1
|
Ebrahimi S, Khaleghi Ghadiri M, Stummer W, Gorji A. Enhancing 5-ALA-PDT efficacy against resistant tumor cells: Strategies and advances. Life Sci 2024; 351:122808. [PMID: 38852796 DOI: 10.1016/j.lfs.2024.122808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 05/20/2024] [Accepted: 06/04/2024] [Indexed: 06/11/2024]
Abstract
As a precursor of protoporphyrin IX (PpIX), an endogenous pro-apoptotic and fluorescent molecule, 5-Aminolevulinic acid (5-ALA) has gained substantial attention for its potential in fluorescence-guided surgery as well as photodynamic therapy (PDT). Moreover, 5-ALA-PDT has been suggested as a promising chemo-radio sensitization therapy for various cancers. However, insufficient 5-ALA-induced PpIX fluorescence and the induction of multiple resistance mechanisms may hinder the 5-ALA-PDT clinical outcome. Reduced efficacy and resistance to 5-ALA-PDT can result from genomic alterations, tumor heterogeneity, hypoxia, activation of pathways related to cell surveillance, production of nitric oxide, and most importantly, deregulated 5-ALA transporter proteins and heme biosynthesis enzymes. Understanding the resistance regulatory mechanisms of 5-ALA-PDT may allow the development of effective personalized cancer therapy. Here, we described the mechanisms underlying resistance to 5-ALA-PTD across various tumor types and explored potential strategies to overcome this resistance. Furthermore, we discussed future approaches that may enhance the efficacy of treatments using 5-ALA-PDT.
Collapse
Affiliation(s)
- Safieh Ebrahimi
- Epilepsy Research Center, Münster University, 48149 Münster, Germany; Department of Clinical Biochemistry, Faculty of Medicine, Tehran University of Medical Sciences, Tehran, Iran; Shefa Neuroscience Research Center, Khatam Alanbia Hospital, Tehran 1996835911, Iran
| | | | - Walter Stummer
- Department of Neurosurgery, Münster University, 48149 Münster, Germany
| | - Ali Gorji
- Epilepsy Research Center, Münster University, 48149 Münster, Germany; Shefa Neuroscience Research Center, Khatam Alanbia Hospital, Tehran 1996835911, Iran; Neuroscience Research Center, Mashhad University of Medical Sciences, 9177948564 Mashhad, Iran.
| |
Collapse
|
2
|
Girotti AW, Korytowski W. Upregulation of iNOS/NO in Cancer Cells That Survive a Photodynamic Challenge: Role of No in Accelerated Cell Migration and Invasion. Int J Mol Sci 2024; 25:5697. [PMID: 38891885 PMCID: PMC11171770 DOI: 10.3390/ijms25115697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 05/10/2024] [Accepted: 05/17/2024] [Indexed: 06/21/2024] Open
Abstract
Anti-tumor photodynamic therapy (PDT) is a unique modality that employs a photosensitizer (PS), PS-exciting light, and O2 to generate cytotoxic oxidants. For various reasons, not all malignant cells in any given tumor will succumb to a PDT challenge. Previous studies by the authors revealed that nitric oxide (NO) from inducible NO synthase (iNOS/NOS2) plays a key role in tumor cell resistance and also stimulation of migratory/invasive aggressiveness of surviving cells. iNOS was the only NOS isoform implicated in these effects. Significantly, NO from stress-upregulated iNOS was much more important in this regard than NO from preexisting enzymes. Greater NO-dependent resistance, migration, and invasion was observed with at least three different cancer cell lines, and this was attenuated by iNOS activity inhibitors, NO scavengers, or an iNOS transcriptional inhibitor. NO diffusing from PDT-targeted cells also stimulated migration/invasion potency of non-targeted bystander cells. Unless counteracted by appropriate measures, all these effects could seriously compromise clinical PDT efficacy. Here, we will review specific examples of these negative side effects of PDT and how they might be suppressed by adjuvants such as NO scavengers or inhibitors of iNOS activity or expression.
Collapse
Affiliation(s)
- Albert W. Girotti
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Witold Korytowski
- Department of Biophysics, Jagiellonian University, 31-007 Krakow, Poland;
| |
Collapse
|
3
|
Girotti AW, Bazak J, Korytowski W. Pro-Tumor Activity of Endogenous Nitric Oxide in Anti-Tumor Photodynamic Therapy: Recently Recognized Bystander Effects. Int J Mol Sci 2023; 24:11559. [PMID: 37511317 PMCID: PMC10380283 DOI: 10.3390/ijms241411559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 07/10/2023] [Accepted: 07/13/2023] [Indexed: 07/30/2023] Open
Abstract
Various studies have revealed that several cancer cell types can upregulate inducible nitric oxide synthase (iNOS) and iNOS-derived nitric oxide (NO) after moderate photodynamic treatment (PDT) sensitized by 5-aminolevulinic acid (ALA)-induced protoporphyrin-IX. As will be discussed, the NO signaled cell resistance to photokilling as well as greater growth and migratory aggressiveness of surviving cells. On this basis, it was predicted that diffusible NO from PDT-targeted cells in a tumor might enhance the growth, migration, and invasiveness of non- or poorly PDT-targeted bystander cells. This was tested using a novel approach in which ALA-PDT-targeted cancer cells on a culture dish were initially segregated from non-targeted bystander cells of the same type via impermeable silicone-rimmed rings. Several hours after LED irradiation, the rings were removed, and both cell populations were analyzed in the dark for various responses. After a moderate extent of targeted cell killing (~25%), bystander proliferation and migration were evaluated, and both were found to be significantly enhanced. Enhancement correlated with iNOS/NO upregulation in surviving PDT-targeted cancer cells in the following cell type order: PC3 > MDA-MB-231 > U87 > BLM. If occurring in an actual PDT-challenged tumor, such bystander effects might compromise treatment efficacy by stimulating tumor growth and/or metastatic dissemination. Mitigation of these and other negative NO effects using pharmacologic adjuvants that either inhibit iNOS transcription or enzymatic activity will be discussed.
Collapse
Affiliation(s)
- Albert W Girotti
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Jerzy Bazak
- Department of Biophysics, Jagiellonian University, 31-007 Krakow, Poland
| | - Witold Korytowski
- Department of Biophysics, Jagiellonian University, 31-007 Krakow, Poland
| |
Collapse
|
4
|
Bazak J, Korytowski W, Girotti AW. Hyper-Aggressiveness of Bystander Cells in an Anti-Tumor Photodynamic Therapy Model: Role of Nitric Oxide Produced by Targeted Cells. Crit Rev Oncog 2023; 28:15-25. [PMID: 37824384 DOI: 10.1615/critrevoncog.2022040016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2023]
Abstract
When selected tumor cells in a large in vitro population are exposed to ionizing radiation, they can send pro-survival signals to non-exposed counterparts (bystander cells). If there is no physical contact between irradiated and bystander cells, the latter respond to mediators from targeted cells that diffuse through the medium. One such mediator is known to be nitric oxide (NO). It was recently discovered that non-ionizing anti-tumor photodynamic therapy (PDT) can also elicit pro-survival/expansion bystander effects in a variety of human cancer cells. A novel silicone ring-based approach was used for distinguishing photodynamically-targeted cells from non-targeted bystanders. A key finding was that NO from upregulated iNOS in surviving targeted cells diffused to the bystanders and caused iNOS/NO upregulation there, which in turn stimulated cell proliferation and migration. The intensity of these responses depended on the extent of iNOS/NO induction in targeted cells of different cancer lines. Moreover, the responses could be replicated using NO from the chemical donor DETA/NO. This review will focus on these and related findings, their negative implications for clinical PDT, and how these might be averted by using pharmacologic inhibitors of iNOS activity or transcription.
Collapse
Affiliation(s)
- Jerzy Bazak
- Department of Biophysics, Jagiellonian University, Krakow, Poland
| | | | - Albert W Girotti
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, WI 53226-3548, USA
| |
Collapse
|
5
|
Girotti AW, Fahey JF, Korytowski W. Role of nitric oxide in hyper-aggressiveness of tumor cells that survive various anti-cancer therapies. Crit Rev Oncol Hematol 2022; 179:103805. [PMID: 36087851 DOI: 10.1016/j.critrevonc.2022.103805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 08/10/2022] [Accepted: 09/05/2022] [Indexed: 11/18/2022] Open
Abstract
Low level nitric oxide (NO) produced by inducible NO synthase (iNOS) in many malignant tumors is known to play a key role in the survival and proliferation of tumor cells. NO can also induce or augment resistance to anti-tumor treatments such as platinum-based chemotherapy (CT), ionizing radiotherapy (RT), and non-ionizing photodynamic therapy (PDT). In each of these treatments, tumor cells that survive the challenge may exhibit a striking increase in NO-dependent proliferative, migratory, and invasive aggressiveness compared with non-challenged controls. Moreover, NO from cells directly targeted by PDT can often stimulate aggressiveness in non- or poorly targeted bystander cells. Although NO-mediated resistance to many of these therapies is fairly-well recognized by now, the hyper-aggressiveness of surviving cells and bystander counterparts is not. We will focus on these negative aspects in this review, citing examples from the PDT, CT, and RT publications. Increased aggressiveness of cells that escape therapeutic elimination is a concern because it could enhance tumor progression and metastatic dissemination. Pharmacologic approaches for suppressing these negative responses will also be discussed, e.g., administering inhibitors of iNOS activity or iNOS expression as therapeutic adjuvants.
Collapse
Affiliation(s)
- Albert W Girotti
- Depatrment of Biochemistry, Medical College of Wisconsin, Milwaukee, WI, USA.
| | - Jonathan F Fahey
- Department of Pathology, University of Colorado, Aurora, CO, USA
| | | |
Collapse
|
6
|
Fahey JM, Girotti AW. The Negative Impact of Cancer Cell Nitric Oxide on Photodynamic Therapy. Methods Mol Biol 2022; 2451:21-31. [PMID: 35505007 DOI: 10.1007/978-1-0716-2099-1_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Numerous studies have shown that low-flux nitric oxide (NO) in tumors produced mainly by inducible nitric oxide synthase (iNOS/NOS2) can signal for angiogenesis, inhibition of apoptosis, and promotion of cell growth, migration, and invasion. Studies in the authors' laboratory have revealed that iNOS-derived NO in various cancer cell types elicits resistance to cytotoxic photodynamic therapy (PDT) and moreover endows PDT-surviving cells with more aggressive proliferation and migration/invasion. In this chapter, we describe how cancer cell iNOS/NO in vitro can be monitored in different PDT model systems (e.g., a targeted cell-bystander cell model) and how pharmacologic interference with basal and PDT-upregulated iNOS/NO can significantly improve PDT outcomes.
