1
|
Millman JF, Kondrashina A, Walsh C, Busca K, Karawugodage A, Park J, Sirisena S, Martin FP, Felice VD, Lane JA. Biotics as novel therapeutics in targeting signs of skin ageing via the gut-skin axis. Ageing Res Rev 2024; 102:102518. [PMID: 39389239 DOI: 10.1016/j.arr.2024.102518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Revised: 09/02/2024] [Accepted: 09/19/2024] [Indexed: 10/12/2024]
Abstract
Skin ageing is a phenomenon resulting from the aggregative changes to skin structure and function and is clinically manifested by physical features such as wrinkles, hyperpigmentation, elastosis, telangiectasia, and deterioration of skin barrier integrity. One of the main drivers of skin ageing, UV radiation, negatively influences the homeostasis of cells and tissues comprising the skin by triggering production of immune-mediated reactive oxygen species (ROS) and pro-inflammatory cytokines, as well as a various hormones and neuropeptides. Interestingly, an established link between the gut and the skin coined the 'gut-skin axis' has been demonstrated, with dysbiosis and gut barrier dysfunction frequently observed in certain inflammatory skin conditions and more recently, implicated in skin ageing. Therapeutic use of 'biotics' including prebiotics, probiotics, postbiotics, and synbiotics, which modulate the gut microbiota and production of microbially associated metabolites, influence the activity of the gut mucosal and immune systems and are showing promise as key candidates in addressing signs of skin ageing. In this review we aim to focus on the structure and function of the gut-skin axis and showcase the recent in-vitro and clinical evidence demonstrating the beneficial effects of select biotics in targeting signs of skin ageing and discuss the proposed mechanisms mediated via the gut-skin axis underpinning these effects.
Collapse
Affiliation(s)
- Jasmine F Millman
- Health and Happiness (H&H) Group, H&H Research, Level 6 & 7, 88 Langridge St, Collingwood, VIC 3066, Australia.
| | - Alina Kondrashina
- Health and Happiness (H&H) Group, H&H Research, National Food Innovation Hub, Teagasc Moorepark, Fermoy, Co., Cork P61K202, Ireland
| | - Clodagh Walsh
- Health and Happiness (H&H) Group, H&H Research, National Food Innovation Hub, Teagasc Moorepark, Fermoy, Co., Cork P61K202, Ireland
| | - Kizkitza Busca
- Health and Happiness (H&H) Group, H&H Research, National Food Innovation Hub, Teagasc Moorepark, Fermoy, Co., Cork P61K202, Ireland
| | - Aneesha Karawugodage
- Health and Happiness (H&H) Group, H&H Research, Level 6 & 7, 88 Langridge St, Collingwood, VIC 3066, Australia
| | - Julia Park
- Health and Happiness (H&H) Group, H&H Research, Level 6 & 7, 88 Langridge St, Collingwood, VIC 3066, Australia
| | - Sameera Sirisena
- Health and Happiness (H&H) Group, H&H Research, Level 6 & 7, 88 Langridge St, Collingwood, VIC 3066, Australia
| | - Francois-Pierre Martin
- Health and Happiness (H&H) Group, H&H Research, Avenue Sécheron 15 Bat F2/F3, Geneva 1202, Switzerland
| | - Valeria D Felice
- Health and Happiness (H&H) Group, H&H Research, National Food Innovation Hub, Teagasc Moorepark, Fermoy, Co., Cork P61K202, Ireland
| | - Jonathan A Lane
- Health and Happiness (H&H) Group, H&H Research, National Food Innovation Hub, Teagasc Moorepark, Fermoy, Co., Cork P61K202, Ireland.
| |
Collapse
|
2
|
Karkoszka M, Rok J, Wrześniok D. Melanin Biopolymers in Pharmacology and Medicine-Skin Pigmentation Disorders, Implications for Drug Action, Adverse Effects and Therapy. Pharmaceuticals (Basel) 2024; 17:521. [PMID: 38675481 PMCID: PMC11054731 DOI: 10.3390/ph17040521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Revised: 04/12/2024] [Accepted: 04/15/2024] [Indexed: 04/28/2024] Open
Abstract
Melanins are biopolymeric pigments formed by a multi-step oxidation process of tyrosine in highly specialized cells called melanocytes. Melanin pigments are mainly found in the skin, iris, hair follicles, and inner ear. The photoprotective properties of melanin biopolymers have been linked to their perinuclear localization to protect DNA, but their ability to scavenge metal ions and antioxidant properties has also been noted. Interactions between drugs and melanins are of clinical relevance. The formation of drug-melanin complexes can affect both the efficacy of pharmacotherapy and the occurrence of adverse effects such as phototoxic reactions and discoloration. Because the amount and type of melanin synthesized in the body is subject to multifactorial regulation-determined by both internal factors such as genetic predisposition, inflammation, and hormonal balance and external factors such as contact with allergens or exposure to UV radiation-different effects on the melanogenesis process can be observed. These factors can directly influence skin pigmentation disorders, resulting in hypopigmentation or hyperpigmentation of a genetic or acquired nature. In this review, we will present information on melanocyte biology, melanogenesis, and the multifactorial influence of melanin on pharmacological parameters during pharmacotherapy. In addition, the types of skin color disorders, with special emphasis on the process of their development, symptoms, and methods of treatment, are presented in this article.
Collapse
Affiliation(s)
- Marta Karkoszka
- Department of Pharmaceutical Chemistry, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia, Jagiellońska 4, 41-200 Sosnowiec, Poland;
| | - Jakub Rok
- Department of Pharmaceutical Chemistry, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia, Jagiellońska 4, 41-200 Sosnowiec, Poland;
| | | |
Collapse
|
3
|
Lee HJ, Kim D, Choi HJ, Kim S, Shin M, Kwak S, Lee DK, Kang WH. Potential role of the cell-penetrating peptide-conjugated soluble N-ethylmaleimide-sensitive factor attachment protein receptor motif of vesicle-associated membrane protein 2-patterned peptide in novel cosmeceutical skin product development. J Cosmet Dermatol 2024; 23:666-675. [PMID: 37698157 DOI: 10.1111/jocd.15984] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 07/26/2023] [Accepted: 08/21/2023] [Indexed: 09/13/2023]
Abstract
AIM This study aimed to investigate and verify the effect of cell-penetrating peptide (CPP)-conjugated soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) motif of vesicle-associated membrane protein 2 (VAMP2)-patterned peptide (INCI name: Acetyl sh-Oligopeptide-26 sh-Oligopeptide-27 SP, trade name: M.Biome-BT) on improving skin function in vitro. METHODS The cytotoxicity of CPP-conjugated SNARE motif of VAMP2-patterned peptide (CVP) was investigated using the 3-(4,5-dimethylthiazol-2yl)-2,5-diphenyl tetrazolium bromide (MTT) assay against B16-F10 cells and human dermal fibroblasts (HDFs) and a reconstructed skin irritation test. The anti-wrinkle activity of M.Biome-BT was determined by assessing the release of norepinephrine and dopamine in PC-12 cells via ELISA. The skin-whitening effects of CVP were assessed in B16-F10 cells by measuring the intra- and extracellular melanin contents and expression levels of melanin production-related genes, such as microphthalmia-associated transcription factor (MITF), tyrosinase (TYR), tyrosinase-related protein-1 (TRP-1), and TRP-2. RESULTS CVP is not cytotoxic to B16-F10 cells and HDFs, and no skin irritation was observed. CVP treatment considerably diminished K+ -induced norepinephrine and dopamine secretion compared with the non-treated control group (62% and 40%, respectively). Additionally, the inhibition ability of CVP on norepinephrine and dopamine release was comparable to that of botulinum neurotoxin type A (BoNT/A). CVP also increased intracellular melanin content in a dose-dependent manner, whereas extracellular melanin content decreased (76%-85%). However, CVP treatment did not affect the mRNA expression of MITF, TYR, TRP-1, and TRP-2. These results suggest that CVP does not inhibit melanin production; however, it may induce a whitening effect by inhibiting melanin transport. CONCLUSIONS Taken together, our findings indicate that CVP could be used as an active and safe cosmeceutical ingredient for antiaging applications.
Collapse
Affiliation(s)
- Hyo Jin Lee
- Gwanggyo R&D Center, Medytox Inc., Suwon-si, Korea
| | - Daehoon Kim
- Gwanggyo R&D Center, Medytox Inc., Suwon-si, Korea
| | | | - Suhyeok Kim
- Gwanggyo R&D Center, Medytox Inc., Suwon-si, Korea
| | - Minhee Shin
- Gwanggyo R&D Center, Medytox Inc., Suwon-si, Korea
| | | | - Dong-Kyu Lee
- Gwanggyo R&D Center, Medytox Inc., Suwon-si, Korea
| | - Won-Ho Kang
- Gwanggyo R&D Center, Medytox Inc., Suwon-si, Korea
| |
Collapse
|
4
|
Flieger J, Raszewska-Famielec M, Radzikowska-Büchner E, Flieger W. Skin Protection by Carotenoid Pigments. Int J Mol Sci 2024; 25:1431. [PMID: 38338710 PMCID: PMC10855854 DOI: 10.3390/ijms25031431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 01/19/2024] [Accepted: 01/22/2024] [Indexed: 02/12/2024] Open
Abstract
Sunlight, despite its benefits, can pose a threat to the skin, which is a natural protective barrier. Phototoxicity caused by overexposure, especially to ultraviolet radiation (UVR), results in burns, accelerates photoaging, and causes skin cancer formation. Natural substances of plant origin, i.e., polyphenols, flavonoids, and photosynthetic pigments, can protect the skin against the effects of radiation, acting not only as photoprotectors like natural filters but as antioxidant and anti-inflammatory remedies, alleviating the effects of photodamage to the skin. Plant-based formulations are gaining popularity as an attractive alternative to synthetic filters. Over the past 20 years, a large number of studies have been published to assess the photoprotective effects of natural plant products, primarily through their antioxidant, antimutagenic, and anti-immunosuppressive activities. This review selects the most important data on skin photodamage and photoprotective efficacy of selected plant carotenoid representatives from in vivo studies on animal models and humans, as well as in vitro experiments performed on fibroblast and keratinocyte cell lines. Recent research on carotenoids associated with lipid nanoparticles, nanoemulsions, liposomes, and micelles is reviewed. The focus was on collecting those nanomaterials that serve to improve the bioavailability and stability of carotenoids as natural antioxidants with photoprotective activity.
Collapse
Affiliation(s)
- Jolanta Flieger
- Department of Analytical Chemistry, Medical University of Lublin, Chodźki 4A, 20-093 Lublin, Poland
| | - Magdalena Raszewska-Famielec
- Faculty of Physical Education and Health, University of Physicl Education, Akademicka 2, 21-500 Biała Podlaska, Poland;
| | - Elżbieta Radzikowska-Büchner
- Department of Plastic, Reconstructive and Maxillary Surgery, National Medical Institute of the Ministry of the Interior and Administration, Wołoska 137 Street, 02-507 Warszawa, Poland;
| | - Wojciech Flieger
- Chair and Department of Anatomy, Medical University of Lublin, K. Jaczewskiego 4, 20-090 Lublin, Poland;
| |
Collapse
|
5
|
Odutola MK, van Leeuwen MT, Bruinsma F, Turner J, Hertzberg M, Seymour JF, Prince HM, Trotman J, Verner E, Roncolato F, Opat S, Lindeman R, Tiley C, Milliken ST, Underhill CR, Benke G, Giles GG, Vajdic CM. A Population-Based Family Case-Control Study of Sun Exposure and Follicular Lymphoma Risk. Cancer Epidemiol Biomarkers Prev 2024; 33:106-116. [PMID: 37831120 PMCID: PMC10774741 DOI: 10.1158/1055-9965.epi-23-0578] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Revised: 08/08/2023] [Accepted: 10/11/2023] [Indexed: 10/14/2023] Open
Abstract
BACKGROUND Epidemiologic evidence suggests an inverse association between sun exposure and follicular lymphoma risk. METHODS We conducted an Australian population-based family case-control study based on 666 cases and 459 controls (288 related, 171 unrelated). Participants completed a lifetime residence and work calendar and recalled outdoor hours on weekdays, weekends, and holidays in the warmer and cooler months at ages 10, 20, 30, and 40 years, and clothing types worn in the warmer months. We used a group-based trajectory modeling approach to identify outdoor hour trajectories over time and examined associations with follicular lymphoma risk using logistic regression. RESULTS We observed an inverse association between follicular lymphoma risk and several measures of high lifetime sun exposure, particularly intermittent exposure (weekends, holidays). Associations included reduced risk with increasing time outdoors on holidays in the warmer months [highest category OR = 0.56; 95% confidence interval (CI), 0.42-0.76; Ptrend < 0.01], high outdoor hours on weekends in the warmer months (highest category OR = 0.71; 95% CI, 0.52-0.96), and increasing time outdoors in the warmer and cooler months combined (highest category OR = 0.66; 95% CI, 0.50-0.91; Ptrend 0.01). Risk was reduced for high outdoor hour maintainers in the warmer months across the decade years (OR = 0.71; 95% CI, 0.53-0.96). CONCLUSIONS High total and intermittent sun exposure, particularly in the warmer months, may be protective against the development of follicular lymphoma. IMPACT Although sun exposure is not recommended as a cancer control policy, confirming this association may provide insights regarding the future control of this intractable malignancy.
