1
|
Blackburn GS, Keeling CI, Prunier J, Keena MA, Béliveau C, Hamelin R, Havill NP, Hebert FO, Levesque RC, Cusson M, Porth I. Genetics of flight in spongy moths (Lymantria dispar ssp.): functionally integrated profiling of a complex invasive trait. BMC Genomics 2024; 25:541. [PMID: 38822259 PMCID: PMC11140922 DOI: 10.1186/s12864-023-09936-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 12/22/2023] [Indexed: 06/02/2024] Open
Abstract
BACKGROUND Flight can drastically enhance dispersal capacity and is a key trait defining the potential of exotic insect species to spread and invade new habitats. The phytophagous European spongy moths (ESM, Lymantria dispar dispar) and Asian spongy moths (ASM; a multi-species group represented here by L. d. asiatica and L. d. japonica), are globally invasive species that vary in adult female flight capability-female ASM are typically flight capable, whereas female ESM are typically flightless. Genetic markers of flight capability would supply a powerful tool for flight profiling of these species at any intercepted life stage. To assess the functional complexity of spongy moth flight and to identify potential markers of flight capability, we used multiple genetic approaches aimed at capturing complementary signals of putative flight-relevant genetic divergence between ESM and ASM: reduced representation genome-wide association studies, whole genome sequence comparisons, and developmental transcriptomics. We then judged the candidacy of flight-associated genes through functional analyses aimed at addressing the proximate demands of flight and salient features of the ecological context of spongy moth flight evolution. RESULTS Candidate gene sets were typically non-overlapping across different genetic approaches, with only nine gene annotations shared between any pair of approaches. We detected an array of flight-relevant functional themes across gene sets that collectively suggest divergence in flight capability between European and Asian spongy moth lineages has coincided with evolutionary differentiation in multiple aspects of flight development, execution, and surrounding life history. Overall, our results indicate that spongy moth flight evolution has shaped or been influenced by a large and functionally broad network of traits. CONCLUSIONS Our study identified a suite of flight-associated genes in spongy moths suited to exploration of the genetic architecture and evolution of flight, or validation for flight profiling purposes. This work illustrates how complementary genetic approaches combined with phenotypically targeted functional analyses can help to characterize genetically complex traits.
Collapse
Affiliation(s)
- Gwylim S Blackburn
- Natural Resources Canada, Pacific Forestry Centre, Canadian Forest Service, 506 Burnside Road West, Victoria, BC, V8Z 1M5, Canada.
- Natural Resources Canada, Laurentian Forestry Centre, Canadian Forest Service, 1055 Rue du PEPS, Quebec City, Québec, G1V 4C7, Canada.
- Department of Wood and Forest Sciences, Laval University, 1030 Avenue de La Médecine, Québec, QC, G1V 0A6, Canada.
| | - Christopher I Keeling
- Natural Resources Canada, Laurentian Forestry Centre, Canadian Forest Service, 1055 Rue du PEPS, Quebec City, Québec, G1V 4C7, Canada
- Department of Biochemistry, Microbiology, and Bioinformatics, Laval University, Québec, QC, G1V 0A6, Canada
| | - Julien Prunier
- Department of Wood and Forest Sciences, Laval University, 1030 Avenue de La Médecine, Québec, QC, G1V 0A6, Canada
- Institute of Integrative Biology and Systems, Laval University, Québec, QC, Canada
| | - Melody A Keena
- United States Department of Agriculture, Northern Research Station, Forest Service, 51 Mill Pond Road, Hamden, CT, 06514, USA
| | - Catherine Béliveau
- Natural Resources Canada, Laurentian Forestry Centre, Canadian Forest Service, 1055 Rue du PEPS, Quebec City, Québec, G1V 4C7, Canada
| | - Richard Hamelin
- Forest Sciences Centre, University of British Columbia, 2424 Main Mall, Vancouver, BC, 3032V6T 1Z4, Canada
| | - Nathan P Havill
- United States Department of Agriculture, Northern Research Station, Forest Service, 51 Mill Pond Road, Hamden, CT, 06514, USA
| | | | - Roger C Levesque
- Institute of Integrative Biology and Systems, Laval University, Québec, QC, Canada
| | - Michel Cusson
- Natural Resources Canada, Laurentian Forestry Centre, Canadian Forest Service, 1055 Rue du PEPS, Quebec City, Québec, G1V 4C7, Canada
- Department of Biochemistry, Microbiology, and Bioinformatics, Laval University, Québec, QC, G1V 0A6, Canada
| | - Ilga Porth
- Department of Wood and Forest Sciences, Laval University, 1030 Avenue de La Médecine, Québec, QC, G1V 0A6, Canada
- Institute of Integrative Biology and Systems, Laval University, Québec, QC, Canada
- Centre for Forest Research, Laval University, 2405 Rue de La Terrasse, Québec, QC, G1V 0A6, Canada
| |
Collapse
|
2
|
