1
|
Zhang X, Liu X, Chen X, Feng J, Zhao Q, Wu Q, Zhu D. Identification and structure-based engineering of a dipeptidase CpPepD from Clostridium perfringens for the synthesis of l-carnosine. J Biotechnol 2024; 389:86-93. [PMID: 38718874 DOI: 10.1016/j.jbiotec.2024.05.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 04/29/2024] [Accepted: 05/01/2024] [Indexed: 05/12/2024]
Abstract
l-Carnosine (l-Car), an endogenous dipeptide presents in muscle and brain tissues of various vertebrates, has a wide range of application values. The enzymatic preparation of l-Car is a promising synthetic method because it avoids the protection and deprotection steps. In the present study, a dipeptidase gene (CpPepD) from Clostridium perfringens with high l-Car synthetic activity was cloned and characterized. In an effort to improve the performance of this enzyme, we carried out site saturation mutagenesis using CpPepD as the template. By the o-phthalaldehyde (OPA)-derived high throughput screening method, mutant A171S was obtained with 2.2-fold enhanced synthetic activity. The enzymatic properties of CpPepD and mutant A171S were investigated. Under the optimized conditions, 63.94 mM (14.46 g L-1) or 67.02 mM (15.16 g L-1) l-Car was produced at the substrate concentrations of 6 M β-Ala and 0.2 M l-His using wild-type or mutant A171S enzyme, respectively. Although the mutation enhanced the enzyme activity, the reaction equilibrium was barely affected.
Collapse
Affiliation(s)
- Xiaohan Zhang
- School of Biotechnology, Tianjin University of Science and Technology, Key Lab of Industrial Fermentation Microbiology of the Ministry of Education, State Key Laboratory of Food Nutrition and Safety, Tianjin 300457, PR China; National Engineering Laboratory for Industrial Enzymes and Tianjin Engineering Research Center of Biocatalytic Technology, Key Laboratory of Engineering Biology for Low-carbon Manufacturing, National Center of Technology Innovation for Synthetic Biology, and Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, PR China
| | - Xiangtao Liu
- National Engineering Laboratory for Industrial Enzymes and Tianjin Engineering Research Center of Biocatalytic Technology, Key Laboratory of Engineering Biology for Low-carbon Manufacturing, National Center of Technology Innovation for Synthetic Biology, and Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, PR China
| | - Xi Chen
- National Engineering Laboratory for Industrial Enzymes and Tianjin Engineering Research Center of Biocatalytic Technology, Key Laboratory of Engineering Biology for Low-carbon Manufacturing, National Center of Technology Innovation for Synthetic Biology, and Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, PR China
| | - Jinhui Feng
- National Engineering Laboratory for Industrial Enzymes and Tianjin Engineering Research Center of Biocatalytic Technology, Key Laboratory of Engineering Biology for Low-carbon Manufacturing, National Center of Technology Innovation for Synthetic Biology, and Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, PR China
| | - Qing Zhao
- School of Biotechnology, Tianjin University of Science and Technology, Key Lab of Industrial Fermentation Microbiology of the Ministry of Education, State Key Laboratory of Food Nutrition and Safety, Tianjin 300457, PR China; Tibet NWS Biotechnology Co., Ltd, Tibet 854000, PR China.
| | - Qiaqing Wu
- National Engineering Laboratory for Industrial Enzymes and Tianjin Engineering Research Center of Biocatalytic Technology, Key Laboratory of Engineering Biology for Low-carbon Manufacturing, National Center of Technology Innovation for Synthetic Biology, and Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, PR China
| | - Dunming Zhu
- National Engineering Laboratory for Industrial Enzymes and Tianjin Engineering Research Center of Biocatalytic Technology, Key Laboratory of Engineering Biology for Low-carbon Manufacturing, National Center of Technology Innovation for Synthetic Biology, and Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, PR China.
| |
Collapse
|
2
|
Siziya IN, Jung JH, Seo MJ, Lim MC, Seo DH. Whole-cell bioconversion using non-Leloir transglycosylation reactions: a review. Food Sci Biotechnol 2023; 32:749-768. [PMID: 37041815 PMCID: PMC10082888 DOI: 10.1007/s10068-023-01283-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 02/06/2023] [Accepted: 02/10/2023] [Indexed: 03/06/2023] Open
Abstract
Microbial biocatalysts are evolving technological tools for glycosylation research in food, feed and pharmaceuticals. Advances in bioengineered Leloir and non-Leloir carbohydrate-active enzymes allow for whole-cell biocatalysts to curtail production costs of purified enzymes while enhancing glucan synthesis through continued enzyme expression. Unlike sugar nucleotide-dependent Leloir glycosyltransferases, non-Leloir enzymes require inexpensive sugar donors and can be designed to match the high value, yield and selectivity of the former. This review addresses the current state of bacterial cell-based production of glucans and glycoconjugates via transglycosylation, and describes how alterations made to microbial hosts to surpass purified enzymes as the preferred mode of catalysis are steadily being acquired through genetic engineering, rational design and process optimization. A comprehensive exploration of relevant literature has been summarized to describe whole-cell biocatalysis in non-Leloir glycosylation reactions with various donors and acceptors, and the characterization, application and latest developments in the optimization of their use.