Collapse
Affiliation(s)
- Jonathan M Fahey
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Albert W Girotti
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, WI, USA.
| |
Collapse
|
7
|
Mazurek M, Rola R. The implications of nitric oxide metabolism in the treatment of glial tumors. Neurochem Int 2021; 150:105172. [PMID: 34461111 DOI: 10.1016/j.neuint.2021.105172] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 08/03/2021] [Accepted: 08/21/2021] [Indexed: 12/20/2022]
Abstract
Glial tumors are the most common intracranial malignancies. Unfortunately, despite such a high prevalence, patients' prognosis is usually poor. It is related to the high invasiveness, tendency to relapse and the resistance of tumors to traditional methods of treatment. An important link in the aspect of these issues may be nitric oxide (NO) metabolism. It is a very complex mechanism with multidirectional effects on the neoplastic process. Depending on the concentration axis, it can both exert pro-tumor action as well as contribute to the inhibition of tumorigenesis. The latest observations show that the control of its metabolism can be very helpful in the development of new methods of treating gliomas, as well as in increasing the effectiveness of the agents currently used. The influence of nitric oxide and nitric oxide synthase (NOS) activity on glioma stem cells seem to be of particular importance. The use of specific inhibitors may allow the reduction of tumor growth and its tendency to relapse. Another important feature of GSCs is their conditioning of glioma resistance to traditional forms of treatment. Recent studies have shown that modulation of NO metabolism can suppress this effect, preventing the induction of radio and chemoresistance. Moreover, nitric oxide is involved in the regulation of a number of immune mechanisms. Adequate modulation of its metabolism may contribute to the induction of an anti-tumor response in the patients' immune system.
Collapse
Affiliation(s)
- Marek Mazurek
- Chair and Department of Neurosurgery and Paediatric Neurosurgery, Medical University in Lublin, Poland.
| | - Radosław Rola
- Chair and Department of Neurosurgery and Paediatric Neurosurgery, Medical University in Lublin, Poland
| |
Collapse
|
8
|
Broadwater D, Medeiros HCD, Lunt RR, Lunt SY. Current Advances in Photoactive Agents for Cancer Imaging and Therapy. Annu Rev Biomed Eng 2021; 23:29-60. [PMID: 34255992 DOI: 10.1146/annurev-bioeng-122019-115833] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Photoactive agents are promising complements for both early diagnosis and targeted treatment of cancer. The dual combination of diagnostics and therapeutics is known as theranostics. Photoactive theranostic agents are activated by a specific wavelength of light and emit another wavelength, which can be detected for imaging tumors, used to generate reactive oxygen species for ablating tumors, or both. Photodynamic therapy (PDT) combines photosensitizer (PS) accumulation and site-directed light irradiation for simultaneous imaging diagnostics and spatially targeted therapy. Although utilized since the early 1900s, advances in the fields of cancer biology, materials science, and nanomedicine have expanded photoactive agents to modern medical treatments. In this review we summarize the origins of PDT and the subsequent generations of PSs and analyze seminal research contributions that have provided insight into rational PS design, such as photophysics, modes of cell death, tumor-targeting mechanisms, and light dosing regimens. We highlight optimizable parameters that, with further exploration, can expand clinical applications of photoactive agents to revolutionize cancer diagnostics and treatment.
Collapse
Affiliation(s)
- Deanna Broadwater
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan 48824, USA
| | - Hyllana C D Medeiros
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan 48824, USA
| | - Richard R Lunt
- Department of Chemical Engineering and Materials Science, Michigan State University, East Lansing, Michigan 48824, USA; , .,Department of Physics and Astronomy, Michigan State University, East Lansing, Michigan 48824, USA
| | - Sophia Y Lunt
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan 48824, USA.,Department of Chemical Engineering and Materials Science, Michigan State University, East Lansing, Michigan 48824, USA; ,
| |
Collapse
|
9
|
Photodynamic Therapy as an Oxidative Anti-Tumor Modality: Negative Effects of Nitric Oxide on Treatment Efficacy. Pharmaceutics 2021; 13:pharmaceutics13050593. [PMID: 33919266 PMCID: PMC8143374 DOI: 10.3390/pharmaceutics13050593] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 04/07/2021] [Accepted: 04/08/2021] [Indexed: 12/21/2022] Open
Abstract
Anti-tumor photodynamic therapy (PDT) is a unique oxidative stress-based modality that has proven highly effective on a variety of solid malignancies. PDT is minimally invasive and generates cytotoxic oxidants such as singlet molecular oxygen (1O2). With high tumor site-specificity and limited off-target negative effects, PDT is increasingly seen as an attractive alternative or follow-up to radiotherapy or chemotherapy. Nitric oxide (NO) is a short-lived bioactive free radical molecule that is exploited by many malignant tumors to promote cell survival, proliferation, and metastatic expansion. Typically generated endogenously by inducible nitric oxide synthase (iNOS/NOS2), low level NO can also antagonize many therapeutic interventions, including PDT. In addition to elevating resistance, iNOS-derived NO can stimulate growth and migratory aggressiveness of tumor cells that survive a PDT challenge. Moreover, NO from PDT-targeted cells in any given population is known to promote such aggressiveness in non-targeted counterparts (bystanders). Each of these negative responses to PDT and their possible underlying mechanisms will be discussed in this chapter. Promising pharmacologic approaches for mitigating these NO-mediated responses will also be discussed.
Collapse
|
10
|
Girotti AW. Nitric Oxide-elicited Resistance to Antitumor Photodynamic Therapy via Inhibition of Membrane Free Radical-mediated Lipid Peroxidation. Photochem Photobiol 2021; 97:653-663. [PMID: 33369741 DOI: 10.1111/php.13373] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Accepted: 12/22/2020] [Indexed: 12/21/2022]
Abstract
This review focuses on the ability of nitric oxide (NO) to antagonize antitumor photodynamic therapy (PDT). NO's anti-PDT effects were recognized relatively recently and require a better mechanistic understanding for developing new strategies to improve PDT efficacy. Many PDT sensitizers (PSs) are amphiphilic and tend to localize in membrane compartments of tumor cells. Unsaturated lipids in these compartments can undergo peroxidative degradation after PS photoactivation. Primary Type I (free radical) vs. Type II (singlet oxygen) photochemistry of lipid peroxidation is discussed, along with light-independent turnover of primary lipid hydroperoxides to free radical species. Chain lipid peroxidation mediated by the latter exacerbates membrane damage and cytotoxicity after a PDT challenge. Our studies have shown that NO from chemical donors can suppress chain peroxidation by intercepting lipid-derived free radical intermediates, thereby protecting cancer cells against photokilling. More recent evidence has revealed that inducible NO synthase (iNOS) is dramatically upregulated in several cancer cell types after a photodynamic challenge, and that iNOS-derived NO enhances resistance as well as growth and migratory aggressiveness of surviving cells. Chain breaking by NO and other possible NO-based resistance mechanisms are discussed, along with novel pharmacologic approaches for overcoming these negative effects.
Collapse
Affiliation(s)
- Albert W Girotti
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, WI
| |
Collapse
|
11
|
Role of nitric oxide in the response to photooxidative stress in prostate cancer cells. Biochem Pharmacol 2020; 182:114205. [PMID: 32828802 DOI: 10.1016/j.bcp.2020.114205] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 08/13/2020] [Accepted: 08/18/2020] [Indexed: 12/21/2022]
Abstract
A continuous state of oxidative stress during inflammation contributes to the development of 25% of human cancers. Epithelial and inflammatory cells release reactive oxygen species (ROS) and reactive nitrogen species (RNS) that can damage DNA. ROS/RNS have biological implications in both chemoresistance and tumor recurrence. As several clinically employed anticancer drugs can generate ROS/RNS, we have addressed herein how inducible nitric oxide synthase and nitric oxide (iNOS/•NO) affect the molecular pathways implicated in the tumor response to oxidative stress. To mimic the oxidative stress associated with chemotherapy, we used a photosensitizer (pheophorbide a) that can generate ROS/RNS in a controlled manner. We investigated how iNOS/•NO modulates the tumor response to oxidative stress by involving the NF-κB and Nrf2 molecular pathways. We found that low levels of iNOS induce the development of a more aggressive tumor population, leading to survival, recurrence and resistance. By contrast, high levels of iNOS/•NO sensitize tumor cells to oxidative treatment, causing cell growth arrest. Our analysis showed that NF-κB and Nrf2, which are activated in response to oxidative stress, communicate with each other through RKIP. For this critical role, RKIP could be an interesting target for anticancer drugs. Our study provides insight into the complex signaling response of cancer cells to oxidative treatments as well as new possibilities for the rational design of new therapeutic strategies.
Collapse
|
12
|
Nath N, Kashfi K. Tumor associated macrophages and 'NO'. Biochem Pharmacol 2020; 176:113899. [PMID: 32145264 DOI: 10.1016/j.bcp.2020.113899] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Accepted: 03/02/2020] [Indexed: 12/14/2022]
Abstract
Nitric oxide (NO) and its pro and anti-tumor activities are dual roles that continue to be debated in cancer biology. The cell situations in the tumor and within the tumor microenvironment also have roles involving NO. In early tumorigenic events, macrophages in the tumor microenvironment promote tumor cell death, and later are reprogramed to support the growth of tumor, through regulatory events involving NO and several stimulatory signals. These two opposing and active phenotypes of tumor associated macrophages known as the M1 or anti-tumorigenic state and M2 or pro-tumorigenic state show differences in metabolic pathways such as glycolysis and arginine utilization, signaling pathways and cytokine induction including iNOS expression, therefore contributing to their function. Polarization of M2 to M1 macrophages, inhibition of M2 state, or reprogramming via NO in combination with other signals may determine or alter tumor kinetics. These strategies and an overview are presented.
Collapse
Affiliation(s)
- Niharika Nath
- Department of Biological and Chemical Sciences, New York Institute of Technology, New York, NY, United States.
| | - Khosrow Kashfi
- Department of Molecular, Cellular and Biomedical Sciences, Sophie Davis School of Biomedical Education, City University of New York School of Medicine, New York, NY, United States; Graduate Program in Biology, City University of New York Graduate Center, New York, NY, United States.
| |
Collapse
|
13
|
Girotti AW. Nitric Oxide-Mediated Resistance to Antitumor Photodynamic Therapy. Photochem Photobiol 2020; 96:500-505. [PMID: 31545517 PMCID: PMC7085955 DOI: 10.1111/php.13163] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Accepted: 09/05/2019] [Indexed: 12/11/2022]
Abstract
As an antitumor modality based on sensitizer photoexcitation by tumor-directed light, photodynamic therapy (PDT) has the advantage of being site-specific compared with conventional chemotherapy or radiotherapy. Like these other therapies, however, PDT is often limited by pre-existing or acquired resistance. One type of resistance, discovered in the author's laboratory, involves nitric oxide (NO) generated by inducible nitric oxide synthase (iNOS) in tumor cells. Using human breast, prostate and brain cancer cell lines, we have shown that iNOS is dramatically upregulated after a moderate PDT challenge sensitized by 5-aminolevulinic acid-induced protoporphyrin IX. The elevated NO not only elicited a greater resistance to cell photokilling, but also an increase in the growth and migration/invasion rate of surviving cells. Greater iNOS/NO-based resistance was also demonstrated at the in vivo level using a breast tumor xenograft model. More recent studies have shown that NO from PDT-targeted cells can stimulate a progrowth/promigration response in non-targeted bystander cells. These novel effects of NO, their negative impact on PDT efficacy and possible mitigation thereof by anti-iNOS/NO pharmacologic agents will be discussed.