Barrett CF, Ramachandran D, Chen CH, Corbett CW, Huebner CD, Sinn BT, Yu WB, Suetsugu K. Mitochondrial genome sequencing and analysis of the invasive Microstegium vimineum: a resource for systematics, invasion history, and management. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.10.527995. [PMID: 36798355 PMCID: PMC9934601 DOI: 10.1101/2023.02.10.527995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
Abstract
Premise of the Research Plants remain underrepresented among species with sequenced mitochondrial genomes (mitogenomes), due to the difficulty in assembly with short-read technology. Invasive species lag behind crops and other economically important species in this respect, representing a lack of tools for management and land conservation efforts. Methodology The mitogenome of Microstegium vimineum, one of the most damaging invasive plant species in North America, was sequenced and analyzed using long-read data, providing a resource for biologists and managers. We conducted analyses of genome content, phylogenomic analyses among grasses and relatives based on mitochondrial coding regions, and an analysis of mitochondrial single nucleotide polymorphism in this invasive grass species. Pivotal Results The assembly is 478,010 bp in length and characterized by two large, inverted repeats, and a large, direct repeat. However, the genome could not be circularized, arguing against a "master circle" structure. Long-read assemblies with data subsets revealed several alternative genomic conformations, predominantly associated with large repeats. Plastid-like sequences comprise 2.4% of the genome, with further evidence of Class I and Class II transposable element-like sequences. Phylogenetic analysis placed M. vimineum with other Microstegium species, excluding M. nudum, but with weak support. Analysis of polymorphic sites across 112 accessions of M. vimineum from the native and invasive ranges revealed a complex invasion history. Conclusions We present an in-depth analysis of mitogenome structure, content, phylogenetic relationships, and range-wide genomic variation in M. vimineum's invasive US range. The mitogenome of M. vimineum is typical of other andropogonoid grasses, yet mitochondrial sequence variation across the invasive and native ranges is extensive. Our findings suggest multiple introductions to the US over the last century, with subsequent spread, secondary contact, long-distance dispersal, and possibly post-invasion selection on awn phenotypes. Efforts to produce genomic resources for invasive species, including sequenced mitochondrial genomes, will continue to provide tools for their effective management, and to help predict and prevent future invasions.
Collapse
Affiliation(s)
- Craig F. Barrett
- Department of Biology, West Virginia University, 53 Campus Drive, Morgantown, West Virginia, USA 26506
| | - Dhanushya Ramachandran
- Department of Biology, West Virginia University, 53 Campus Drive, Morgantown, West Virginia, USA 26506
| | - Chih-Hui Chen
- Endemic Species Research Institute, 1 Ming-Sheng East Road, Jiji, Nantou 552, Taiwan
| | - Cameron W. Corbett
- Department of Biology, West Virginia University, 53 Campus Drive, Morgantown, West Virginia, USA 26506
| | - Cynthia D. Huebner
- Department of Biology, West Virginia University, 53 Campus Drive, Morgantown, West Virginia, USA 26506
- USDA Forest Service, Northern Research Station, 180 Canfield Street, Morgantown, West Virginia, USA 26505
- Division of Plant and Soil Sciences, West Virginia University, 204 Evansdale Greenhouse, Morgantown, West Virginia, USA 26506
| | - Brandon T. Sinn
- Department of Biology and Earth Science, Otterbein University, 1 South Grove Street, Westerville, OH USA 43081
- Faculty of Biology, University of Latvia, 1 Jelgavas iela, Riga, Latvia LV-1004
| | - Wen-Bin Yu
- Center for Integrative Conservation Xishuangbanna Tropical Botanical Garden, CAS Mengla, Yunnan 666303, China
| | - Kenji Suetsugu
- Department of Biology, Graduate School of Science, Kobe University, 1-1 Rokkodai, Nada-ku, Kobe, 657-8501, Japan
| |
Collapse
|
3
|
Breed MF, Harrison PA, Blyth C, Byrne M, Gaget V, Gellie NJC, Groom SVC, Hodgson R, Mills JG, Prowse TAA, Steane DA, Mohr JJ. The potential of genomics for restoring ecosystems and biodiversity. Nat Rev Genet 2019; 20:615-628. [PMID: 31300751 DOI: 10.1038/s41576-019-0152-0] [Citation(s) in RCA: 89] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/21/2019] [Indexed: 01/12/2023]
Abstract
Billions of hectares of natural ecosystems have been degraded through human actions. The global community has agreed on targets to halt and reverse these declines, and the restoration sector faces the important but arduous task of implementing programmes to meet these objectives. Existing and emerging genomics tools offer the potential to improve the odds of achieving these targets. These tools include population genomics that can improve seed sourcing, meta-omics that can improve assessment and monitoring of restoration outcomes, and genome editing that can generate novel genotypes for restoring challenging environments. We identify barriers to adopting these tools in a restoration context and emphasize that regulatory and ethical frameworks are required to guide their use.