Collapse
Affiliation(s)
- Inonge Noni Siziya
- Department of Food Science and Technology, College of Agriculture and Life Sciences, Jeonbuk National University, Jeonju, 54896 Republic of Korea
- Division of Bioengineering, Incheon National University, Incheon, 22012 Republic of Korea
| | - Jong-Hyun Jung
- Research Division for Biotechnology, Korea Atomic Energy Research Institute, Jeongeup, 56212 Republic of Korea
| | - Myung-Ji Seo
- Division of Bioengineering, Incheon National University, Incheon, 22012 Republic of Korea
| | - Min-Cheol Lim
- Research Group of Consumer Safety, Korea Food Research Institute (KFRI), Jeollabuk-do, 55365 Korea
| | - Dong-Ho Seo
- Department of Food Science and Technology, College of Agriculture and Life Sciences, Jeonbuk National University, Jeonju, 54896 Republic of Korea
- Department of Food Science and Biotechnology, Graduate School of Biotechnology and Institute of Life Science and Resources, Kyung Hee University, Yongin, 17104 Republic of Korea
| |
Collapse
|
3
|
Preparation and Characterization of an Ancient Aminopeptidase Obtained from Ancestral Sequence Reconstruction for L-Carnosine Synthesis. Molecules 2022; 27:molecules27196620. [PMID: 36235157 PMCID: PMC9570944 DOI: 10.3390/molecules27196620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 09/30/2022] [Accepted: 10/01/2022] [Indexed: 11/25/2022] Open
Abstract
As a biologically active peptide, L-carnosine has been widely used in the pharmaceutical, cosmetic and health care industries due to its various physiological properties. However, relatively little research is available regarding L-carnosine's enzymatic synthesis function. In this study, a potential enzyme sequence with the function of carnosine synthesizing was screened out using the ancestral sequence reconstruction (ASR) technique. Identified with L-carnosine synthesis activity, this enzyme was further confirmed using autoproteolytic phenomenon via Western blot and N-terminal sequencing. After purification, the enzymatic properties of LUCA-DmpA were characterized. The melting temperature (Tm) and denaturation enthalpy (ΔH) of LUCA-DmpA were 60.27 ± 1.24 °C and 1306.00 ± 26.73 kJ·mol-1, respectively. Circular dichroism (CD) spectroscopy results showed that this ancestral enzyme was composed of α-helix (35.23 ± 0.06%), β-sheet (11.06 ± 0.06%), β-turn (23.67 ± 0.06%) and random coil (32.03 ± 0.06%). The enzyme was characterized with the optimal temperature and pH of 45 °C and 9.0, respectively. Notably, LUCA-DmpA was also characterized with remarkable pH tolerance based on the observation of more than 85% remaining enzymatic activity after incubation at different pH buffers (pH = 6-11) for 12 h. Additionally, rather than being improved or inhibited by metal ions, its enzymatic activity was found to be promoted by introducing organic solvent with a larger log P value. Based on these homology modeling results, the screened LUCA-DmpA is suggested to have further optimization potential, and thereafter to be offered as a promising candidate for real industrial applications.
Collapse
|
4
|
She J, Fu L, Zheng X, Li J, Wang L, Yu B, Ju J. Characterization of a new L-carnosine synthase mined from deep-sea sediment metagenome. Microb Cell Fact 2022; 21:129. [PMID: 35761267 PMCID: PMC9235088 DOI: 10.1186/s12934-022-01854-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Accepted: 06/01/2022] [Indexed: 11/20/2022] Open
Abstract
L-Carnosine is a natural biologically active dipeptide with critical physiological functions, such as antioxidant, antiglycation, and cytoplasmic buffering properties. Direct enzymatic synthesis is a promising way for L-carnosine production. In this study, a new aminopeptidase (gene_236976) with synthetic activity toward L-carnosine was identified by a metagenome mining approach from deep-sea sediment and functionally expressed in Escherichia coli. The enzyme shared a low identity of 14.3% with reported L-carnosine dipeptidase (SmPepD) from Serratia marcescens. β-Alanine methyl ester was proven to be the best substrate for the synthesis, and no ATP was needed for the enzymatic reaction. The enzyme activity was increased by structure-guided rational design. Only the mutant of G310 site gave positive results, and G310A mutant showed the best performance among the site-direct saturation mutagenesis, indicating that the additional CH3 group of mutant G310A was the main factor affecting the enzymatic activity. The engineered enzyme produced about 10 mM L-carnosine was produced from substrates of 50 mM β-alanine methyl ester and 50 mM L-histidine, under a tentatively optimized condition. This study enriched the enzyme resources for developing the microbial synthesis process of L-carnosine production.
Collapse
Affiliation(s)
- Jiajia She
- College of Life Science, Hebei Normal University, Shijiazhuang, 050024, China.,Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Lihong Fu
- College of Life Science, Hebei Normal University, Shijiazhuang, 050024, China
| | - Xiaowei Zheng
- Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Jing Li
- College of Life Science, Hebei Normal University, Shijiazhuang, 050024, China.,Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Limin Wang
- Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Bo Yu
- Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Jiansong Ju
- College of Life Science, Hebei Normal University, Shijiazhuang, 050024, China. .,Hebei Collaborative Innovation Center for Eco-Environment, Shijiazhuang, 050024, China.