Collapse
Affiliation(s)
- Michael K. Odutola
- Centre for Big Data Research in Health, University of New South Wales, Sydney, New South Wales, Australia
| | - Marina T. van Leeuwen
- Centre for Big Data Research in Health, University of New South Wales, Sydney, New South Wales, Australia
| | - Fiona Bruinsma
- Cancer Epidemiology Division, Cancer Council Victoria, Melbourne, Victoria, Australia
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, University of Melbourne, Parkville, Victoria, Australia
| | - Jennifer Turner
- Anatomical Pathology, Douglass Hanly Moir Pathology, Macquarie Park, Sydney, Australia
- Department of Clinical Medicine, Faculty of Medicine, Health and Human Science, Macquarie University, Sydney, Australia
| | - Mark Hertzberg
- Department of Haematology, Prince of Wales Hospital and University of New South Wales, Sydney, New South Wales, Australia
| | - John F. Seymour
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, Victoria, Australia
| | - H. Miles Prince
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, Victoria, Australia
| | - Judith Trotman
- Concord Repatriation General Hospital, Concord, New South Wales, Australia
| | - Emma Verner
- Concord Repatriation General Hospital, Concord, New South Wales, Australia
| | | | - Stephen Opat
- Clinical Haematology, Monash Health, Clayton, Victoria, Australia
| | - Robert Lindeman
- New South Wales Health Pathology, Sydney, New South Wales, Australia
| | | | | | - Craig R. Underhill
- Border Medical Oncology Research Unit, Albury, New South Wales, Australia
| | - Geza Benke
- School of Public Health and Preventive Medicine, Monash University, Melbourne, Australia
| | - Graham G. Giles
- Cancer Epidemiology Division, Cancer Council Victoria, Melbourne, Victoria, Australia
- Precision Medicine, School of Clinical Sciences at Monash Health, Monash University, Victoria, Australia
| | - Claire M. Vajdic
- Centre for Big Data Research in Health, University of New South Wales, Sydney, New South Wales, Australia
- The Kirby Institute, University of New South Wales, Sydney, New South Wales, Australia
| |
Collapse
|
6
|
Salminen AT, Manga P, Camacho L. Race, pigmentation, and the human skin barrier-considerations for dermal absorption studies. FRONTIERS IN TOXICOLOGY 2023; 5:1271833. [PMID: 37886124 PMCID: PMC10598584 DOI: 10.3389/ftox.2023.1271833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 09/22/2023] [Indexed: 10/28/2023] Open
Abstract
A functional human skin barrier is critical in limiting harmful exposure to environmental agents and regulating the absorption of intentionally applied topical drug and cosmetic products. Inherent differences in the skin barrier between consumers due to extrinsic and intrinsic factors are an important consideration in the safety assessment of dermatological products. Race is a concept often used to describe a group of people who share distinct physical characteristics. The observed predisposition of specific racial groups to certain skin pathologies highlights the potential differences in skin physiology between these groups. In the context of the human skin barrier, however, the current data correlating function to race often conflict, likely as a consequence of the range of experimental approaches and controls used in the existing works. To date, a variety of methods have been developed for evaluating compound permeation through the human skin, both in vivo and in vitro. Additionally, great strides have been made in the development of reconstructed human pigmented skin models, with the flexibility to incorporate melanocytes from donors of different race and pigmentation levels. Together, the advances in the production of reconstructed human skin models and the increased adoption of in vitro methodologies show potential to aid in the standardization of dermal absorption studies for discerning racial- and skin pigmentation-dependent differences in the human skin barrier. This review analyzes the existing data on skin permeation, focusing on its interaction with race and skin pigmentation, and highlights the tools and research opportunities to better represent the diversity of the human populations in dermal absorption assessments.
Collapse
Affiliation(s)
- Alec T Salminen
- U.S. Food and Drug Administration, National Center for Toxicological Research, Jefferson, AR, United States
| | - Prashiela Manga
- U.S. Food and Drug Administration, Office of Cosmetics and Colors, Center for Food Safety and Applied Nutrition, College Park, MD, United States
| | - Luísa Camacho
- U.S. Food and Drug Administration, National Center for Toxicological Research, Jefferson, AR, United States
| |
Collapse
|
7
|
Purswani JM, Bigham Z, Adotama P, Oh C, Xiao J, Maisonet O, Teruel JR, Gutierrez D, Tattersall IW, Perez CA, Gerber NK. Risk of Radiation Dermatitis in Patients With Skin of Color Who Undergo Radiation to the Breast or Chest Wall With and Without Regional Nodal Irradiation. Int J Radiat Oncol Biol Phys 2023; 117:468-478. [PMID: 37060928 DOI: 10.1016/j.ijrobp.2023.04.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 03/20/2023] [Accepted: 04/06/2023] [Indexed: 04/17/2023]
Abstract
PURPOSE Acute radiation dermatitis (ARD) is common after radiation therapy for breast cancer, with data indicating that ARD may disproportionately affect Black or African American (AA) patients. We evaluated the effect of skin of color (SOC) on physician-reported ARD in patients treated with radiation therapy. METHODS AND MATERIALS We identified patients treated with whole breast or chest wall ± regional nodal irradiation or high tangents using 50 Gy in 25 fractions from 2015 to 2018. Baseline skin pigmentation was assessed using the Fitzpatrick scale (I = light/pale white to VI = black/very dark brown) with SOC defined as Fitzpatrick scale IV to VI. We evaluated associations among SOC, physician-reported ARD, late hyperpigmentation, and use of oral and topical treatments for RD using multivariable models. RESULTS A total of 325 patients met eligibility, of which 40% had SOC (n = 129). On multivariable analysis, Black/AA race and chest wall irradiation had a lower odds of physician-reported grade 2 or 3 ARD (odds ratio [OR], 0.110; 95% confidence interval [CI], 0.030-0.397; P = .001; OR, 0.377; 95% CI, 0.161-0.883; P = .025), whereas skin bolus (OR, 8.029; 95% CI, 3.655-17.635; P = 0) and planning target volume D0.03cc (OR, 1.001; 95% CI, 1.000-1.001; P = .028) were associated with increased odds. On multivariable analysis, SOC (OR, 3.658; 95% CI, 1.236-10.830; P = .019) and skin bolus (OR, 26.786; 95% CI, 4.235-169.432; P = 0) were associated with increased odds of physician-reported late grade 2 or 3 hyperpigmentation. There was less frequent use of topical steroids to treat ARD and more frequent use of oral analgesics in SOC versus non-SOC patients (43% vs 63%, P < .001; 50% vs 38%, P = .05, respectively). CONCLUSIONS Black/AA patients exhibited lower odds of physician-reported ARD. However, we found higher odds of late hyperpigmentation in SOC patients, independent of self-reported race. These findings suggest that ARD may be underdiagnosed in SOC when using the physician-rated scale despite this late evidence of radiation-induced skin toxicity.
Collapse
Affiliation(s)
- Juhi M Purswani
- Department of Radiation Oncology, New York University Langone Health and Perlmutter Cancer Center, New York, New York
| | - Zahna Bigham
- Tufts University Graduate School of Biomedical Sciences, Boston, Massachusetts
| | - Prince Adotama
- Ronald O. Perelman Department of Dermatology, New York University Grossman School of Medicine, New York, New York
| | - Cheongeun Oh
- Department of Population Health, New York University Langone Health and Perlmutter Cancer Center, New York, New York
| | - Julie Xiao
- Department of Radiation Oncology, New York University Langone Health and Perlmutter Cancer Center, New York, New York
| | - Olivier Maisonet
- Department of Radiation Oncology, New York University Langone Health and Perlmutter Cancer Center, New York, New York
| | - Jose R Teruel
- Department of Radiation Oncology, New York University Langone Health and Perlmutter Cancer Center, New York, New York
| | - Daniel Gutierrez
- Ronald O. Perelman Department of Dermatology, New York University Grossman School of Medicine, New York, New York
| | - Ian W Tattersall
- Ronald O. Perelman Department of Dermatology, New York University Grossman School of Medicine, New York, New York
| | - Carmen A Perez
- Department of Radiation Oncology, New York University Langone Health and Perlmutter Cancer Center, New York, New York
| | - Naamit K Gerber
- Department of Radiation Oncology, New York University Langone Health and Perlmutter Cancer Center, New York, New York.
| |
Collapse
|
8
|
Zhang X, Shi X, Zhang D, Gong X, Wen Z, Demandel I, Zhang J, Rossello-Martinez A, Chan TJ, Mak M. Compression drives diverse transcriptomic and phenotypic adaptations in melanoma. Proc Natl Acad Sci U S A 2023; 120:e2220062120. [PMID: 37722033 PMCID: PMC10523457 DOI: 10.1073/pnas.2220062120] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Accepted: 08/07/2023] [Indexed: 09/20/2023] Open
Abstract
Physical forces are prominent during tumor progression. However, it is still unclear how they impact and drive the diverse phenotypes found in cancer. Here, we apply an integrative approach to investigate the impact of compression on melanoma cells. We apply bioinformatics to screen for the most significant compression-induced transcriptomic changes and investigate phenotypic responses. We show that compression-induced transcriptomic changes are associated with both improvement and worsening of patient prognoses. Phenotypically, volumetric compression inhibits cell proliferation and cell migration. It also induces organelle stress and intracellular oxidative stress and increases pigmentation in malignant melanoma cells and normal human melanocytes. Finally, cells that have undergone compression become more resistant to cisplatin treatment. Our findings indicate that volumetric compression is a double-edged sword for melanoma progression and drives tumor evolution.
Collapse
Affiliation(s)
- Xingjian Zhang
- Department of Biomedical Engineering, Yale University, New Haven, CT06511
- Yale Cancer Center, Yale University, New Haven, CT06511
| | - Xin Shi
- School of Chemical Engineering and Technology, Tianjin University, Tianjin300350, China
| | - Dingyao Zhang
- Department of Biomedical Engineering, Yale University, New Haven, CT06511
| | - Xiangyu Gong
- Department of Biomedical Engineering, Yale University, New Haven, CT06511
| | - Zhang Wen
- Department of Biomedical Engineering, Yale University, New Haven, CT06511
| | - Israel Demandel
- Department of Biomedical Engineering, Yale University, New Haven, CT06511
| | - Junqi Zhang
- Department of Biomedical Engineering, Yale University, New Haven, CT06511
| | | | - Trevor J. Chan
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA19104
| | - Michael Mak
- Department of Biomedical Engineering, Yale University, New Haven, CT06511
- Yale Cancer Center, Yale University, New Haven, CT06511
| |
Collapse
|
9
|
Cohen L, Brodsky MA, Zubair R, Kohli I, Hamzavi IH, Sadeghpour M. Cutaneous interaction with visible light: What do we know? J Am Acad Dermatol 2023; 89:560-568. [PMID: 32289393 DOI: 10.1016/j.jaad.2020.03.115] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 03/25/2020] [Accepted: 03/31/2020] [Indexed: 10/24/2022]
Abstract
Visible light has been used therapeutically in dermatology for years for a variety of cosmetic and medical indications, including skin rejuvenation and the treatment of inflammatory and neoplastic conditions, among others. Until recently, visible light was thought to be relatively inert compared to its spectral neighbors, ultraviolet and infrared radiation. However, recent literature has described the ability of visible light to cause erythema in light skin and pigmentary changes in individuals with darker skin types. Concern surrounding its potentially damaging cutaneous effects has been raised in both the medical community and social media outlets. In this article, we provide an evidenced-based review describing what is currently known about visible light, focusing on its role in dermatologic diseases including disorders of hyperpigmentation such as melasma and postinflammatory hyperpigmentation.
Collapse
Affiliation(s)
- Leah Cohen
- Department of Dermatology, Hospital of the University of Pennsylvania, Philadelphia, Pennsylvania
| | | | - Raheel Zubair
- Department of Dermatology, Henry Ford Hospital, Detroit, Michigan
| | - Indermeet Kohli
- Department of Dermatology, Henry Ford Hospital, Detroit, Michigan
| | | | | |
Collapse
|
10
|
Moskwa J, Bronikowska M, Socha K, Markiewicz-Żukowska R. Vegetable as a Source of Bioactive Compounds with Photoprotective Properties: Implication in the Aging Process. Nutrients 2023; 15:3594. [PMID: 37630784 PMCID: PMC10459432 DOI: 10.3390/nu15163594] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 08/11/2023] [Accepted: 08/15/2023] [Indexed: 08/27/2023] Open
Abstract
The skin, as an external organ, protects the entire body against harmful external factors. One of these factors is ultraviolet (UV) radiation, which in excessive amounts can lead to premature skin aging, DNA damage, and even skin cancer. Therefore, it is worth supporting skin protection not only with commercially available preparations, but also with a proper diet. Consuming certain vegetables and applying them topically may reduce the effects of UV radiation. The aim of the review was to collect information on the effects of vegetables and their compounds on the skin when used externally or included in the diet. This review summarizes studies on vegetables, such as broccoli, cucumber, kale, tomato, and carrot, which have shown significant activity in skin photoprotection. Additionally, it outlines the bioactive substances present in these vegetables and their effects.
Collapse
|
11
|
Li R, Wang Y, Liu Y, Li D, Tian Y, Liu X, Kang X, Li Z. Effects of SLC45A2 and GPNMB on Melanin Deposition Based on Transcriptome Sequencing in Chicken Feather Follicles. Animals (Basel) 2023; 13:2608. [PMID: 37627399 PMCID: PMC10451703 DOI: 10.3390/ani13162608] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Revised: 08/04/2023] [Accepted: 08/10/2023] [Indexed: 08/27/2023] Open
Abstract
As an essential genetic and economic trait, chicken feather color has long been an important research topic. To further understand the mechanism of melanin deposition associated with coloration in chicken feathers, we selected feather follicle tissues from the neck and wings of chickens with differently colored feathers (yellow, sub-Columbian, and silver) for transcriptome analysis. We focused on genes that were expressed in both the wings and neck and were expressed with the same trends in breeds with two different plumage colors, specifically, SLC45A2, GPNMB, MLPH, TYR, KIT, WNT11, and FZD1. GO and KEGG enrichment analyses showed the DEGs were enriched in melanin-related pathways, such as tyrosine metabolic pathway and melanogenesis, and PPI analysis highlighted the genes SLC45A2 and GPNMB as associated with melanin deposition. Verification experiments in chicken melanocytes demonstrated that these two genes promote melanocyte melanin deposition. These data enrich our knowledge of the mechanisms that regulate chicken feather color.
Collapse
Affiliation(s)
- Ruiting Li
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China; (R.L.); (Y.W.); (Y.L.); (D.L.)
- Henan Key Laboratory for Innovation and Utilization of Chicken Germplasm Resources, Zhengzhou 450046, China
| | - Yanxing Wang
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China; (R.L.); (Y.W.); (Y.L.); (D.L.)
- Henan Key Laboratory for Innovation and Utilization of Chicken Germplasm Resources, Zhengzhou 450046, China
| | - Yihan Liu
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China; (R.L.); (Y.W.); (Y.L.); (D.L.)
- Henan Key Laboratory for Innovation and Utilization of Chicken Germplasm Resources, Zhengzhou 450046, China
| | - Donghua Li
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China; (R.L.); (Y.W.); (Y.L.); (D.L.)
- Henan Key Laboratory for Innovation and Utilization of Chicken Germplasm Resources, Zhengzhou 450046, China
| | - Yadong Tian
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China; (R.L.); (Y.W.); (Y.L.); (D.L.)
- Henan Key Laboratory for Innovation and Utilization of Chicken Germplasm Resources, Zhengzhou 450046, China
| | - Xiaojun Liu
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China; (R.L.); (Y.W.); (Y.L.); (D.L.)