Collapse
Affiliation(s)
- Martin F Breed
- School of Biological Sciences and the Environment Institute, University of Adelaide, North Terrace, South Australia, Australia.
| | - Peter A Harrison
- School of Natural Sciences, Australian Research Council Training Centre for Forest Value, University of Tasmania, Hobart, Tasmania, Australia
| | - Colette Blyth
- School of Biological Sciences and the Environment Institute, University of Adelaide, North Terrace, South Australia, Australia
| | - Margaret Byrne
- Biodiversity and Conservation Science, Department of Biodiversity, Conservation and Attractions, Western Australia, Australia
| | - Virginie Gaget
- School of Biological Sciences and the Environment Institute, University of Adelaide, North Terrace, South Australia, Australia
| | - Nicholas J C Gellie
- School of Biological Sciences and the Environment Institute, University of Adelaide, North Terrace, South Australia, Australia
| | - Scott V C Groom
- School of Agriculture, Food and Wine, The University of Adelaide, Waite Campus, Urrbrae, South Australia, Australia
| | - Riley Hodgson
- School of Biological Sciences and the Environment Institute, University of Adelaide, North Terrace, South Australia, Australia
| | - Jacob G Mills
- School of Biological Sciences and the Environment Institute, University of Adelaide, North Terrace, South Australia, Australia
| | - Thomas A A Prowse
- School of Biological Sciences and the Environment Institute, University of Adelaide, North Terrace, South Australia, Australia.,School of Mathematical Sciences, University of Adelaide, North Terrace, South Australia, Australia
| | - Dorothy A Steane
- School of Natural Sciences, Australian Research Council Training Centre for Forest Value, University of Tasmania, Hobart, Tasmania, Australia
| | - Jakki J Mohr
- College of Business, Institute on Ecosystems, University of Montana, Missoula, MT, USA
| |
Collapse
|
4
|
Taning CNT, Van Eynde B, Yu N, Ma S, Smagghe G. CRISPR/Cas9 in insects: Applications, best practices and biosafety concerns. JOURNAL OF INSECT PHYSIOLOGY 2017; 98:245-257. [PMID: 28108316 DOI: 10.1016/j.jinsphys.2017.01.007] [Citation(s) in RCA: 84] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Revised: 11/28/2016] [Accepted: 01/12/2017] [Indexed: 05/13/2023]
Abstract
Discovered as a bacterial adaptive immune system, CRISPR/Cas9 (clustered, regularly interspaced, short palindromic repeat/CRISPR associated) is being developed as an attractive tool in genome editing. Due to its high specificity and applicability, CRISPR/Cas9-mediated gene editing has been employed in a multitude of organisms and cells, including insects, for not only fundamental research such as gene function studies, but also applied research such as modification of organisms of economic importance. Despite the rapid increase in the use of CRISPR in insect genome editing, results still differ from each study, principally due to existing differences in experimental parameters, such as the Cas9 and guide RNA form, the delivery method, the target gene and off-target effects. Here, we review current reports on the successes of CRISPR/Cas9 applications in diverse insects and insect cells. We furthermore summarize several best practices to give a useful checklist of CRISPR/Cas9 experimental setup in insects for beginners. Lastly, we discuss the biosafety concerns related to the release of CRISPR/Cas9-edited insects into the environment.