| |
Collapse
|
5
|
Efficient production of cellobionic acid using whole-cell biocatalyst of genetically modified Pseudomonas taetrolens. Bioprocess Biosyst Eng 2022; 45:1057-1064. [PMID: 35412074 DOI: 10.1007/s00449-022-02725-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Accepted: 03/28/2022] [Indexed: 11/02/2022]
Abstract
Pseudomonas taetrolens has previously been shown to convert cellobiose to cellobionic acid (CBA), which can potentially be used in cosmetics, food, and pharmaceutical industries. The cellobiose-oxidizing activity of the P. taetrolens strain, which expressed the homologous quinoprotein glucose dehydrogenase (GDH), was increased by approximately 50.8% compared to the original strain. Whole-cell biocatalyst (WCB) of the genetically modified P. taetrolens strain [pDSK-GDH] was prepared simply by fermentation and washing processes. Reaction conditions for the proper use of WCB, such as reaction temperature, cell density to be added, and cell harvest time for preparing WCB, were investigated. The highest CBA productivity (18.2 g/L/h) was achieved when WCB prepared in the late-exponential phase of cell culture was used at 35 °C with cell density of 10 at OD600nm. Under these conditions, 200 g/L of cellobiose was all converted to CBA in 11 h, and the WCB of P. taetrolens [pDSK-GDH] maintained the maximum catalytic activity during at least six cycles without a significant decline in the productivity. Our results suggest that the manufacture of WCB based on genetically engineered P. taetrolens and its optimized use could be further developed as an economically viable option for the large-scale production of CBA.
Collapse
|
6
|
Identifying critical parameters for extraction of carnosine and anserine from chicken meat with high voltage pulsed electric fields and water. INNOV FOOD SCI EMERG 2022. [DOI: 10.1016/j.ifset.2022.102937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
7
|
Bento O, Luttringer F, El Dine TM, Pétry N, Bantreil X, Lamaty F. Sustainable Mechanosynthesis of Biologically Active Molecules. European J Org Chem 2022. [DOI: 10.1002/ejoc.202101516] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Ophélie Bento
- IBMM: Institut des Biomolecules Max Mousseron Chemistry FRANCE
| | | | | | - Nicolas Pétry
- IBMM: Institut des Biomolecules Max Mousseron Chemistry FRANCE
| | - Xavier Bantreil
- IBMM: Institut des Biomolecules Max Mousseron Chemistry FRANCE
| | - Frédéric Lamaty
- IBMM: Institut des Biomolecules Max Mousseron Chemistry 1919 Rte de Mende 34293 Montpellier FRANCE
| |
Collapse
|
8
|
Kim M, Ko YJ, Jeong DW, Jeong WY, Han SO. Ecofriendly Synthesis of l-Carnosine in Metabolically Engineered Corynebacterium glutamicum by Reinforcing Precursor Accumulation. ACS Synth Biol 2021; 10:1553-1562. [PMID: 34019768 DOI: 10.1021/acssynbio.1c00168] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Biobased processes to minimize environmental pollutants have attracted much attention. l-Carnosine has been produced by chemical synthesis, and as an alternative to this method, we newly developed engineered Corynebacterium glutamicum synthesizing l-carnosine. To develop the strain, the pentose phosphate pathway (PPP) was enhanced by attenuating flux to nonoxidative PPP. Enhanced PPP strengthened the histidine pathway and produced 5.0 g/L l-histidine and 3.9 mg/L l-carnosine. Then, the histidine synthetic pathway was reinforced by overexpressing HisG and Rel. This pathway reduced feedback inhibition by l-histidine and strengthened the flux of the histidine pathway; thus, it produced 552.20 mg/g DCW l-histidine. As a result, enhancement of the PPP accumulates more l-histidine than the histidine pathway; thus, the PPP was further enhanced by pgi gene alteration. For sufficient β-alanine products, PanD was overexpressed and produced 99.17 mg/L l-carnosine. The final strain, Car15, which consolidated all three pathways, produced 323.26 mg/L l-carnosine via fed-batch fermentation. Finally, we confirmed the antioxidant and antiglycation effects of biologically synthesized l-carnosine, and the biologically synthesized l-carnosine showed inhibitory activity similar to that of commercial l-carnosine. Consequently, this study suggested a new biosynthetic process for l-carnosine and showed potential as a treatment for metabolic disorders through the assessment of its functions.
