; 115:8609-8614. [PMID: 30082403 PMCID: PMC6112702 DOI: 10.1073/pnas.1807598115] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Endogenous retroviruses (ERVs) are proviral sequences that result from host germ-line invasion by exogenous retroviruses. The majority of ERVs are degraded. Using the koala retrovirus (KoRV) as a model system, we demonstrate that recombination with an ancient koala retroelement disables KoRV, and that recombination occurs frequently and early in the invasion process. Recombinant KoRVs (recKoRVs) are then able to proliferate in the koala germ line. This may in part explain the generally degraded nature of ERVs in vertebrate genomes and suggests that degradation via recombination is one of the earliest processes shaping retroviral genomic invasions. Endogenous retroviruses (ERVs) are proviral sequences that result from colonization of the host germ line by exogenous retroviruses. The majority of ERVs represent defective retroviral copies. However, for most ERVs, endogenization occurred millions of years ago, obscuring the stages by which ERVs become defective and the changes in both virus and host important to the process. The koala retrovirus, KoRV, only recently began invading the germ line of the koala (Phascolarctos cinereus), permitting analysis of retroviral endogenization on a prospective basis. Here, we report that recombination with host genomic elements disrupts retroviruses during the earliest stages of germ-line invasion. One type of recombinant, designated recKoRV1, was formed by recombination of KoRV with an older degraded retroelement. Many genomic copies of recKoRV1 were detected across koalas. The prevalence of recKoRV1 was higher in northern than in southern Australian koalas, as is the case for KoRV, with differences in recKoRV1 prevalence, but not KoRV prevalence, between inland and coastal New South Wales. At least 15 additional different recombination events between KoRV and the older endogenous retroelement generated distinct recKoRVs with different geographic distributions. All of the identified recombinant viruses appear to have arisen independently and have highly disrupted ORFs, which suggests that recombination with existing degraded endogenous retroelements may be a means by which replication-competent ERVs that enter the germ line are degraded.
Collapse
|
50
|
Induction of neutralizing antibody response against koala retrovirus (KoRV) and reduction in viral load in koalas following vaccination with recombinant KoRV envelope protein. NPJ Vaccines 2018; 3:30. [PMID: 30083396 PMCID: PMC6072795 DOI: 10.1038/s41541-018-0066-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Revised: 04/25/2018] [Accepted: 05/23/2018] [Indexed: 11/19/2022] Open
Abstract
Koala retrovirus (KoRV) infects the majority of Australia’s koalas (Phascolarctos cinereus) and has been linked to several life-threatening diseases such as lymphoma and leukemia, as well as Chlamydia and thus poses a threat to the continued survival of this species. While quarantine and antiretroviral drug treatment are possible control measures, they are impractical, leaving vaccination as the only realistic option. In this study, we examined the effect of a recombinant envelope protein-based anti-KoRV vaccine in two groups of South Australian koalas: KoRV infected or KoRV free. We report a successful vaccination response in the koalas with no vaccine-associated side effects. The vaccine induced a significant humoral immune response as well as the production of neutralizing antibodies in both groups of koalas. We also identified B-cell epitopes that were differentially recognized in KoRV-infected versus KoRV-free koalas following vaccination. Importantly, we also showed that vaccination had a therapeutic effect on koalas infected exogenously with KoRV by reducing their circulating viral load. Together, this study highlights the possibility of successfully developing a vaccine against KoRV infection in koalas. A vaccine candidate for Koala retrovirus elicits a protective antibody response and reduces the viral load in already-infected koalas. Koala retrovirus (KoRV), first identified in the last 20 years, is a life-threatening, endemic pathogen affecting Australian koalas. In pursuit of an effective KoRV vaccine, the University of the Sunshine Coast’s Peter Timms led a group of Australian scientists to develop a candidate based on the transmembrane section of the virus’ envelope protein. The six koalas vaccinated in the study all generated a strong antibody response to the envelope protein, and a strong neutralizing antibody response was reported during in vitro tests. Vaccinated koalas with pre-existing KoRV infection benefited from an average 79% reduction in viral load when measured 12 weeks after vaccination. Further research should be prioritized to provide much-needed protection to Australia’s koalas.
Collapse
|