Collapse
Affiliation(s)
- Albert W. Girotti
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, WI, 53226-3548
| |
Collapse
|
14
|
Nitric Oxide Inhibition of Chain Lipid Peroxidation Initiated by Photodynamic Action in Membrane Environments. Cell Biochem Biophys 2020; 78:149-156. [PMID: 32303898 DOI: 10.1007/s12013-020-00909-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Accepted: 03/30/2020] [Indexed: 02/07/2023]
Abstract
Iron-catalyzed, free radical-mediated lipid peroxidation may play a major role in tumor cell killing by photodynamic therapy (PDT), particularly when membrane-localizing photosensitizers are employed. Many cancer cells exploit endogenous iNOS-generated NO for pro-survival/expansion purposes and for hyper-resistance to therapeutic modalities, including PDT. In addition to inhibiting the pro-oxidant activity of Fe(II) via nitrosylation, NO may intercept downstream lipid oxyl and peroxyl radicals, thereby acting as a chain-breaking antioxidant. We investigated this for the first time in the context of PDT by using POPC/Ch/PpIX (100:80:0.2 by mol) liposomes (LUVs) as a model system. Cholesterol (Ch or [14C]Ch) served as an in-situ peroxidation probe and protoporphyrin IX (PpIX) as photosensitizer. PpIX-sensitized lipid peroxidation was monitored by two analytical methods that we developed: HPLC-EC(Hg) and HPTLC-PI. 5α-hydroperoxy-Ch (5α-OOH) accumulated rapidly and linearly with irradiation time, indicating singlet oxygen (1O2) intermediacy. When ascorbate (AH-) and trace lipophilic iron [Fe(HQ)3] were included, 7α/7β-hydroperoxy-Ch (7-OOH) accumulated exponentially, indicating progressively greater membrane-damaging chain lipid peroxidation. With AH-/Fe(HQ)3 present, the NO donor SPNO had no effect on 5α-OOH formation, but dose-dependently inhibited 7-OOH formation due to NO interception of chain-carrying oxyl and peroxyl radicals. Similar results were obtained when cancer cells were PpIX/light-treated, using SPNO or activated macrophages as the NO source. These findings implicate chain lipid peroxidation in PDT-induced cytotoxicity and NO as a potent antagonist thereof by acting as a chain-breaking antioxidant. Thus, unless NO formation in aggressive tumors is suppressed, it can clearly compromise PDT efficacy.
Collapse
|
15
|
Girotti AW, Fahey JM. Upregulation of pro-tumor nitric oxide by anti-tumor photodynamic therapy. Biochem Pharmacol 2019; 176:113750. [PMID: 31836386 DOI: 10.1016/j.bcp.2019.113750] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Accepted: 12/06/2019] [Indexed: 12/11/2022]
Abstract
Many malignant tumors use endogenous nitric oxide (NO) to promote survival, growth, and metastatic migration. This NO, which is typically generated by inducible nitric oxide synthase (iNOS), can also antagonize various anti-cancer therapies and its source is most often assumed to be constitutive or pre-existing iNOS. In this paper, we provide evidence (i) that many different cancer cells exhibit resistance to oxidative killing by photodynamic therapy (PDT), and (ii) that cells surviving the challenge grow, migrate and invade more aggressively, as do non-targeted bystander cells. Accompanying these effects are activation or upregulation of pro-survival/progression effector proteins such as NF-κB, Akt, and Survivin. Observed in the author's laboratory, these responses were not attributed to basal iNOS/NO in most cases, but rather to NO from enzyme that was strongly upregulated by photodynamic stress. Each of these effects and how they can be mitigated by inhibitors of iNOS activity or transcription, or by NO scavengers will be discussed. When approved for clinical use, such pharmacologic agents could improve PDT efficacy as well as reduce potentially negative side-effects of this therapy.
Collapse
Affiliation(s)
- Albert W Girotti
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, WI 53226, United States.
| | - Jonathan M Fahey
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, WI 53226, United States
| |
Collapse
|
16
|
Fahey JM, Korytowski W, Girotti AW. Upstream signaling events leading to elevated production of pro-survival nitric oxide in photodynamically-challenged glioblastoma cells. Free Radic Biol Med 2019; 137:37-45. [PMID: 30991141 PMCID: PMC6526063 DOI: 10.1016/j.freeradbiomed.2019.04.013] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Revised: 03/15/2019] [Accepted: 04/10/2019] [Indexed: 12/19/2022]
Abstract
Nitric oxide (NO) generated endogenously by inducible nitric oxide synthase (iNOS) promotes growth and migration/invasion of glioblastoma cells and also fosters resistance to chemotherapy and ionizing radiotherapy. Our recent studies revealed that glioblastoma cell iNOS/NO also opposes the cytotoxic effects of non-ionizing photodynamic therapy (PDT), and moreover stimulates growth/migration aggressiveness of surviving cells. These negative responses, which depended on PI3K/Akt/NF-κB activation, were strongly suppressed by blocking iNOS transcription with JQ1, a BET bromodomain inhibitor. In the present study, we sought to identify additional molecular events that precede iNOS transcriptional upregulation. Akt activation, iNOS induction, and viability loss in PDT-challenged glioblastoma U87 cells were all strongly inhibited by added l-histidine, consistent with primary involvement of photogenerated singlet oxygen (1O2). Transacetylase p300 not only underwent greater Akt-dependent activation after PDT, but greater interaction with NF-κB subunit p65, which in turn exhibited greater K310 acetylation. In addition, PDT promoted intramolecular disulfide formation and inactivation of tumor suppressor PTEN, thereby favoring Akt and p300 activation leading to iNOS upregulation. Importantly, deacetylase Sirt1 was down-regulated by PDT stress, consistent with the observed increase in p65-acK310 level, which fostered iNOS transcription. This study provides new mechanistic insights into how glioblastoma tumors can exploit iNOS/NO to not only resist PDT, but to attain a more aggressive survival phenotype.
Collapse
Affiliation(s)
- Jonathan M Fahey
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, WI, 53226-3548, USA
| | | | - Albert W Girotti
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, WI, 53226-3548, USA.
| |
Collapse
|
17
|
Rapozzi V, D’Este F, Xodo LE. Molecular pathways in cancer response to photodynamic therapy. J PORPHYR PHTHALOCYA 2019. [DOI: 10.1142/s1088424619300064] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
This minireview describes the complexity of the molecular mechanisms involved in the tumor response to photodynamic treatment (PDT). Different aspects of reactive oxygen (ROS) and nitrogen species (RNS) induced by PDT will be examined. In particular, we will discuss the effect of ROS and RNS on cell compartments and the main mechanisms of cell death induced by the treatment. Moreover, we will also examine host defense mechanisms as well as resistance to PDT.
Collapse
Affiliation(s)
- Valentina Rapozzi
- Department of Medicine, University of Udine, P.le Kolbe 4, Udine, 33100, Italy
| | - Francesca D’Este
- Department of Medicine, University of Udine, P.le Kolbe 4, Udine, 33100, Italy
| | - Luigi E. Xodo
- Department of Medicine, University of Udine, P.le Kolbe 4, Udine, 33100, Italy
| |
Collapse
|
18
|
Fahey JM, Girotti AW. Nitric Oxide Antagonism to Anti-Glioblastoma Photodynamic Therapy: Mitigation by Inhibitors of Nitric Oxide Generation. Cancers (Basel) 2019; 11:E231. [PMID: 30781428 PMCID: PMC6406633 DOI: 10.3390/cancers11020231] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Revised: 01/25/2019] [Accepted: 02/09/2019] [Indexed: 12/14/2022] Open
Abstract
Many studies have shown that low flux nitric oxide (NO) produced by inducible NO synthase (iNOS/NOS2) in various tumors, including glioblastomas, can promote angiogenesis, cell proliferation, and migration/invasion. Minimally invasive, site-specific photodynamic therapy (PDT) is a highly promising anti-glioblastoma modality. Recent research in the authors' laboratory has revealed that iNOS-derived NO in glioblastoma cells elicits resistance to 5-aminolevulinic acid (ALA)-based PDT, and moreover endows PDT-surviving cells with greater proliferation and migration/invasion aggressiveness. In this contribution, we discuss iNOS/NO antagonism to glioblastoma PDT and how this can be overcome by judicious use of pharmacologic inhibitors of iNOS activity or transcription.
Collapse
Affiliation(s)
- Jonathan M Fahey
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, WI 53226, USA.
| | - Albert W Girotti
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, WI 53226, USA.
