1
|
Gonçalves Netto A, Ribeiro VHV, Nicolai M, Lopez Ovejero RF, Silva VFV, Junior GJP, Brunharo C. Genetic diversity and population structure of ALS-resistant Amaranthus hybridus across Brazil's primary soybean-growing regions. PEST MANAGEMENT SCIENCE 2025. [PMID: 40364652 DOI: 10.1002/ps.8893] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Revised: 04/10/2025] [Accepted: 04/27/2025] [Indexed: 05/15/2025]
Abstract
BACKGROUND Resistance to acetolactate synthase (ALS)-inhibiting herbicides has emerged in Amaranthus hybridus populations across Brazil's soybean-growing regions. To gain insights into the evolutionary origins and spread of resistance, this study (1) investigated the ALS inhibitor resistance mechanisms in nine A. hybridus populations and (2) assessed their genetic diversity, structure, and relatedness. RESULTS Resistance to the ALS inhibitor chlorimuron in A. hybridus was associated with two distinct target-site mutations: Trp-574-Leu and Asp-376-Glu. Population genetics revealed low levels of genetic diversity (HE = 0.00117 to 0.16019; π = 0.00126 to 0.17421) and inbreeding (FIS = 0.0015 to 0.13157). Principal component analysis differentiated A. hybridus by geographical region, while ADMIXTURE analysis revealed population structure with evidence of admixture between genetic clusters in three groups of populations. CONCLUSION The results suggest multiple local and independent evolutionary origins of resistance. The spread of resistance is primarily driven by local herbicide selection pressure and gene flow through seed dispersal. © 2025 The Author(s). Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Caio Brunharo
- Department of Plant Science, Pennsylvania State University, University Park, Pennsylvania, USA
| |
Collapse
|
2
|
Gafni R, Nassar JA, Matzrafi M, Blank L, Eizenberg H. Unraveling the reasons for failure to control Amaranthus albus: insights into herbicide application at different growth stages, temperature effect, and herbicide resistance on a regional scale. PEST MANAGEMENT SCIENCE 2024; 80:4757-4769. [PMID: 38809094 DOI: 10.1002/ps.8192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Revised: 04/16/2024] [Accepted: 05/11/2024] [Indexed: 05/30/2024]
Abstract
BACKGROUND This study investigates factors contributing Amaranthus albus control failure in processing tomato fields in northern Israel. The study region is characterized by a significant climate gradient from east to west, providing the opportunity to investigate the effect of critical elements of the agricultural environment, e.g., temperature. Eight populations were collected from commercial fields in this region. Post-emergence herbicide efficacy of metribuzin, a photosystem II inhibitor, and rimsulfuron, an acetolactate synthase (ALS) inhibitor, was assessed through dose-response analyses at various growth stages. Temperature effects on control efficacy and resistance mechanisms were also explored. RESULTS Standard metribuzin dose (X) was ineffective on A. albus plants with more than six true-leaves, whereas 2X dose proved effective. Rimsulfuron at 16X dose was ineffective on plants with more than four true-leaves. We report here the first case of target site resistance to ALS inhibitors in A. albus, due to point mutation in the ALS gene (Pro197 to Leu). Furthermore, our findings suggest potential involvement of CYT P450 enzymes in enhanced metabolizing of rimsulfuron. An overall decrease in dry weight was observed in response to both herbicides at 16/22 °C (P < 0.0001). Rimsulfuron was effective against only one population when applied at 28/34 °C. A possible fitness cost associated with target site-resistant biotypes was observed under low temperature conditions, leading to effective control. CONCLUSION This regional-scale study highlights the challenges faced by growers, emphasizes the need for adapting management practices to the local climatic conditions and lays the groundwork for implementing location-specific weed management strategies in commercial fields. © 2024 The Author(s). Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.
