1
|
Yamada H. Spatial sorting caused by downstream dispersal: implication for morphological evolution in isolated populations of fat minnow inhabiting small streams flowing through terraced rice paddies. J Evol Biol 2024; 37:1194-1204. [PMID: 39233607 DOI: 10.1093/jeb/voae105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 07/23/2024] [Accepted: 09/04/2024] [Indexed: 09/06/2024]
Abstract
The evolutionary forces arising from differential dispersal are known as "spatial sorting," distinguishing them from natural selection arising from differential survival or differential reproductive success. Spatial sorting is often considered to be transient because it is offset by the return of dispersers in many cases. However, in riverine systems, spatial sorting by downstream dispersal can be cumulative in habitats upstream of migration barriers such as weirs or falls, which can block the return of the dispersers. Terraced rice paddies are often found on steep mountain slopes in Japan and often incorporate small streams with numerous migration barriers. This study investigated the morphological features of fat minnow, Rhynchocypris oxycephalus jouyi (Cyprinidae), inhabiting above-barrier habitats of the small streams flowing through flood-prone terraced rice paddies and examined their function via a mark-recapture experiment. Although this study did not reveal a consistent pattern across all local populations, some above-barrier populations were characterized by individuals with a thinner caudal peduncle, thinner body, and longer ventral caudal fin lobes than those in neighbouring mainstream populations. A mark-recapture experiment during minor flooding showed that a thinner caudal peduncle and deeper body helped fat minnow avoid downstream dispersal and ascend a small step, and suggested that a longer ventral caudal fin lobe was important for ascending. These results suggest that the caudal morphologies of some above-barrier populations avoid or reduce the risk of downstream dispersal, supporting the idea that spatial sorting shapes functional traits, enhancing the spatial persistence of individuals in upstream habitats.
Collapse
Affiliation(s)
- Hiroyuki Yamada
- Graduate School of Science and Engineering, Ehime University, Matsuyama, Ehime, Japan
| |
Collapse
|
2
|
Blondel L, Klemet-N'Guessan S, Hendry AP, Scott ME. Parasite load, rather than parasite presence, decreases upstream movement in Trinidadian guppies Poecilia reticulata. JOURNAL OF FISH BIOLOGY 2024; 105:177-185. [PMID: 38684192 DOI: 10.1111/jfb.15771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 03/04/2024] [Accepted: 04/09/2024] [Indexed: 05/02/2024]
Abstract
Several factors influence whether an organism remains in its local habitat. Parasites can, for example, influence host movement by impacting their behavior, physiology, and morphology. In rivers, fish that swim efficiently against the current are able to maintain their position without being displaced downstream, a behavior referred to as positive rheotaxis. We hypothesized that both the presence and number of ectoparasites on a host would affect the ability of fish to avoid downstream displacement and thus prevent them from remaining in their habitat. We used the guppy-Gyrodactylus host-ectoparasite model to test whether parasite presence and parasite load had an effect on fish rheotaxis. We quantified rheotaxis of sham-infected and parasite-infected fish in a circular flow tank in the laboratory prior to infection and 5-6 days postinfection. Both parasite-infected and sham-infected individuals expressed similar levels of positive rheotaxis prior to infection and after infection. However, with increasing parasite numbers, guppies covered less distance in the upstream direction and spent more time in slower flow zones. These results suggest that higher numbers of Gyrodactylus ectoparasites negatively influence rheotactic movements. Further research is needed to understand the ecological and evolutionary implications of this ectoparasite on fish movement.
Collapse
Affiliation(s)
- L Blondel
- Laboratoire Interdisciplinaire des Environnements Continentaux (LIEC), Université de Lorraine, Metz, France
| | | | - A P Hendry
- Redpath Museum and Biology Department, McGill University, Montreal, Quebec, Canada
| | - Marilyn E Scott
- Institute of Parasitology, McGill University (Macdonald Campus), Ste-Anne de Bellevue, Quebec, Canada
| |
Collapse
|
3
|
Yamada H, Wada S. Interpopulation variation of behavioural and morphological traits that affect downstream displacement of the juvenile white-spotted charr Salvelinus leucomaenis. JOURNAL OF FISH BIOLOGY 2023; 102:1168-1176. [PMID: 36911967 DOI: 10.1111/jfb.15373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Accepted: 03/07/2023] [Indexed: 05/13/2023]
Abstract
Downstream displacement, the passive downstream dispersal of riverine organisms, can generate evolutionary pressures that selectively remove susceptible individuals from upstream habitats. These evolutionary pressures may accumulate over time in fish populations situated upstream of a tall check dam that displaced fish are unable to swim over and can be diluted by the homing of displaced individuals in the absence of such barriers. Here, we conducted interpopulation comparisons between above-dam and unrestricted open-stream populations of the juvenile white-spotted charr Salvelinus leucomaenis to test the hypothesis that above-dam juveniles possess more advantageous traits that reduce downstream displacement than open-stream juveniles. We focused on sedentary behaviour and body depth, both of which are known to affect downstream displacement. Interpopulation comparisons revealed that juveniles from above-dam populations were consistently more sedentary than those from open-stream populations. On the other hand, there were no systematic differences in body depth between above-dam and open-stream populations. These results are consistent with the evolution of behaviours in above-dam populations that inhibit downstream displacement. However, several other factors could explain the results obtained and further studies will be needed to confirm the presence of behavioural evolution in our study system.