Collapse
Affiliation(s)
- Clauvis Nji Tizi Taning
- Department of Crop Protection, Faculty of Bioscience Engineering, Ghent University, 9000 Ghent, Belgium.
| | - Benigna Van Eynde
- Department of Crop Protection, Faculty of Bioscience Engineering, Ghent University, 9000 Ghent, Belgium
| | - Na Yu
- Department of Crop Protection, Faculty of Bioscience Engineering, Ghent University, 9000 Ghent, Belgium; Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), College of Plant Protection, Nanjing Agricultural University, Weigang 1, Nanjing 210095, China
| | - Sanyuan Ma
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China
| | - Guy Smagghe
- Department of Crop Protection, Faculty of Bioscience Engineering, Ghent University, 9000 Ghent, Belgium.
| |
Collapse
|
5
|
Backus GA, Gross K. Genetic engineering to eradicate invasive mice on islands: modeling the efficiency and ecological impacts. Ecosphere 2016. [DOI: 10.1002/ecs2.1589] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Affiliation(s)
- Gregory A. Backus
- Biomathematics Program North Carolina State University Box 8213 Raleigh North Carolina 27695‐8213 USA
- Zoology Program North Carolina State University Box 8213 Raleigh North Carolina 27695‐8213 USA
| | - Kevin Gross
- Biomathematics Program North Carolina State University Box 8213 Raleigh North Carolina 27695‐8213 USA
| |
Collapse
|
6
|
Schindler S, Staska B, Adam M, Rabitsch W, Essl F. Alien species and public health impacts in Europe: a literature review. NEOBIOTA 2015. [DOI: 10.3897/neobiota.27.5007] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
7
|
Opinion: Is CRISPR-based gene drive a biocontrol silver bullet or global conservation threat? Proc Natl Acad Sci U S A 2015; 112:10565-7. [PMID: 26272924 DOI: 10.1073/pnas.1514258112] [Citation(s) in RCA: 108] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
|
8
|
Abstract
Invasions by non-native species have caused many extinctions and greatly modified many ecosystems and are among the major anthropogenic global changes transforming the earth. Beginning in the mid-1980s, a dramatic burst of research in invasion biology has revealed a plethora of previously unrecognized impacts and laid bare the scope of the phenomenon. Similarly, research on various methods of managing invasions has expanded enormously, yielding incremental improvements in traditional methods and the advent of several new approaches, including the use of species-specific genetic and pheromonal methods. This research has advanced the field of restoration ecology, of which invasion management is a key component. Amidst this research progress, a group of critics has attempted to cast doubt on the extent of damaging impacts caused by non-native invasive species, the feasibility of counteracting them and restoring ecosystems, and the motives of scientists engaged in such endeavors. The criticisms are misguided but can potentially impede management of this pressing problem.
Collapse
|
9
|
Sutherland WJ, Aveling R, Brooks TM, Clout M, Dicks LV, Fellman L, Fleishman E, Gibbons DW, Keim B, Lickorish F, Monk KA, Mortimer D, Peck LS, Pretty J, Rockström J, Rodríguez JP, Smith RK, Spalding MD, Tonneijck FH, Watkinson AR. A horizon scan of global conservation issues for 2014. Trends Ecol Evol 2013; 29:15-22. [PMID: 24332318 PMCID: PMC3884124 DOI: 10.1016/j.tree.2013.11.004] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2013] [Revised: 11/08/2013] [Accepted: 11/11/2013] [Indexed: 12/24/2022]
Abstract
This is the fifth in our annual series of horizon scans published in TREE. We identify 15 issues that we considered insufficiently known by the conservation community. These cover a wide range of issues. Four relate to climate change, two to invasives and two to disease spread. This exercise has been influential in the past.
This paper presents the output of our fifth annual horizon-scanning exercise, which aims to identify topics that increasingly may affect conservation of biological diversity, but have yet to be widely considered. A team of professional horizon scanners, researchers, practitioners, and a journalist identified 15 topics which were identified via an iterative, Delphi-like process. The 15 topics include a carbon market induced financial crash, rapid geographic expansion of macroalgal cultivation, genetic control of invasive species, probiotic therapy for amphibians, and an emerging snake fungal disease.