Collapse
Affiliation(s)
- Minhye Kim
- Department of Biotechnology, Korea University, Seoul 02841, Republic of Korea
| | - Young Jin Ko
- Department of Biotechnology, Korea University, Seoul 02841, Republic of Korea
| | - Da Woon Jeong
- Department of Biotechnology, Korea University, Seoul 02841, Republic of Korea
| | - Wu-Young Jeong
- Department of Biotechnology, Korea University, Seoul 02841, Republic of Korea
| | - Sung Ok Han
- Department of Biotechnology, Korea University, Seoul 02841, Republic of Korea
| |
Collapse
|
9
|
Siziya IN, Kim YS, Seo DH. Whole cell biosynthesis of luteolin glycosides by engineered Corynebacterium glutamicum harboring the amylosucrase gene. FOOD AND BIOPRODUCTS PROCESSING 2021. [DOI: 10.1016/j.fbp.2021.03.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
10
|
Mozuch MD, Hirth KC, Schwartz TJ, Kersten PJ. Repurposing Inflatable Packaging Pillows as Bioreactors: a Convenient Synthesis of Glucosone by Whole-Cell Catalysis Under Oxygen. Appl Biochem Biotechnol 2020; 193:743-760. [PMID: 33188507 PMCID: PMC7910265 DOI: 10.1007/s12010-020-03448-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Accepted: 11/02/2020] [Indexed: 11/21/2022]
Abstract
Biocatalysis using molecular oxygen as the electron acceptor has significant potential for selective oxidations at low cost. However, oxygen is poorly soluble in water, and its slow rate of mass transfer in the aqueous phase is a major obstacle, even for laboratory-scale syntheses. Oxygen transfer can be accelerated by vigorous mechanical methods, but these are often incompatible with biological catalysts. Gentler conditions can be achieved with shallow, high surface area bag reactors that are designed for single use and generally for specialized cell culture applications. As a less-expensive alternative to these high-end bioreactors, we describe repurposing inflatable shipping pillows with resealable valves to provide high surface area mixing under oxygen for preparative synthesis of glucosone (D-arabino-hexos-2-ulose) from D-glucose using non-growing Escherichia coli whole cells containing recombinant pyranose 2-oxidase (POX) as catalyst. Parallel reactions permitted systematic study of the effects of headspace composition (i.e., air vs 100% oxygen), cell density, exogenous catalase, and reaction volume in the oxidation of 10% glucose. Importantly, only a single charge of 100% oxygen is required for stoichiometric conversion on a multi-gram scale in 18 h with resting cells, and the conversion was successfully repeated with recycled cells.
Collapse
Affiliation(s)
- Michael D Mozuch
- Forest Products Laboratory, Forest Service, US Department of Agriculture, Madison, WI, 53726, USA
| | - Kolby C Hirth
- Forest Products Laboratory, Forest Service, US Department of Agriculture, Madison, WI, 53726, USA
| | - Thomas J Schwartz
- Department of Chemical and Biomedical Engineering, University of Maine, Orono, ME, 04469, USA
| | - Philip J Kersten
- Forest Products Laboratory, Forest Service, US Department of Agriculture, Madison, WI, 53726, USA.
| |
Collapse
|
11
|
Oh YR, Jang YA, Hong SH, Han JJ, Eom GT. Efficient production of lactobionic acid using genetically engineered Pseudomonas taetrolens as a whole-cell biocatalyst. Enzyme Microb Technol 2020; 141:109668. [DOI: 10.1016/j.enzmictec.2020.109668] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 09/07/2020] [Accepted: 09/09/2020] [Indexed: 12/15/2022]
|
12
|
John-White M, Gardiner J, Johanesen P, Lyras D, Dumsday G. β-Aminopeptidases: Insight into Enzymes without a Known Natural Substrate. Appl Environ Microbiol 2019; 85:e00318-19. [PMID: 31126950 PMCID: PMC6643246 DOI: 10.1128/aem.00318-19] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Accepted: 05/08/2019] [Indexed: 02/05/2023] Open
Abstract
β-Aminopeptidases have the unique capability to hydrolyze N-terminal β-amino acids, with varied preferences for the nature of β-amino acid side chains. This unique capability makes them useful as biocatalysts for synthesis of β-peptides and to kinetically resolve β-peptides and amides for the production of enantiopure β-amino acids. To date, six β-aminopeptidases have been discovered and functionally characterized, five from Gram-negative bacteria and one from a fungus, Aspergillus Here we report on the purification and characterization of an additional four β-aminopeptidases, one from a Gram-positive bacterium, Mycolicibacterium smegmatis (BapAMs), one from a yeast, Yarrowia lipolytica (BapAYlip), and two from Gram-negative bacteria isolated from activated sludge identified as Burkholderia spp. (BapABcA5 and BapABcC1). The genes encoding β-aminopeptidases were cloned, expressed in Escherichia coli, and purified. The β-aminopeptidases were produced as inactive preproteins that underwent self-cleavage to form active enzymes comprised of two different subunits. The subunits, designated α and β, appeared to be tightly associated, as the active enzyme was recovered after immobilized-metal affinity chromatography (IMAC) purification, even though only the α-subunit was 6-histidine tagged. The enzymes were shown to hydrolyze chromogenic substrates with the N-terminal l-configurations β-homo-Gly (βhGly) and β3-homo-Leu (β3hLeu) with high activities. These enzymes displayed higher activity with H-βhGly-p-nitroanilide (H-βhGly-pNA) than previously characterized enzymes from other microorganisms. These data indicate that the new β-aminopeptidases are fully functional, adding to the toolbox of enzymes that could be used to produce β-peptides. Overexpression studies in Pseudomonas aeruginosa also showed that the β-aminopeptidases may play a role in some cellular functions.IMPORTANCE β-Aminopeptidases are unique enzymes found in a diverse range of microorganisms that can utilize synthetic β-peptides as a sole carbon source. Six β-aminopeptidases have been previously characterized with preferences for different β-amino acid substrates and have demonstrated the capability to catalyze not only the degradation of synthetic β-peptides but also the synthesis of short β-peptides. Identification of other β-aminopeptidases adds to this toolbox of enzymes with differing β-amino acid substrate preferences and kinetics. These enzymes have the potential to be utilized in the sustainable manufacture of β-amino acid derivatives and β-peptides for use in biomedical and biomaterial applications. This is important, because β-amino acids and β-peptides confer increased proteolytic resistance to bioactive compounds and form novel structures as well as structures similar to α-peptides. The discovery of new enzymes will also provide insight into the biological importance of these enzymes in nature.