Collapse
Affiliation(s)
- Hiroyuki Yamada
- Laboratory of Marine Biology, Graduate School of Fisheries Sciences, Hokkaido University, 3-1-1, Minato-Cho, Hakodate, 041-8611, Japan
| | - Satoshi Wada
- Laboratory of Marine Biology, Graduate School of Fisheries Sciences, Hokkaido University, 3-1-1, Minato-Cho, Hakodate, 041-8611, Japan
| |
Collapse
|
4
|
Borges IL, Dangerfield JC, Angeloni LM, Funk WC, Fitzpatrick SW. Reproductive benefits associated with dispersal in headwater populations of Trinidadian guppies (Poecilia reticulata). Ecol Lett 2021; 25:344-354. [PMID: 34825455 DOI: 10.1111/ele.13929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 04/08/2021] [Accepted: 10/22/2021] [Indexed: 12/01/2022]
Abstract
Theory suggests that the evolution of dispersal is balanced by its fitness costs and benefits, yet empirical evidence is sparse due to the difficulties of measuring dispersal and fitness in natural populations. Here, we use spatially explicit data from a multi-generational capture-mark-recapture study of two populations of Trinidadian guppies (Poecilia reticulata) along with pedigrees to test whether there are fitness benefits correlated with dispersal. Combining these ecological and molecular data sets allows us to directly measure the relationship between movement and reproduction. Individual dispersal was measured as the total distance moved by a fish during its lifetime. We analysed the effects of dispersal propensity and distance on a variety of reproductive metrics. We found that number of mates and number of offspring were positively correlated to dispersal, especially for males. Our results also reveal individual and environmental variation in dispersal, with sex, size, season, and stream acting as determining factors.
Collapse
Affiliation(s)
- Isabela L Borges
- W.K. Kellogg Biological Station, Michigan State University, Hickory Corners, Michigan, USA.,Department of Integrative Biology, Michigan State University, East Lansing, Michigan, USA.,Ecology, Evolution, and Behavior Program, Michigan State University, East Lansing, Michigan, USA
| | - Jillian C Dangerfield
- Cell and Molecular Biology Graduate Program, The University of Texas at Austin, Austin, Texas, USA
| | - Lisa M Angeloni
- Department of Biology, Colorado State University, Fort Collins, Colorado, USA.,Graduate Degree Program in Ecology, Colorado State University, Fort Collins, Colorado, USA
| | - W Chris Funk
- Department of Biology, Colorado State University, Fort Collins, Colorado, USA.,Graduate Degree Program in Ecology, Colorado State University, Fort Collins, Colorado, USA
| | - Sarah W Fitzpatrick
- W.K. Kellogg Biological Station, Michigan State University, Hickory Corners, Michigan, USA.,Department of Integrative Biology, Michigan State University, East Lansing, Michigan, USA.,Ecology, Evolution, and Behavior Program, Michigan State University, East Lansing, Michigan, USA
| |
Collapse
|
5
|
Yamada H, Wada S. Morphological evolution reduces downstream displacement in juvenile landlocked salmon. Evolution 2021; 75:1850-1861. [PMID: 34080690 DOI: 10.1111/evo.14281] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2020] [Revised: 05/05/2021] [Accepted: 05/07/2021] [Indexed: 11/29/2022]
Abstract
Severe flooding often leads to downstream displacement of aquatic animals. Despite this, many salmonid populations persist in habitats located upstream of tall barriers, such as artificial check dams and/or natural waterfalls, that completely block fishes from returning to the upstream areas after flooding. The evolution of such populations may be affected by spatial sorting due to differential rates of downstream displacement. This study examined whether a morphological trait (increased body depth) that allows individuals to better maintain their position during flooding has evolved in juvenile amago salmon Oncorhynchus masou ishikawae inhabiting above-barrier habitats in two rivers. In both rivers, juveniles collected at the stations with multiple downstream barriers had deeper bodies than those collected at other stations. Similar differences were found in juveniles reared in a common-garden experiment. Field experiments with natural flooding also indicated that deep bodies help juveniles resist downstream displacement. These results consistently suggest that juveniles in some above-barrier habitats have evolved deep bodies to resist downstream displacement due to flooding. Our study is the first to show the evolutionary outcomes of passive spatial sorting during severe climate events.