Collapse
Affiliation(s)
- Roni Gafni
- The Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture, The Hebrew University of Jerusalem, Rehovot, Israel
- Department of Plant Pathology and Weed Research, Agricultural Research Organization (ARO)-Volcani Institute, Newe Ya'ar Research Center, Ramat Yishay, Israel
| | - Jackline Abu Nassar
- Department of Plant Pathology and Weed Research, Agricultural Research Organization (ARO)-Volcani Institute, Newe Ya'ar Research Center, Ramat Yishay, Israel
| | - Maor Matzrafi
- Department of Plant Pathology and Weed Research, Agricultural Research Organization (ARO)-Volcani Institute, Newe Ya'ar Research Center, Ramat Yishay, Israel
| | - Lior Blank
- Department of Plant Pathology and Weed Research, ARO, Volcani Center, Rishon LeZion, Israel
| | - Hanan Eizenberg
- Department of Plant Pathology and Weed Research, Agricultural Research Organization (ARO)-Volcani Institute, Newe Ya'ar Research Center, Ramat Yishay, Israel
| |
Collapse
|
3
|
Oberhofer G, Johnson ML, Ivy T, Antoshechkin I, Hay BA. Cleave and Rescue gamete killers create conditions for gene drive in plants. NATURE PLANTS 2024; 10:936-953. [PMID: 38886522 DOI: 10.1038/s41477-024-01701-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 04/16/2024] [Indexed: 06/20/2024]
Abstract
Gene drive elements promote the spread of linked traits and can be used to change the composition or fate of wild populations. Cleave and Rescue (ClvR) drive elements sit at a fixed chromosomal position and include a DNA sequence-modifying enzyme such as Cas9/gRNAs that disrupts endogenous versions of an essential gene and a recoded version of the essential gene resistant to cleavage. ClvR spreads by creating conditions in which those lacking ClvR die because they lack functional versions of the essential gene. Here we demonstrate the essential features of the ClvR gene drive in the plant Arabidopsis thaliana through killing of gametes that fail to inherit a ClvR that targets the essential gene YKT61. Resistant alleles, which can slow or prevent drive, were not observed. Modelling shows plant ClvRs are robust to certain failure modes and can be used to rapidly drive population modification or suppression. Possible applications are discussed.
Collapse
Affiliation(s)
- Georg Oberhofer
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Michelle L Johnson
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Tobin Ivy
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Igor Antoshechkin
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Bruce A Hay
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA.
| |
Collapse
|
4
|
Borgato EA, Thiagarayaselvam A, Peterson DE, Hay MM, Dille JA, Jugulam M. Metabolic Resistance to Protoporphyrinogen Oxidase-Inhibitor Herbicides in a Palmer amaranth Population from Kansas. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:5122-5132. [PMID: 38382533 DOI: 10.1021/acs.jafc.3c05333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/23/2024]
Abstract
Palmer amaranth has evolved target and nontarget site resistance to protoporphyrinogen oxidase-inhibitor herbicides in the United States. Recently, a population (KCTR) from a long-term conservation tillage study in Kansas was found to be resistant to herbicides from six sites of action, including to PPO-inhibitors, even with this herbicide group being minimally used in this field. This research investigated the level of resistance to postemergence PPO-inhibitors, target- and nontarget-site resistance mechanism(s), and efficacy of pre-emergence chemistries. The greenhouse experiments confirmed 6.1- to 78.9-fold resistance to lactofen in KCTR, with the level of resistance increasing when KCTR was purified for the resistance trait. PPO2 sequences alignment revealed the absence of known mutations conferring resistance to PPO-inhibitors in KCTR Palmer amaranth, and differential expression of the PPO2 gene did not occur. KCTR metabolized fomesafen faster than the susceptible population, indicating that herbicide detoxification is the mechanism conferring resistance in this population. Further, treatment with the cytochrome P450-inhibitor malathion followed by lactofen restored the sensitivity of KCTR to this herbicide. Despite being resistant to POST applied PPO-inhibitors, KCTR Palmer amaranth was completely controlled by the labeled rate of the PRE applied PPO-inhibitors fomesafen, flumioxazin, saflufenacil, sulfentrazone, and oxadiazon. The overall results suggest that P450-mediated metabolism confers resistance to PPO-inhibitors in KCTR, rather than alterations in the PPO2, which were more commonly found in other Palmer amaranth populations. Future work will focus on identifying the fomesafen metabolites and on unravelling the genetic basis of metabolic resistance to PPO-inhibitor herbicides in KCTR Palmer amaranth.
Collapse
Affiliation(s)
- Ednaldo A Borgato
- Department of Agronomy, Kansas State University, Manhattan, Kansas 66502, United States
| | | | - Dallas E Peterson
- Department of Agronomy, Kansas State University, Manhattan, Kansas 66502, United States
| | - Marshall M Hay
- Syngenta Crop Protection, Garden Plain, Kansas 67050, United States
| | - J Anita Dille
- Department of Agronomy, Kansas State University, Manhattan, Kansas 66502, United States
| | - Mithila Jugulam
- Department of Agronomy, Kansas State University, Manhattan, Kansas 66502, United States
| |
Collapse
|
5
|
Koo DH, Sathishraj R, Nakka S, Ju Y, Nandula VK, Jugulam M, Friebe B, Gill BS. Extrachromosomal circular DNA-mediated spread of herbicide resistance in interspecific hybrids of pigweed. PLANT PHYSIOLOGY 2023; 193:229-233. [PMID: 37186777 PMCID: PMC10469533 DOI: 10.1093/plphys/kiad281] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 04/14/2023] [Accepted: 04/18/2023] [Indexed: 05/17/2023]
Abstract
Extrachromosomal circular DNAs (eccDNAs) are found in many eukaryotic organisms. EccDNA-powered copy number variation plays diverse roles, from oncogenesis in humans to herbicide resistance in crop weeds. Here, we report interspecific eccDNA flow and its dynamic behavior in soma cells of natural populations and F1 hybrids of Amaranthus sp. The glyphosate-resistance (GR) trait is controlled by eccDNA-based amplification harboring the 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS) gene (eccDNA replicon), the molecular target of glyphosate. We documented pollen-mediated transfer of eccDNA in experimental hybrids between glyphosate-susceptible Amaranthus tuberculatus and GR Amaranthus palmeri. Experimental hybridization and fluorescence in situ hybridization (FISH) analysis revealed that the eccDNA replicon in Amaranthus spinosus derived from GR A. palmeri by natural hybridization. FISH analysis also revealed random chromosome anchoring and massive eccDNA replicon copy number variation in soma cells of weedy hybrids. The results suggest that eccDNAs are inheritable across compatible species, contributing to genome plasticity and rapid adaptive evolution.