| |
Collapse
|
19
|
Girotti AW. Upregulation of nitric oxide in tumor cells as a negative adaptation to photodynamic therapy. Lasers Surg Med 2018; 50:590-598. [PMID: 29504635 DOI: 10.1002/lsm.22807] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/01/2018] [Indexed: 12/14/2022]
Abstract
One of the advantages of PDT is that it can often circumvent tumor resistance to chemotherapeutic agents such as cisplatin and doxorubicin. However, pre-existing and acquired resistance to PDT has also been demonstrated. One type of resistance, which involves nitric oxide (NO) generated by inducible nitric oxide synthase (iNOS/NOS2) in tumor cells, was discovered in the author's laboratory. When subjected to a 5-aminolevulinic acid (ALA)-based photodynamic challenge, several cancer lines, including breast, prostate, and glioma, underwent intrinsic apoptosis that could be substantially enhanced by iNOS enzymatic inhibitors or a NO scavenger, implying iNOS/NO-mediated resistance. In most cases, iNOS was significantly upregulated by the challenge and this appeared to be more important in the hyper-resistance than pre-existing enzyme. Of added importance was our observation that cells surviving ALA/light treatment typically exhibited a more aggressive phenotype, proliferating and migrating/invading more rapidly than controls in iNOS/NO-dependent fashion. Most of these in vitro PDT findings have recently been confirmed at the in vivo level, using a human breast tumor xenograft model. We have also shown that upregulated iNOS in PDT-targeted cells can elicit a pro-growth/migration response in non-targeted bystander cells, NO again playing a key role. Post-PDT resistance and potentially dangerous hyper-aggressiveness can be attenuated by inhibitors of iNOS enzymatic activity, some of which have seen pharmacologic use in non-cancer or PDT settings. These various aspects of PDT antagonism by tumor iNOS/NO and how they might be overcome will be discussed in this review. Lasers Surg. Med. 50:590-598, 2018.© 2018 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Albert W Girotti
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, Wisconsin
| |
Collapse
|
20
|
Fahey JM, Stancill JS, Smith BC, Girotti AW. Nitric oxide antagonism to glioblastoma photodynamic therapy and mitigation thereof by BET bromodomain inhibitor JQ1. J Biol Chem 2018; 293:5345-5359. [PMID: 29440272 DOI: 10.1074/jbc.ra117.000443] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Revised: 01/10/2018] [Indexed: 01/17/2023] Open
Abstract
Endogenous nitric oxide (NO) generated by inducible NO synthase (iNOS) promotes glioblastoma cell proliferation and invasion and also plays a key role in glioblastoma resistance to chemotherapy and radiotherapy. Non-ionizing photodynamic therapy (PDT) has anti-tumor advantages over conventional glioblastoma therapies. Our previous studies revealed that glioblastoma U87 cells up-regulate iNOS after a photodynamic challenge and that the resulting NO not only increases resistance to apoptosis but renders surviving cells more proliferative and invasive. These findings were largely based on the effects of inhibiting iNOS activity and scavenging NO. Demonstrating now that iNOS expression in photostressed U87 cells is mediated by NF-κB, we hypothesized that (i) recognition of acetylated lysine (acK) on NF-κB p65/RelA by bromodomain and extra-terminal (BET) protein Brd4 is crucial; and (ii) by suppressing iNOS expression, a BET inhibitor (JQ1) would attenuate the negative effects of photostress. The following evidence was obtained. (i) Like iNOS, Brd4 protein and p65-acK levels increased severalfold in photostressed cells. (ii) JQ1 at minimally toxic concentrations had no effect on Brd4 or p65-acK up-regulation after PDT but strongly suppressed iNOS, survivin, and Bcl-xL up-regulation, along with the growth and invasion spurt of PDT-surviving cells. (iii) JQ1 inhibition of NO production in photostressed cells closely paralleled that of growth/invasion inhibition. (iv) Finally, at 1% the concentration of iNOS inhibitor 1400W, JQ1 reduced post-PDT cell aggressiveness to a far greater extent. This is the first evidence for BET inhibitor targeting of iNOS expression in cancer cells and how such targeting can markedly improve therapeutic efficacy.
Collapse
Affiliation(s)
- Jonathan M Fahey
- From the Department of Biochemistry, Medical College of Wisconsin, Milwaukee, Wisconsin 53226-3548
| | - Jennifer S Stancill
- From the Department of Biochemistry, Medical College of Wisconsin, Milwaukee, Wisconsin 53226-3548
| | - Brian C Smith
- From the Department of Biochemistry, Medical College of Wisconsin, Milwaukee, Wisconsin 53226-3548
| | - Albert W Girotti
- From the Department of Biochemistry, Medical College of Wisconsin, Milwaukee, Wisconsin 53226-3548
| |
Collapse
|
21
|
Bazak J, Fahey JM, Wawak K, Korytowski W, Girotti AW. Enhanced aggressiveness of bystander cells in an anti-tumor photodynamic therapy model: Role of nitric oxide produced by targeted cells. Free Radic Biol Med 2017; 102:111-121. [PMID: 27884704 DOI: 10.1016/j.freeradbiomed.2016.11.034] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2016] [Revised: 11/16/2016] [Accepted: 11/20/2016] [Indexed: 12/27/2022]
Abstract
The bystander effects of anti-cancer ionizing radiation have been widely studied, but far less is known about such effects in the case of non-ionizing photodynamic therapy (PDT). In the present study, we tested the hypothesis that photodynamically-stressed prostate cancer PC3 cells can elicit nitric oxide (NO)-mediated pro-growth/migration responses in non-stressed bystander cells. A novel approach was used whereby both cell populations existed on a culture dish, but made no physical contact with one other. Visible light irradiation of target cells sensitized with 5-aminolevulinic acid-induced protoporphyrin IX resulted in a striking upregulation of inducible nitric oxide synthase (iNOS) along with NO, the level of which increased after irradiation. Slower and less pronounced iNOS/NO upregulation was also observed in bystander cells. Activation of transcription factor NF-κB was implicated in iNOS induction in both targeted and bystander cells. Like surviving targeted cells, bystanders exhibited a significant increase in growth and migration rate, both responses being strongly attenuated by an iNOS inhibitor (1400W), a NO scavenger (cPTIO), or iNOS knockdown. Incubating bystander cells with conditioned medium from targeted cells failed to stimulate growth/migration, ruling out involvement of relatively long-lived stimulants. The following post-irradiation changes in pro-survival/pro-growth proteins were observed in bystander cells: upregulation of COX-2 and activation of protein kinases Akt and ERK1/2, NO again playing a key role. This is the first reported evidence for NO-enhanced bystander aggressiveness in the context of PDT. In the clinical setting, such effects could be averted through pharmacologic use of iNOS inhibitors as PDT adjuvants.
Collapse
Affiliation(s)
- Jerzy Bazak
- Department of Biophysics, Jagiellonian University, Krakow, Poland
| | - Jonathan M Fahey
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, WI 53226-3548, USA
| | - Katarzyna Wawak
- Department of Biophysics, Jagiellonian University, Krakow, Poland
| | - Witold Korytowski
- Department of Biophysics, Jagiellonian University, Krakow, Poland; Department of Biochemistry, Medical College of Wisconsin, Milwaukee, WI 53226-3548, USA.
| | - Albert W Girotti
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, WI 53226-3548, USA.
| |
Collapse
|
22
|
Fahey JM, Girotti AW. Nitric oxide-mediated resistance to photodynamic therapy in a human breast tumor xenograft model: Improved outcome with NOS2 inhibitors. Nitric Oxide 2016; 62:52-61. [PMID: 28007662 DOI: 10.1016/j.niox.2016.12.003] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2016] [Revised: 12/07/2016] [Accepted: 12/12/2016] [Indexed: 12/13/2022]
Abstract
Many malignant tumors employ iNOS-derived NO to resist eradication by chemotherapeutic agents or ionizing radiation. In this study, we determined whether human breast carcinoma MDA-MB-231 cells in vitro and in vivo as tumor xenografts would exploit endogenous iNOS/NO to resist the cytotoxic effects of 5-aminolevulinic acid (ALA)-based photodynamic therapy (PDT). Broad band visible irradiation of ALA-treated cells resulted in a marked after-light upregulation of iNOS protein which persisted for at least 24 h. Apoptotic killing of ALA/light-challenged cells was significantly enhanced by iNOS inhibitors (1400W, GW274150) and a NO trap (cPTIO), implying that stress-induced iNOS/NO was acting cytoprotectively. We found that cells surviving the photostress proliferated and migrated more rapidly than controls in 1400W- and cPTIO-inhibitable fashion, indicating iNOS/NO involvement. Female SCID mice bearing MDA-MB-231 tumors were used for animal model experiments. ALA-PDT with a 633 nm light source caused a significant reduction in post-irradiation tumor growth relative to light-only controls, which was further reduced by administration of 1400W or GW274150, whereas 1400W had little or no effect on controls. Immunoblot analyses of tumor samples revealed a progressive post-PDT upregulation of iNOS, which reached >5-times the control level after six days. Correspondingly, the nitrite/nitrate level in post-PDT tumor samples was substantially higher than that in controls. In addition, a 1400W-inhibitable upregulation of pro-survival/progression effector proteins such as Bcl-xL, Survivin, and S100A4 was observed after in vitro and in vivo ALA-PDT. This is the first known study to demonstrate iNOS/NO-induced resistance to PDT in an in vivo human tumor model.
Collapse
Affiliation(s)
- Jonathan M Fahey
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Albert W Girotti
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, WI, USA.
| |
Collapse
|
23
|
Fahey JM, Emmer JV, Korytowski W, Hogg N, Girotti AW. Antagonistic Effects of Endogenous Nitric Oxide in a Glioblastoma Photodynamic Therapy Model. Photochem Photobiol 2016; 92:842-853. [PMID: 27608331 PMCID: PMC5161550 DOI: 10.1111/php.12636] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2016] [Accepted: 08/05/2016] [Indexed: 12/21/2022]
Abstract
Gliomas are aggressive brain tumors that are resistant to conventional chemotherapy and radiotherapy. Much of this resistance is attributed to endogenous nitric oxide (NO). Recent studies revealed that 5-aminolevulinic acid (ALA)-based photodynamic therapy (PDT) has advantages over conventional treatments for glioblastoma. In this study, we used an in vitro model to assess whether NO from glioblastoma cells can interfere with ALA-PDT. Human U87 and U251 cells expressed significant basal levels of neuronal NO synthase (nNOS) and its inducible counterpart (iNOS). After an ALA/light challenge, iNOS level increased three- to fourfold over 24 h, whereas nNOS remained unchanged. Elevated iNOS resulted in a large increase in intracellular NO. Extent of ALA/light-induced apoptosis increased substantially when an iNOS inhibitor or NO scavenger was present, implying that iNOS/NO was acting cytoprotectively. Moreover, cells surviving a photochallenge exhibited a striking increase in proliferation, migration and invasion rates, iNOS/NO again playing a dominant role. Also observed was a large iNOS/NO-dependent increase in matrix metalloproteinase-9 activity, decrease in tissue inhibitor of metalloproteinase-1 expression and increase in survivin and S100A4 expression, each effect being consistent with accelerated migration/invasion as a prelude to metastasis. Our findings suggest introduction of iNOS inhibitors as pharmacologic adjuvants for glioblastoma PDT.
Collapse
Affiliation(s)
- Jonathan M. Fahey
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Joseph V. Emmer
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Witold Korytowski
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, WI 53226, USA
- Department of Biophysics, Jagiellonian University, Krakow, Poland
| | - Neil Hogg
- Department of Biophysics, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Albert W. Girotti
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| |
Collapse
|
24
|
Girotti AW. Modulation of the Anti-Tumor Efficacy of Photodynamic Therapy by Nitric Oxide. Cancers (Basel) 2016; 8:E96. [PMID: 27775600 PMCID: PMC5082386 DOI: 10.3390/cancers8100096] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2016] [Revised: 10/12/2016] [Accepted: 10/14/2016] [Indexed: 12/16/2022] Open
Abstract
Nitric oxide (NO) produced by nitric oxide synthase (NOS) enzymes is a free radical molecule involved in a wide variety of normophysiologic and pathophysiologic processes. Included in the latter category are cancer promotion, progression, and resistance to therapeutic intervention. Animal tumor photodynamic therapy (PDT) studies several years ago revealed that endogenous NO can reduce PDT efficacy and that NOS inhibitors can alleviate this. Until relatively recently, little else was known about this anti-PDT effect of NO, including: (a) the underlying mechanisms; (b) type(s) of NOS involved; and (c) whether active NO was generated in vascular cells, tumor cells, or both. In addressing these questions for various cancer cell lines exposed to PDT-like conditions, the author's group has made several novel findings, including: (i) exogenous NO can scavenge lipid-derived free radicals arising from photostress, thereby protecting cells from membrane-damaging chain peroxidation; (ii) cancer cells can upregulate inducible NOS (iNOS) after a PDT-like challenge and the resulting NO can signal for resistance to photokilling; (iii) photostress-surviving cells with elevated iNOS/NO proliferate and migrate/invade more aggressively; and (iv) NO produced by photostress-targeted cells can induce greater aggressiveness in non-targeted bystander cells. In this article, the author briefly discusses these various means by which NO can interfere with PDT and how this may be mitigated by use of NOS inhibitors as PDT adjuvants.