Collapse
Affiliation(s)
- Hiroyuki Yamada
- Laboratory of Marine Biology, Graduate School of Fisheries Science, Hokkaido University, Hakodate, 041-8611, Japan
| | - Satoshi Wada
- Laboratory of Marine Biology, Graduate School of Fisheries Science, Hokkaido University, Hakodate, 041-8611, Japan
| |
Collapse
|
6
|
de Lira JJPR, Yan Y, Levasseur S, Kelly CD, Hendry AP. The complex ecology of genitalia: Gonopodium length and allometry in the Trinidadian guppy. Ecol Evol 2021; 11:4564-4576. [PMID: 33976831 PMCID: PMC8093694 DOI: 10.1002/ece3.7351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 01/29/2021] [Accepted: 02/02/2021] [Indexed: 11/24/2022] Open
Abstract
Male genitalia present an extraordinary pattern of rapid divergence in animals with internal fertilization, which is usually attributed to sexual selection. However, the effect of ecological factors on genitalia divergence could also be important, especially so in animals with nonretractable genitalia because of their stronger interaction with the surrounding environment in comparison with animals with retractable genitalia. Here, we examine the potential of a pervasive ecological factor (predation) to influence the length and allometry of the male genitalia in guppies. We sampled guppies from pairs of low-predation (LP) and high-predation (HP) populations in seven rivers in Trinidad, and measured their body and gonopodium length. A key finding was that HP adult males do not have consistently longer gonopodia than do LP adult males, as had been described in previous work. However, we did find such divergence for juvenile males: HP juveniles have longer gonopodia than do LP juveniles. We therefore suggest that an evolutionary trend toward the development of longer gonopodia in HP males (as seen in the juveniles) is erased after maturity owing to the higher mortality of mature males with longer gonopodia. Beyond these generalities, gonopodium length and gonopodium allometry were remarkably variable among populations even within a predation regime, thus indicating strong context dependence to their development/evolution. Our findings highlight the complex dynamics of genitalia evolution in Trinidadian guppies.
Collapse
Affiliation(s)
| | - Yue Yan
- Department of Biology and Redpath MuseumMcGill UniversityMontrealQCCanada
| | - Sophie Levasseur
- Faculty of Arts and SciencesConcordia UniversityMontrealQCCanada
| | - Clint D. Kelly
- Pavillon des Sciences BiologiquesUniversité du Québec à MontréalMontréalQCCanada
| | - Andrew P. Hendry
- Department of Biology and Redpath MuseumMcGill UniversityMontrealQCCanada
| |
Collapse
|
7
|
Wood ZT, Palkovacs EP, Olsen BJ, Kinnison MT. The Importance of Eco-evolutionary Potential in the Anthropocene. Bioscience 2021. [DOI: 10.1093/biosci/biab010] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Abstract
Humans are dominant global drivers of ecological and evolutionary change, rearranging ecosystems and natural selection. In the present article, we show increasing evidence that human activity also plays a disproportionate role in shaping the eco-evolutionary potential of systems—the likelihood of ecological change generating evolutionary change and vice versa. We suggest that the net outcome of human influences on trait change, ecology, and the feedback loops that link them will often (but not always) be to increase eco-evolutionary potential, with important consequences for stability and resilience of populations, communities, and ecosystems. We also integrate existing ecological and evolutionary metrics to predict and manage the eco-evolutionary dynamics of human-affected systems. To support this framework, we use a simple eco–evo feedback model to show that factors affecting eco-evolutionary potential are major determinants of eco-evolutionary dynamics. Our framework suggests that proper management of anthropogenic effects requires a science of human effects on eco-evolutionary potential.
Collapse
Affiliation(s)
- Zachary T Wood
- School of Biology and Ecology and with the Maine Center for Genetics in the Environment at the University of Maine, Orono, Maine, United States
| | - Eric P Palkovacs
- Department of Ecology and Evolutionary Biology, University of California Santa Cruz, Santa Cruz, California, United States
| | - Brian J Olsen
- School of Biology and Ecology and with the Maine Center for Genetics in the Environment at the University of Maine, Orono, Maine, United States
| | - Michael T Kinnison
- School of Biology and Ecology and with the Maine Center for Genetics in the Environment at the University of Maine, Orono, Maine, United States
| |
Collapse
|
8
|
Blondel L, Paterson IG, Bentzen P, Hendry AP. Resistance and resilience of genetic and phenotypic diversity to "black swan" flood events: A retrospective analysis with historical samples of guppies. Mol Ecol 2021; 30:1017-1028. [PMID: 33346935 DOI: 10.1111/mec.15782] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 12/04/2020] [Accepted: 12/14/2020] [Indexed: 01/05/2023]
Abstract
Rare extreme "black swan" disturbances can impact ecosystems in many ways, such as destroying habitats, depleting resources, and causing high mortality. In rivers, for instance, exceptional floods that occur infrequently (e.g., so-called "50-year floods") can strongly impact the abundance of fishes and other aquatic organisms. Beyond such ecological effects, these floods could also impact intraspecific diversity by elevating genetic drift or dispersal and by imposing strong selection, which could then influence the population's ability to recover from disturbance. And yet, natural systems might be resistant (show little change) or resilient (show rapid recovery) even to rare extreme events - perhaps as a result of selection due to past events. We considered these possibilities in two rivers where native guppies experienced two extreme floods - one in 2005 and another in 2016. For each river, we selected four sites and used archived "historical" samples to compare levels of genetic and phenotypic diversity before vs. after floods. Genetic diversity was represented by 33 neutral microsatellite markers, and phenotypic diversity was represented by body length and male melanic (black) colour. We found that genetic diversity and population structure was mostly "resistant" to even these extreme floods; whereas the larger impacts on phenotypic diversity were short-lived, suggesting additional "resilience". We discuss the determinants of these two outcomes for guppies facing floods, and then consider the general implications for the resistance and resilience of intraspecific variation to black swan disturbances.