Collapse
Affiliation(s)
- Dal-Hoe Koo
- Wheat Genetics Resource Center and Department of Plant Pathology, Kansas State University, Manhattan, KS 66506, USA
| | - Rajendran Sathishraj
- Wheat Genetics Resource Center and Department of Plant Pathology, Kansas State University, Manhattan, KS 66506, USA
| | - Sridevi Nakka
- Heartland Plant Innovations Inc., Manhattan, KS 66506, USA
| | - Yoonha Ju
- Wheat Genetics Resource Center and Department of Plant Pathology, Kansas State University, Manhattan, KS 66506, USA
| | - Vijay K Nandula
- National Institute of Food and Agriculture, USDA, Kansas City, MO 64105, USA
- Crop Production Systems Research Unit, USDA-ARS, Stoneville, MS 38776, USA
| | - Mithila Jugulam
- Department of Agronomy, Kansas State University, Manhattan, KS 66506, USA
| | - Bernd Friebe
- Wheat Genetics Resource Center and Department of Plant Pathology, Kansas State University, Manhattan, KS 66506, USA
| | - Bikram S Gill
- Wheat Genetics Resource Center and Department of Plant Pathology, Kansas State University, Manhattan, KS 66506, USA
| |
Collapse
|
6
|
Raiyemo DA, Bobadilla LK, Tranel PJ. Genomic profiling of dioecious Amaranthus species provides novel insights into species relatedness and sex genes. BMC Biol 2023; 21:37. [PMID: 36804015 PMCID: PMC9940365 DOI: 10.1186/s12915-023-01539-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Accepted: 02/08/2023] [Indexed: 02/21/2023] Open
Abstract
BACKGROUND Amaranthus L. is a diverse genus consisting of domesticated, weedy, and non-invasive species distributed around the world. Nine species are dioecious, of which Amaranthus palmeri S. Watson and Amaranthus tuberculatus (Moq.) J.D. Sauer are troublesome weeds of agronomic crops in the USA and elsewhere. Shallow relationships among the dioecious Amaranthus species and the conservation of candidate genes within previously identified A. palmeri and A. tuberculatus male-specific regions of the Y (MSYs) in other dioecious species are poorly understood. In this study, seven genomes of dioecious amaranths were obtained by paired-end short-read sequencing and combined with short reads of seventeen species in the family Amaranthaceae from NCBI database. The species were phylogenomically analyzed to understand their relatedness. Genome characteristics for the dioecious species were evaluated and coverage analysis was used to investigate the conservation of sequences within the MSY regions. RESULTS We provide genome size, heterozygosity, and ploidy level inference for seven newly sequenced dioecious Amaranthus species and two additional dioecious species from the NCBI database. We report a pattern of transposable element proliferation in the species, in which seven species had more Ty3 elements than copia elements while A. palmeri and A. watsonii had more copia elements than Ty3 elements, similar to the TE pattern in some monoecious amaranths. Using a Mash-based phylogenomic analysis, we accurately recovered taxonomic relationships among the dioecious Amaranthus species that were previously identified based on comparative morphology. Coverage analysis revealed eleven candidate gene models within the A. palmeri MSY region with male-enriched coverages, as well as regions on scaffold 19 with female-enriched coverage, based on A. watsonii read alignments. A previously reported FLOWERING LOCUS T (FT) within A. tuberculatus MSY contig was also found to exhibit male-enriched coverages for three species closely related to A. tuberculatus but not for A. watsonii reads. Additional characterization of the A. palmeri MSY region revealed that 78% of the region is made of repetitive elements, typical of a sex determination region with reduced recombination. CONCLUSIONS The results of this study further increase our understanding of the relationships among the dioecious species of the Amaranthus genus as well as revealed genes with potential roles in sex function in the species.