Collapse
Affiliation(s)
- Albert W Girotti
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, WI 53226, USA.
| |
Collapse
|
25
|
Ji YY, Ma YJ, Wang JW. Cytoprotective role of nitric oxide in HepG2 cell apoptosis induced by hypocrellin B photodynamic treatment. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2016; 163:366-73. [DOI: 10.1016/j.jphotobiol.2016.09.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Revised: 09/02/2016] [Accepted: 09/03/2016] [Indexed: 01/05/2023]
|
26
|
Pogue BW, Elliott JT, Kanick SC, Davis SC, Samkoe KS, Maytin EV, Pereira SP, Hasan T. Revisiting photodynamic therapy dosimetry: reductionist & surrogate approaches to facilitate clinical success. Phys Med Biol 2016; 61:R57-89. [PMID: 26961864 DOI: 10.1088/0031-9155/61/7/r57] [Citation(s) in RCA: 75] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Photodynamic therapy (PDT) can be a highly complex treatment, with many parameters influencing treatment efficacy. The extent to which dosimetry is used to monitor and standardize treatment delivery varies widely, ranging from measurement of a single surrogate marker to comprehensive approaches that aim to measure or estimate as many relevant parameters as possible. Today, most clinical PDT treatments are still administered with little more than application of a prescribed drug dose and timed light delivery, and thus the role of patient-specific dosimetry has not reached widespread clinical adoption. This disconnect is at least partly due to the inherent conflict between the need to measure and understand multiple parameters in vivo in order to optimize treatment, and the need for expedience in the clinic and in the regulatory and commercialization process. Thus, a methodical approach to selecting primary dosimetry metrics is required at each stage of translation of a treatment procedure, moving from complex measurements to understand PDT mechanisms in pre-clinical and early phase I trials, towards the identification and application of essential dose-limiting and/or surrogate measurements in phase II/III trials. If successful, identifying the essential and/or reliable surrogate dosimetry measurements should help facilitate increased adoption of clinical PDT. In this paper, examples of essential dosimetry points and surrogate dosimetry tools that may be implemented in phase II/III trials are discussed. For example, the treatment efficacy as limited by light penetration in interstitial PDT may be predicted by the amount of contrast uptake in CT, and so this could be utilized as a surrogate dosimetry measurement to prescribe light doses based upon pre-treatment contrast. Success of clinical ALA-based skin lesion treatment is predicted almost uniquely by the explicit or implicit measurements of photosensitizer and photobleaching, yet the individualization of treatment based upon each patients measured bleaching needs to be attempted. In the case of ALA, lack of PpIX is more likely an indicator that alternative PpIX production methods must be implemented. Parsimonious dosimetry, using surrogate measurements that are clinically acceptable, might strategically help to advance PDT in a medical world that is increasingly cost and time sensitive. Careful attention to methodologies that can identify and advance the most critical dosimetric measurements, either direct or surrogate, are needed to ensure successful incorporation of PDT into niche clinical procedures.
Collapse
Affiliation(s)
- Brian W Pogue
- Thayer School of Engineering, Dartmouth College, Hanover, NH 03755, USA. Department of Surgery, Geisel School of Medicine at Dartmouth, Hanover, NH 03755, USA
| | | | | | | | | | | | | | | |
Collapse
|
27
|
Fahey JM, Girotti AW. Accelerated migration and invasion of prostate cancer cells after a photodynamic therapy-like challenge: Role of nitric oxide. Nitric Oxide 2015; 49:47-55. [PMID: 26068242 DOI: 10.1016/j.niox.2015.05.006] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2015] [Revised: 05/14/2015] [Accepted: 05/26/2015] [Indexed: 11/25/2022]
Abstract
Employing an in vitro model for 5-aminolevulinic acid (ALA)-based photodynamic therapy (PDT), we recently reported that human prostate cancer PC3 cells rapidly and persistently overexpressed inducible nitric oxide synthase (iNOS) and nitric oxide (NO) after a moderate ALA/light challenge. The upregulated iNOS/NO was shown to play a key role in cell resistance to apoptotic photokilling and also in the dramatic growth spurt observed in surviving cells. In the present study, we found that PC3 cells surviving an ALA/light insult not only proliferated faster than non-stressed controls, but migrated and invaded faster as well, these effects being abrogated by an iNOS inhibitor or NO scavenger. Photostressed prostate DU145 cells exhibited similar behavior. Using in-gel zymography, we showed that PC3 extracellular matrix metalloproteinase-9 (MMP-9) was strongly activated 24 h after ALA/light treatment and that MMP-9 inhibitor TIMP-1 was downregulated, consistent with MMP-9 involvement in enhanced invasiveness. We also observed a photostress-induced upregulation of α6 and β1 integrins, implying their involvement as well. The MMP-9, TIMP-1, and integrin effects were strongly attenuated by iNOS inhibition, confirming NO's role in photostress-enhanced migration/invasion. This study reveals novel, potentially tumor-promoting, side-effects of prostate cancer PDT which may be averted through use of iNOS inhibitors as PDT adjuvants.
Collapse
Affiliation(s)
- Jonathan M Fahey
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, WI 53226-3548, USA
| | - Albert W Girotti
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, WI 53226-3548, USA.
| |
Collapse
|
28
|
Akl J, Sasaki I, Lacroix PG, Malfant I, Mallet-Ladeira S, Vicendo P, Farfán N, Santillan R. Comparative photo-release of nitric oxide from isomers of substituted terpyridinenitrosylruthenium(II) complexes: experimental and computational investigations. Dalton Trans 2015; 43:12721-33. [PMID: 25011547 DOI: 10.1039/c4dt00974f] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The 4'-(2-fluorenyl)-2,2':6',2''-terpyridine (FT) ligand and its cis(Cl,Cl)- and trans(Cl,Cl)-[Ru(II)(FT)Cl2(NO)](PF6) complexes have been synthesized. Both isomers were separated by HPLC and fully characterized by (1)H and (13)C NMR. The X-ray diffraction crystal structures were solved for FT (Pna21 space group, a = 34.960(4), b = 5.9306(7), c = 9.5911(10) Å), and trans(Cl,Cl)-[Ru(II)(FT)Cl2(NO)](PF6)·MeOH (P1[combining macron] space group, a = 10.3340(5), b = 13.0961(6), c = 13.2279(6) Å, α = 72.680(2), β = 70.488(2), γ = 67.090(2)°). Photo-release of NO˙ radicals occurs under irradiation at 405 nm, with a quantum yield of 0.31 and 0.10 for cis(Cl,Cl)-[Ru(II)(FT)Cl2(NO)](PF6) and trans(Cl,Cl)-[Ru(II)(FT)Cl2(NO)](PF6), respectively. This significant difference is likely due to the trans effect of Cl(-), which favors the photo-release. UV-visible spectroscopy and cyclic voltammetry indicate the formation of ruthenium(iii) species as photoproducts. A density functional theory (DFT) analysis provides a rationale for the understanding of the photo-physical properties, and allows relating the weakening of the Ru-NO bond, and finally the photo-dissociation, to HOMO → LUMO excitations.
Collapse
Affiliation(s)
- Joëlle Akl
- Laboratoire de Chimie de Coordination du CNRS, 205 route de Narbonne, F-31077 Toulouse, France.
| | | | | | | | | | | | | | | |
Collapse
|
29
|
Girotti AW. Tumor-generated nitric oxide as an antagonist of photodynamic therapy. Photochem Photobiol Sci 2015; 14:1425-32. [PMID: 25706541 DOI: 10.1039/c4pp00470a] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Nitric oxide (NO) is a multifunctional free radical molecule produced naturally by nitric oxide synthase (NOS) enzymes. Many tumors exploit NO for survival and growth signaling, and also to thwart the effects of therapeutic treatments, including PDT. The anti-PDT effects of NO were discovered using animal tumor models, but the mechanisms involved are still not fully understood. Recent in vitro studies on breast and prostate cancer cells have shown that inducible NOS (iNOS) along with NO is dramatically upregulated after an ALA-PDT-like challenge. Cells were more resistant to apoptosis after a photochallenge and survivors grew, migrated, and invaded more rapidly, iNOS/NO playing a key role in all these effects. This perspective briefly reviews what is currently known about NO's negative effects on PDT and some of the signaling mechanisms involved. It also provides insights into how these effects may be attenuated by pharmacologic use of iNOS inhibitors.
Collapse
Affiliation(s)
- Albert W Girotti
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, Wisconsin 53226, USA.
| |
Collapse
|
30
|
MicroRNAs associated with the efficacy of photodynamic therapy in biliary tract cancer cell lines. Int J Mol Sci 2014; 15:20134-57. [PMID: 25380521 PMCID: PMC4264160 DOI: 10.3390/ijms151120134] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2014] [Revised: 08/27/2014] [Accepted: 10/27/2014] [Indexed: 12/18/2022] Open
Abstract
Photodynamic therapy (PDT) is a palliative treatment option for unresectable hilar biliary tract cancer (BTC) showing a considerable benefit for survival and quality of life with few side effects. Currently, factors determining the cellular response of BTC cells towards PDT are unknown. Due to their multifaceted nature, microRNAs (miRs) are a promising analyte to investigate the cellular mechanisms following PDT. For two photosensitizers, Photofrin® and Foscan®, the phototoxicity was investigated in eight BTC cell lines. Each cell line (untreated) was profiled for expression of n=754 miRs using TaqMan® Array Human MicroRNA Cards. Statistical analysis and bioinformatic tools were used to identify miRs associated with PDT efficiency and their putative targets, respectively. Twenty miRs correlated significantly with either high or low PDT efficiency. PDT was particularly effective in cells with high levels of clustered miRs 25-93*-106b and (in case of miR-106b) a phenotype characterized by high expression of the mesenchymal marker vimentin and high proliferation (cyclinD1 and Ki67 expression). Insensitivity towards PDT was associated with high miR-200 family expression and (for miR-cluster 200a/b-429) expression of differentiation markers Ck19 and Ck8/18. Predicted and validated downstream targets indicate plausible involvement of miRs 20a*, 25, 93*, 130a, 141, 200a, 200c and 203 in response mechanisms to PDT, suggesting that targeting these miRs could improve susceptibility to PDT in insensitive cell lines. Taken together, the miRNome pattern may provide a novel tool for predicting the efficiency of PDT and-following appropriate functional verification-may subsequently allow for optimization of the PDT protocol.