Collapse
Affiliation(s)
- Léa Blondel
- Redpath Museum and Department of Biology, McGill University, Montreal, QC, Canada
| | - Ian G Paterson
- Department of Biology, Dalhousie University, Halifax, NS, Canada
| | - Paul Bentzen
- Department of Biology, Dalhousie University, Halifax, NS, Canada
| | - Andrew P Hendry
- Redpath Museum and Department of Biology, McGill University, Montreal, QC, Canada
| |
Collapse
|
9
|
Asymmetric Isolation and the Evolution of Behaviors Influencing Dispersal: Rheotaxis of Guppies above Waterfalls. Genes (Basel) 2020; 11:genes11020180. [PMID: 32050464 PMCID: PMC7073897 DOI: 10.3390/genes11020180] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 02/04/2020] [Accepted: 02/05/2020] [Indexed: 11/17/2022] Open
Abstract
Populations that are asymmetrically isolated, such as above waterfalls, can sometimes export emigrants in a direction from which they do not receive immigrants, and thus provide an excellent opportunity to study the evolution of dispersal traits. We investigated the rheotaxis of guppies above barrier waterfalls in the Aripo and Turure rivers in Trinidad-the later having been introduced in 1957 from a below-waterfall population in another drainage. We predicted that, as a result of strong selection against downstream emigration, both of these above-waterfall populations should show strong positive rheotaxis. Matching these expectations, both populations expressed high levels of positive rheotaxis, possibly reflecting contemporary (rapid) evolution in the introduced Turure population. However, the two populations used different behaviors to achieve the same performance of strong positive rheotaxis, as has been predicted in the case of multiple potential evolutionary solutions to the same functional challenge (i.e., "many-to-one mapping"). By contrast, we did not find any difference in rheotactic behavior above versus below waterfalls on a small scale within either river, suggesting constraints on adaptive divergence on such scales.
Collapse
|
10
|
|
11
|
Dargent F, Chen L, Fussmann GF, Ghalambor CK, Hendry AP. Female preference for novel males constrains the contemporary evolution of assortative mating in guppies. Behav Ecol 2019. [DOI: 10.1093/beheco/ary202] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Affiliation(s)
- Felipe Dargent
- Department of Biology, McGill University, Montreal, Canada
| | - Lisa Chen
- Department of Biology, McGill University, Montreal, Canada
| | | | - Cameron K Ghalambor
- Department of Biology, Colorado State University at Fort Collins, Fort Collins, USA
| | - Andrew P Hendry
- Department of Biology, McGill University, Montreal, Canada
- Redpath Museum, McGill University, Montreal, Canada
| |
Collapse
|
12
|
Vincenzi S, Mangel M, Jesensˇek D, Garza JC, Crivelli AJ. Within- and among-population variation in vital rates and population dynamics in a variable environment. ECOLOGICAL APPLICATIONS : A PUBLICATION OF THE ECOLOGICAL SOCIETY OF AMERICA 2016; 26:2086-2102. [PMID: 27755735 DOI: 10.1890/15-1808.1] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2015] [Revised: 02/25/2016] [Accepted: 03/08/2016] [Indexed: 05/14/2023]
Abstract
Understanding the causes of within- and among-population differences in vital rates, life histories, and population dynamics is a central topic in ecology. To understand how within- and among-population variation emerges, we need long-term studies that include episodic events and contrasting environmental conditions, data to characterize individual and shared variation, and statistical models that can tease apart shared and individual contribution to the observed variation. We used long-term tag-recapture data to investigate and estimate within- and among-population differences in vital rates, life histories, and population dynamics of marble trout Salmo marmoratus, an endemic freshwater salmonid with a narrow range. Only ten populations of pure marble trout persist in headwaters of Alpine rivers in western Slovenia. Marble trout populations are also threatened by floods and landslides, which have already caused the extinction of two populations in recent years. We estimated and determined causes of variation in growth, survival, and recruitment both within and among populations, and evaluated trade-offs between them. Specifically, we estimated the responses of these traits to variation in water temperature, density, sex, early life conditions, and extreme events. We found that the effects of population density on traits were mostly limited to the early stages of life and that growth trajectories were established early in life. We found no clear effects of water temperature on vital rates. Population density varied over time, with flash floods and debris flows causing massive mortalities (>55% decrease in survival with respect to years with no floods) and threatening population persistence. Apart from flood events, variation in population density within streams was largely determined by variation in recruitment, with survival of older fish being relatively constant over time within populations, but substantially different among populations. Marble trout show a fast to slow continuum of life histories, with slow growth associated with higher survival at the population level, possibly determined by food conditions and age at maturity. Our work provides unprecedented insight into the causes of variation in vital rates, life histories, and population dynamics in an endemic species that is teetering on the edge of extinction.
Collapse
Affiliation(s)
- Simone Vincenzi
- Department of Applied Mathematics and Statistics, Center for Stock Assessment Research, University of California, 1156 High Street, Santa Cruz, CA, 95064, USA.