Collapse
Affiliation(s)
- Damilola A Raiyemo
- Department of Crop Sciences, University of Illinois, Urbana, IL, 61801, USA
| | - Lucas K Bobadilla
- Department of Crop Sciences, University of Illinois, Urbana, IL, 61801, USA
| | - Patrick J Tranel
- Department of Crop Sciences, University of Illinois, Urbana, IL, 61801, USA.
| |
Collapse
|
7
|
Inheritance of 2,4-dichlorophenoxyacetic acid (2,4-D) resistance in Amaranthus palmeri. Sci Rep 2022; 12:21822. [PMID: 36528649 PMCID: PMC9759536 DOI: 10.1038/s41598-022-25686-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 12/02/2022] [Indexed: 12/23/2022] Open
Abstract
In this study, the inheritance of 2,4-D resistance in a multiple herbicide-resistant Palmer amaranth (KCTR) was investigated. Direct and reciprocal crosses were performed using 2,4-D-resistant KCTR and susceptible KSS plants to generate F1 progenies. 2,4-D dose-response assays were conducted to evaluate the response of progenies from each F1 family along with KCTR and KSS plants in controlled environmental growth chambers. Additionally, 2,4-D-resistant male and female plants from each of the F1 families were used in pairwise crosses to generate pseudo-F2 families. Segregation (resistance or susceptibility) of progenies from the F2 families in response to a discriminatory rate of 2,4-D (i.e., 560 g ae ha-1) was evaluated. Dose-response analysis of F1 progenies derived from direct and reciprocal crosses suggested that the 2,4-D resistance in KCTR is a nuclear trait. Chi-square analyses of F2 segregation data implied that 2,4-D resistance in KCTR is controlled by multiple gene(s). Overall, our data suggest that the 2,4-D resistance in KCTR Palmer amaranth is a nuclear inherited trait controlled by multiple genes. Such resistance can spread both via pollen or seed-mediated gene flow. In future, efforts will be directed towards identifying genes mediating 2,4-D resistance in KCTR population.
Collapse
|
8
|
Brusa A, Patterson EL, Gaines TA, Dorn K, Westra P, Sparks CD, Wyse D. A needle in a seedstack: an improved method for detection of rare alleles in bulk seed testing through KASP. PEST MANAGEMENT SCIENCE 2021; 77:2477-2484. [PMID: 33442897 DOI: 10.1002/ps.6278] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 01/06/2021] [Accepted: 01/14/2021] [Indexed: 05/12/2023]
Abstract
BACKGROUND Amaranthus palmeri is an aggressive and prolific weed species with major impact on agricultural yield and is a prohibited noxious weed across the Midwest. Morphological identification of A. palmeri from other Amaranthus species is extremely difficult in seeds, which has led to genetic testing for seed identification in commercial seed lots. RESULTS We created an inexpensive and reliable genetic test based on novel, species-specific, single nucleotide polymorphisms (SNPs) from GBS (Genotyping by Sequencing) data. We report three SNP-based genetic tests for identifying A. palmeri alone or in a mixed pool of Amaranthus spp. Sensitivity ranged from 99.8 to 100%, specificity from 99.59 to 100%. Accuracy for all three tests is > 99.7%. All three are capable of reliably detecting one A. palmeri seed in a pool of 200 Amaranthus spp. seeds. The test was validated across 20 populations of A. palmeri, along with eight other Amaranthus species, the largest and most genetically diverse panel of Amaranthus samples to date. CONCLUSION Our work represents a marked improvement over existing commercial assays resulting in an identification assay that is (i) accurate, (ii) robust, (iii) easy to interpret and (iv) applicable to both leaf tissue and pools of up to 200 seeds. Included is a data transformation method for calling of closely grouped competitive fluorescence assays. We also present a comprehensive GBS dataset from the largest geographic panel of Amaranthus populations sequenced. Our approach serves as a model for developing markers for other difficult to identify species. © 2021 Society of Chemical Industry.