- Henan Key Laboratory for Innovation and Utilization of Chicken Germplasm Resources, Zhengzhou 450046, China
| | - Xiangtao Kang
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China; (R.L.); (Y.W.); (Y.L.); (D.L.)
- Henan Key Laboratory for Innovation and Utilization of Chicken Germplasm Resources, Zhengzhou 450046, China
- The Shennong Laboratory, Zhengzhou 450000, China
| | - Zhuanjian Li
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China; (R.L.); (Y.W.); (Y.L.); (D.L.)
- Henan Key Laboratory for Innovation and Utilization of Chicken Germplasm Resources, Zhengzhou 450046, China
| |
Collapse
|
12
|
Wang JH, Hwang SJ, Lee SK, Choi Y, Byun CK, Son CG. Anti-Melanogenic Effects of Fractioned Cynanchum atratum by Regulation of cAMP/MITF Pathway in a UVB-Stimulated Mice Model. Cells 2023; 12:1390. [PMID: 37408224 PMCID: PMC10216695 DOI: 10.3390/cells12101390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 05/10/2023] [Accepted: 05/12/2023] [Indexed: 07/07/2023] Open
Abstract
Based on traditional pharmacological applications and partial in vitro data, Cynanchum atratum (CA) is proposed to act on skin whitening. However, its functional evaluation and underlying mechanisms have yet to be identified. This study aimed to examine the anti-melanogenesis activity of CA fraction B (CAFB) on UVB-induced skin hyperpigmentation. Forty C57BL/6j mice were exposed to UVB (100 mJ/cm2, five times/week) for eight weeks. After irradiation, CAFB was applied to the left ear once a day for 8 weeks (the right ear served as an internal control). The results showed that CAFB significantly reduced melanin production in the ear skin, as indicated by the gray value and Mexameter melanin index. In addition, CAFB treatment notably decreased melanin production in α-MSH-stimulated B16F10 melanocytes, along with a significant reduction in tyrosinase activity. Cellular cAMP (cyclic adenosine monophosphate), MITF (microphthalmia-associated transcription factor), and tyrosinase-related protein 1 (TRP1) were also noticeably downregulated by CAFB. In conclusion, CAFB is a promising ingredient for treating skin disorders caused by the overproduction of melanin and its underlying mechanisms involving the modulation of tyrosinase, mainly mediated by the regulation of the cAMP cascade and MITF pathway.
Collapse
Affiliation(s)
- Jing-Hua Wang
- Institute of Bioscience & Integrative Medicine, Daejeon University, 75, Daedeok-daero 176, Seo-gu, Daejeon 35235, Republic of Korea; (J.-H.W.); (S.-J.H.)
| | - Seung-Ju Hwang
- Institute of Bioscience & Integrative Medicine, Daejeon University, 75, Daedeok-daero 176, Seo-gu, Daejeon 35235, Republic of Korea; (J.-H.W.); (S.-J.H.)
| | - Sam-Keun Lee
- Department of Applied Chemistry, Daejeon University, Daejeon 34520, Republic of Korea; (S.-K.L.); (C.K.B.)
| | - Yujin Choi
- Department of Internal Medicine, College of Korean Medicine, Se-Myung University, Jecheon-si 27136, Republic of Korea;
| | - Chang Kyu Byun
- Department of Applied Chemistry, Daejeon University, Daejeon 34520, Republic of Korea; (S.-K.L.); (C.K.B.)
| | - Chang-Gue Son
- Institute of Bioscience & Integrative Medicine, Daejeon University, 75, Daedeok-daero 176, Seo-gu, Daejeon 35235, Republic of Korea; (J.-H.W.); (S.-J.H.)
| |
Collapse
|
13
|
Kim DH, Shin DW, Lim BO. Fermented Aronia melanocarpa Inhibits Melanogenesis through Dual Mechanisms of the PI3K/AKT/GSK-3β and PKA/CREB Pathways. Molecules 2023; 28:molecules28072981. [PMID: 37049743 PMCID: PMC10095632 DOI: 10.3390/molecules28072981] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 03/20/2023] [Accepted: 03/20/2023] [Indexed: 03/29/2023] Open
Abstract
UV light causes excessive oxidative stress and abnormal melanin synthesis, which results in skin hyperpigmentation disorders such as freckles, sunspots, and age spots. Much research has been carried out to discover natural plants for ameliorating these disorders. Aronia melanocarpa contains various polyphenolic compounds with antioxidative activities, but its effects on melanogenesis have not been fully elucidated. In this study, we investigated the inhibitory effect of fermented Aronia melanocarpa (FA) fermented with Monascus purpureus on melanogenesis and its underlying mechanism in the B16F10 melanoma cell line. Our results indicate that FA inhibited tyrosinase activity and melanogenesis in alpha-melanocyte-stimulating hormone (α-MSH)-induced B16F10 cells. FA significantly downregulated the PKA/CREB pathway, resulting in decreased protein levels of tyrosinase, TRP-1, and MITF. FA also inhibited the transcription of MITF by increasing the phosphorylation levels of both GSK3β and AKT. Interestingly, we demonstrated that these results were owing to the significant increase in gallic acid, a phenolic compound of Aronia melanocarpa produced after the fermentation of Monascus purpureus. Taken together, our research suggests that Aronia melanocarpa fermented with Monascus purpureus acts as a melanin inhibitor and can be used as a potential cosmetic or therapeutic for improving hyperpigmentation disorders.
Collapse
Affiliation(s)
- Da Hee Kim
- Department of Applied Life Science, Graduate School, BK21 Program, Konkuk University, Chungju 27478, Republic of Korea
| | - Dong Wook Shin
- College of Biomedical and Health Science, Konkuk University, Chungju 27478, Republic of Korea
- Correspondence: (D.W.S.); (B.O.L.); Tel.: +82-43-840-3693 (D.W.S.); +82-43-840-3570 (B.O.L.)
| | - Beong Ou Lim
- Department of Applied Life Science, Graduate School, BK21 Program, Konkuk University, Chungju 27478, Republic of Korea
- Correspondence: (D.W.S.); (B.O.L.); Tel.: +82-43-840-3693 (D.W.S.); +82-43-840-3570 (B.O.L.)
| |
Collapse
|
14
|
Ma L, Niu Y, Yuan C, Bai T, Yang S, Wang M, Li Y, Shao L. The Characteristics of the Skin Physiological Parameters and Facial Microbiome of "Ideal Skin" in Shanghai Women. CLINICAL, COSMETIC AND INVESTIGATIONAL DERMATOLOGY 2023; 16:325-337. [PMID: 36762256 PMCID: PMC9904309 DOI: 10.2147/ccid.s400321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 01/24/2023] [Indexed: 02/05/2023]
Abstract
Purpose Everyone pursues perfect skin, but there exist significant differences between cultures, and no commonly accepted standards have been established. Therefore, our study attempted to define the "ideal skin" of oriental women and analyze the relationship between different skin physiological parameters and microbiomes. Patients and Methods Based on our customized grading standard, the VISIA CR photos of 111 young women aged from 18 to 25 in Shanghai were collected and scored by the severity of pores, acne, spots, and wrinkles. The volunteers were then divided into "ideal skin" (W1), "normal skin" (W2), and "undesirable skin" (W3) groups. The physiological parameters of facial skin were measured by non-invasive instrumental methods, and the skin microbiome was analyzed by 16S rRNA and ITS high-throughput sequencing. Results From "ideal skin" to "undesirable skin", the skin physiological parameters, α-diversity, and composition of the facial microbiome showed noticeable regular changes. Compared with the "normal skin" (W2) and "undesirable skin" (W3), the "ideal skin" (W1) group had lower sebum content, TEWL, melanin, hemoglobin, and roughness but higher hydration content and skin pH value. Furthermore, the Shannon index of skin bacteria was significantly increased in W1 (P = 0.004), suggesting that the ideal skin had higher species diversity. From W1 to W3, the species composition was changed significantly. The abundance of Actinobacteria was increased, while Proteobacteria and Bacteroidetes were decreased. Correspondingly, the abundances of lipophilic Propionibacterium and Malassezia were increased, while the abundances of Stenotrophomonas, Pseudomonas, Ralstonia, and Streptococcus, were significantly decreased. Additionally, Spearman correlation analysis revealed strong correlations between the physiological parameters and the microbiota. Notably, the Shannon index of skin bacteria was significantly positively correlated with skin hydration (P = 0.03) but negatively correlated with the abundance of Cutibacterium (P = 0.000), hemoglobin content (P = 0.025), and sebum content (P = 0.5). Therefore, the skin hydration content and the abundance of Cutibacterium played an important role in maintaining the α-diversity and skin homeostasis. Conclusion Ideal skin had better water-oil balance and barrier function, higher microbial diversity, and more reasonable species distribution. Therefore, daily skincare needs to control skin oil and maintain skin microecological balance to achieve ideal skin conditions for young women aged 18-25 years old.
Collapse
Affiliation(s)
- Laiji Ma
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, Shanghai, People’s Republic of China,The Oriental Beauty Valley Research Institute, Shanghai Institute of Technology, Shanghai, People’s Republic of China
| | - Yujie Niu
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, Shanghai, People’s Republic of China,The Oriental Beauty Valley Research Institute, Shanghai Institute of Technology, Shanghai, People’s Republic of China
| | - Chunying Yuan
- R&D Innovation Center, Shandong Freda Biotech Co., Ltd., Jinan, Shandong, People’s Republic of China
| | - Tianming Bai
- R&D Innovation Center, Shandong Freda Biotech Co., Ltd., Jinan, Shandong, People’s Republic of China
| | - Suzhen Yang
- R&D Innovation Center, Shandong Freda Biotech Co., Ltd., Jinan, Shandong, People’s Republic of China
| | - Man Wang
- Department of Nutrition, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital South Campus, Shanghai, People’s Republic of China
| | - Yan Li
- R&D Innovation Center, Shandong Freda Biotech Co., Ltd., Jinan, Shandong, People’s Republic of China,Yan Li, R&D Innovation Center, Shandong Freda Biotech Co., Ltd, No. 888, Xinluo Street, Lixia District, Jinan, Shandong, 250101, People’s Republic of China, Email
| | - Li Shao
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, Shanghai, People’s Republic of China,Correspondence: Li Shao, School of Perfume and Aroma Technology, Shanghai Institute of Technology, No. 100, Haiquan Road, Fengxian District, Shanghai, 201418, People’s Republic of China, Email
| |
Collapse
|
15
|
Aimvijarn P, Payuhakrit W, Charoenchon N, Okada S, Suwannalert P. Riceberry Rice Germination and UVB Radiation Enhance Protocatechuic Acid and Vanillic Acid to Reduce Cellular Oxidative Stress and Suppress B16F10 Melanogenesis Relating to F-Actin Rearrangement. PLANTS (BASEL, SWITZERLAND) 2023; 12:484. [PMID: 36771569 PMCID: PMC9920603 DOI: 10.3390/plants12030484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 01/12/2023] [Accepted: 01/17/2023] [Indexed: 06/18/2023]
Abstract
Ultraviolet type B (UVB) radiation plays an important role in hyperpigmentation disorder, which induces cellular oxidative stress and causes abnormal melanin production and secretion. The stress condition plays an essential role in actin polymerization relating to F-actin rearrangement and forms dendrite to send melanin pigment to the uppermost layer of the skin. Phenolic compounds are secondary metabolites that mainly synthesize under stress conditions to protect plants from harmful environments and have been reported as effective agents in anti-oxidant and anti-melanogenesis. However, the influence of phenolic compounds on F-actin rearrangement-associated dendrite formation has not been studied so far. Hence, this study aimed to investigate the enhancing phytophenolic targets in riceberry rice (Oryza sativa L.) germination and UVB radiation (RR-GR) to suppress melanogenesis relating to F-rearrangement. As a result, the RR-GR had the potential to enhance phenolic acids such as protocatechuic and vanillic acid, which have been proven to possess anti-oxidant activity and anti-tyrosinase properties. Riceberry rice's modification showed the potential to reduce cellular oxidative stress and suppress B16F10 melanogenesis relating to F-actin rearrangement that is associated with dendrite formation.
Collapse
Affiliation(s)
- Parichaya Aimvijarn
- Department of Pathobiology, Faculty of Science, Mahidol University, Bangkok 10400, Thailand
| | - Witchuda Payuhakrit
- Department of Pathobiology, Faculty of Science, Mahidol University, Bangkok 10400, Thailand
- Pathobiology Information and Learning Center, Department of Pathobiology, Faculty of Science, Mahidol University, Bangkok 10400, Thailand
| | - Nisamanee Charoenchon
- Department of Pathobiology, Faculty of Science, Mahidol University, Bangkok 10400, Thailand
| | - Seiji Okada
- Division of Hematopoiesis, Joint Research Center for Human Retrovirus Infection, Graduate School of Medical Sciences, Kumamoto University, Kumamoto 860-0811, Japan
| | - Prasit Suwannalert
- Department of Pathobiology, Faculty of Science, Mahidol University, Bangkok 10400, Thailand
- Pathobiology Information and Learning Center, Department of Pathobiology, Faculty of Science, Mahidol University, Bangkok 10400, Thailand
| |
Collapse
|
16
|
Recent developments in chemistry of sunscreens & their photostabilization. J INDIAN CHEM SOC 2023. [DOI: 10.1016/j.jics.2022.100858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
17
|
Deng L, Li Y, Wu Q, Zeng Q, He Y, Chen A. Investigating potential ferroptosis‐related differentially expressed genes of
UVB
‐induced skin photodamage. Int J Dermatol 2022; 62:79-87. [DOI: 10.1111/ijd.16472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 10/18/2022] [Accepted: 10/19/2022] [Indexed: 11/29/2022]
Affiliation(s)
- Li Deng
- Department of Dermatology, The First Affiliated Hospital Chongqing Medical University Chongqing China
- Department of Dermatology, The Affiliated Hospital Southwest Medical University Luzhou China
| | - Yi Li
- Department of Nuclear Medicine, The Affiliated Hospital Southwest Medical University Luzhou China
| | - Qian Wu
- Department of Dermatology, The First Affiliated Hospital Chongqing Medical University Chongqing China
- Department of Dermatology Qijiang Hospital of the First Affiliated Hospital of Chongqing Medical University Chongqing China
| | - QianWen Zeng
- Department of Dermatology, The First Affiliated Hospital Chongqing Medical University Chongqing China
| | - Yuanmin He
- Department of Dermatology, The Affiliated Hospital Southwest Medical University Luzhou China
| | - AiJun Chen
- Department of Dermatology, The First Affiliated Hospital Chongqing Medical University Chongqing China
| |
Collapse
|
18
|
Teng Y, Huang Y, Danfeng X, Tao X, Fan Y. The Role of Probiotics in Skin Photoaging and Related Mechanisms: A Review. Clin Cosmet Investig Dermatol 2022; 15:2455-2464. [PMID: 36420112 PMCID: PMC9677255 DOI: 10.2147/ccid.s388954] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 11/03/2022] [Indexed: 07/21/2023]
Abstract
Solar ultraviolet radiation (UVR) is the primary pathogenetic factor in skin photoaging. It can disrupt cellular homeostasis by damaging DNA, inducing an inflammatory cascade, immunosuppression, and extracellular matrix (ECM) remodeling, resulting in a variety of dermatologic conditions. The skin microbiome plays an important role in the homeostasis and maintenance of healthy skin. Emerging evidence has indicated that highly diverse gut microbiome may also have an impact on the skin health, referred to as the gut-skin axis (GSA). Oral and topical probiotics through modulating the skin microbiome and gut-skin microbial interactions could serve as potential management to prevent and treat the skin photoaging by multiple pathways including reducing oxidative stress, inhibiting ECM remodeling, inhibiting the inflammatory cascade reaction, and maintaining immune homeostasis. In this review, the effects of oral and topical probiotics in skin photoaging and related mechanisms are both described systematically and comprehensively.