Collapse
Affiliation(s)
- Marietta John-White
- CSIRO Manufacturing, Clayton, Victoria, Australia
- Infection and Immunity Program, Monash Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
- Department of Microbiology, Monash University, Clayton, Victoria, Australia
| | | | - Priscilla Johanesen
- Infection and Immunity Program, Monash Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
- Department of Microbiology, Monash University, Clayton, Victoria, Australia
| | - Dena Lyras
- Infection and Immunity Program, Monash Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
- Department of Microbiology, Monash University, Clayton, Victoria, Australia
| | | |
Collapse
|
13
|
Yin DY, Pan J, Zhu J, Liu YY, Xu JH. A green-by-design bioprocess forl-carnosine production integrating enzymatic synthesis with membrane separation. Catal Sci Technol 2019. [DOI: 10.1039/c9cy01622h] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
This simple and clean bioprocess enables the economically attractive and environmentally benign production of the bioactive dipeptidel-Car.
Collapse
Affiliation(s)
- Dong-Ya Yin
- State Key Laboratory of Bioreactor Engineering
- East China University of Science and Technology
- Shanghai 200237
- P.R. China
| | - Jiang Pan
- State Key Laboratory of Bioreactor Engineering
- East China University of Science and Technology
- Shanghai 200237
- P.R. China
| | - Jie Zhu
- School of Chemistry and Molecular Engineering
- East China University of Science and Technology
- Shanghai 200237
- P.R. China
| | - You-Yan Liu
- College of Chemistry and Chemical Engineering
- Guangxi University
- Nanning 530004
- P.R. China
| | - Jian-He Xu
- State Key Laboratory of Bioreactor Engineering
- East China University of Science and Technology
- Shanghai 200237
- P.R. China
| |
Collapse
|
14
|
Kolesinska B, Wasko J, Kaminski Z, Geueke B, Kohler HPE, Seebach D. Labeling and Protecting N
-Terminal Protein Positions by β
-Peptidyl Aminopeptidase-Catalyzed Attachment of β
-Amino-Acid Residues - Insulin as a First Example. Helv Chim Acta 2018. [DOI: 10.1002/hlca.201700259] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Beata Kolesinska
- Institute of Organic Chemistry; Technical University of Łodz; Zeromskiego 116 PL-90-924 Łodz Poland
| | - Joanna Wasko
- Institute of Organic Chemistry; Technical University of Łodz; Zeromskiego 116 PL-90-924 Łodz Poland
| | - Zbigniew Kaminski
- Institute of Organic Chemistry; Technical University of Łodz; Zeromskiego 116 PL-90-924 Łodz Poland
| | - Birgit Geueke
- Department of Environmental Microbiology; Eawag, Swiss Federal Institute of Aquatic Science and Technology; Überlandstrasse 133 8600 Dübendorf Switzerland
| | - Hans-Peter E. Kohler
- Department of Environmental Microbiology; Eawag, Swiss Federal Institute of Aquatic Science and Technology; Überlandstrasse 133 8600 Dübendorf Switzerland
| | - Dieter Seebach
- Laboratorium für Organische Chemie; Departement Chemie und Angewandte Biowissenschaften; ETH-Zürich; Hönggerberg HCI, Vladimir-Prelog-Weg 3 CH-8093 Zürich Switzerland
| |
Collapse
|
15
|
Tomàs-Gamisans M, Ferrer P, Albiol J. Fine-tuning the P. pastoris iMT1026 genome-scale metabolic model for improved prediction of growth on methanol or glycerol as sole carbon sources. Microb Biotechnol 2017; 11:224-237. [PMID: 29160039 PMCID: PMC5743807 DOI: 10.1111/1751-7915.12871] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Revised: 07/28/2017] [Accepted: 08/25/2017] [Indexed: 11/30/2022] Open
Abstract
The methylotrophic yeast Pichia pastoris (Komagataella spp.) is widely used as cell factory for recombinant protein production. In the past recent years, important breakthroughs in the systems-level quantitative analysis of its physiology have been achieved. This wealth of information has allowed the development of genome-scale metabolic models, which make new approaches possible for host cell and bioprocess engineering. Nevertheless, the predictive accuracy of the previous consensus model required to be upgraded and validated with new experimental data sets for P. pastoris growing on glycerol or methanol as sole carbon sources, two of the most relevant substrates for this cell factory. In this study, we have characterized P. pastoris growing in chemostat cultures using glycerol or methanol as sole carbon sources over a wide range of growth rates, thereby providing physiological data on the effect of growth rate and culture conditions on biomass macromolecular and elemental composition. In addition, these data sets were used to improve the performance of the P. pastoris consensus genomic-scale metabolic model iMT1026. Thereupon, new experimentally determined bounds, including the representation of biomass composition for these growth conditions, have been incorporated. As a result, here, we present version 3 (v3.0) of the consensus P. pastoris genome-scale metabolic model as an update of the iMT1026 model. The v3.0 model was validated for growth on glycerol and methanol as sole carbon sources, demonstrating improved prediction capabilities over an extended substrate range including two biotechnologically relevant carbon sources.