Collapse
Affiliation(s)
- Anthony Brusa
- Department of Agronomy and Plant Genetics, University of Minnesota, Minneapolis, MN, USA
| | - Eric L Patterson
- Department of Plant, Soil, and Microbial Sciences, Michigan State University, East Lansing, MI, USA
| | - Todd A Gaines
- Department of Agricultural Biology, Colorado State University, Fort Collins, CO, USA
| | - Kevin Dorn
- Soil Management and Sugarbeet Research, United States Department of Agriculture - Agricultural Research Service, Fort Collins, CO, USA
| | - Philip Westra
- Department of Agricultural Biology, Colorado State University, Fort Collins, CO, USA
| | - Crystal D Sparks
- Department of Agricultural Biology, Colorado State University, Fort Collins, CO, USA
| | - Don Wyse
- Department of Agronomy and Plant Genetics, University of Minnesota, Minneapolis, MN, USA
| |
Collapse
|
9
|
Montgomery JS, Giacomini DA, Weigel D, Tranel PJ. Male-specific Y-chromosomal regions in waterhemp (Amaranthus tuberculatus) and Palmer amaranth (Amaranthus palmeri). THE NEW PHYTOLOGIST 2021; 229:3522-3533. [PMID: 33301599 DOI: 10.1111/nph.17108] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Accepted: 11/13/2020] [Indexed: 05/16/2023]
Abstract
Amaranthus tuberculatus and Amaranthus palmeri are agronomically important weed species, both with stable dioecious reproductive systems. An understanding of the genetic basis of sex determination may lead to new methods of managing these troublesome weeds. Previous research identified genomic sequences associated with maleness in each species. Male-specific sequences were used to identify genomic regions in both species that are believed to contain sex-determining genes, i.e. the male-specific Y (MSY) region. These regions were compared to understand if sex determination is controlled via the same physiological pathway and if dioecy evolved independently. A contiguously assembled candidate MSY region identified in Amaranthus palmeri is approximately 1.3 Mb with 121 predicted gene models. In Amaranthus tuberculatus, several contigs, with combined length of 4.6 Mb and with 147 gene models, were identified as belonging to the MSY region. Synteny was not detected between the two species' candidate MSY regions but they shared two predicted genes. With lists of candidate genes for sex determination containing fewer than 200 in each species, future research can address whether sex determination is controlled via similar physiological pathways and whether dioecy has indeed evolved independently in these species.
Collapse
Affiliation(s)
- Jacob S Montgomery
- Department of Crop Sciences, University of Illinois, Turner Hall, 1102 S Goodwin Ave, Urbana, IL, 61801, USA
| | - Darci A Giacomini
- Department of Crop Sciences, University of Illinois, Turner Hall, 1102 S Goodwin Ave, Urbana, IL, 61801, USA
| | - Detlef Weigel
- Max Planck Institute for Developmental Biology, Max-Planck-Ring 5, Tübingen, 72076, Germany
| | - Patrick J Tranel
- Department of Crop Sciences, University of Illinois, Turner Hall, 1102 S Goodwin Ave, Urbana, IL, 61801, USA
| |
Collapse
|
10
|
Sang Y, Mejuto JC, Xiao J, Simal-Gandara J. Assessment of Glyphosate Impact on the Agrofood Ecosystem. PLANTS (BASEL, SWITZERLAND) 2021; 10:405. [PMID: 33672572 PMCID: PMC7924050 DOI: 10.3390/plants10020405] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 02/16/2021] [Accepted: 02/17/2021] [Indexed: 02/07/2023]
Abstract
Agro-industries should adopt effective strategies to use agrochemicals such as glyphosate herbicides cautiously in order to protect public health. This entails careful testing and risk assessment of available choices, and also educating farmers and users with mitigation strategies in ecosystem protection and sustainable development. The key to success in this endeavour is using scientific research on biological pest control, organic farming and regulatory control, etc., for new developments in food production and safety, and for environmental protection. Education and research is of paramount importance for food and nutrition security in the shadow of climate change, and their consequences in food production and consumption safety and sustainability. This review, therefore, diagnoses on the use of glyphosate and the associated development of glyphosate-resistant weeds. It also deals with the risk assessment on human health of glyphosate formulations through environment and dietary exposures based on the impact of glyphosate and its metabolite AMPA-(aminomethyl)phosphonic acid-on water and food. All this to setup further conclusions and recommendations on the regulated use of glyphosate and how to mitigate the adverse effects.