Collapse
Affiliation(s)
- Yan Teng
- Center for Plastic & Reconstructive Surgery, Department of Dermatology, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, People’s Republic of China
| | - Youming Huang
- Center for Plastic & Reconstructive Surgery, Department of Dermatology, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, People’s Republic of China
| | - Xu Danfeng
- Center for Plastic & Reconstructive Surgery, Department of Dermatology, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, People’s Republic of China
| | - Xiaohua Tao
- Center for Plastic & Reconstructive Surgery, Department of Dermatology, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, People’s Republic of China
| | - Yibin Fan
- Center for Plastic & Reconstructive Surgery, Department of Dermatology, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, People’s Republic of China
| |
Collapse
|
19
|
Combining Topical and Oral Botanicals for Skin Redness, Pigmentation, Sleep, and Mood: A Randomized Controlled Study. J Clin Med 2022; 11:jcm11226690. [PMID: 36431167 PMCID: PMC9697836 DOI: 10.3390/jcm11226690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 11/05/2022] [Accepted: 11/08/2022] [Indexed: 11/16/2022] Open
Abstract
External and internal stressors have been found to adversely affect skin health and overall wellness. There is growing interest in the use of anti-inflammatory and antioxidant plant-derived ingredients, such as ashwagandha, saffron, l-theanine, and tocopherol, to mitigate the impact of these stressors. In this study, we evaluate the effectiveness of oral and topical products (InnerCalm and SuperCalm, respectively) that contain naturally derived ingredients on skin redness, skin pigmentation, sleep, and mood in healthy females with Fitzpatrick skin type 1−4 and self-perceived sensitive skin. Subjects were randomized to an oral (oral group), a topical (topical group), or a combination of both the oral and topical interventions (combined group). Standardized photography-based image analysis was used to assess skin redness and pigment. Self-assessments of mood and sleep were measured with the abbreviated profile of mood states (POMS) questionnaire, and the Pittsburgh sleep-quality index (PSQI), respectively. Assessments were made at the baseline, 1-week, 4-weeks, and 8-weeks of the intervention. The average facial redness decreased in the topical group at 8-weeks (p < 0.001) and in the combined group at 4-weeks (p < 0.05) and 8-weeks (p < 0.001), relative to the baseline. The average facial pigmentation decreased in the oral (p < 0.05) and combined (p < 0.05) cohorts at 8-weeks, relative to the baseline. The oral group exhibited an improvement in sleep quality at 1-week relative to the baseline (p < 0.05) and at 8-weeks relative to the baseline (p < 0.05). Finally, the combined group demonstrated improvement in fatigue (p < 0.01) and confusion (p < 0.05) at 8-weeks relative to the baseline, though total mood disturbance increased in all 3 groups over the course of the study. Measured outcomes relating to mood may be confounded with the timing of the study, which ran during the COVID pandemic. Overall, we demonstrate the role of oral and topical herbs and of nutraceuticals for skin health and wellness. Further research will be needed to elucidate synergistic effects in oral and topical combination regimens.
Collapse
|
20
|
Wu H, Zhang Z, Zhang Y, Zhao Z, Zhu H, Yue C. Extracellular vesicle: A magic lamp to treat skin aging, refractory wound, and pigmented dermatosis? Front Bioeng Biotechnol 2022; 10:1043320. [PMID: 36420445 PMCID: PMC9676268 DOI: 10.3389/fbioe.2022.1043320] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 10/24/2022] [Indexed: 09/19/2023] Open
Abstract
Exposure of the skin to an external stimulus may lead to a series of irreversible dysfunctions, such as skin aging, refractory wounds, and pigmented dermatosis. Nowadays, many cutaneous treatments have failed to strike a balance between cosmetic needs and medical recovery. Extracellular vesicles (EVs) are one of the most promising therapeutic tools. EVs are cell-derived nanoparticles that can carry a variety of cargoes, such as nucleic acids, lipids, and proteins. They also have the ability to communicate with neighboring or distant cells. A growing body of evidence suggests that EVs play a significant role in skin repair. We summarize the current findings of EV therapy in skin aging, refractory wound, and pigmented dermatosis and also describe the novel engineering strategies for optimizing EV function and therapeutic outcomes.
Collapse
Affiliation(s)
- Haiyan Wu
- Key Laboratory of Microbial Drugs Innovation and Transformation of Yan’an, School of Basic Medicine, Yan’an University, Yan’an, China
- Institute for Regenerative Medicine & Research Center for Translational Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Zhenchun Zhang
- Key Laboratory of Microbial Drugs Innovation and Transformation of Yan’an, School of Basic Medicine, Yan’an University, Yan’an, China
- Institute for Regenerative Medicine & Research Center for Translational Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Yuemeng Zhang
- Key Laboratory of Microbial Drugs Innovation and Transformation of Yan’an, School of Basic Medicine, Yan’an University, Yan’an, China
| | - Zhenlin Zhao
- Shenzhen Ruipuxun Academy for Stem Cell & Regenerative Medicine, Shenzhen, China
| | - Hongming Zhu
- Institute for Regenerative Medicine & Research Center for Translational Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
- Shenzhen Ruipuxun Academy for Stem Cell & Regenerative Medicine, Shenzhen, China
| | - Changwu Yue
- Key Laboratory of Microbial Drugs Innovation and Transformation of Yan’an, School of Basic Medicine, Yan’an University, Yan’an, China
| |
Collapse
|
21
|
Recommend photoprotection for everyone including those with skin of colour. DRUGS & THERAPY PERSPECTIVES 2022. [DOI: 10.1007/s40267-022-00962-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
22
|
Wagstaff W, Mwamba RN, Grullon K, Armstrong M, Zhao P, Hendren-Santiago B, Qin KH, Li AJ, Hu DA, Youssef A, Reid RR, Luu HH, Shen L, He TC, Haydon RC. Melanoma: Molecular genetics, metastasis, targeted therapies, immunotherapies, and therapeutic resistance. Genes Dis 2022; 9:1608-1623. [PMID: 36157497 PMCID: PMC9485270 DOI: 10.1016/j.gendis.2022.04.004] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 03/29/2022] [Accepted: 04/10/2022] [Indexed: 02/07/2023] Open
Abstract
Cutaneous melanoma is a common cancer and cases have steadily increased since the mid 70s. For some patients, early diagnosis and surgical removal of melanomas is lifesaving, while other patients typically turn to molecular targeted therapies and immunotherapies as treatment options. Easy sampling of melanomas allows the scientific community to identify the most prevalent mutations that initiate melanoma such as the BRAF, NRAS, and TERT genes, some of which can be therapeutically targeted. Though initially effective, many tumors acquire resistance to the targeted therapies demonstrating the need to investigate compensatory pathways. Immunotherapies represent an alternative to molecular targeted therapies. However, inter-tumoral immune cell populations dictate initial therapeutic response and even tumors that responded to treatment develop resistance in the long term. As the protocol for combination therapies develop, so will our scientific understanding of the many pathways at play in the progression of melanoma. The future direction of the field may be to find a molecule that connects all of the pathways. Meanwhile, noncoding RNAs have been shown to play important roles in melanoma development and progression. Studying noncoding RNAs may help us to understand how resistance - both primary and acquired - develops; ultimately allow us to harness the true potential of current therapies. This review will cover the basic structure of the skin, the mutations and pathways responsible for transforming melanocytes into melanomas, the process by which melanomas metastasize, targeted therapeutics, and the potential that noncoding RNAs have as a prognostic and treatment tool.
Collapse
Affiliation(s)
- William Wagstaff
- The Pritzker School of Medicine, and the Medical Scientist Training Program, The University of Chicago Medical Center, Chicago, IL 60637, USA
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Rimel N. Mwamba
- The Pritzker School of Medicine, and the Medical Scientist Training Program, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Karina Grullon
- The Pritzker School of Medicine, and the Medical Scientist Training Program, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Mikhayla Armstrong
- The Pritzker School of Medicine, and the Medical Scientist Training Program, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Piao Zhao
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, PR China
| | - Bryce Hendren-Santiago
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Kevin H. Qin
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Alexander J. Li
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Daniel A. Hu
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Andrew Youssef
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Russell R. Reid
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
- Laboratory of Craniofacial Suture Biology and Development, Department of Surgery Section of Plastic Surgery, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Hue H. Luu
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Le Shen
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
- Department of Surgery, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Tong-Chuan He
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
- Department of Surgery, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Rex C. Haydon
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| |
Collapse
|
23
|
Bioassay-Guided Characterization, Antioxidant, Anti-Melanogenic and Anti-Photoaging Activities of Pueraria thunbergiana L. Leaf Extracts in Human Epidermal Keratinocytes (HaCaT) Cells. Processes (Basel) 2022. [DOI: 10.3390/pr10102156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
Although the roots and flowers of P. thunbergiana are known to have various physiologically active effects, studies on the anti-melanin production and anti-photoaging effects of its leaf extracts and cellular mechanisms are still lacking. In this study, we evaluated the possibility of using Pueraria thunbergiana leaves as a natural material for skin whitening and anti-aging-related functional cosmetics. The 30% ethyl alcohol (EtOH) extract from P. thunbergiana leaves was fractionated using n-hexane, ethyl acetate (EtOAc), butanol, and aqueous solution to measure their whitening, and anti-aging effects. The EtOAc fraction contained a high content of phenolic and flavonoids and showed higher 1,1-diphenyl-2-picryhydrazyl (DPPH) and 2,2-azino-bis (3-ethylbenzothiazoline-6-sulfonic acid) diammonium salt (ABTS) radical scavenging activities than the other fractions. It was also confirmed that the EtOAc fraction markedly inhibited α-melanocyte stimulating hormone (α-MSH)-induced melanogenesis in B16F10 melanoma cells. In addition, the EtOAc fraction showed a protective effect against ultraviolet B (UVB) in HaCaT cells and increased the collagen synthesis that was decreased due to UVB exposure. Matrix metalloproteinase-1 (MMP-1) activity and MMP-1 protein expression were reduced in human epidermal keratinocytes (HaCaT) cells. These results indicate that the EtOAc fraction has superior antioxidant activity, anti-melanogenesis, and anti-photoaging effects compared to the other fractions. Therefore, in this study, we confirmed the potential of P. thunbergiana leaf extract as a functional cosmetic ingredient, and it can be used as basic data for the physiological activity of P. thunbergiana leaf extracts.
Collapse
|
24
|
Wilkinson EL, Ashton L, Kerns JG, Allinson SL, Mort RL. Fingerprinting of skin cells by live cell Raman spectroscopy reveals melanoma cell heterogeneity and cell-type-specific responses to UVR. Exp Dermatol 2022; 31:1543-1553. [PMID: 35700136 PMCID: PMC9796253 DOI: 10.1111/exd.14625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 05/26/2022] [Accepted: 06/09/2022] [Indexed: 01/01/2023]
Abstract
Raman spectroscopy is an emerging dermatological technique with the potential to discriminate biochemically between cell types in a label-free and non-invasive manner. Here, we use live single-cell Raman spectroscopy and principal component analysis (PCA) to fingerprint mouse melanoblasts, melanocytes, keratinocytes and melanoma cells. We show the differences in their spectra are attributable to biomarkers in the melanin biosynthesis pathway and that melanoma cells are a heterogeneous population that sit on a trajectory between undifferentiated melanoblasts and differentiated melanocytes. We demonstrate the utility of Raman spectroscopy as a highly sensitive tool to probe the melanin biosynthesis pathway and its immediate response to ultraviolet (UV) irradiation revealing previously undescribed opposing responses to UVA and UVB irradiation in melanocytes. Finally, we identify melanocyte-specific accumulation of β-carotene correlated with a stabilisation of the UVR response in lipids and proteins consistent with a β-carotene-mediated photoprotective mechanism. In summary, our data show that Raman spectroscopy can be used to determine the differentiation status of cells of the melanocyte lineage and describe the immediate and temporal biochemical changes associated with UV exposure which differ depending on cell type, differentiation status and competence to synthesise melanin. Our work uniquely applies Raman spectroscopy to discriminate between cell types by biological function and differentiation status while they are growing in culture. In doing so, we demonstrate for the first time its utility as a tool with which to probe the melanin biosynthesis pathway.