Collapse
Affiliation(s)
- Màrius Tomàs-Gamisans
- Department of Chemical Biological and Environmental Engineering, Universitat Autònoma de Barcelona, 08193 Bellaterra (Cerdanyola del Vallès), Barcelona, Spain
| | - Pau Ferrer
- Department of Chemical Biological and Environmental Engineering, Universitat Autònoma de Barcelona, 08193 Bellaterra (Cerdanyola del Vallès), Barcelona, Spain
| | - Joan Albiol
- Department of Chemical Biological and Environmental Engineering, Universitat Autònoma de Barcelona, 08193 Bellaterra (Cerdanyola del Vallès), Barcelona, Spain
| |
Collapse
|
16
|
Abstract
Whole-cell biocatalysts provide unique advantages and have been widely used for the efficient biosynthesis of value-added fine and bulk chemicals, as well as pharmaceutically active ingredients. What is more, advances in synthetic biology and metabolic engineering, together with the rapid development of molecular genetic tools, have brought about a renaissance of whole-cell biocatalysis. These rapid advancements mean that whole-cell biocatalysts can increasingly be rationally designed. Genes of heterologous enzymes or synthetic pathways are increasingly being introduced into microbial hosts, and depending on the complexity of the synthetic pathway or the target products, they can enable the production of value-added chemicals from cheap feedstock. Metabolic engineering and synthetic biology efforts aimed at optimizing the existing microbial cell factories concentrate on improving heterologous pathway flux, precursor supply, and cofactor balance, as well as other aspects of cellular metabolism, to enhance the efficiency of biocatalysts. In the present review, we take a critical look at recent developments in whole-cell biocatalysis, with an emphasis on strategies applied to designing and optimizing the organisms that are increasingly modified for efficient production of chemicals.
Collapse
Affiliation(s)
- Baixue Lin
- CAS Key Laboratory of Microbial Physiological and Metabolic Engineering, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, People's Republic of China.
| | - Yong Tao
- CAS Key Laboratory of Microbial Physiological and Metabolic Engineering, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, People's Republic of China.
| |
Collapse
|
17
|
de Carvalho CCCR. Whole cell biocatalysts: essential workers from Nature to the industry. Microb Biotechnol 2017; 10:250-263. [PMID: 27145540 PMCID: PMC5328830 DOI: 10.1111/1751-7915.12363] [Citation(s) in RCA: 148] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2016] [Revised: 03/28/2016] [Accepted: 03/31/2016] [Indexed: 11/30/2022] Open
Abstract
Microorganisms have been exposed to a myriad of substrates and environmental conditions throughout evolution resulting in countless metabolites and enzymatic activities. Although mankind have been using these properties for centuries, we have only recently learned to control their production, to develop new biocatalysts with high stability and productivity and to improve their yields under new operational conditions. However, microbial cells still provide the best known environment for enzymes, preventing conformational changes in the protein structure in non-conventional medium and under harsh reaction conditions, while being able to efficiently regenerate necessary cofactors and to carry out cascades of reactions. Besides, a still unknown microbe is probably already producing a compound that will cure cancer, Alzeihmer's disease or kill the most resistant pathogen. In this review, the latest developments in screening desirable activities and improving production yields are discussed.
Collapse
Affiliation(s)
- Carla C. C. R. de Carvalho
- iBB‐Institute for Bioengineering and BiosciencesDepartment of BioengineeringInstituto Superior TécnicoUniversidade de LisboaAv. Rovisco PaisLisbon1049‐001Portugal
| |
Collapse
|
18
|
Xu Z, Wu Q, Yang M, Wang S, Wang Z, Xu X. Efficient asymmetric biosynthesis of (R)-(−)-epinephrine in hydrophilic ionic liquid-containing systems. RSC Adv 2016. [DOI: 10.1039/c6ra22140h] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Acinetobacter sp. UN-16 cell biocatalytic process with [HOOCEMIM]NO3 is very promising for efficient preparation of (R)-(−)-epinephrine.
Collapse
Affiliation(s)
- Zhiqun Xu
- Key Laboratory of Biopharmaceutical
- College of Chemistry
- Fuzhou University
- Fuzhou
- P. R. China
| | - Qiao Wu
- Key Laboratory of Biopharmaceutical
- College of Chemistry
- Fuzhou University
- Fuzhou
- P. R. China
| | - Meixia Yang
- Key Laboratory of Biopharmaceutical
- College of Chemistry
- Fuzhou University
- Fuzhou
- P. R. China
| | - Shuai Wang
- Key Laboratory of Biopharmaceutical
- College of Chemistry
- Fuzhou University
- Fuzhou
- P. R. China
| | - Zhenshou Wang
- Key Laboratory of Biopharmaceutical
- College of Chemistry
- Fuzhou University
- Fuzhou
- P. R. China
| | - Xiaoping Xu
- Key Laboratory of Biopharmaceutical
- College of Chemistry
- Fuzhou University
- Fuzhou
- P. R. China
| |
Collapse
|
19
|
Hara KY, Araki M, Okai N, Wakai S, Hasunuma T, Kondo A. Development of bio-based fine chemical production through synthetic bioengineering. Microb Cell Fact 2014; 13:173. [PMID: 25494636 PMCID: PMC4302092 DOI: 10.1186/s12934-014-0173-5] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2014] [Accepted: 11/23/2014] [Indexed: 01/23/2023] Open
Abstract
Fine chemicals that are physiologically active, such as pharmaceuticals, cosmetics, nutritional supplements, flavoring agents as well as additives for foods, feed, and fertilizer are produced by enzymatically or through microbial fermentation. The identification of enzymes that catalyze the target reaction makes possible the enzymatic synthesis of the desired fine chemical. The genes encoding these enzymes are then introduced into suitable microbial hosts that are cultured with inexpensive, naturally abundant carbon sources, and other nutrients. Metabolic engineering create efficient microbial cell factories for producing chemicals at higher yields. Molecular genetic techniques are then used to optimize metabolic pathways of genetically and metabolically well-characterized hosts. Synthetic bioengineering represents a novel approach to employ a combination of computer simulation and metabolic analysis to design artificial metabolic pathways suitable for mass production of target chemicals in host strains. In the present review, we summarize recent studies on bio-based fine chemical production and assess the potential of synthetic bioengineering for further improving their productivity.