Collapse
Affiliation(s)
- Yaxin Sang
- College of Food Science and Technology, Hebei Agricultural University, Baoding 071001, China;
| | - Juan-Carlos Mejuto
- Department of Physical Chemistry, Faculty of Science, University of Vigo—Ourense Campus, E32004 Ourense, Spain;
| | - Jianbo Xiao
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macau, China
- Nutrition and Bromatology Group, Department of Analytical and Food Chemistry, Faculty of Food Science and Technology, University of Vigo—Ourense Campus, E32004 Ourense, Spain
| | - Jesus Simal-Gandara
- Nutrition and Bromatology Group, Department of Analytical and Food Chemistry, Faculty of Food Science and Technology, University of Vigo—Ourense Campus, E32004 Ourense, Spain
| |
Collapse
|
11
|
Noguera MM, Rangani G, Heiser J, Bararpour T, Steckel LE, Betz M, Porri A, Lerchl J, Zimmermann S, Nichols RL, Roma-Burgos N. Functional PPO2 mutations: co-occurrence in one plant or the same ppo2 allele of herbicide-resistant Amaranthus palmeri in the US mid-south. PEST MANAGEMENT SCIENCE 2021; 77:1001-1012. [PMID: 32990410 DOI: 10.1002/ps.6111] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 09/22/2020] [Accepted: 09/29/2020] [Indexed: 05/27/2023]
Abstract
BACKGROUND Protoporphyrinogen IX oxidase 2 (PPO2) inhibitors are important for the management of glyphosate- and acetolactate synthase-resistant Palmer amaranth [Amaranthus palmeri (S.) Wats.]. The evolving resistance to PPO inhibitors is of great concern. We surveyed the evolution of resistance to fomesafen in the US Mid-south and determined its correlation with the known functional PPO2 target-site mutations (TSM). RESULTS The 167 accessions analyzed were grouped into five categories, four resistant (147) and one susceptible (20). Arkansas accessions constituted 100% of the susceptible group while the Missouri accessions comprised 60% of the most resistant category. The majority of Mississippi accessions (88%) clustered in the high-survival-high-injury category, manifesting an early-stage resistance evolution. One hundred and fifteen accessions were genotyped for four known TSMs; 74% of accessions carried at least one TSM. The most common single TSM was ΔG210 (18% of accessions) and the predominant double mutation was ΔG210 + G399A (17%). Other mutations are likely less favorable, hence are rare. All TSMs were detected in three accessions. Further examination revealed that 9 and two individuals carried G399A + G210 and G399A + R128G TSM in the same allele, respectively. The existence of these combinations is supported by molecular modeling. CONCLUSIONS Resistance to PPO inhibitors is widespread across the Mid-southern USA. Highly resistant field populations have plants with multiple mutations. G399A is the most prone to co-occur with other ppo2 mutations in the same allele. Mutation at R128 in the configuration of the PPO2 catalytic domain restrains the co-occurrence of R128G with ΔG210, making ΔG210 + G399A the most plausible, tolerable functional mutation combination to co-occur in the same ppo2 allele.
Collapse
Affiliation(s)
- Matheus M Noguera
- Department of Crop, Soil, and Environmental Sciences, University of Arkansas, Fayetteville, AK, USA
| | - Gulab Rangani
- Department of Crop, Soil, and Environmental Sciences, University of Arkansas, Fayetteville, AK, USA
| | - James Heiser
- Food & Natural Resources, Fisher Delta Research Center, University of Missouri College of Agriculture, Portageville, MO, USA
| | - Taghi Bararpour
- Delta Research and Extension Center, Mississippi State University, Stoneville, MS, USA
| | | | | | | | | | | | | | - Nilda Roma-Burgos
- Department of Crop, Soil, and Environmental Sciences, University of Arkansas, Fayetteville, AK, USA
| |
Collapse
|
12
|
Montgomery JS, Giacomini D, Waithaka B, Lanz C, Murphy BP, Campe R, Lerchl J, Landes A, Gatzmann F, Janssen A, Antonise R, Patterson E, Weigel D, Tranel PJ. Draft Genomes of Amaranthus tuberculatus, Amaranthus hybridus, and Amaranthus palmeri. Genome Biol Evol 2020; 12:1988-1993. [PMID: 32835372 PMCID: PMC7643611 DOI: 10.1093/gbe/evaa177] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/15/2020] [Indexed: 12/15/2022] Open
Abstract
Amaranthus tuberculatus, Amaranthus hybridus, and Amaranthus palmeri are agronomically important weed species. Here, we present the most contiguous draft assemblies of these three species to date. We utilized a combination of Pacific Biosciences long-read sequencing and chromatin contact mapping information to assemble and order sequences of A. palmeri to near-chromosome-level resolution, with scaffold N50 of 20.1 Mb. To resolve the issues of heterozygosity and coassembly of alleles in diploid species, we adapted the trio binning approach to produce haplotype assemblies of A. tuberculatus and A. hybridus. This approach resulted in an improved assembly of A. tuberculatus, and the first genome assembly for A. hybridus, with contig N50s of 2.58 and 2.26 Mb, respectively. Species-specific transcriptomes and information from related species were used to predict transcripts within each assembly. Syntenic comparisons of these species and Amaranthus hypochondriacus identified sites of genomic rearrangement, including duplication and translocation, whereas genetic map construction within A. tuberculatus highlighted the need for further ordering of the A. hybridus and A. tuberculatus contigs. These multiple reference genomes will accelerate genomic studies in these species to further our understanding of weedy evolution within Amaranthus.