- Dipartimento di Elettronica, Informazione e Bioingegneria Politecnico di Milano, Via Ponzio 34/5, I-20133, Milan, Italy.
| | - Marc Mangel
- Department of Applied Mathematics and Statistics, Center for Stock Assessment Research, University of California, 1156 High Street, Santa Cruz, CA, 95064, USA
- Department of Biology, University of Bergen, Bergen, 5020, Norway
| | - Dusˇan Jesensˇek
- Tolmin Angling Association, Trg 1. maja 7, 5220 Tolmin, Slovenia
| | - John C Garza
- Southwest Fisheries Science Center, National Marine Fisheries Service, NOAA and University of California, Santa Cruz 110 Shaffer Rd, Santa Cruz, California, 95060, USA
| | - Alain J Crivelli
- Station Biologique de la Tour du Valat, Le Sambuc, F-13200, Arles, France
| |
Collapse
|
13
|
Fitzpatrick SW, Gerberich JC, Angeloni LM, Bailey LL, Broder ED, Torres‐Dowdall J, Handelsman CA, López‐Sepulcre A, Reznick DN, Ghalambor CK, Chris Funk W. Gene flow from an adaptively divergent source causes rescue through genetic and demographic factors in two wild populations of Trinidadian guppies. Evol Appl 2016; 9:879-91. [PMID: 27468306 PMCID: PMC4947150 DOI: 10.1111/eva.12356] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2015] [Accepted: 12/10/2015] [Indexed: 01/17/2023] Open
Abstract
Genetic rescue, an increase in population growth owing to the infusion of new alleles, can aid the persistence of small populations. Its use as a management tool is limited by a lack of empirical data geared toward predicting effects of gene flow on local adaptation and demography. Experimental translocations provide an ideal opportunity to monitor the demographic consequences of gene flow. In this study we take advantage of two experimental introductions of Trinidadian guppies to test the effects of gene flow on downstream native populations. We individually marked guppies from the native populations to monitor population dynamics for 3 months before and 26 months after gene flow. We genotyped all individuals caught during the first 17 months at microsatellite loci to classify individuals by their genetic ancestry: native, immigrant, F1 hybrid, F2 hybrid, or backcross. Our study documents a combination of demographic and genetic rescue over multiple generations under fully natural conditions. Within both recipient populations, we found substantial and long-term increases in population size that could be attributed to high survival and recruitment caused by immigration and gene flow from the introduction sites. Our results suggest that low levels of gene flow, even from a divergent ecotype, can provide a substantial demographic boost to small populations, which may allow them to withstand environmental stochasticity.
Collapse
Affiliation(s)
- Sarah W. Fitzpatrick
- Kellogg Biological StationDepartment of Integrative BiologyMichigan State UniversityHickory CornersMIUSA
- Department of BiologyColorado State UniversityFort CollinsCOUSA
| | | | - Lisa M. Angeloni
- Department of BiologyColorado State UniversityFort CollinsCOUSA
- Graduate Degree Program in EcologyColorado State UniversityFort CollinsCOUSA
| | - Larissa L. Bailey
- Department of Fish, Wildlife, and Conservation BiologyColorado State UniversityFort CollinsCOUSA
| | - Emily D. Broder
- Department of BiologyColorado State UniversityFort CollinsCOUSA
- Graduate Degree Program in EcologyColorado State UniversityFort CollinsCOUSA
| | - Julian Torres‐Dowdall
- Lehrstuhl für Zoologie und EvolutionsbiologieDepartment of BiologyUniversity of KonstanzKonstanzGermany
| | | | - Andrés López‐Sepulcre
- CNRS UMR 7618Institute of Ecology and Environmental Sciences of Paris (iEES)Université Pierre et Marie CurieParisFrance
- Department of Biological and Environmental SciencesCenter of Excellence in Biological InteractionsUniversity of JyväskyläJyväskyläFinland
| | | | - Cameron K. Ghalambor
- Department of BiologyColorado State UniversityFort CollinsCOUSA
- Graduate Degree Program in EcologyColorado State UniversityFort CollinsCOUSA
| | - W. Chris Funk
- Department of BiologyColorado State UniversityFort CollinsCOUSA
- Graduate Degree Program in EcologyColorado State UniversityFort CollinsCOUSA
| |
Collapse
|
14
|
Kinnison MT, Hairston NG, Hendry AP. Cryptic eco-evolutionary dynamics. Ann N Y Acad Sci 2016; 1360:120-44. [PMID: 26619300 DOI: 10.1111/nyas.12974] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2015] [Revised: 10/22/2015] [Accepted: 10/23/2015] [Indexed: 12/17/2022]
Abstract
Natural systems harbor complex interactions that are fundamental parts of ecology and evolution. These interactions challenge our inclinations and training to seek the simplest explanations of patterns in nature. Not least is the likelihood that some complex processes might be missed when their patterns look similar to predictions for simpler mechanisms. Along these lines, theory and empirical evidence increasingly suggest that environmental, ecological, phenotypic, and genetic processes can be tightly intertwined, resulting in complex and sometimes surprising eco-evolutionary dynamics. The goal of this review is to temper inclinations to unquestioningly seek the simplest explanations in ecology and evolution, by recognizing that some eco-evolutionary outcomes may appear very similar to purely ecological, purely evolutionary, or even null expectations, and thus be cryptic. We provide theoretical and empirical evidence for observational biases and mechanisms that might operate among the various links in eco-evolutionary feedbacks to produce cryptic patterns. Recognition that cryptic dynamics can be associated with outcomes like stability, resilience, recovery, or coexistence in a dynamically changing world provides added impetus for finding ways to study them.