Collapse
Affiliation(s)
- Kiyotaka Y Hara
- Organization of Advanced Science and Technology, Kobe University, Nada, Kobe, Japan.
| | - Michihiro Araki
- Organization of Advanced Science and Technology, Kobe University, Nada, Kobe, Japan.
| | - Naoko Okai
- Organization of Advanced Science and Technology, Kobe University, Nada, Kobe, Japan.
| | - Satoshi Wakai
- Organization of Advanced Science and Technology, Kobe University, Nada, Kobe, Japan.
| | - Tomohisa Hasunuma
- Organization of Advanced Science and Technology, Kobe University, Nada, Kobe, Japan.
| | - Akihiko Kondo
- Department of Chemical Science and Engineering, Graduate School of Engineering, Kobe University, 1-1 Rokkodaicho, Nada, Kobe, 657-8501, Japan.
| |
Collapse
|
20
|
Matsushita-Morita M, Nakagawa H, Tada S, Marui J, Hattori R, Suzuki S, Yamagata Y, Amano H, Ishida H, Takeuchi M, Kusumoto KI. Characterization of a (D)-stereoselective aminopeptidase (DamA) exhibiting aminolytic activity and halophilicity from Aspergillus oryzae. Appl Biochem Biotechnol 2013; 171:145-64. [PMID: 23821291 DOI: 10.1007/s12010-013-0330-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2013] [Accepted: 06/14/2013] [Indexed: 11/28/2022]
Abstract
β-Aminopeptidases exhibit both hydrolytic and aminolytic (peptide bond formation) activities and have only been reported in bacteria. We identified a gene encoding the β-aminopeptidase homolog from a genome database of the filamentous fungus Aspergillus oryzae. The gene was overexpressed in A. oryzae, and the resulting recombinant enzyme was purified. Apart from bacterial homologs [β-Ala-para-nitroanilide (pNA)], the enzyme preferred D-Leu-pNA and D-Phe-pNA as substrates. Therefore, we designated this gene as d-stereoselective aminopeptidase A (damA). The purified recombinant DamA was estimated to be a hexamer and was composed of two subunits with molecular masses of 29.5 and 11.5 kDa, respectively. Optimal hydrolytic activity of DamA toward D-Leu-pNA was observed at 50 °C and pH 8.0. The enzyme was stable up to 60 °C and from pH 4.0-11.0. DamA also exhibited aminolytic activity, producing D-Leu-D-Leu-NH2 from D-Leu-NH2 as a substrate. In the presence of 3.0 M NaCl, the amount of pNA liberated from D-Leu-pNA by DamA was 3.1-fold higher than that in the absence of NaCl. Thus, DamA is a halophilic enzyme. The enzyme was utilized to synthesize several hetero-dipeptides containing a D-amino acid at the N-terminus as well as physiologically active peptides.
Collapse
Affiliation(s)
- Mayumi Matsushita-Morita
- National Food Research Institute, National Agriculture and Food Research Organization, 2-1-12 Kannondai, Tsukuba, Ibaraki, 305-8642, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Heck T, Geueke B, Kohler HPE. Bacterialβ-Aminopeptidases: Structural Insights and Applications for Biocatalysis. Chem Biodivers 2012; 9:2388-409. [DOI: 10.1002/cbdv.201200305] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2012] [Indexed: 12/12/2022]
|
22
|
Enzyme-Catalyzed Laurolactam Synthesis via Intramolecular Amide Bond Formation in Aqueous Solution. Adv Synth Catal 2011. [DOI: 10.1002/adsc.201100396] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
23
|
Heyland J, Blank LM, Schmid A. Quantification of metabolic limitations during recombinant protein production in Escherichia coli. J Biotechnol 2011; 155:178-84. [PMID: 21723332 DOI: 10.1016/j.jbiotec.2011.06.016] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2010] [Revised: 06/11/2011] [Accepted: 06/17/2011] [Indexed: 01/02/2023]
Abstract
Escherichia coli is one of the major microorganisms for recombinant protein production because it has been best characterized in terms of molecular genetics and physiology, and because of the availability of various expression vectors and strains. The synthesis of proteins is one of the most energy consuming processes in the cell, with the result that cellular energy supply may become critical. Indeed, the so called metabolic burden of recombinant protein synthesis was reported to cause alterations in the operation of the host's central carbon metabolism. To quantify these alterations in E. coli metabolism in dependence of the rate of recombinant protein production, (13)C-tracer-based metabolic flux analysis in differently induced cultures was used. To avoid dilution of the (13)C-tracer signal by the culture history, the recombinant protein produced was used as a flux probe, i.e., as a read out of intracellular flux distributions. In detail, an increase in the generation rate rising from 36 mmol(ATP)g(CDW)(-1)h(-1) for the reference strain to 45 mmol(ATP)g(CDW)(-1)h(-1) for the highest yielding strain was observed during batch cultivation. Notably, the flux through the TCA cycle was rather constant at 2.5±0.1 mmol g(CDW)(-1)h(-1), hence was independent of the induced strength for gene expression. E. coli compensated for the additional energy demand of recombinant protein synthesis by reducing the biomass formation to almost 60%, resulting in excess NADPH. Speculative, this excess NADPH was converted to NADH via the soluble transhydrogenase and subsequently used for ATP generation in the electron transport chain. In this study, the metabolic burden was quantified by the biomass yield on ATP, which constantly decreased from 11.7g(CDW)mmol(ATP)(-1) for the reference strain to 4.9g(CDW)mmol(ATP)(-1) for the highest yielding strain. The insights into the operation of the metabolism of E. coli during recombinant protein production might guide the optimization of microbial hosts and fermentation conditions.