Collapse
Affiliation(s)
| | | | - Bridgit Waithaka
- Max Planck Institute for Developmental Biology, Tübingen, Germany
| | - Christa Lanz
- Max Planck Institute for Developmental Biology, Tübingen, Germany
| | - Brent P Murphy
- Department of Crop Sciences, University of Illinois, Urbana
| | | | | | | | | | | | | | - Eric Patterson
- Department of Plant, Soil and Microbial Sciences, Michigan State University
| | - Detlef Weigel
- Max Planck Institute for Developmental Biology, Tübingen, Germany
| | | |
Collapse
|
13
|
Gaines TA, Duke SO, Morran S, Rigon CAG, Tranel PJ, Küpper A, Dayan FE. Mechanisms of evolved herbicide resistance. J Biol Chem 2020; 295:10307-10330. [PMID: 32430396 PMCID: PMC7383398 DOI: 10.1074/jbc.rev120.013572] [Citation(s) in RCA: 265] [Impact Index Per Article: 53.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Revised: 05/18/2020] [Indexed: 12/13/2022] Open
Abstract
The widely successful use of synthetic herbicides over the past 70 years has imposed strong and widespread selection pressure, leading to the evolution of herbicide resistance in hundreds of weed species. Both target-site resistance (TSR) and nontarget-site resistance (NTSR) mechanisms have evolved to most herbicide classes. TSR often involves mutations in genes encoding the protein targets of herbicides, affecting the binding of the herbicide either at or near catalytic domains or in regions affecting access to them. Most of these mutations are nonsynonymous SNPs, but polymorphisms in more than one codon or entire codon deletions have also evolved. Some herbicides bind multiple proteins, making the evolution of TSR mechanisms more difficult. Increased amounts of protein target, by increased gene expression or by gene duplication, are an important, albeit less common, TSR mechanism. NTSR mechanisms include reduced absorption or translocation and increased sequestration or metabolic degradation. The mechanisms that can contribute to NTSR are complex and often involve genes that are members of large gene families. For example, enzymes involved in herbicide metabolism-based resistances include cytochromes P450, GSH S-transferases, glucosyl and other transferases, aryl acylamidase, and others. Both TSR and NTSR mechanisms can combine at the individual level to produce higher resistance levels. The vast array of herbicide-resistance mechanisms for generalist (NTSR) and specialist (TSR and some NTSR) adaptations that have evolved over a few decades illustrate the evolutionary resilience of weed populations to extreme selection pressures. These evolutionary processes drive herbicide and herbicide-resistant crop development and resistance management strategies.
Collapse
Affiliation(s)
- Todd A Gaines
- Agricultural Biology Department, Colorado State University, Fort Collins, Colorado, USA
| | - Stephen O Duke
- National Center for Natural Products Research, School of Pharmacy, University of Mississippi, Oxford, Mississippi, USA
| | - Sarah Morran
- Agricultural Biology Department, Colorado State University, Fort Collins, Colorado, USA
| | - Carlos A G Rigon
- Agricultural Biology Department, Colorado State University, Fort Collins, Colorado, USA
| | - Patrick J Tranel
- Department of Crop Sciences, University of Illinois, Urbana, Illinois, USA
| | - Anita Küpper
- Bayer AG, CropScience Division, Frankfurt am Main, Germany
| | - Franck E Dayan
- Agricultural Biology Department, Colorado State University, Fort Collins, Colorado, USA
| |
Collapse
|
14
|
Milani A, Scarabel L, Sattin M. A family affair: resistance mechanism and alternative control of three Amaranthus species resistant to acetolactate synthase inhibitors in Italy. PEST MANAGEMENT SCIENCE 2020; 76:1205-1213. [PMID: 31677230 DOI: 10.1002/ps.5667] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 10/28/2019] [Accepted: 10/29/2019] [Indexed: 06/10/2023]
Abstract
BACKGROUND Several soybean fields in Italy were found to be infested by multiple species of Amaranthus spp. not adequately controlled by acetolactate (ALS) inhibitor herbicides. The objectives of this research were (i) to create a simplified botanical key to identify weedy amaranths; (ii) to determine the number and type of sites of action the accession are resistant to, i.e. resistance pattern; and (iii) to determine the main resistance mechanisms involved d) to evaluate the efficacy of herbicides with different site of action. RESULTS An easy-to-use botanical key was devised and successfully used in the infested sites and results were confirmed through a species-specific molecular marker. Amaranthus retroflexus L. (redrood pigweed) was found in three sites; plants with Asp376 Glu substitution at the ALS gene were resistant to thifensulfuron-methyl. Amaranthus tuberculatus (Moq.) J.D.Sauer (waterhemp) and Amaranthus hybridus L. (smooth pigweed) accessions were cross-resistant to thifensulfuron-methyl and imazamox; most ALS-resistant plants had a point mutation at position 574. One A. hybridus accession had the substitution Trp574 Met, new for Amaranthus genus. All ALS-resistant accessions were controlled by glyphosate and metribuzin. A. retroflexus accessions were controlled by bentazon, instead an A. hybridus and some A. tuberculatus accession were not. CONCLUSIONS The simplified botanical key proposed herein could be a useful tool for farmers and weed scientists to reliably identify Amaranthus species in the field. The main resistance mechanism in the three Amaranthus species is target-site mediated. This is the first evidence of ALS-resistant A. tuberculatus outside its native North American range. © 2019 Society of Chemical Industry.