Collapse
|
31
|
Pro-survival and pro-growth effects of stress-induced nitric oxide in a prostate cancer photodynamic therapy model. Cancer Lett 2013; 343:115-22. [PMID: 24080338 DOI: 10.1016/j.canlet.2013.09.025] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2013] [Revised: 09/13/2013] [Accepted: 09/20/2013] [Indexed: 01/27/2023]
Abstract
We discovered recently that human breast cancer cells subjected to photodynamic therapy (PDT)-like oxidative stress localized in mitochondria rapidly upregulated nitric oxide synthase-2 (NOS2) and nitric oxide (NO), which increased resistance to apoptotic photokilling. In this study, we asked whether human prostate cancer PC-3 cells would exploit NOS2/NO similarly and, if so, how proliferation of surviving cells might be affected. Irradiation of photosensitized PC-3 cells resulted in a rapid (<1 h), robust (~12-fold), and prolonged (∼20 h) post-irradiation upregulation of NOS2. Caspase-3/7 activation and apoptosis were stimulated by NOS2 inhibitors and a NO scavenger, implying that induced NO was acting cytoprotectively. Cyclic GMP involvement was ruled out, whereas suppression of pro-apoptotic JNK and p38 MAPK activation was clearly implicated. Cells surviving photostress grew back ~2-times faster than controls. NOS2 inhibition prevented this and the large increase in cell cycle S-phase occupancy observed after irradiation. Thus, photostress upregulation of NOS/NO elicited both a pro-survival and pro-growth response, both of which could compromise clinical PDT efficacy unless suppressed, e.g. by pharmacological intervention with a NOS2 inhibitor.
Collapse
|
32
|
Brooke R, Sidhu M, Sinha A, Watson R, Friedmann P, Clough G, Rhodes L. Prostaglandin E2and nitric oxide mediate the acute inflammatory (erythemal) response to topical 5-aminolaevulinic acid photodynamic therapy in human skin. Br J Dermatol 2013; 169:645-52. [PMID: 23909846 DOI: 10.1111/bjd.12562] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/14/2013] [Indexed: 01/17/2023]
Affiliation(s)
- R.C.C. Brooke
- Dermatology Centre; Institute of Inflammation and Repair; University of Manchester; Manchester Academic Health Science Centre; Salford Royal NHS Foundation Trust; Manchester; U.K
| | - M. Sidhu
- Dermatology Centre; Institute of Inflammation and Repair; University of Manchester; Manchester Academic Health Science Centre; Salford Royal NHS Foundation Trust; Manchester; U.K
| | - A. Sinha
- Dermatology Centre; Institute of Inflammation and Repair; University of Manchester; Manchester Academic Health Science Centre; Salford Royal NHS Foundation Trust; Manchester; U.K
| | - R.E.B. Watson
- Dermatology Centre; Institute of Inflammation and Repair; University of Manchester; Manchester Academic Health Science Centre; Salford Royal NHS Foundation Trust; Manchester; U.K
| | - P.S. Friedmann
- Division of Infection, Inflammation and Immunity ; Faculty of Medicine; University of Southampton; Southampton; U.K
| | - G.F. Clough
- Institute of Developmental Health; Faculty of Medicine; University of Southampton; Southampton; U.K
| | - L.E. Rhodes
- Dermatology Centre; Institute of Inflammation and Repair; University of Manchester; Manchester Academic Health Science Centre; Salford Royal NHS Foundation Trust; Manchester; U.K
| |
Collapse
|
33
|
Bhowmick R, Girotti AW. Cytoprotective signaling associated with nitric oxide upregulation in tumor cells subjected to photodynamic therapy-like oxidative stress. Free Radic Biol Med 2013; 57:39-48. [PMID: 23261943 PMCID: PMC3594367 DOI: 10.1016/j.freeradbiomed.2012.12.005] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2012] [Revised: 12/04/2012] [Accepted: 12/07/2012] [Indexed: 12/12/2022]
Abstract
Photodynamic therapy (PDT) employs photoexcitation of a sensitizer to generate tumor-eradicating reactive oxygen species. We recently showed that irradiating breast cancer COH-BR1 cells after treating with 5-aminolevulinic acid (ALA, a pro-sensitizer) resulted in rapid upregulation of inducible nitric oxide (NO) synthase (iNOS). Apoptotic cell killing was strongly enhanced by an iNOS inhibitor (1400W), iNOS knockdown (kd), or a NO scavenger, suggesting that NO was acting cytoprotectively. Stress signaling associated with these effects was examined in this study. ALA/light-stressed COH-BR1 cells, and also breast adenocarcinoma MDA-MB-231 cells, mounted an iNOS/NO-dependent resistance to apoptosis that proved to be cGMP-independent. Immunocytochemistry and subcellular Western analysis of photostressed COH-BR1 cells revealed a cytosol-to-nucleus translocation of NF-κB which was negated by the NF-κB activation inhibitor Bay11. Bay11 also enhanced apoptosis and prevented iNOS induction, consistent with NF-κB involvement in the latter. JNK and p38 MAP kinase inhibitors suppressed apoptosis, implicating these kinases in death signaling. Post-irradiation extent and duration of JNK and p38 phosphorylation were dramatically elevated by 1400 W or iNOS-kd, suggesting that these activations were suppressed by NO. Regarding pro-survival stress signaling, rapid activation of Akt was unaffected by 1400 W, but prevented by Wortmannin, which also enhanced apoptosis. Thus, a link between upstream Akt activation and iNOS induction was apparent. Furthermore, p53 protein expression under photostress was elevated by iNOS-kd, whereas robust Survivin induction was abolished, consistent with p53 and Survivin being negatively and positively regulated by NO, respectively. Collectively, these findings enhance our understanding of cytoprotective signaling associated with photostress-induced NO and suggest iNOS inhibitor-based approaches for improving PDT efficacy.
Collapse
Affiliation(s)
- Reshma Bhowmick
- To whom correspondence may be addressed: Reshma Bhowmick, Ph.D. Department of Biochemistry Medical College of Wisconsin Milwaukee, WI, 53226 Tel: 414-955-8445
| | - Albert W. Girotti
- To whom correspondence may be addressed: Albert W. Girotti, Ph.D. Department of Biochemistry Medical College of Wisconsin Milwaukee, WI, 53226 Tel: 414-955-8432
| |
Collapse
|
34
|
Senge MO, Radomski MW. Platelets, photosensitizers, and PDT. Photodiagnosis Photodyn Ther 2013; 10:1-16. [DOI: 10.1016/j.pdpdt.2012.08.004] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2012] [Revised: 08/09/2012] [Accepted: 08/16/2012] [Indexed: 12/23/2022]
|
35
|
Agostinis P, Berg K, Cengel KA, Foster TH, Girotti AW, Gollnick SO, Hahn SM, Hamblin MR, Juzeniene A, Kessel D, Korbelik M, Moan J, Mroz P, Nowis D, Piette J, Wilson BC, Golab J. Photodynamic therapy of cancer: an update. CA Cancer J Clin 2011; 61:250-81. [PMID: 21617154 PMCID: PMC3209659 DOI: 10.3322/caac.20114] [Citation(s) in RCA: 3507] [Impact Index Per Article: 250.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Photodynamic therapy (PDT) is a clinically approved, minimally invasive therapeutic procedure that can exert a selective cytotoxic activity toward malignant cells. The procedure involves administration of a photosensitizing agent followed by irradiation at a wavelength corresponding to an absorbance band of the sensitizer. In the presence of oxygen, a series of events lead to direct tumor cell death, damage to the microvasculature, and induction of a local inflammatory reaction. Clinical studies revealed that PDT can be curative, particularly in early stage tumors. It can prolong survival in patients with inoperable cancers and significantly improve quality of life. Minimal normal tissue toxicity, negligible systemic effects, greatly reduced long-term morbidity, lack of intrinsic or acquired resistance mechanisms, and excellent cosmetic as well as organ function-sparing effects of this treatment make it a valuable therapeutic option for combination treatments. With a number of recent technological improvements, PDT has the potential to become integrated into the mainstream of cancer treatment.
Collapse
Affiliation(s)
- Patrizia Agostinis
- Department of Molecular Cell Biology, Cell Death Research & Therapy Laboratory, Catholic University of Leuven, B-3000 Leuven, Belgium,
| | - Kristian Berg
- Department of Radiation Biology, Institute for Cancer Research, The Norwegian Radium Hospital, Oslo University Hospital, Montebello, N-0310 Oslo, Norway, ;
| | - Keith A. Cengel
- Department of Radiation Oncology, University of Pennsylvania, Philadelphia, PA 19004, USA, ;
| | - Thomas H. Foster
- Department of Imaging Sciences, University of Rochester, Rochester, NY 14642, USA,
| | - Albert W. Girotti
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, WI, 53226-3548, USA,
| | - Sandra O. Gollnick
- Department of Cell Stress Biology, Roswell Park Cancer Institute, Elm and Carlton Sts, Buffalo, NY, 14263, USA,
| | - Stephen M. Hahn
- Department of Radiation Oncology, University of Pennsylvania, Philadelphia, PA 19004, USA, ;
| | - Michael R. Hamblin
- Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, MA 02114-2696, USA, ;
- Department of Dermatology, Harvard Medical School, Boston MA 02115
- Harvard-MIT Division of Health Sciences and Technology, Cambridge, MA 02139, USA
| | - Asta Juzeniene
- Department of Radiation Biology, Institute for Cancer Research, The Norwegian Radium Hospital, Oslo University Hospital, Montebello, N-0310 Oslo, Norway, ;
| | - David Kessel
- Department of Pharmacology, Wayne State University School of Medicine, Detroit MI 48201, USA,
| | | | - Johan Moan
- Department of Radiation Biology, Institute for Cancer Research, The Norwegian Radium Hospital, Oslo University Hospital, Montebello, N-0310 Oslo, Norway, ;
- Institute of Physics, University of Oslo, Blindern 0316 Oslo, Norway;
| | - Pawel Mroz
- Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, MA 02114-2696, USA, ;
- Department of Dermatology, Harvard Medical School, Boston MA 02115
| | - Dominika Nowis
- Department of Immunology, Centre of Biostructure Research, Medical University of Warsaw, Poland, ;
| | - Jacques Piette
- GIGA-Research, Laboratory of Virology & Immunology, University of Liège, B-4000 Liège Belgium,
| | - Brian C. Wilson
- Ontario Cancer Institute/University of Toronto, Toronto, ON M5G 2M9, Canada,
| | - Jakub Golab
- Department of Immunology, Centre of Biostructure Research, Medical University of Warsaw, Poland, ;
- Institute of Physical Chemistry, Polish Academy of Sciences, Department 3, Warsaw, Poland
| |
Collapse
|
36
|
Bhowmick R, Girotti AW. Rapid upregulation of cytoprotective nitric oxide in breast tumor cells subjected to a photodynamic therapy-like oxidative challenge. Photochem Photobiol 2011; 87:378-86. [PMID: 21143607 DOI: 10.1111/j.1751-1097.2010.00877.x] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Many tumor cells produce nitric oxide (NO) as an antiapoptotic/progrowth molecule which also promotes antiogenesis and tumor expansion. This study was designed to examine possible antagonistic effects of endogenous NO on tumor eradication by photodynamic therapy (PDT). Using COH-BR1 breast cancer cells sensitized in mitochondria with 5-aminolevulinic acid (ALA)-generated protoporphyrin IX as a model for ALA-based PDT, we found that caspase-9 activation and apoptotic death following irradiation were strongly enhanced by 1400W, an inhibitor of inducible nitric oxide synthase (iNOS). RT-PCR and Western analyses revealed a substantial upregulation of both iNOS mRNA and protein, beginning ca 4 h after irradiation and persisting for at least 20 h. Accompanying this was a strong 1400W-inhibitable increase in intracellular NO, as detected with the NO probe, DAF-2-DA. Short hairpin RNA-based iNOS knockdown in COH-BR1 cells dramatically reduced NO production under photostress while enhancing caspase-9 activation and apoptosis. These findings suggest that cytoprotective iNOS/NO induction in PDT-treated tumor cells could reduce treatment efficacy, and point to pharmacologic intervention with iNOS inhibitors for counteracting this.