Collapse
Affiliation(s)
- Jan Heyland
- Laboratory of Chemical Biotechnology, TU Dortmund University, Emil-Figge-Strasse 66, Dortmund, Germany
| | | | | |
Collapse
|
24
|
Daniels C, Espinosa-Urgel M, Niqui-Arroyo JL, Michán C, Ramos JL. Metabolic engineering, new antibiotics and biofilm viscoelasticity. Microb Biotechnol 2011; 3:10-4. [PMID: 21255301 PMCID: PMC3815942 DOI: 10.1111/j.1751-7915.2009.00157.x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
In the following highlight we refer to a number of new advances in the field of Biotechnology that address issues relating to the synthesis of new antibiotics, new biocatalysts and matrices in biofilms.
Collapse
Affiliation(s)
- Craig Daniels
- Consejo Superior de Investigaciones Científicas, Estación Experimental del Zaidín, Dept. of Environmental Protection, C/ Prof. Albareda, 1, E-18008 Granada, Spain
| | | | | | | | | |
Collapse
|
25
|
Heyland J, Fu J, Blank LM, Schmid A. Carbon metabolism limits recombinant protein production in Pichia pastoris. Biotechnol Bioeng 2011; 108:1942-53. [PMID: 21351072 DOI: 10.1002/bit.23114] [Citation(s) in RCA: 79] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2010] [Revised: 01/20/2011] [Accepted: 02/14/2011] [Indexed: 12/29/2022]
Abstract
The yeast Pichia pastoris enables efficient (high titer) recombinant protein production. As the molecular tools required are well established and gene specific optimizations of transcription and translation are becoming available, metabolism moves into focus as possible limiting factor of recombinant protein production in P. pastoris. To investigate the impact of recombinant protein production on metabolism systematically, we constructed strains that produced the model protein β-aminopeptidase BapA of Sphingosinicella xenopeptidilytica at different production yields. The impact of low to high BapA production on cell physiology was quantified. The data suggest that P. pastoris compensates for the additional resources required for recombinant protein synthesis by reducing by-product formation and by increasing energy generation via the TCA cycle. Notably, the activity of the TCA cycle was constant with a rate of 2.1 ± 0.1 mmol g CDW-1 h(-1) irrespective of significantly reduced growth rates in high BapA producing strains, suggesting an upper limit of TCA cycle activity. The reduced growth rate could partially be restored by providing all 20 proteinogenic amino acids in the fermentation medium. Under these conditions, the rate of BapA synthesis increased twofold. The successful supplementation of the growth medium by amino acids to unburden cellular metabolism during recombinant protein production suggests that the metabolic network is a valid target for future optimization of protein production by P. pastoris.
Collapse
Affiliation(s)
- Jan Heyland
- Department of Biochemical and Chemical Engineering, Laboratory of Chemical Biotechnology, TU Dortmund University, Emil-Figge-Str 66, D-44227 Dortmund, Germany
| | | | | | | |
Collapse
|
26
|
Hernández JG, Juaristi E. Green Synthesis of α,β- and β,β-Dipeptides under Solvent-Free Conditions. J Org Chem 2010; 75:7107-11. [DOI: 10.1021/jo101159a] [Citation(s) in RCA: 106] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- José G. Hernández
- Departamento de Química, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Apartado Postal 14−740, 07000, México, D.F., México
| | - Eusebio Juaristi
- Departamento de Química, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Apartado Postal 14−740, 07000, México, D.F., México
| |
Collapse
|
27
|
Heyland J, Fu J, Blank LM, Schmid A. Quantitative physiology of Pichia pastoris during glucose-limited high-cell density fed-batch cultivation for recombinant protein production. Biotechnol Bioeng 2010; 107:357-68. [DOI: 10.1002/bit.22836] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
28
|
Heck T, Reimer A, Seebach D, Gardiner J, Deniau G, Lukaszuk A, Kohler HPE, Geueke B. β-Aminopeptidase-Catalyzed Biotransformations of β2-Dipeptides: Kinetic Resolution and Enzymatic Coupling. Chembiochem 2010; 11:1129-36. [DOI: 10.1002/cbic.200900757] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
29
|
Heck T, Makam V, Lutz J, Blank L, Schmid A, Seebach D, Kohler HP, Geueke B. Kinetic Analysis of L-Carnosine Formation by β-Aminopeptidases. Adv Synth Catal 2010. [DOI: 10.1002/adsc.200900697] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|