Collapse
Affiliation(s)
- Emma L. Wilkinson
- Division of Biomedical and Life Sciences, Faculty of Health and MedicineLancaster UniversityLancasterUK
| | - Lorna Ashton
- Department of ChemistryLancaster UniversityLancasterUK
| | - Jemma G. Kerns
- Lancaster Medical School, Faculty of Health and MedicineLancaster UniversityLancasterUK
| | - Sarah L. Allinson
- Division of Biomedical and Life Sciences, Faculty of Health and MedicineLancaster UniversityLancasterUK
| | - Richard L. Mort
- Division of Biomedical and Life Sciences, Faculty of Health and MedicineLancaster UniversityLancasterUK
| |
Collapse
|
25
|
A review on biological assays of red algae marine compounds: An insight into skin whitening activities. J Herb Med 2022. [DOI: 10.1016/j.hermed.2022.100585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
26
|
Ngadiarti I, Nurkolis F, Handoko MN, Perdana F, Permatasari HK, Taslim NA, Mayulu N, Wewengkang DS, Noor SL, Batubara SC, Tanner MJ, Sabrina N. Anti-aging potential of cookies from sea grapes in mice fed on cholesterol- and fat-enriched diet: in vitro with in vivo study. Heliyon 2022; 8:e09348. [PMID: 35521505 PMCID: PMC9065618 DOI: 10.1016/j.heliyon.2022.e09348] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 02/15/2022] [Accepted: 04/25/2022] [Indexed: 12/14/2022] Open
Abstract
This study determines the effect of cookies made from sea grapes (Caulerpa racemosa) on PGC-1α, total cholesterol, and blood glucose levels on mice fed with a Cholesterol- and Fat-Enriched Diet (CFED). The antioxidant activity, tyrosinase inhibition, α-glucosidase, and α-amylase inhibition is also analyzed in order to assess the in vitro anti-aging potential of sea grapes cookies. Forty male Mus muscullus albino mice weighing 20 g–30 g were used and randomly distributed into four groups of ten animals each. Group A served as a normal control (given a standard dry pellet diet), Group B was given CFED only, and mice in Groups C and D were given CFED with 100 mg and 200 mg/20 g body weight of sea grapes cookies, respectively for 4 weeks. In vitro study shows that the percentage of inhibition activity of antioxidant, L-Tyrosine, L-Dopa, α-glucosidase, and α-amylase inhibition were 45.65 ± 1.50, 8.95 ± 0.06, 21.31 ± 0.98, 77.12 ± 4.67 and 70.94 ± 0.98, respectively. This study found that group D had better activity in lowering blood glucose than group C (p < 0.0001). In addition, although there was not found significant difference between groups C and D in blood cholesterol reduction and PGC-1α (p = 0.1482), both groups experienced the same effect in total cholesterol reduction and PGC-1α in mice (significantly, p < 0001). Thus, we conclude that sea grapes cookies are proven to improve PGC-1α, total cholesterol, and blood glucose levels in mice fed with CFED. Hence, sea grapes cookies is a potential anti-aging novel-functional food.
Collapse
Affiliation(s)
- Iskari Ngadiarti
- Nutrition and Dietetics, Health Polytechnic of Jakarta II, Jakarta, 12120, Indonesia
- Corresponding author.
| | - Fahrul Nurkolis
- Biological Sciences, State Islamic University of Sunan Kalijaga (UIN Sunan Kalijaga Yogyakarta), Yogyakarta, 55281, Indonesia
| | | | - Fachruddin Perdana
- Nutrition Department, Faculty of Medicince, University of Sultan Ageng Tirtayasa, Serang, 42118, Indonesia
| | - Happy Kurnia Permatasari
- Department of Biochemistry and Biomolecular, Faculty of Medicine, Brawijaya University, Malang, 65145, Indonesia
| | - Nurpudji Astuti Taslim
- Clinical Nutrition, Faculty of Medicine, Hasanuddin University, Makassar, 90245, Indonesia
| | - Nelly Mayulu
- Nutrition and Food, Faculty of Medicine, Sam Ratulangi University, Manado, 95115, Indonesia
| | - Defny Silvia Wewengkang
- Pharmacy Department, Faculty of Mathematics and Sciences, Sam Ratulangi University, Manado, 95115, Indonesia
| | - Sutamara Lasurdi Noor
- Clinical and Public Health Nutrition Programme, University College London, London, WC1E 6BT, United Kingdom
| | | | | | - Nindy Sabrina
- Nutrition Department, Sahid University of Jakarta, South Jakarta, 12870, Indonesia
| |
Collapse
|
27
|
Liu H, Wang J, Hu J, Wang L, Guo Z, Fan W, Xu Y, Liu D, Zhang Y, Xie M, Tang J, Huang W, Zhang Q, Zhou Z, Hou S. Genome-wide association analysis reveal the genetic reasons affect melanin spot accumulation in beak skin of ducks. BMC Genomics 2022; 23:236. [PMID: 35346029 PMCID: PMC8962612 DOI: 10.1186/s12864-022-08444-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Accepted: 01/25/2022] [Indexed: 12/18/2022] Open
Abstract
Abstract
Background
Skin pigmentation is a broadly appearing phenomenon of most animals and humans in nature. Here we used a bird model to investigate why melanin spot deposits on the skin.
Results
Our result showed that growth age and the sunlight might induce melanin deposition in bird beak skin which was determined by genetic factors. GWAS helped us to identify two major loci affecting melanin deposition, located on chromosomes 13 and 25, respectively. The fine mapping works narrowed the candidate regions to 0.98 Mb and 1.0 Mb on chromosomes 13 and 25. The MITF and POU2F3 may be the causative genes and synergistically affect melanin deposition during duck beak skin. Furthermore, our data strongly demonstrated that the pathway of melanin metabolism contributes to melanin deposition on the skin.
Conclusions
We demonstrated that age and sunlight induce melanin deposition in bird beak skin, while heredity is fundamental. The MITF and POU2F3 likely played a synergistic effect on the regulation of melanin synthesis, and their mutations contribute to phenotypic differences in beak melanin deposition among individuals. It is pointed out that melanin deposition in the skin is related to the pathway of melanin metabolism, which provided insights into the molecular regulatory mechanisms and the genetic improvement of the melanin deposition in duck beak.
Collapse
|
28
|
Abstract
Melanocytes are highly specialised dendritic cells that transfer melanin to keratinocytes in subcellular lysosome-like organelles called melanosomes, where melanin is synthesised and stored. Melanin is a complex pigment that provides colour and photoprotection to the skin, hair, and eyes of mammals. The regulation of melanogenesis includes various mechanisms and factors including genetic, environmental, and endocrine factors. Knowledge of the pigmentation process is important not only to understand hyperpigmentation but also to design treatments and therapies to treat them. Whitening cosmetics with anti-melanogenesis activity are very popular. In the present manuscript, we review the mechanisms and the signalling pathways involved in skin pigmentation and we specifically focus on the alteration of melanogenesis that leads to melasma and results in hyperpigmentation. Finally, current therapies and treatments including topical, oral, and phototherapies are discussed and described, with a special emphasis on the cosmetics’ action.
Collapse
|
29
|
Kowalska J, Rok J, Rzepka Z, Wrześniok D. Drug-Induced Photosensitivity-From Light and Chemistry to Biological Reactions and Clinical Symptoms. Pharmaceuticals (Basel) 2021; 14:723. [PMID: 34451820 PMCID: PMC8401619 DOI: 10.3390/ph14080723] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 07/23/2021] [Accepted: 07/24/2021] [Indexed: 02/07/2023] Open
Abstract
Photosensitivity is one of the most common cutaneous adverse drug reactions. There are two types of drug-induced photosensitivity: photoallergy and phototoxicity. Currently, the number of photosensitization cases is constantly increasing due to excessive exposure to sunlight, the aesthetic value of a tan, and the increasing number of photosensitizing substances in food, dietary supplements, and pharmaceutical and cosmetic products. The risk of photosensitivity reactions relates to several hundred externally and systemically administered drugs, including nonsteroidal anti-inflammatory, cardiovascular, psychotropic, antimicrobial, antihyperlipidemic, and antineoplastic drugs. Photosensitivity reactions often lead to hospitalization, additional treatment, medical management, decrease in patient's comfort, and the limitations of drug usage. Mechanisms of drug-induced photosensitivity are complex and are observed at a cellular, molecular, and biochemical level. Photoexcitation and photoconversion of drugs trigger multidirectional biological reactions, including oxidative stress, inflammation, and changes in melanin synthesis. These effects contribute to the appearance of the following symptoms: erythema, swelling, blisters, exudation, peeling, burning, itching, and hyperpigmentation of the skin. This article reviews in detail the chemical and biological basis of drug-induced photosensitivity. The following factors are considered: the chemical properties, the influence of individual ranges of sunlight, the presence of melanin biopolymers, and the defense mechanisms of particular types of tested cells.
Collapse
Affiliation(s)
| | | | | | - Dorota Wrześniok
- Department of Pharmaceutical Chemistry, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia in Katowice, Jagiellońska 4, 41-200 Sosnowiec, Poland; (J.K.); (J.R.); (Z.R.)
| |
Collapse
|
30
|
A Study of Botulinum Toxin A for Ultraviolet-Induced Hyperpigmentation: A Randomized Controlled Trial. Dermatol Surg 2021; 47:e174-e178. [PMID: 33731570 DOI: 10.1097/dss.0000000000002943] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND Ultraviolet (UV) exposure contributes to skin hyperpigmentation. Recently, botulinum neurotoxin type A (BoNT-A) showed a promising protective effect on UVB-induced hyperpigmentation in both in vitro and animal models. OBJECTIVE The study aimed to investigate the preventive effect of BoNT-A against UVB-induced hyperpigmentation in human subjects. MATERIALS AND METHODS A prospective, double-blinded, randomized controlled trial was performed in 15 healthy participants. Four separate square areas on the abdomen were randomly injected intradermally with different dilutions of BoNT-A (1:2.5, 1:5, 1:7.5) and normal saline (control). Two weeks after injection, hyperpigmented spots were induced by UVB irradiation at the experimental sites. The lightness index and hyperpigmentation scores from blinded physician and participants were evaluated. RESULTS Fifteen participants completed the study. One week after UVB irradiation, all BoNT-A-treated sites had a significantly lower degree of hyperpigmentation than the control site in lightness index and hyperpigmentation scores from blinded physician and participants (p < .05). However, no statistically significant difference was observed between different concentrations of BoNT-A. No side effects were observed throughout the study period. CONCLUSION Intradermal BoNT-A injection provided a protective effect from UVB-induced hyperpigmentation. It may be used for other hyperpigmentation disorders that are aggravated by UVB.
Collapse
|
31
|
Mark N, Lyubin A, Gerasi R, Ofir D, Tsur AM, Chen J, Bader T. Comparison of the Effects of Motion and Environment Conditions on Accuracy of Handheld and Finger-Based Pulse Oximeters. Mil Med 2021; 186:465-472. [PMID: 33499470 DOI: 10.1093/milmed/usaa314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 07/23/2020] [Accepted: 09/14/2020] [Indexed: 11/14/2022] Open
Abstract
INTRODUCTION The most common cause of preventable death on the battlefield is significant blood loss, eventually causing decrease in tissue oxygen delivery. Pulse oximeters (POs) are widely used by the Israeli Defense Forces to obtain fast and noninvasive information about peripheral oxygen saturation (SpO2). However, POs are produced by different manufacturers and therefore include different sensors and are based on distinctive algorithms. This makes them susceptible to different errors caused by factors varying from environmental conditions to the severity of injury. The objectives of this study were to compare the reliability of different devices and their accuracy under various conditions. MATERIAL AND METHODS Six POs underwent performance analysis. The finger-based category included: MightySat by Masimo, Onyx II by Nonin, and CMS50D by Contec. The handheld category comprised: RAD5 by Masimo, 9847 model by Nonin, and 3301 model by BCI. Several environmental and physiological parameters were altered using the ProSim8 simulator by Fluke biomedical, forming unique test cases under which the devices were tested in stationary and motion conditions. RESULTS All finger-based POs showed higher error rates of PO SpO2 and heart rate measurements in motion conditions, regardless of the manufacturer. However, newer devices in the handheld category were not affected. Results presented in Phase II showed that the SpO2 measurement error in all the devices was affected by pigmentation. However, the CMS50D, considered a low-cost device, had a significantly higher error size than other devices. In the devices that were influenced both by pigmentation and the finger cleanliness factors, the combined detected error size was clinically significant. The pigmentation, ambient light, and finger cleanliness also had a significant effect on the heart rate measurement in the CMS50D model, unlike the handheld devices, which were not affected. During Phase II, neither the Nonin nor the Masimo devices were deemed to have a significant advantage. CONCLUSION Considering measurement limitations of POs used is extremely important. Use of handheld devices should be favored for use in motion conditions. Technologically advanced and/or recently developed devices should be preferred because of evolving algorithms, which decrease or eliminate the error factors. The "dirty finger" effect on the measurement error cannot be neglected and therefore the action of finger cleaning should be considered part of the treatment protocol.
Collapse
Affiliation(s)
- Noy Mark
- Surgeon General's Headquarters, Israel Defense Forces Medical Corps, Military POB 02149, Tel Hashomer, Ramat Gan, Israel, Military Postal Code 01215
| | - Anat Lyubin
- Surgeon General's Headquarters, Israel Defense Forces Medical Corps, Military POB 02149, Tel Hashomer, Ramat Gan, Israel, Military Postal Code 01215
| | - Refael Gerasi
- Surgeon General's Headquarters, Israel Defense Forces Medical Corps, Military POB 02149, Tel Hashomer, Ramat Gan, Israel, Military Postal Code 01215
| | - Dror Ofir
- Israel Naval Medical Institute, Israel Defense Forces Medical Corps, Box 22, Rambam Health Care Campus, POB 9602, Haifa, Israel, Postal Code 3109601
| | - Avishai M Tsur
- Surgeon General's Headquarters, Israel Defense Forces Medical Corps, Military POB 02149, Tel Hashomer, Ramat Gan, Israel, Military Postal Code 01215
| | - Jacob Chen
- Surgeon General's Headquarters, Israel Defense Forces Medical Corps, Military POB 02149, Tel Hashomer, Ramat Gan, Israel, Military Postal Code 01215
| | - Tarif Bader
- Surgeon General's Headquarters, Israel Defense Forces Medical Corps, Military POB 02149, Tel Hashomer, Ramat Gan, Israel, Military Postal Code 01215.,Faculty of Medicine, Institute for Research in Military Medicine, The Hebrew University of Jerusalem and Israel Defense Forces Medical Corps, POB 12272, Jerusalem, Israel, Postal Code 9112102
| |
Collapse
|
32
|
Molecular and Biochemical Basis of Minocycline-Induced Hyperpigmentation-The Study on Normal Human Melanocytes Exposed to UVA and UVB Radiation. Int J Mol Sci 2021; 22:ijms22073755. [PMID: 33916535 PMCID: PMC8038496 DOI: 10.3390/ijms22073755] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 04/01/2021] [Accepted: 04/01/2021] [Indexed: 01/04/2023] Open
Abstract
Minocycline is a drug which induces skin hyperpigmentation. Its frequency reaches up to 50% of treated patients. The adverse effect diminishes the great therapeutic potential of minocycline, including antibacterial, neuroprotective, anti-inflammatory and anti-cancer actions. It is supposed that an elevated melanin level and drug accumulation in melanin-containing cells are related to skin hyperpigmentation. This study aimed to evaluate molecular and biochemical mechanism of minocycline-induced hyperpigmentation in human normal melanocytes, as well as the contribution of UV radiation to this side effect. The experiments involved the evaluation of cyto- and phototoxic potential of the drug using cell imaging with light and confocal microscopes as well as biochemical and molecular analysis of melanogenesis. We showed that minocycline induced melanin synthesis in epidermal melanocytes. The action was intensified by UV irradiation, especially with the UVB spectrum. Minocycline stimulated the expression of microphthalmia-associated transcription factor (MITF) and tyrosinase (TYR) gene. Higher levels of melanin and increased activity of tyrosinase were also observed in treated cells. Moreover, minocycline triggered the supranuclear accumulation of tyrosinase, similar to UV radiation. The decreased level of premelanosome protein PMEL17 observed in all minocycline-treated cultures suggests disorder of the formation, maturation or distribution of melanosomes. The study revealed that minocycline itself was able to enhance melanin synthesis. The action was intensified by irradiation, especially with the UVB spectrum. Demonstrated results confirmed the potential role of melanin and UV radiation minocycline-induced skin hyperpigmentation.