Collapse
Affiliation(s)
| | - Nelson G Hairston
- Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, New York
| | - Andrew P Hendry
- Redpath Museum and Department of Biology, McGill University, Montreal, Quebec, Canada
| |
Collapse
|
15
|
Fischer EK, Ghalambor CK, Hoke KL. Plasticity and evolution in correlated suites of traits. J Evol Biol 2016; 29:991-1002. [DOI: 10.1111/jeb.12839] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2015] [Revised: 11/10/2015] [Accepted: 02/02/2016] [Indexed: 02/04/2023]
Affiliation(s)
- E. K. Fischer
- Department of Biology Colorado State University Fort Collins CO USA
| | - C. K. Ghalambor
- Department of Biology Colorado State University Fort Collins CO USA
- Graduate Degree Program in Ecology Colorado State University Fort Collins CO USA
| | - K. L. Hoke
- Department of Biology Colorado State University Fort Collins CO USA
| |
Collapse
|
16
|
Gosden TP, Waller JT, Svensson EI. Asymmetric isolating barriers between different microclimatic environments caused by low immigrant survival. Proc Biol Sci 2016; 282:rspb.2014.2459. [PMID: 25631994 DOI: 10.1098/rspb.2014.2459] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Spatially variable selection has the potential to result in local adaptation unless counteracted by gene flow. Therefore, barriers to gene flow will help facilitate divergence between populations that differ in local selection pressures. We performed spatially and temporally replicated reciprocal field transplant experiments between inland and coastal habitats using males of the common blue damselfly (Enallagma cyathigerum) as our study organism. Males from coastal populations had lower local survival rates than resident males at inland sites, whereas we detected no differences between immigrant and resident males at coastal sites, suggesting asymmetric local adaptation in a source-sink system. There were no intrinsic differences in longevity between males from the different environments suggesting that the observed differences in male survival are environment-dependent and probably caused by local adaptation. Furthermore, the coastal environment was found to be warmer and drier than the inland environment, further suggesting local adaptation to microclimatic factors has lead to differential survival of resident and immigrant males. Our results suggest that low survival of immigrant males mediates isolation between closely located populations inhabiting different microclimatic environments.
Collapse
Affiliation(s)
- Thomas P Gosden
- Department of Biology, Evolutionary Ecology Unit, Lund University, Ecology Building, 223 62 Lund, Sweden
| | - John T Waller
- Department of Biology, Evolutionary Ecology Unit, Lund University, Ecology Building, 223 62 Lund, Sweden
| | - Erik I Svensson
- Department of Biology, Evolutionary Ecology Unit, Lund University, Ecology Building, 223 62 Lund, Sweden
| |
Collapse
|
17
|
Dargent F, Rolshausen G, Hendry AP, Scott ME, Fussmann GF. Parting ways: parasite release in nature leads to sex-specific evolution of defence. J Evol Biol 2015; 29:23-34. [PMID: 26356531 DOI: 10.1111/jeb.12758] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2014] [Revised: 09/02/2015] [Accepted: 09/06/2015] [Indexed: 01/16/2023]
Abstract
We evaluated the extent to which males and females evolve along similar or different trajectories in response to the same environmental shift. Specifically, we used replicate experimental introductions in nature to consider how release from a key parasite (Gyrodactylus) generates similar or different defence evolution in male vs. female guppies (Poecilia reticulata). After 4-8 generations of evolution, guppies were collected from the ancestral (parasite still present) and derived (parasite now absent) populations and bred for two generations in the laboratory to control for nongenetic effects. These F2 guppies were then individually infected with Gyrodactylus, and infection dynamics were monitored on each fish. We found that parasite release in nature led to sex-specific evolutionary responses: males did not show much evolution of resistance, whereas females showed the evolution of increased resistance. Given that male guppies in the ancestral population had greater resistance to Gyrodactylus than did females, evolution in the derived populations led to reduction of sexual dimorphism in resistance. We argue that previous selection for high resistance in males constrained (relative to females) further evolution of the trait. We advocate more experiments considering sex-specific evolutionary responses to environmental change.
Collapse
Affiliation(s)
- F Dargent
- Department of Biology, McGill University, Montreal, QC, Canada
| | - G Rolshausen
- Redpath Museum, McGill University, Montreal, QC, Canada
| | - A P Hendry
- Redpath Museum, McGill University, Montreal, QC, Canada
| | - M E Scott
- Institute of Parasitology and Centre for Host-Parasite Interactions, McGill University, Montreal, QC, Canada
| | - G F Fussmann
- Department of Biology, McGill University, Montreal, QC, Canada
| |
Collapse
|
18
|
Lankau RA, Strauss SY. Newly rare or newly common: evolutionary feedbacks through changes in population density and relative species abundance, and their management implications. Evol Appl 2015; 4:338-53. [PMID: 25567977 PMCID: PMC3352561 DOI: 10.1111/j.1752-4571.2010.00173.x] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2010] [Accepted: 11/18/2010] [Indexed: 11/26/2022] Open
Abstract
Environmental management typically seeks to increase or maintain the population sizes of desirable species and to decrease population sizes of undesirable pests, pathogens, or invaders. With changes in population size come long-recognized changes in ecological processes that act in a density-dependent fashion. While the ecological effects of density dependence have been well studied, the evolutionary effects of changes in population size, via changes in ecological interactions with community members, are underappreciated. Here, we provide examples of changing selective pressures on, or evolution in, species as a result of changes in either density of conspecifics or changes in the frequency of heterospecific versus conspecific interactions. We also discuss the management implications of such evolutionary responses in species that have experienced rapid increases or decreases in density caused by human actions.