Collapse
Affiliation(s)
- Reshma Bhowmick
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, WI, USA
| | | |
Collapse
|
37
|
Firczuk M, Nowis D, Gołąb J. PDT-induced inflammatory and host responses. Photochem Photobiol Sci 2011; 10:653-63. [PMID: 21258727 DOI: 10.1039/c0pp00308e] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Photodynamic therapy (PDT) is used in the management of neoplastic and nonmalignant diseases. Its unique mechanisms of action include direct cytotoxic effects exerted towards tumor cells, destruction of tumor and peritumoral vasculature and induction of local acute inflammatory reaction. The latter develops in response to (1) damage to tumor and stromal cells that leads to the release of cell death-associated molecular patterns (CDAMs) or damage associated molecular patterns (DAMPs), (2) early vascular changes that include increased vascular permeability, vascular occlusion, and release of vasoactive and proinflammatory mediators, (3) activation of alternative pathway of complement leading to generation of potent chemotactic factors, and (4) induction of signaling cascades and transcription factors that trigger secretion of cytokines, matrix metalloproteinases, or adhesion molecules. The majority of studies indicate that induction of local inflammatory response contributes to the antitumor effects of PDT and facilitates development of systemic immunity. However, the degree of PDT-induced inflammation and its subsequent contribution to its antitumor efficacy depend on multiple parameters, such as chemical nature, concentration and subcellular localization of the photosensitizers, the spectral characteristics of the light source, light fluence and fluence rate, oxygenation level, and tumor type. Identification of detailed molecular mechanisms and development of therapeutic approaches modulating PDT-induced inflammation will be necessary to tailor this treatment to particular clinical conditions.
Collapse
Affiliation(s)
- Małgorzata Firczuk
- Department of Immunology, Centre of Biostructure Research, Medical University of Warsaw, Warsaw, Poland.
| | | | | |
Collapse
|
38
|
The role of nitric oxide in the treatment of tumours with aminolaevulinic acid-induced photodynamic therapy. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2010; 101:224-32. [DOI: 10.1016/j.jphotobiol.2010.07.007] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2010] [Revised: 07/10/2010] [Accepted: 07/12/2010] [Indexed: 11/24/2022]
|
39
|
Celli JP, Spring BQ, Rizvi I, Evans CL, Samkoe KS, Verma S, Pogue BW, Hasan T. Imaging and photodynamic therapy: mechanisms, monitoring, and optimization. Chem Rev 2010; 110:2795-838. [PMID: 20353192 PMCID: PMC2896821 DOI: 10.1021/cr900300p] [Citation(s) in RCA: 1692] [Impact Index Per Article: 112.8] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Jonathan P Celli
- Wellman Center for Photomedicine, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts 02114, USA
| | | | | | | | | | | | | | | |
Collapse
|
40
|
Reeves KJ, Reed MW, Brown NJ. Is nitric oxide important in photodynamic therapy? JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2009; 95:141-7. [DOI: 10.1016/j.jphotobiol.2009.02.005] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2008] [Revised: 02/05/2009] [Accepted: 02/10/2009] [Indexed: 10/21/2022]
|
41
|
Seshadri M, Bellnier DA, Vaughan LA, Spernyak JA, Mazurchuk R, Foster TH, Henderson BW. Light delivery over extended time periods enhances the effectiveness of photodynamic therapy. Clin Cancer Res 2008; 14:2796-805. [PMID: 18451247 PMCID: PMC2805854 DOI: 10.1158/1078-0432.ccr-07-4705] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE The rate of energy delivery is a principal factor determining the biological consequences of photodynamic therapy (PDT). In contrast to conventional high-irradiance treatments, recent preclinical and clinical studies have focused on low-irradiance schemes. The objective of this study was to investigate the relationship between irradiance, photosensitizer dose, and PDT dose with regard to treatment outcome and tumor oxygenation in a rat tumor model. EXPERIMENTAL DESIGN Using the photosensitizer HPPH (2-[1-hexyloxyethyl]-2-devinyl pyropheophorbide), a wide range of PDT doses that included clinically relevant photosensitizer concentrations was evaluated. Magnetic resonance imaging and oxygen tension measurements were done along with the Evans blue exclusion assay to assess vascular response, oxygenation status, and tumor necrosis. RESULTS In contrast to high-incident laser power (150 mW), low-power regimens (7 mW) yielded effective tumor destruction. This was largely independent of PDT dose (drug-light product), with up to 30-fold differences in photosensitizer dose and 15-fold differences in drug-light product. For all drug-light products, the duration of light treatment positively influenced tumor response. Regimens using treatment times of 120 to 240 min showed marked reduction in signal intensity in T2-weighted magnetic resonance images at both low (0.1 mg/kg) and high (3 mg/kg) drug doses compared with short-duration (6-11 min) regimens. Significantly greater reductions in pO(2) were observed with extended exposures, which persisted after completion of treatment. CONCLUSIONS These results confirm the benefit of prolonged light exposure, identify vascular response as a major contributor, and suggest that duration of light treatment (time) may be an important new treatment variable.
Collapse
Affiliation(s)
- Mukund Seshadri
- Department of Cell Stress Biology and Photodynamic Therapy Center, Roswell Park Cancer Institute, Buffalo, New York 14263
- Preclinical Imaging Resource Roswell Park Cancer Institute, Buffalo, New York 14263
| | - David A. Bellnier
- Department of Cell Stress Biology and Photodynamic Therapy Center, Roswell Park Cancer Institute, Buffalo, New York 14263
| | - Lurine A. Vaughan
- Department of Cell Stress Biology and Photodynamic Therapy Center, Roswell Park Cancer Institute, Buffalo, New York 14263
| | - Joseph A. Spernyak
- Preclinical Imaging Resource Roswell Park Cancer Institute, Buffalo, New York 14263
| | - Richard Mazurchuk
- Preclinical Imaging Resource Roswell Park Cancer Institute, Buffalo, New York 14263
| | - Thomas H. Foster
- Department of Imaging Sciences, University of Rochester, Rochester, New York 14642
| | - Barbara W. Henderson
- Department of Cell Stress Biology and Photodynamic Therapy Center, Roswell Park Cancer Institute, Buffalo, New York 14263
| |
Collapse
|
42
|
Niziolek M, Korytowski W, Girotti AW. Chain-breaking Antioxidant and Cytoprotective Action of Nitric Oxide on Photodynamically Stressed Tumor Cells ¶. Photochem Photobiol 2007. [DOI: 10.1562/0031-8655(2003)0780262caacao2.0.co2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
43
|
Gomes ER, Almeida RD, Carvalho AP, Duarte CB. Nitric Oxide Modulates Tumor Cell Death Induced by Photodynamic Therapy Through a cGMP-dependent Mechanism¶. Photochem Photobiol 2007. [DOI: 10.1562/0031-8655(2002)0760423nomtcd2.0.co2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
44
|
Henderson BW, Busch TM, Snyder JW. Fluence rate as a modulator of PDT mechanisms. Lasers Surg Med 2007; 38:489-93. [PMID: 16615136 DOI: 10.1002/lsm.20327] [Citation(s) in RCA: 131] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
BACKGROUND AND OBJECTIVES Molecular oxygen in the tissue to be treated by photodynamic therapy (PDT) is critical for photodynamic cell killing. The fluence rate of PDT light delivery has been identified as an important modulator of tissue oxygenation and treatment outcome. This article provides supporting evidence for the role of fluence rate in PDT and discusses the underlying mechanisms. STUDY DESIGN/MATERIALS AND METHODS Intratumoral pO2 was measured polarographically in murine tumors before and during PDT light treatment using the Eppendorf pO2 Histograph. Tumor response as a function of fluence rate and fluence was also assessed in murine tumor models. Changes in vascular permeability as a function of fluence rate were determined in murine tumors by measuring tumor uptake of fluorescent beads (200 nm diameter). RESULTS Severe oxygen depletion is shown to occur within seconds of illumination at a fluence rate of 75 mW/cm2 in radiation-induced fibrosarcoma (RIF) tumors photosensitized with AlPcS2. This effect was reversible and consistent with photochemical oxygen depletion, which has been shown by us and others to be fluence rate dependent. It is demonstrated that fluence rate affects the PDT tumor response in the Colon 26 tumor model, high fluence rate diminishing or even totally inhibiting tumor control, low fluence rate promoting tumor control. The influence of fluence rate is not restricted to cytocidal effects, but can also be seen in sublethal conditions such as vascular permeability. CONCLUSIONS Fluence rate of PDT light delivery exerts far-reaching control upon treatment outcome through its oxygenation modulating properties and possibly other mechanisms yet to be identified. This has been shown to be true in the preclinical and clinical setting. Further development of in situ dosimetry will be necessary to take full advantage of these discoveries.