Collapse
|
33
|
Xiong M, Zhang Q, Hu W, Zhao C, Lv W, Yi Y, Wang Y, Tang H, Wu M, Wu Y. The novel mechanisms and applications of exosomes in dermatology and cutaneous medical aesthetics. Pharmacol Res 2021; 166:105490. [PMID: 33582246 DOI: 10.1016/j.phrs.2021.105490] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 01/18/2021] [Accepted: 02/09/2021] [Indexed: 12/17/2022]
Abstract
Exposure to the external environment may lead to instability and dysfunction of the skin, resulting in refractory wound, skin aging, pigmented dermatosis, hair loss, some immune-mediated dermatoses, and connective tissue diseases. Nowadays, many skin treatments have not achieved a commendable balance between medical recovery and cosmetic needs. Exosomes are cell-derived nanoscale vesicles carrying various biomolecules, including proteins, nucleic acids, and lipids, with the capability to communicate with adjacent or distant cells. Recent studies have demonstrated that endogenic multiple kinds of exosomes are crucial orchestrators in shaping physiological and pathological development of the skin. Besides, exogenous exosomes, such as stem cell exosomes, can serve as novel treatment options to repair, regenerate, and rejuvenate skin tissue. Herein, we review new insights into the role of endogenic and exogenous exosomes in the skin microenvironment and recent advances in applications of exosomes related to dermatology and cutaneous medical aesthetics. The deep understanding of the mechanisms by which exosomes perform biological functions in skin is of great potential to establish attractive therapeutic methods for the skin.
Collapse
Affiliation(s)
- Mingchen Xiong
- Department of Plastic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan 430030, Hubei, China
| | - Qi Zhang
- Department of Plastic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan 430030, Hubei, China.
| | - Weijie Hu
- Department of Plastic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan 430030, Hubei, China.
| | - Chongru Zhao
- Department of Plastic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan 430030, Hubei, China
| | - Wenchang Lv
- Department of Plastic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan 430030, Hubei, China
| | - Yi Yi
- Department of Plastic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan 430030, Hubei, China
| | - Yichen Wang
- Department of Plastic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan 430030, Hubei, China
| | - Hongbo Tang
- Department of Plastic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan 430030, Hubei, China.
| | - Min Wu
- Department of Plastic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan 430030, Hubei, China.
| | - Yiping Wu
- Department of Plastic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan 430030, Hubei, China.
| |
Collapse
|
34
|
de la Guía-Galipienso F, Martínez-Ferran M, Vallecillo N, Lavie CJ, Sanchis-Gomar F, Pareja-Galeano H. Vitamin D and cardiovascular health. Clin Nutr 2020; 40:2946-2957. [PMID: 33397599 PMCID: PMC7770490 DOI: 10.1016/j.clnu.2020.12.025] [Citation(s) in RCA: 159] [Impact Index Per Article: 31.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 11/18/2020] [Accepted: 12/16/2020] [Indexed: 12/22/2022]
Abstract
The principal source of vitamin D in humans is its biosynthesis in the skin through a chemical reaction dependent on sun exposure. In lesser amounts, the vitamin can be obtained from the diet, mostly from fatty fish, fish liver oil and mushrooms. Individuals with vitamin D deficiency, defined as a serum level of 25 hydroxyvitamin D < 20 ng/dl, should be supplemented. Vitamin D deficiency is a prevalent global problem caused mainly by low exposure to sunlight. The main role of 1,25 dihydroxyvitamin D is the maintenance of calcium and phosphorus homeostasis. However, vitamin D receptors are found in most human cells and tissues, indicating many extra-skeletal effects of the vitamin, particularly in the immune and cardiovascular (CV) systems. Vitamin D regulates blood pressure by acting on endothelial cells and smooth muscle cells. Its deficiency has been associated with various CV risk factors and appears to be linked to a higher mortality and incidence of CV disease (CVD). Several mechanisms have been proposed relating vitamin D deficiency to CV risk factors such as renin-angiotensin-aldosterone system activation, abnormal nitric oxide regulation, oxidative stress or altered inflammatory pathways. However, in the latest randomized controlled trials no benefits of vitamin D supplementation for CVD have been confirmed. Although more work is needed to establish the protective role of vitamin D in this setting, according to current evidences vitamin D supplements should not be recommended for CVD prevention.
Collapse
Affiliation(s)
- Fernando de la Guía-Galipienso
- Cardiology Service, Hospital Clínica Benidorm, Alicante, Spain; Glorieta Policlinic, Denia, Alicante, Spain; REMA Sports Cardiology Clinic, Denia, Alicante, Spain
| | - María Martínez-Ferran
- Faculty of Sports Sciences and Physiotherapy, Universidad Europea de Madrid, Madrid, Spain
| | - Néstor Vallecillo
- Faculty of Biomedical and Health Sciences, Universidad Europea de Madrid, Madrid, Spain
| | - Carl J Lavie
- John Ochsner Heart and Vascular Institute, Ochsner Clinical School, The University of Queensland School of Medicine, New Orleans, LA, USA
| | - Fabian Sanchis-Gomar
- Dept. of Physiology, Faculty of Medicine, University of Valencia and INCLIVA Biomedical Research Institute, Valencia, Spain.
| | | |
Collapse
|
35
|
Abstract
Several resorcinol derivatives were synthesized and their effects on the survival rate of B16 murine melanoma cells, melanin production, and tyrosinase activity were investigated with an aim to evaluate their skin whitening effect. Twelve resorcinol derivatives were synthesized by esterification with three functional groups (L-ascorb-6-yl, ethyl, and glyceryl) linked via four alkyl chains of varying lengths (n = 2–5) at the 4-position. The structures of the 12 resorcinol derivatives were confirmed by Nuclear Magnetic Resonance (NMR). The derivatives were added to B16 murine melanoma cells and the melanin contents in the cells and culture medium were measured. To measure the tyrosinase activity, the substrate L-DOPA was added to a mushroom-derived tyrosinase solution, and the inhibition of the tyrosinase activity was determined. At 10 µM, the resorcinol derivatives did not affect the survival of the B16 murine melanoma cells, but the melanin content was reduced. At 1 µM, the derivatives significantly inhibited the tyrosinase activity in the mushroom-derived tyrosinase solution. A plot of the inhibitory effect on melanin production against the cLogP value for each resorcinol derivative indicated that the highest inhibition occurred at a cLogP value of approximately 2. Therefore, these resorcinol derivatives are expected to serve as effective skin whitening agents.
Collapse
|
36
|
Darvishi S, Pick H, Lin TE, Zhu Y, Li X, Ho PC, Girault HH, Lesch A. Tape-Stripping Electrochemical Detection of Melanoma. Anal Chem 2019; 91:12900-12908. [DOI: 10.1021/acs.analchem.9b02819] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Affiliation(s)
- Sorour Darvishi
- Laboratory of Physical and Analytical Electrochemistry, École Polytechnique Fédérale de Lausanne (EPFL), Valais Wallis, Rue de l’Industrie 17, CH-1950 Sion, Switzerland
| | - Horst Pick
- Institute of Chemical Sciences and Engineering, École Polytechnique Fédérale de Lausanne, EPFL, CH-1015 Lausanne, Switzerland
| | - Tzu-En Lin
- Institute of Biomedical Engineering, College of Electrical and Computer Engineering, National Chiao Tung University, Hsinchu 30010, Taiwan
| | - Yingdi Zhu
- Laboratory of Physical and Analytical Electrochemistry, École Polytechnique Fédérale de Lausanne (EPFL), Valais Wallis, Rue de l’Industrie 17, CH-1950 Sion, Switzerland
| | - Xiaoyun Li
- Department of Oncology, University of Lausanne, Ch. des Boveresses 155, CH-1015 Epalinges, Switzerland
- Ludwig Institute for Cancer Research, University of Lausanne, Ch. des Boveresses 155, CH-1015 Epalinges, Switzerland
| | - Ping-Chih Ho
- Department of Oncology, University of Lausanne, Ch. des Boveresses 155, CH-1015 Epalinges, Switzerland
- Ludwig Institute for Cancer Research, University of Lausanne, Ch. des Boveresses 155, CH-1015 Epalinges, Switzerland
| | - Hubert H. Girault
- Laboratory of Physical and Analytical Electrochemistry, École Polytechnique Fédérale de Lausanne (EPFL), Valais Wallis, Rue de l’Industrie 17, CH-1950 Sion, Switzerland
| | - Andreas Lesch
- Department of Industrial Chemistry “Toso Montanari”, University of Bologna, Viale del Risorgimento 4, IT-40136 Bologna, Italy
| |
Collapse
|
37
|
Skin Improvement Effects of Gardeniae fructus Extract in HaCaT Keratinocytes, B16F10 Melanocytes, and CCD-986sk Fibroblast Cells. COSMETICS 2019. [DOI: 10.3390/cosmetics6030048] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
The development of functional cosmetics with skin improvement effects from natural sources is necessary. In this study, the antioxidant, antiwrinkling, moisturizing, and whitening effects of Gardeniae fructus extract (GF) were investigated in keratinocytes, melanocytes, and fibroblast cells. Antioxidant activity was determined by a DPPH free radical scavenging assay. MMP-1, MMP-9, HAS1, and filaggrin mRNA levels were measured by RT-PCR in keratinocytes and fibroblast cells. MITF and tyrosinase protein levels were evaluated by blotting analysis in melanocytes. DPPH free radical activity was investigated to determine whether GF showed dose-dependent inhibitory activity. GF induced the upregulation of HAS1 and filaggrin mRNA expression in keratinocytes and fibroblast cells. GF led to the downregulation of MMP mRNA levels in keratinocytes and fibroblast cells. Western blotting was performed to confirm the whitening-related protein (MITF and tyrosinase) levels induced by GF in melanocytes, and the inhibitory activity was superior to that of the α-MSH used for the comparison test. GF showed marked antioxidant, antiwrinkling, skin moisturizing, and whitening activity in keratinocytes, melanocytes, and fibroblast cells. Through the results of these experiments, the applicability of GF as a natural and functional cosmetic material was verified.
Collapse
|
38
|
Insights into autophagy machinery in cells related to skin diseases and strategies for therapeutic modulation. Biomed Pharmacother 2019; 113:108775. [PMID: 30889485 DOI: 10.1016/j.biopha.2019.108775] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Revised: 03/11/2019] [Accepted: 03/13/2019] [Indexed: 02/05/2023] Open
Abstract
Autophagy, literally meaning "self-eating," is a highly conserved process that is part of the eukaryotic cell cycle. Morphologically, the double membrane contains vesicles with phagocytic components known as autophagosomes. Autophagy is often used as a cellular stress response and quality control mechanisms are used to maintain cell survival. Survival is facilitated by providing energy and metabolic precursors as well as removing damaged proteins or organelles. Moreover, autophagy refers to organelles fused together with part of the cell cytoplasm with a double or multi-membrane structure called phagosome. Research has demonstrated that autophagy is an important mediator of cell fate and has effects on inflammation, pathogen clearance, and antigen presentation. In recent years, studies discussing autophagy have increased in number. Nevertheless, only a small amount of research has considered the impact of autophagy on the pathogenesis of skin diseases. The skin is the largest organ of the body, with a surface area of around two square metre; it is the first line of defense against numerous environmental insults, including ultraviolet radiation, pathogens, mechanical stresses, and toxic chemicals. Autophagy is thought to be a vital modality for endogenous defenses against environmental derangements. This review provides an overview of autophagy machinery in keratinocytes, skin fibroblasts, melanocytes related to skin diseases as well as strategies for therapeutic modulation, for the future development of treatment for skin diseases.
Collapse
|
39
|
5-Aminolevulinic Acid-Based Photodynamic Therapy Pretreatment Mitigates Ultraviolet A-Induced Oxidative Photodamage. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2018; 2018:9420745. [PMID: 30524664 PMCID: PMC6247436 DOI: 10.1155/2018/9420745] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Revised: 08/30/2018] [Accepted: 09/16/2018] [Indexed: 01/04/2023]
Abstract
Aim To determine whether 5-aminolevulinic acid-based photodynamic therapy (ALA-PDT) is effective in combating ultraviolet A- (UVA-) induced oxidative photodamage of hairless mice skin in vivo and human epidermal keratinocytes in vitro. Methods In in vitro experiments, the human keratinocyte cell line (HaCaT cells) was divided into two groups: the experimental group was treated with ALA-PDT and the control group was left untreated. Then, the experimental group and the control group of cells were exposed to 10 J/m2 of UVA radiation. ROS, O2− species, and MMP were determined by fluorescence microscopy; p53, OGG1, and XPC were determined by Western blot analysis; apoptosis was determined by flow cytometry; and 8-oxo-dG was determined by immunofluorescence. Moreover, HaCaT cells were also treated with ALA-PDT. Then, SOD1 and SOD2 were examined by Western blot analysis. In in vivo experiments, the dorsal skin of hairless mice was treated with ALA-PDT or saline-PDT, and then, they were exposed to 20 J/m2 UVA light. The compound 8-oxo-dG was detected by immunofluorescence. Conclusion In human epidermal keratinocytes and hairless mice skin, UVA-induced oxidative damage can be prevented effectively with ALA-PDT pretreatment.