Collapse
Affiliation(s)
- William J Sutherland
- Conservation Science Group, Department of Zoology, Cambridge University, Downing Street, Cambridge, CB2 3EJ, UK.
| | - Rosalind Aveling
- Fauna & Flora International, 4th Floor, Jupiter House, Station Road, Cambridge, CB1 2JD, UK
| | - Thomas M Brooks
- International Union for Conservation of Nature, 28 rue Mauverney, CH-1196 Gland, Switzerland
| | - Mick Clout
- Centre for Biodiversity and Biosecurity, School of Biological Sciences, University of Auckland, PB 92019, Auckland, New Zealand
| | - Lynn V Dicks
- Conservation Science Group, Department of Zoology, Cambridge University, Downing Street, Cambridge, CB2 3EJ, UK
| | - Liz Fellman
- Natural Environment Research Council, Polaris House, North Star Avenue, Swindon, SN2 1EU, UK
| | - Erica Fleishman
- John Muir Institute of the Environment, The Barn, One Shields Avenue, University of California, Davis, CA 95616, USA
| | - David W Gibbons
- Royal Society for the Protection of Birds, The Lodge, Sandy, SG19 2DL, UK
| | - Brandon Keim
- WIRED, 520 3rd Street, Third Floor at Bryant Street, San Francisco, CA 94107, USA
| | - Fiona Lickorish
- Centre for Environmental Risks and Futures, Cranfield University, Cranfield, MK43 0AL, UK
| | - Kathryn A Monk
- Natural Resources Wales, Cambria House, 29 Newport Road, Cardiff, CF24 0TP, UK
| | - Diana Mortimer
- Joint Nature Conservation Committee, Monkstone House, City Road, Peterborough, PE1 1JY, UK
| | - Lloyd S Peck
- British Antarctic Survey, Natural Environment Research Council, High Cross, Madingley Road, Cambridge, CB3 0ET, UK
| | - Jules Pretty
- Essex Sustainability Institute and Department of Biological Sciences, University of Essex, Colchester, CO4 3SQ, UK
| | - Johan Rockström
- Stockholm Resilience Center, Stockholm University, Kräftriket 2B, SE-106 19, Stockholm, Sweden
| | - Jon Paul Rodríguez
- Center for Ecology, Venezuelan Institute for Scientific Investigation (Instituto Venezolano de Investigaciones Científicas - IVIC), Apdo. 20632, Caracas 1020-A, Venezuela
| | - Rebecca K Smith
- Conservation Science Group, Department of Zoology, Cambridge University, Downing Street, Cambridge, CB2 3EJ, UK
| | - Mark D Spalding
- Global Marine Team, The Nature Conservancy, Department of Zoology, Cambridge University, Downing Street, Cambridge, CB2 3EJ, UK
| | - Femke H Tonneijck
- Wetlands International, PO Box 471, 6700 AL Wageningen, The Netherlands
| | - Andrew R Watkinson
- School of Environmental Sciences, University of East Anglia, Norwich, NR4 7TJ, UK
| |
Collapse
|
10
|
Gemmell NJ, Jalilzadeh A, Didham RK, Soboleva T, Tompkins DM. The Trojan female technique: a novel, effective and humane approach for pest population control. Proc Biol Sci 2013; 280:20132549. [PMID: 24174117 DOI: 10.1098/rspb.2013.2549] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Humankind's ongoing battle with pest species spans millennia. Pests cause or carry disease, damage or consume food crops and other resources, and drive global environmental change. Conventional approaches to pest management usually involve lethal control, but such approaches are costly, of varying efficiency and often have ethical issues. Thus, pest management via control of reproductive output is increasingly considered an optimal solution. One of the most successful such 'fertility control' strategies developed to date is the sterile male technique (SMT), in which large numbers of sterile males are released into a population each generation. However, this approach is time-consuming, labour-intensive and costly. We use mathematical models to test a new twist on the SMT, using maternally inherited mitochondrial (mtDNA) mutations that affect male, but not female reproductive fitness. 'Trojan females' carrying such mutations, and their female descendants, produce 'sterile-male'-equivalents under natural conditions over multiple generations. We find that the Trojan female technique (TFT) has the potential to be a novel humane approach for pest control. Single large releases and relatively few small repeat releases of Trojan females both provided effective and persistent control within relatively few generations. Although greatest efficacy was predicted for high-turnover species, the additive nature of multiple releases made the TFT applicable to the full range of life histories modelled. The extensive conservation of mtDNA among eukaryotes suggests this approach could have broad utility for pest control.