Collapse
Affiliation(s)
- Richard A Lankau
- Illinois Natural History Survey, University of Illinois Urbana-Champaign, IL, USA ; Department of Evolution and Ecology UC Davis, Davis, CA, USA
| | - Sharon Y Strauss
- Illinois Natural History Survey, University of Illinois Urbana-Champaign, IL, USA ; Department of Evolution and Ecology UC Davis, Davis, CA, USA
| |
Collapse
|
19
|
Carroll S, Kinnison MT, Bernatchez L. In light of evolution: interdisciplinary challenges in food, health, and the environment. Evol Appl 2015; 4:155-8. [PMID: 25567965 PMCID: PMC3352555 DOI: 10.1111/j.1752-4571.2011.00182.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Affiliation(s)
- Scott Carroll
- Institute for Contemporary Evolution, Davis, CA, USA and Department of Entomology, University of California Davis, CA, USA
| | | | | |
Collapse
|
20
|
Fitzpatrick SW, Gerberich JC, Kronenberger JA, Angeloni LM, Funk WC. Locally adapted traits maintained in the face of high gene flow. Ecol Lett 2014; 18:37-47. [PMID: 25363522 DOI: 10.1111/ele.12388] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2014] [Revised: 06/06/2014] [Accepted: 10/01/2014] [Indexed: 11/26/2022]
Abstract
Gene flow between phenotypically divergent populations can disrupt local adaptation or, alternatively, may stimulate adaptive evolution by increasing genetic variation. We capitalised on historical Trinidadian guppy transplant experiments to test the phenotypic effects of increased gene flow caused by replicated introductions of adaptively divergent guppies, which were translocated from high- to low-predation environments. We sampled two native populations prior to the onset of gene flow, six historic introduction sites, introduction sources and multiple downstream points in each basin. Extensive gene flow from introductions occurred in all streams, yet adaptive phenotypic divergence across a gradient in predation level was maintained. Descendants of guppies from a high-predation source site showed high phenotypic similarity with native low-predation guppies in as few as ~12 generations after gene flow, likely through a combination of adaptive evolution and phenotypic plasticity. Our results demonstrate that locally adapted phenotypes can be maintained despite extensive gene flow from divergent populations.
Collapse
Affiliation(s)
- S W Fitzpatrick
- Department of Biology, Colorado State University, 1878 Campus Delivery, Fort Collins, CO, 80523, USA
| | | | | | | | | |
Collapse
|
21
|
Gotanda KM, Hendry AP. Using adaptive traits to consider potential consequences of temporal variation in selection: male guppy colour through time and space. Biol J Linn Soc Lond 2014. [DOI: 10.1111/bij.12261] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Affiliation(s)
- Kiyoko M. Gotanda
- Department of Biology; McGill University; 1205 Docteur Penfield Avenue Montreal Quebec H3A 1B1 Canada
- Redpath Museum; McGill University; 859 Sherbrooke West Montreal Quebec H3A 0C4 Canada
| | - Andrew P. Hendry
- Department of Biology; McGill University; 1205 Docteur Penfield Avenue Montreal Quebec H3A 1B1 Canada
- Redpath Museum; McGill University; 859 Sherbrooke West Montreal Quebec H3A 0C4 Canada
| |
Collapse
|
22
|
Derry AM, Kestrup ÅM, Hendry AP. Possible influences of plasticity and genetic/maternal effects on species coexistence: native Gammarus fasciatusfacing exotic amphipods. Funct Ecol 2013. [DOI: 10.1111/1365-2435.12105] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Alison M. Derry
- Department of Biology; McGill University; 1205 Docteur Penfield Ave.; Montréal; Quebec; H3A 1B1; Canada
| | - Åsa M. Kestrup
- Redpath Museum; McGill University; 859 Sherbrooke St. W.; Montréal; Quebec; H3A 2K6; Canada
| | | |
Collapse
|
23
|
Anderson JH, Faulds PL, Atlas WI, Quinn TP. Reproductive success of captively bred and naturally spawned Chinook salmon colonizing newly accessible habitat. Evol Appl 2012; 6:165-79. [PMID: 23467446 PMCID: PMC3586615 DOI: 10.1111/j.1752-4571.2012.00271.x] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2012] [Accepted: 04/02/2012] [Indexed: 11/28/2022] Open
Abstract
Captively reared animals can provide an immediate demographic boost in reintroduction programs, but may also reduce the fitness of colonizing populations. Construction of a fish passage facility at Landsburg Diversion Dam on the Cedar River, WA, USA, provided a unique opportunity to explore this trade-off. We thoroughly sampled adult Chinook salmon (Oncorhynchus tshawytscha) at the onset of colonization (2003–2009), constructed a pedigree from genotypes at 10 microsatellite loci, and calculated reproductive success (RS) as the total number of returning adult offspring. Hatchery males were consistently but not significantly less productive than naturally spawned males (range in relative RS: 0.70–0.90), but the pattern for females varied between years. The sex ratio was heavily biased toward males; therefore, inclusion of the hatchery males increased the risk of a genetic fitness cost with little demographic benefit. Measurements of natural selection indicated that larger salmon had higher RS than smaller fish. Fish that arrived early to the spawning grounds tended to be more productive than later fish, although in some years, RS was maximized at intermediate dates. Our results underscore the importance of natural and sexual selection in promoting adaptation during reintroductions.