Collapse
|
40
|
Ding X, Mei E, Hu M, Zhou C, Li X, Cai L, Li Z. Effect of puerarin on melanogenesis in human melanocytes and vitiligo mouse models and the underlying mechanism. Phytother Res 2018; 33:205-213. [PMID: 30421463 DOI: 10.1002/ptr.6218] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Revised: 09/09/2018] [Accepted: 09/30/2018] [Indexed: 01/03/2023]
Abstract
Puerarin is the major bioactive ingredient derived from the root of the Pueraria lobata (Willd.), and its antioxidative stress effects have been demonstrated in several previous studies. Moreover, Puerarin can upregulate melanin synthesis and microphthalmia-associated transcription factor (MITF) transcription by increasing cAMP level of intracellular cyclic adenosine monophosphate. Vitiligo is an acquired cutaneous disorder of pigmentation, and the pathogenesis has remained elusive. Current treatment modalities are directed towards achieving repigmentation. In this study, we found that after treating with puerarin at various concentrations of 40 μmol/L, the melanin content of human melanocytes increased significantly and the apparent level of protein and the RNA levels of MITF, tyrosinase (TYR), and tyrosinase-related protein 1 (TRP-1) were also increased. Further, puerarin was shown to inhibit phosphorylation and activation of extracellular signal-regulated kinase 1 and 2 (ERK1/2) without significantly affecting p38 and c-Jun N-terminal kinase phosphorylation. These results demonstrated that puerarin stimulated melanogenesis in human melanocytes via inhibition of ERK1/2 signaling pathways, which leads to upregulation of MITF and TYR as well as TRP-1 subsequently. Additionally, mice vitiligo models with puerarin treatment showed lighter pathological changes. Therefore, we suggested that puerarin might be a potential medicine for vitiligo.
Collapse
Affiliation(s)
- Xiaoxia Ding
- Department of Dermatology and Venereology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Enci Mei
- Department of Dermatology and Venereology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Murong Hu
- Department of Dermatology and Venereology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Chaofeng Zhou
- Department of Urinary Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Xiaobin Li
- Department of Orthopedics, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Lei Cai
- Department of Dermatology and Venereology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Zhiming Li
- Department of Dermatology and Venereology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
41
|
Amelioration of UV radiation-induced photoaging by a combinational sunscreen formulation via aversion of oxidative collagen degradation and promotion of TGF-β-Smad-mediated collagen production. Eur J Pharm Sci 2018; 127:261-275. [PMID: 30414837 DOI: 10.1016/j.ejps.2018.11.004] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Revised: 10/31/2018] [Accepted: 11/05/2018] [Indexed: 01/01/2023]
Abstract
The presence of 40-50% more UV radiation in high altitude areas renders the plethora of sunscreen products available in the market virtually ineffective. In this light of event, four US FDA approved UV filters were combined with melatonin and pumpkin seed oil to produce a broad spectrum sunscreen cream, which is envisaged to provide optimum sunprotection along with enhanced antioxidant activity. The objective of this study is to evaluate the protective effect of the sunscreen cream against UV radiation-induced skin photoaging in adult Wistar albino rats and identify its possible underlying mechanism. Wistar rats were exposed to broad spectrum UV radiation for 28 days. The test group received the sunscreen formulation dermally every day prior to UV radiation. The effects of the formulation against UV induced symptoms; viz. skin thickness and edema, in vivo antioxidant activities, inflammatory cytokines, collagen content, histopathological examination and expression of specific genes established the protective activity of the formulation. The test formulation was able to mitigate the harmful effects of UV radiation by increasing in vivo SOD, GSH-Px, CAT and collagen levels; decreasing skin edema, skin thickness and cytokines like IL-6, IL-1β, TNF-α and TGF-β1. UV radiation induced changes in histological architecture and arrangement of collagen and elastin fibers were also prevented by the test formulation. Finally, the formulation was able to regulate the expression of COL3A1, COX-2, bFGF, VEGF-C, Smad2, Smad4, Smad7 genes which induced significant photoprotective activity. The sunscreen formulation ameliorated UV induced photoaging by preventing oxidative collagen degradation and augmentation of TGF-β-Smad-mediated collagen production.
Collapse
|
42
|
Lee JY, Cho YR, Park JH, Ahn EK, Jeong W, Shin HS, Kim MS, Yang SH, Oh JS. Anti-melanogenic and anti-oxidant activities of ethanol extract of Kummerowia striata: Kummerowia striata regulate anti-melanogenic activity through down-regulation of TRP-1, TRP-2 and MITF expression. Toxicol Rep 2018; 6:10-17. [PMID: 30510908 PMCID: PMC6258129 DOI: 10.1016/j.toxrep.2018.11.005] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Revised: 10/24/2018] [Accepted: 11/01/2018] [Indexed: 11/21/2022] Open
Abstract
Ethanol extract of Kummerowia striata is a potent antioxidant. It inhibits melanin synthesis by downregulating tyrosinase and related proteins. It may be used in cosmetics for skin whitening and reducing wrinkles.
Kummerowia striata (K. striata) is used as a traditional medicine for inflammation-related therapy. To determine whether it has beneficial anti-melanogenic and anti-oxidant activities, we investigated the biological activities of the ethanol extract of Kummerowia striata (EKS) using a variety of in vitro and cell culture model systems. The anti-melanogenic activity was assessed in B16F10 melanoma cells in terms of melanin synthesis and in vitro tyrosinase inhibitory activity. The anti-oxidant assays were performed using 2,2-diphenyl-1-picrylhydrazyl (DPPH) and 2,2ʹ-azino-bis (3-ethylbenzothiazoline-6-sulfonic acid) diammonium salt (ABTS). EKS showed strong anti-oxidant activities in DPPH and ABTS assays. The mRNA transcription levels and protein expression levels of tyrosinase, tyrosinase-related protein 1, tyrosinase-related protein 2, and microphthalmia-associated transcription factor decreased in a dose-dependent manner with EKS treatment. Additionally, EKS did not affect cell viability at different concentrations used in this study, indicating that the mechanism of action of EKS-mediated inhibition of melanin synthesis does not involve cytotoxicity. Also, we confirmed that p-coumaric acid and quercetin are important compounds for anti-melanogenesis and antioxidant properties of EKS. Collectively, our findings demonstrate for the first time that EKS possesses anti-melanogenic and anti-oxidant activities. Further evaluation and development of EKS as a functional supplement or cosmetic may be useful for skin whitening and reducing wrinkles.
Collapse
Key Words
- ABTS, 2,2ʹ-azino-bis (3-ethylbenzothiazoline-6-sulfonic acid) diammonium salt
- Anti-oxidant
- BHA, butylated hydroxyanisole
- COSY, correlation spectroscopy
- DMEM, Dulbecco’s Modified Eagle Medium
- DMSO, dimethyl sulfoxide
- DPPH, l 2,2-diphenyl-1-picrylhydrazyl
- EKS, ethanol extract of K. striata
- ESI, electrospray ionization
- FBS, fetal bovine serum
- HMBC, heteronuclear multiple bond correlation
- HSQC, heteronuclear single quantum coherence
- Kummerowia striata
- L-DOPA, L-3,4-dihydroxyphenylalanine
- MITF, microphthalmia-associated transcription factor
- MTT, 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-tetrazolium bromide
- Melanin
- Quercetin
- RT-PCR, reverse transcription-polymerase chain reaction
- SDS-PAGE, sodium dodecyl sulfate polyacrylamide gel electrophoresis
- TRP-1, tyrosinase-related protein 1
- p-coumaric acid
- α-MSH, α-Melanocyte-stimulating hormone
Collapse
Affiliation(s)
- Jae Yeon Lee
- Bio-Center, Gyeonggi Institute of Science and Technology Promotion, 147 Gwanggyo-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 443-270, Republic of Korea
| | - Young-Rak Cho
- Bio-Center, Gyeonggi Institute of Science and Technology Promotion, 147 Gwanggyo-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 443-270, Republic of Korea
| | - Ju Hyoung Park
- Department of Pharmacy, College of Pharmacy, Dankook University, 119 Dandae-ro, Cheonan, 330-714, Republic of Korea
| | - Eun-Kyung Ahn
- Bio-Center, Gyeonggi Institute of Science and Technology Promotion, 147 Gwanggyo-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 443-270, Republic of Korea
| | - Wonsik Jeong
- Bio-Center, Gyeonggi Institute of Science and Technology Promotion, 147 Gwanggyo-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 443-270, Republic of Korea
| | - Hyoung Seok Shin
- HANSOLBIO Co., Ltd., Halla Sigmavalley 545, Dunchon-daero, Jungwon-gu, Seongnam-si, Gyeonggi-do, Republic of Korea
| | - Mi-Sun Kim
- HANSOLBIO Co., Ltd., Halla Sigmavalley 545, Dunchon-daero, Jungwon-gu, Seongnam-si, Gyeonggi-do, Republic of Korea
| | - Seung Hwan Yang
- Department of Biotechnology, Chonnam National University, Yeosu, Chonnam, 59626, Republic of Korea
| | - Joa Sub Oh
- Department of Pharmacy, College of Pharmacy, Dankook University, 119 Dandae-ro, Cheonan, 330-714, Republic of Korea
| |
Collapse
|
43
|
Yu S, Wang G, Liao J, Tang M. Transcriptome profile analysis identifies candidate genes for the melanin pigmentation of breast muscle in Muchuan black-boned chicken. Poult Sci 2018; 97:3446-3455. [PMID: 29982752 DOI: 10.3382/ps/pey238] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Accepted: 06/07/2018] [Indexed: 12/28/2022] Open
Abstract
Melanin-based coloration in the meat of black-boned chicken is a major economic issue in China. Variation in the pigmentation (hypopigmentation) of chicken muscle causes direct economic losses every year. To determine the molecular mechanisms involved in the melanogenesis of muscle tissue, this study used high-throughput sequencing to compare differences in the transcriptome between black (BM) and white (WM) chicken breast muscles. We constructed 6 cDNA libraries from BM and WM groups in Muchuan black-boned chickens. A comparison between the BM and WM groups revealed 264 differentially expressed genes, of which 152 were upregulated, whereas 112 were downregulated in black muscle. Gene ontology and a Kyoto Encyclopedia of Genes and Genomes pathway analysis identified several differentially enriched biological functions and processes of the 2 muscles. Seven promising candidate genes [PMEL, Ras-related protein RAB29, and 5 solute carrier superfamily genes: SLC6A9, SLC38A4, SLC22A5, SLC35F3, and SLC16A3] may play an important role in the melanogenesis of chicken muscle. Our data provide a valuable resource for identifying genes whose functions are critical for muscle melanogenesis, and will assist studies of the molecular mechanisms of melanogenesis regulation in chicken muscle.
Collapse
Affiliation(s)
- Shigang Yu
- Engineering Research Center of Sichuan Province Higher School of Local Chicken Breeds Industrialization in Southern Sichuan, College of Life Science, Leshan Normal University, Leshan 614000, China
| | - Gang Wang
- Engineering Research Center of Sichuan Province Higher School of Local Chicken Breeds Industrialization in Southern Sichuan, College of Life Science, Leshan Normal University, Leshan 614000, China
| | - Juan Liao
- Engineering Research Center of Sichuan Province Higher School of Local Chicken Breeds Industrialization in Southern Sichuan, College of Life Science, Leshan Normal University, Leshan 614000, China
| | - Mei Tang
- Engineering Research Center of Sichuan Province Higher School of Local Chicken Breeds Industrialization in Southern Sichuan, College of Life Science, Leshan Normal University, Leshan 614000, China
| |
Collapse
|
44
|
Nahhas AF, Abdel-Malek ZA, Kohli I, Braunberger TL, Lim HW, Hamzavi IH. The potential role of antioxidants in mitigating skin hyperpigmentation resulting from ultraviolet and visible light-induced oxidative stress. PHOTODERMATOLOGY PHOTOIMMUNOLOGY & PHOTOMEDICINE 2018; 35:420-428. [PMID: 30198587 DOI: 10.1111/phpp.12423] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Revised: 08/10/2018] [Accepted: 09/02/2018] [Indexed: 01/03/2023]
Abstract
Oxidative stress is an integral element that influences a variety of biochemical reactions throughout the body and is known to play a notable role in melanogenesis. Exogenous triggers of oxidative stress, such as ultraviolet radiation (UVR) and visible light (VL), lead to pigment formation through somewhat different pathways, but both share a common endpoint-the potential to generate cosmetically undesirable hyperpigmentation. Though organic and inorganic sunscreens are available to protect against the UVR portion of the electromagnetic spectrum, coverage is lacking to protect against the VL spectrum. In this manuscript, we review the phases of tanning, pathways of melanogenesis triggered by UVR and VL, and the associated impact of oxidative stress. We also discuss the known intrinsic mechanisms and paracrine regulation of melanocytes that influence their response to UVR. Understanding these mechanisms and their role in UVR-induced hyperpigmentation should potentially lead to identification of useful targets that can be coupled with antioxidant therapy to alleviate this effect.
Collapse
Affiliation(s)
- Amanda F Nahhas
- Department of Dermatology, Beaumont-Farmington Hills, Farmington Hills, Michigan.,Department of Dermatology, Henry Ford Hospital, Detroit, Michigan
| | | | - Indermeet Kohli
- Department of Dermatology, Henry Ford Hospital, Detroit, Michigan
| | | | - Henry W Lim
- Department of Dermatology, Henry Ford Hospital, Detroit, Michigan
| | | |
Collapse
|
45
|
Brand RM, Wipf P, Durham A, Epperly MW, Greenberger JS, Falo LD. Targeting Mitochondrial Oxidative Stress to Mitigate UV-Induced Skin Damage. Front Pharmacol 2018; 9:920. [PMID: 30177881 PMCID: PMC6110189 DOI: 10.3389/fphar.2018.00920] [Citation(s) in RCA: 70] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Accepted: 07/26/2018] [Indexed: 12/16/2022] Open
Abstract
Unmitigated UV radiation (UVR) induces skin photoaging and multiple forms of cutaneous carcinoma by complex pathways that include those mediated by UV-induced reactive oxygen species (ROS). Upon UVR exposure, a cascade of events is induced that overwhelms the skin’s natural antioxidant defenses and results in DNA damage, intracellular lipid and protein peroxidation, and the dysregulation of pathways that modulate inflammatory and apoptotic responses. To this end, natural products with potent antioxidant properties have been developed to prevent, mitigate, or reverse this damage with varying degrees of success. Mitochondria are particularly susceptible to ROS and subsequent DNA damage as they are a major intracellular source of oxidants. Therefore, the development of mitochondrially targeted agents to mitigate mitochondrial oxidative stress and resulting DNA damage is a logical approach to prevent and treat UV-induced skin damage. We summarize evidence that some existing natural products may reduce mitochondrial oxidative stress and support for synthetically generated mitochondrial targeted cyclic nitroxides as potential alternatives for the prevention and mitigation of UVR-induced skin damage.