Collapse
Affiliation(s)
- Neil J Gemmell
- Centre for Reproduction and Genomics and Allan Wilson Centre for Molecular Ecology and Evolution, Department of Anatomy, University of Otago, , Dunedin, New Zealand, Department of Mathematics and Statistics, University of Otago, , Dunedin, New Zealand, School of Animal Biology, University of Western Australia and CSIRO Ecosystem Sciences, , Perth, Western Australia 6009, Australia, Science and Risk Assessment Directorate, Ministry for Primary Industries, , PO Box 2526, Wellington, New Zealand, Landcare Research, , Private Bag 1930, Dunedin, New Zealand
| | | | | | | | | |
Collapse
|
11
|
Rieseberg LH, Blackman BK. Speciation genes in plants. ANNALS OF BOTANY 2010; 106:439-55. [PMID: 20576737 PMCID: PMC2924826 DOI: 10.1093/aob/mcq126] [Citation(s) in RCA: 222] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2010] [Revised: 05/11/2010] [Accepted: 05/13/2010] [Indexed: 05/18/2023]
Abstract
BACKGROUND Analyses of speciation genes--genes that contribute to the cessation of gene flow between populations--can offer clues regarding the ecological settings, evolutionary forces and molecular mechanisms that drive the divergence of populations and species. This review discusses the identities and attributes of genes that contribute to reproductive isolation (RI) in plants, compares them with animal speciation genes and investigates what these genes can tell us about speciation. SCOPE Forty-one candidate speciation genes were identified in the plant literature. Of these, seven contributed to pre-pollination RI, one to post-pollination, prezygotic RI, eight to hybrid inviability, and 25 to hybrid sterility. Genes, gene families and genetic pathways that were frequently found to underlie the evolution of RI in different plant groups include the anthocyanin pathway and its regulators (pollinator isolation), S RNase-SI genes (unilateral incompatibility), disease resistance genes (hybrid necrosis), chimeric mitochondrial genes (cytoplasmic male sterility), and pentatricopeptide repeat family genes (cytoplasmic male sterility). CONCLUSIONS The most surprising conclusion from this review is that identities of genes underlying both prezygotic and postzygotic RI are often predictable in a broad sense from the phenotype of the reproductive barrier. Regulatory changes (both cis and trans) dominate the evolution of pre-pollination RI in plants, whereas a mix of regulatory mutations and changes in protein-coding genes underlie intrinsic postzygotic barriers. Also, loss-of-function mutations and copy number variation frequently contribute to RI. Although direct evidence of positive selection on speciation genes is surprisingly scarce in plants, analyses of gene family evolution, along with theoretical considerations, imply an important role for diversifying selection and genetic conflict in the evolution of RI. Unlike in animals, however, most candidate speciation genes in plants exhibit intraspecific polymorphism, consistent with an important role for stochastic forces and/or balancing selection in development of RI in plants.
Collapse
Affiliation(s)
- Loren H Rieseberg
- Botany Department, University of British Columbia, 3529-6270 University Blvd, Vancouver, B.C., Canada.
| | | |
Collapse
|
12
|
Tseng M, Bernatchez L. Editorial: 2009 in review. Evol Appl 2010; 3:93-5. [PMID: 25567909 PMCID: PMC3352473 DOI: 10.1111/j.1752-4571.2010.00122.x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|
13
|
Price TAR, Hurst GDD, Wedell N. Polyandry prevents extinction. Curr Biol 2010; 20:471-5. [PMID: 20188561 DOI: 10.1016/j.cub.2010.01.050] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2009] [Revised: 01/13/2010] [Accepted: 01/14/2010] [Indexed: 10/19/2022]
Abstract
Females of most animal species are polyandrous, with individual females usually mating with more than one male. However, the ubiquity of polyandry remains enigmatic because of the potentially high costs to females of multiple mating. Current theory to account for the high prevalence of polyandry largely focuses on its benefits to individual females. There are also higher-level explanations for the high incidence of polyandry-polyandrous clades may speciate more rapidly. Here we test the hypothesis that polyandry may also reduce population extinction risk. We demonstrate that mating with multiple males protects populations of the fruit fly Drosophila pseudoobscura against extinction caused by a "selfish" sex-ratio-distorting element. Thus, the frequency of female multiple mating in nature may be associated not only with individual benefits to females of this behavior but also with increased persistence over time of polyandrous species and populations. Furthermore, we show that female remating behavior can determine the frequency of sex-ratio distorters in populations. This may also be true for many other selfish genetic elements in natural populations.
Collapse
Affiliation(s)
- Tom A R Price
- School of Biosciences, University of Exeter, Penryn TR10 9EZ, UK
| | | | | |
Collapse
|