Collapse
Affiliation(s)
- Joseph H Anderson
- School of Aquatic and Fishery Sciences, University of Washington Seattle, WA, USA
| | | | | | | |
Collapse
|
24
|
Hendry AP, Kinnison MT, Heino M, Day T, Smith TB, Fitt G, Bergstrom CT, Oakeshott J, Jørgensen PS, Zalucki MP, Gilchrist G, Southerton S, Sih A, Strauss S, Denison RF, Carroll SP. Evolutionary principles and their practical application. Evol Appl 2011; 4:159-83. [PMID: 25567966 PMCID: PMC3352551 DOI: 10.1111/j.1752-4571.2010.00165.x] [Citation(s) in RCA: 202] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2010] [Accepted: 09/20/2010] [Indexed: 02/01/2023] Open
Abstract
Evolutionary principles are now routinely incorporated into medicine and agriculture. Examples include the design of treatments that slow the evolution of resistance by weeds, pests, and pathogens, and the design of breeding programs that maximize crop yield or quality. Evolutionary principles are also increasingly incorporated into conservation biology, natural resource management, and environmental science. Examples include the protection of small and isolated populations from inbreeding depression, the identification of key traits involved in adaptation to climate change, the design of harvesting regimes that minimize unwanted life-history evolution, and the setting of conservation priorities based on populations, species, or communities that harbor the greatest evolutionary diversity and potential. The adoption of evolutionary principles has proceeded somewhat independently in these different fields, even though the underlying fundamental concepts are the same. We explore these fundamental concepts under four main themes: variation, selection, connectivity, and eco-evolutionary dynamics. Within each theme, we present several key evolutionary principles and illustrate their use in addressing applied problems. We hope that the resulting primer of evolutionary concepts and their practical utility helps to advance a unified multidisciplinary field of applied evolutionary biology.
Collapse
Affiliation(s)
- Andrew P Hendry
- Redpath Museum and Department of Biology, McGill University Montreal, QC, Canada
| | | | - Mikko Heino
- Department of Biology, University of Bergen Bergen, Norway ; International Institute for Applied Systems Analysis Laxenburg, Austria ; Institute of Marine Research Bergen, Norway
| | - Troy Day
- Departments of Mathematics and Statistics and Biology, Queen's University Kingston, ON, Canada
| | - Thomas B Smith
- Center for Tropical Research, Institute of the Environment, University of California Los Angeles, CA, USA ; Department of Ecology and Evolutionary Biology, University of California Los Angeles, CA, USA
| | - Gary Fitt
- CSIRO Entomology and Cotton Catchment Communities CRC, Long Pocket Laboratories Indooroopilly, Qld, Australia
| | - Carl T Bergstrom
- Department of Biology, University of Washington Seattle, WA, USA
| | - John Oakeshott
- CSIRO Entomology, Black Mountain Canberra, ACT, Australia
| | - Peter S Jørgensen
- Center for Macroecology, Evolution and Climate, Department of Biology, University of Copenhagen Copenhagen, Denmark
| | - Myron P Zalucki
- School of Biological Sciences, The University of Queensland Brisbane, Qld, Australia
| | - George Gilchrist
- Division of Environmental Biology, National Science Foundation Arlington, VA, USA
| | | | - Andrew Sih
- Department of Environmental Science and Policy, University of California Davis, CA, USA
| | - Sharon Strauss
- Section of Evolution and Ecology, University of California Davis, CA, USA
| | - Robert F Denison
- Ecology Evolution and Behavior, University of Minnesota Saint Paul, MN, USA
| | - Scott P Carroll
- Institute for Contemporary Evolution Davis, CA, USA ; Department of Entomology, University of California Davis, CA, USA
| |
Collapse
|
25
|
Carlson SM, Quinn TP, Hendry AP. Eco-evolutionary dynamics in Pacific salmon. Heredity (Edinb) 2011; 106:438-47. [PMID: 21224877 DOI: 10.1038/hdy.2010.163] [Citation(s) in RCA: 105] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Increasing acceptance of the idea that evolution can proceed rapidly has generated considerable interest in understanding the consequences of ongoing evolutionary change for populations, communities and ecosystems. The nascent field of 'eco-evolutionary dynamics' considers these interactions, including reciprocal feedbacks between evolution and ecology. Empirical support for eco-evolutionary dynamics has emerged from several model systems, and we here present some possibilities for diverse and strong effects in Pacific salmon (Oncorhynchus spp.). We specifically focus on the consequences that natural selection on body size can have for salmon population dynamics, community (bear-salmon) interactions and ecosystem process (fluxes of salmon biomass between habitats). For example, we find that shifts in body size because of selection can alter fluxes across habitats by up to 11% compared with ecological (that is, numerical) effects. More generally, we show that selection within a generation can have large effects on ecological dynamics and so should be included within a complete eco-evolutionary framework.
Collapse
Affiliation(s)
- S M Carlson
- Department of Environmental Science, Policy, and Management, University of California, Berkeley, CA 94720, USA.
| | | | | |
Collapse
|