Collapse
Affiliation(s)
- Rhonda M Brand
- Department of Dermatology, University of Pittsburgh, Pittsburgh, PA, United States.,Department of Medicine, University of Pittsburgh, Pittsburgh, PA, United States
| | - Peter Wipf
- Department of Chemistry, University of Pittsburgh, Pittsburgh, PA, United States.,McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, United States
| | - Austin Durham
- Department of Chemistry, University of Pittsburgh, Pittsburgh, PA, United States
| | - Michael W Epperly
- Department of Radiation Oncology, University of Pittsburgh, Pittsburgh, PA, United States
| | - Joel S Greenberger
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, United States.,Department of Radiation Oncology, University of Pittsburgh, Pittsburgh, PA, United States.,UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA, United States
| | - Louis D Falo
- Department of Dermatology, University of Pittsburgh, Pittsburgh, PA, United States.,McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, United States.,UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA, United States.,Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, United States.,Clinical and Translational Science Institute, University of Pittsburgh, Pittsburgh, PA, United States
| |
Collapse
|
46
|
Emri G, Paragh G, Tósaki Á, Janka E, Kollár S, Hegedűs C, Gellén E, Horkay I, Koncz G, Remenyik É. Ultraviolet radiation-mediated development of cutaneous melanoma: An update. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY. B, BIOLOGY 2018; 185:169-175. [PMID: 29936410 DOI: 10.1016/j.jphotobiol.2018.06.005] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Revised: 05/07/2018] [Accepted: 06/13/2018] [Indexed: 12/11/2022]
Abstract
Ultraviolet (UV) light is absorbed by nucleic acids, proteins or other endogenous chromophores, such as porphyrins, flavins and melanin, triggering biological processes in skin cells. Both UV-induced mutations in melanocytes and changes in the immune microenvironment are understood to play a role in the development of cutaneous melanoma. The degree of UV-induced stress and the protection against this stress are influenced by both intracellular and intercellular molecular interactions. The present review summarizes the known major molecular biological changes induced by UV light in the skin that play a role in melanoma initiation and promotion. Nevertheless, cutaneous melanoma is not a homogenous disease, and the interaction of variable environmental exposure and different genetic susceptibility and other host factors lead to the formation of melanomas with different biological behavior and clinical characteristics. This review highlights the challenges in the understanding of how UV radiation contributes to the formation of cutaneous melanoma, and reviews the new results of photobiology and their link to tumor genetics and tumor immunology with potential implications on melanoma prevention and therapeutic strategies. The information presented here is expected to add clarity to ongoing research efforts in this field to aid the development of novel strategies to prevent and treat melanoma.
Collapse
Affiliation(s)
- Gabriella Emri
- Department of Dermatology, University of Debrecen, Debrecen, Hungary.
| | - György Paragh
- Department of Dermatology, Roswell Park Comprehensive Cancer Center, Buffalo, New York, USA; Department of Cell Stress Biology, Roswell Park Cancer Institute, Buffalo, New York, USA
| | - Ágnes Tósaki
- Department of Dermatology, University of Debrecen, Debrecen, Hungary
| | - Eszter Janka
- Department of Dermatology, University of Debrecen, Debrecen, Hungary
| | - Sándor Kollár
- Department of Pathology, Kenézy Gyula Hospital, Debrecen, Hungary
| | - Csaba Hegedűs
- Department of Dermatology, University of Debrecen, Debrecen, Hungary
| | - Emese Gellén
- Department of Dermatology, University of Debrecen, Debrecen, Hungary
| | - Irén Horkay
- Department of Dermatology, University of Debrecen, Debrecen, Hungary
| | - Gábor Koncz
- Department of Immunology, University of Debrecen, Debrecen, Hungary
| | - Éva Remenyik
- Department of Dermatology, University of Debrecen, Debrecen, Hungary
| |
Collapse
|
47
|
Jung HJ, Lee AK, Park YJ, Lee S, Kang D, Jung YS, Chung HY, Moon HR. (2 E,5 E)-2,5-Bis(3-hydroxy-4-methoxybenzylidene) cyclopentanone Exerts Anti-Melanogenesis and Anti-Wrinkle Activities in B16F10 Melanoma and Hs27 Fibroblast Cells. Molecules 2018; 23:molecules23061415. [PMID: 29891820 PMCID: PMC6099591 DOI: 10.3390/molecules23061415] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Revised: 06/08/2018] [Accepted: 06/11/2018] [Indexed: 12/16/2022] Open
Abstract
Ultraviolet (UV) radiation exposure is the primary cause of extrinsic skin aging, which results in skin hyperpigmentation and wrinkling. In this study, we investigated the whitening effect of (2E,5E)-2,5-bis(3-hydroxy-4-methoxybenzylidene)cyclopentanone (BHCP) on B16F10 melanoma and its anti-wrinkle activity on Hs27 fibroblasts cells. BHCP was found to potently inhibit tyrosinase, with 50% inhibition concentration (IC50) values of 1.10 µM and 8.18 µM for monophenolase (l-tyrosine) and diphenolase (l-DOPA), and the enzyme kinetics study revealed that BHCP is a competitive-type tyrosinase inhibitor. Furthermore, BHCP significantly inhibited melanin content and cellular tyrosinase activity, and downregulated the levels of microphthalmia-associated transcription factor (MITF), phosphorylated levels of cAMP response element-binding (CREB) protein, and tyrosinase in α-melanocyte stimulating hormone (α-MSH)-induced B16F10 melanoma cells. Moreover, BHCP inhibited the phosphorylation of p65 and expression of matrix metalloproteinases (MMP-1, MMP-9, MMP-12, and MMP-13) in Hs27 fibroblasts stimulated with UV radiation. Therefore, our results demonstrate that BHCP may be a good candidate for the development of therapeutic agents for diseases associated with hyperpigmentation and wrinkling.
Collapse
Affiliation(s)
- Hee Jin Jung
- Molecular Inflammation Research Center for Aging Intervention (MRCA), Pusan National University, Busan 46241, Korea.
| | - A Kyoung Lee
- Molecular Inflammation Research Center for Aging Intervention (MRCA), Pusan National University, Busan 46241, Korea.
- College of Pharmacy, Pusan National University, Busan 46241, Korea.
| | - Yeo Jin Park
- Molecular Inflammation Research Center for Aging Intervention (MRCA), Pusan National University, Busan 46241, Korea.
- College of Pharmacy, Pusan National University, Busan 46241, Korea.
| | - Sanggwon Lee
- Molecular Inflammation Research Center for Aging Intervention (MRCA), Pusan National University, Busan 46241, Korea.
- College of Pharmacy, Pusan National University, Busan 46241, Korea.
| | - Dongwan Kang
- Molecular Inflammation Research Center for Aging Intervention (MRCA), Pusan National University, Busan 46241, Korea.
- College of Pharmacy, Pusan National University, Busan 46241, Korea.
| | - Young Suk Jung
- Molecular Inflammation Research Center for Aging Intervention (MRCA), Pusan National University, Busan 46241, Korea.
- College of Pharmacy, Pusan National University, Busan 46241, Korea.
| | - Hae Young Chung
- Molecular Inflammation Research Center for Aging Intervention (MRCA), Pusan National University, Busan 46241, Korea.
- College of Pharmacy, Pusan National University, Busan 46241, Korea.
| | - Hyung Ryong Moon
- Molecular Inflammation Research Center for Aging Intervention (MRCA), Pusan National University, Busan 46241, Korea.
- College of Pharmacy, Pusan National University, Busan 46241, Korea.
| |
Collapse
|
48
|
Rok J, Wrześniok D, Beberok A, Otręba M, Delijewski M, Buszman E. Phototoxic effect of oxytetracycline on normal human melanocytes. Toxicol In Vitro 2017; 48:26-32. [PMID: 29248593 DOI: 10.1016/j.tiv.2017.12.008] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2017] [Revised: 12/06/2017] [Accepted: 12/13/2017] [Indexed: 10/18/2022]
Abstract
Oxytetracycline is a broad-spectrum antibiotic, used in dermatology and veterinary medicine. Like other tetracyclines, it may evoke skin phototoxic reactions related to generation of reactive oxygen species (ROS). Melanins are biopolymers synthesised in melanocytes - highly specialised cells, localised in the basal layer of epidermis. Production of melanin is a defence mechanism against harmful effects of UV radiation, ROS and many chemical substances, including drugs. In the present study the influence of oxytetracycline and UVA radiation on darkly pigmented melanocytes viability, the melanogenesis process and the activity of antioxidant enzymes were analysed. The obtained results show that oxytetracycline decreases cell viability in a dose-dependent manner. It has also been stated that UVA radiation as well as simultaneous exposure to oxytetracycline and UVA radiation reduce melanocytes viability. The tested drug alone exhibits little effect on antioxidant enzymes activity and has no influence on the synthesis of melanin. However, simultaneous exposure of the cells to oxytetracycline and UVA radiation causes an increase of SOD and GPx activity, a decrease of CAT activity as well as stimulates melanogenesis. The obtained results suggest that phototoxicity of oxytetracycline towards normal human melanocytes depends on both time of UVA exposure and the drug concentration.
Collapse
Affiliation(s)
- Jakub Rok
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Medical University of Silesia, Jagiellońska 4, PL 41-200 Sosnowiec, Poland.
| | - Dorota Wrześniok
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Medical University of Silesia, Jagiellońska 4, PL 41-200 Sosnowiec, Poland
| | - Artur Beberok
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Medical University of Silesia, Jagiellońska 4, PL 41-200 Sosnowiec, Poland
| | - Michał Otręba
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Medical University of Silesia, Jagiellońska 4, PL 41-200 Sosnowiec, Poland
| | - Marcin Delijewski
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Medical University of Silesia, Jagiellońska 4, PL 41-200 Sosnowiec, Poland
| | - Ewa Buszman
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Medical University of Silesia, Jagiellońska 4, PL 41-200 Sosnowiec, Poland
| |
Collapse
|
49
|
Anti-melanogenic effect of gomisin N from Schisandra chinensis (Turcz.) Baillon (Schisandraceae) in melanoma cells. Arch Pharm Res 2017; 40:807-817. [DOI: 10.1007/s12272-017-0903-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2016] [Accepted: 02/15/2017] [Indexed: 11/25/2022]
|
50
|
Ramkumar A, Murthy D, Raja DA, Singh A, Krishnan A, Khanna S, Vats A, Thukral L, Sharma P, Sivasubbu S, Rani R, Natarajan VT, Gokhale RS. Classical autophagy proteins LC3B and ATG4B facilitate melanosome movement on cytoskeletal tracks. Autophagy 2017; 13:1331-1347. [PMID: 28598240 DOI: 10.1080/15548627.2017.1327509] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Macroautophagy/autophagy is a dynamic and inducible catabolic process that responds to a variety of hormonal and environmental cues. Recent studies highlight the interplay of this central pathway in a variety of pathophysiological diseases. Although defective autophagy is implicated in melanocyte proliferation and pigmentary disorders, the mechanistic relationship between the 2 pathways has not been elucidated. In this study, we show that autophagic proteins LC3B and ATG4B mediate melanosome trafficking on cytoskeletal tracks. While studying melanogenesis, we observed spatial segregation of LC3B-labeled melanosomes with preferential absence at the dendritic ends of melanocytes. This LC3B labeling of melanosomes did not impact the steady-state levels of these organelles but instead facilitated their intracellular positioning. Melanosomes primarily traverse on microtubule and actin cytoskeletal tracks and our studies reveal that LC3B enables the assembly of microtubule translocon complex. At the microtubule-actin crossover junction, ATG4B detaches LC3B from melanosomal membranes by enzymatic delipidation. Further, by live-imaging we show that melanosomes transferred to keratinocytes lack melanocyte-specific LC3B. Our study thus elucidates a new role for autophagy proteins in directing melanosome movement and reveal the unconventional use of these proteins in cellular trafficking pathways. Such crosstalk between the central cellular function and housekeeping pathway may be a crucial mechanism to balance melanocyte bioenergetics and homeostasis.
Collapse
Affiliation(s)
- Amrita Ramkumar
- a CSIR- Institute of Genomics and Integrative Biology , Mathura Road, New Delhi , India.,b Academy of Scientific and Innovative Research , Rafi Marg, New Delhi , India
| | - Divya Murthy
- a CSIR- Institute of Genomics and Integrative Biology , Mathura Road, New Delhi , India
| | - Desingu Ayyappa Raja
- a CSIR- Institute of Genomics and Integrative Biology , Mathura Road, New Delhi , India.,b Academy of Scientific and Innovative Research , Rafi Marg, New Delhi , India
| | - Archana Singh
- a CSIR- Institute of Genomics and Integrative Biology , Mathura Road, New Delhi , India
| | - Anusha Krishnan
- a CSIR- Institute of Genomics and Integrative Biology , Mathura Road, New Delhi , India.,b Academy of Scientific and Innovative Research , Rafi Marg, New Delhi , India
| | - Sangeeta Khanna
- a CSIR- Institute of Genomics and Integrative Biology , Mathura Road, New Delhi , India
| | - Archana Vats
- a CSIR- Institute of Genomics and Integrative Biology , Mathura Road, New Delhi , India
| | - Lipi Thukral
- a CSIR- Institute of Genomics and Integrative Biology , Mathura Road, New Delhi , India
| | - Pushkar Sharma
- c National Institute of Immunology , Aruna Asaf Ali Marg, New Delhi , India
| | - Sridhar Sivasubbu
- a CSIR- Institute of Genomics and Integrative Biology , Mathura Road, New Delhi , India
| | - Rajni Rani
- c National Institute of Immunology , Aruna Asaf Ali Marg, New Delhi , India
| | - Vivek T Natarajan
- a CSIR- Institute of Genomics and Integrative Biology , Mathura Road, New Delhi , India.,b Academy of Scientific and Innovative Research , Rafi Marg, New Delhi , India
| | - Rajesh S Gokhale
- a CSIR- Institute of Genomics and Integrative Biology , Mathura Road, New Delhi , India.,b Academy of Scientific and Innovative Research , Rafi Marg, New Delhi , India.,c National Institute of Immunology , Aruna Asaf Ali Marg, New Delhi , India.,d Jawaharlal Nehru Center for Advanced Scientific Research , Jakkur, Bangalore , India
| |
Collapse
|