Collapse
Affiliation(s)
- Barbara W Henderson
- Department of Cell Stress Biology, The Photodynamic Therapy Center, Roswell Park Cancer Institute, Buffalo, New York, New York 14263, USA.
| | | | | |
Collapse
|
45
|
Lu Z, Tao Y, Zhou Z, Zhang J, Li C, Ou L, Zhao B. Mitochondrial reactive oxygen species and nitric oxide-mediated cancer cell apoptosis in 2-butylamino-2-demethoxyhypocrellin B photodynamic treatment. Free Radic Biol Med 2006; 41:1590-605. [PMID: 17045927 DOI: 10.1016/j.freeradbiomed.2006.08.021] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2006] [Revised: 07/19/2006] [Accepted: 08/26/2006] [Indexed: 01/13/2023]
Abstract
Photodynamic therapy (PDT) is a novel and promising cancer treatment which employs a combination of a photosensitizing chemical and visible light to induce apoptosis in cancer cells. Singlet oxygen has been recognized as the main origin of oxidative stress in PDT. However, the precise mechanism of PDT-induced apoptosis is not well characterized, especially the dualistic role of nitric oxide (NO). To dissect the apoptosis pathways triggered by PDT, the intracellular free radicals in MCF-7 cells were investigated by examining a novel photosensitizer 2-butylamino-2-demethoxyhypocrellin B (2-BA-2-DMHB)-mediated PDT. It was found that exposure of the cells to 2-BA-2-DMHB and irradiation resulted in a significant increase of intracellular ROS in minutes, and then followed by cytoplasmic free calcium enhancement, mitochondrial nitric oxide synthase (mtNOS) activation, cytochrome c release, and apoptotic death. Scavengers of singlet oxygen or NO could attenuate PDT-induced cell viability loss, nucleus morphology changes, cytochrome c release, mitochondria swelling, and apo-apoptosis gene p53 and p21 mRNA levels. The results suggested that both ROS and NO played important roles in the apoptosis-induced by PDT.
Collapse
Affiliation(s)
- Zhongbing Lu
- State Key Laboratory of Brain and Recognition Laboratory, Institute of Biophysics, The Chinese Academy of Sciences, Beijing 100101, People's Republic of China
| | | | | | | | | | | | | |
Collapse
|
46
|
Lunardi CN, Cacciari AL, Silva RS, Bendhack LM. Cytosolic calcium concentration is reduced by photolysis of a nitrosyl ruthenium complex in vascular smooth muscle cells. Nitric Oxide 2006; 15:252-8. [PMID: 16564714 DOI: 10.1016/j.niox.2006.02.001] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2005] [Revised: 01/21/2006] [Accepted: 02/01/2006] [Indexed: 11/25/2022]
Abstract
The effect of the NO donors cis-[RuCl(bpy)(2)(NO)](PF(6)) (RUNOCL) and sodium nitroprusside (SNP) on the cytosolic Ca(2+) concentration ([Ca(2+)](c)) was studied in cells isolated from the rat aorta smooth muscle of cells isolated from the rat aorta smooth muscle. SNP is a metal nitrosyl complex made up of iron, cyanide groups, and a nitro moiety; the RUNOCL complex is made up of ruthenium and bipyridine ligands, with chloride and nitrosyl groups in the ruthenium axial positions. Rat aorta smooth muscle cells were loaded with fluo-3 acetoxymethyl ester (Fluo-3 AM) and imaged by a confocal scanning laser microscope excited with the 488 nm line of the argon ion laser. Fluorescence emission was measured at 510 nm. One of the NO donors, RUNOCL (100 micromol/L) or SNP (100 micromol/L), was then added to the cell chamber and the fluorescent intensity percentage (%IF) was measured after 240 s. RUNOCL reduced the %IF to 60.0+/-10.0% of the initial value. After treatment with the soluble guanylyl cyclase inhibitor 1H-[1,2,4]oxadiazole[4,3-a]quinoxalin-1-one (ODQ) (10 micromol/L), the measurement of %IF was 81.0+/-5.0% (n=4). In the presence of tetraethylammonium (TEA) (1 mmol/L) the %IF was 79.0+/-6.4% (n=4). A combination of ODQ and TEA increased the %IF to 97.0+/-3.5% (n=4). As for SNP, it reduced the %IF to 81.4+/-4.7% (n=4), but this effect was inhibited by ODQ (%IF 94.0+/-3.6%; n=4) and TEA (%IF 88.0+/-2.1%; n=4). The combination of ODQ and TEA increased (%IF 92.0+/-2.8%; n=4). Taken together, these results indicate that both the new NO donor RUNOCL and SNP reduce [Ca(2+)](c). Our data also give evidence that soluble guanylyl cyclase and K(+) channels sensitive to TEA are involved in the mechanisms responsible for the reduction in [Ca(2+)](c) of the rat aorta smooth muscle cells.
Collapse
Affiliation(s)
- C N Lunardi
- Depto. de Física e Química, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, 14040-903 Ribeirão Preto, SP, Brazil
| | | | | | | |
Collapse
|
47
|
Abstract
Photodynamic therapy (PDT) is increasingly being recognized as an attractive, alternative treatment modality for superficial cancer. Treatment consists of two relatively simple procedures: the administration of a photosensitive drug and illumination of the tumor to activate the drug. Efficacy is high for small superficial tumors and, except for temporary skin photosensitization, there are no long-term side effects if appropriate protocols are followed. Healing occurs with little or no scarring and the procedure can be repeated without cumulative toxicity. Considering the efficacy and lack of long-term toxicity of PDT, and the fact that the first treatment of cancer with PDT was done more than 100 years ago, one might expect that this treatment had already become an established therapy. However, PDT is currently offered in only a few selected centers, although it is slowly gaining acceptance as an alternative to conventional cancer therapies. Here, we show the developmental steps PDT underwent and summarize the current clinical applications. The data show that, when properly used, PDT is an effective alternative treatment option in oncology.
Collapse
Affiliation(s)
- Martijn Triesscheijn
- Division of Experimental Therapy (H6), The Netherlands Cancer Institute/Antoni van Leeuwenhoek Hospital, Plesmanlaan 121, 1066 CX Amsterdam, The Netherlands
| | | | | | | |
Collapse
|
48
|
Niziolek M, Korytowski W, Girotti AW. Nitric oxide-induced resistance to lethal photooxidative damage in a breast tumor cell line. Free Radic Biol Med 2006; 40:1323-31. [PMID: 16631522 DOI: 10.1016/j.freeradbiomed.2005.11.022] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2005] [Revised: 11/18/2005] [Accepted: 11/29/2005] [Indexed: 12/23/2022]
Abstract
The long-term effects of nitric oxide (NO) on cell susceptibility to photodynamic killing have been studied, using a human breast tumor line (COH-BR1). Subconfluent cells were exposed to a nonlethal dose of spermine NONOate (SPNO, 0.2 mM) and 20 h later were metabolically sensitized with protoporphyrin IX (PpIX) by incubating with 5-aminolevulinic acid. PpIX overproduced in mitochondria was allowed to diffuse to peripheral sites, including plasma membrane, after which a photooxidative challenge was imposed. Active (but not decomposed) SPNO made cells substantially more resistant to necrotic photokilling than non-SPNO-treated controls. A similar response to a tert-butyl hydroperoxide challenge was observed. Hyperresistance was detected approximately 8 h post-SPNO, maximized after approximately 20 h, and reflected diminished oxidant accumulation, as determined with 2',7'-dichlorofluorescein. Intracellular free iron determined with the fluorescent probe calcein rose to approximately 160% of the control level 6 h after SPNO, but declined to approximately 70% after 24 h. Immunoblot analyses revealed a rapid early (approximately 2 h post-NO) increase in heme oxygenase-1 level, followed by a gradual (4-20 h post-NO) increase in ferritin. Upregulation of these proteins is consistent with a cytoprotective mechanism involving mobilization of "signaling" iron. Preactivated RAW 264.7 macrophages on microporous inserts also induced a long-term photoresistance in underlying PpIX-sensitized COH-BR1 cells. This response was abolished by L-NAME, indicating that NO from induced nitric oxide synthase was involved. The NO effects described are entirely novel in the context of photooxidative stress and provide new insights into how NO might affect antitumor photodynamic therapy (PDT).
Collapse
Affiliation(s)
- Magdalena Niziolek
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, 53226, USA
| | | | | |
Collapse
|
49
|
Abstract
BACKGROUND AND OBJECTIVE Herein an overview is provided of the causes, consequences, and significance of photodynamic therapy (PDT)-mediated effects on tumor oxygenation and blood flow during illumination. STUDY DESIGN/MATERIALS AND METHODS Techniques particularly valuable to this research have included tissue oxygen tension measurement by the Eppendorf pO2 Histograph; spatial quantification of hypoxia by EF3 and EF5; and tissue oxygenation/blood flow monitoring by diffuse reflectance/correlation spectroscopy. RESULTS Severe hypoxia was measured in vivo during PDT and is shown to be a consequence of photochemical oxygen consumption and/or compromised vascular perfusion. Oxygen depletion can be controlled by treatment regimen, occurs in a spatially-definable pattern, and is therapy-limiting. PDT-induced changes in tumor oxygenation during illumination are correlated with outcome. In PDT-treated tissues, blood flow also is determined by treatment regimen and correlates with treatment response. CONCLUSIONS Photodynamic therapy creates distinct, measurable changes in tumor oxygen and blood flow during illumination. These physiological changes may ultimately affect treatment efficacy.
Collapse
Affiliation(s)
- Theresa M Busch
- Department of Radiation Oncology, School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6072, USA.
| |
Collapse
|
50
|
Di Venosa G, Perotti C, Fukuda H, Batlle A, Casas A. Sensitivity to ALA-PDT of cell lines with different nitric oxide production and resistance to NO cytotoxicity. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2005; 80:195-202. [PMID: 15967676 DOI: 10.1016/j.jphotobiol.2005.05.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2004] [Revised: 02/23/2005] [Accepted: 05/03/2005] [Indexed: 10/25/2022]
Abstract
In this work, we studied the in vitro interactions between aminolevulinic acid (ALA)-mediated photodynamic therapy (PDT) and nitric oxide (NO), as well as the interactions between ALA, porphyrins and some NO donors and precursors. We employed three murine adenocarcinoma cell lines: LM2, which does not produce NO; LM3, which produces NO, and LM3-SNP, a variant of LM3 resistant to NO producing the same amount of NO as the parental. We did not find cross-resistance between NO-induced cytotoxicity and ALA-PDT. In spite of the lower porphyrin synthesis, LM2 cells show the highest sensitivity to ALA-PDT. However, we hypothesised that this is not related to the lack of endogenous NO production, because modulation of NO levels did not modify the response to PDT in any of the cell lines. Two unexpected results were found: the enhancement of NO production from the donor sodium nitroprusside (SNP) induced by ALA in both cells and medium, and the inhibition by ALA of NO production from arginine. We also found that SNP strongly protected the cells from ALA-PDT by impairing porphyrin biosynthesis as a consequence of an inhibition of the enzyme ALA dehydratase. We were not able to evaluate the action of NO derived from SNP because of the unexpected porphyrin impairment. On the other hand, impairment of NO from Arginine driven by ALA, although not modulating in vitro the ALA-PDT response, by increasing in vivo blood flow, may be contributing to the mechanism of tumour cures.
Collapse
Affiliation(s)
- Gabriela Di Venosa
- Centro de Investigaciones sobre Porfirinas y Porfirias (CIPYP) FCEN (University of Buenos Aires and CONICET), Ciudad Universitaria, Pabellón II, 2do piso, 1428 Buenos Aires, Capital Federal, Argentina
| | | | | | | | | |
Collapse
|