Collapse
Affiliation(s)
- Andrea Milani
- Department of Agronomy, Food, Natural Resources, Animals & Environment, University of Padova, Padua, Italy
| | - Laura Scarabel
- Institute for Sustainable Plant Protection (IPSP-CNR), National Research Council of Italy (CNR), Viale dell'Università 16, Legnaro, Padua, Italy
| | - Maurizio Sattin
- Institute for Sustainable Plant Protection (IPSP-CNR), National Research Council of Italy (CNR), Viale dell'Università 16, Legnaro, Padua, Italy
| |
Collapse
|
15
|
Butcher CL, Rubin BY, Anderson SL, Nandula VK, Owen MDK, Gardner RG, Lewis JD. Combining rare alleles and grouped pollen donors to assign paternity in pollen dispersal studies. APPLICATIONS IN PLANT SCIENCES 2020; 8:e11330. [PMID: 32185121 PMCID: PMC7073328 DOI: 10.1002/aps3.11330] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Accepted: 11/09/2019] [Indexed: 06/10/2023]
Abstract
PREMISE Pollen dispersal plays a critical role in gene flow of seed plants. Most often, pollen dispersal is measured using paternity assignment. However, this approach can be time-consuming because it typically entails genotyping all pollen donors, receptors, and offspring at several molecular markers. METHODS We developed a faster, simpler protocol to track paternity, using pollen receptors and grouped pollen donors that possess rare alleles. We tested this approach using wind-pollinated Amaranthus tuberculatus and insect-pollinated Solanum lycopersicum. After screening potential markers for rare alleles, we grew both species in experimental arrays under field conditions. RESULTS All tested A. tuberculatus seeds and 97% of S. lycopersicum fruits could be assigned to the grouped pollen donors using each of two markers. From these results, we could infer paternity of untested offspring and assess pollen dispersal patterns in each array. DISCUSSION By combining rare alleles and grouped pollen donors, we could assess pollen dispersal for both species and across all arrays after genotyping a small number of pollen donors and a representative subset of offspring. While directly applicable to A. tuberculatus and S. lycopersicum, this approach could be used in other species to assess pollen dispersal under field conditions.
Collapse
Affiliation(s)
- Chelsea L. Butcher
- Louis Calder Center, Biological Field StationFordham University31 Whippoorwill RoadArmonkNew York10504USA
- Center for Urban EcologyFordham University441 East Fordham RoadBronxNew York10458USA
- Department of Biological SciencesFordham University441 East Fordham RoadBronxNew York10458USA
- Department of Mathematics and Natural SciencesNorthwood University4000 Whiting DriveMidlandMichigan48640USA
| | - Berish Y. Rubin
- Department of Biological SciencesFordham University441 East Fordham RoadBronxNew York10458USA
| | - Sylvia L. Anderson
- Department of Biological SciencesFordham University441 East Fordham RoadBronxNew York10458USA
| | - Vijay K. Nandula
- Crop Production Systems Research Unit, Agricultural Research ServiceU.S. Department of Agriculture141 Experiment Station RoadStonevilleMississippi38776USA
| | - Micheal D. K. Owen
- Department of AgronomyIowa State University716 Farm House LaneAmesIowa50011USA
| | - Randolph G. Gardner
- Department of Horticultural ScienceNorth Carolina State UniversityMountain Horticultural Crops Research and Extension Center (MHCREC)455 Research DriveMills RiverNorth Carolina28759USA
| | - J. D. Lewis
- Louis Calder Center, Biological Field StationFordham University31 Whippoorwill RoadArmonkNew York10504USA
- Center for Urban EcologyFordham University441 East Fordham RoadBronxNew York10458USA
- Department of Biological SciencesFordham University441 East Fordham RoadBronxNew York10458USA
| |
Collapse
|
16
|
Nie H, Mansfield BC, Harre NT, Young JM, Steppig NR, Young BG. Investigating target-site resistance mechanism to the PPO-inhibiting herbicide fomesafen in waterhemp and interspecific hybridization of Amaranthus species using next generation sequencing. PEST MANAGEMENT SCIENCE 2019; 75:3235-3244. [PMID: 30983048 DOI: 10.1002/ps.5445] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2019] [Revised: 04/07/2019] [Accepted: 04/14/2019] [Indexed: 06/09/2023]
Abstract
BACKGROUND Waterhemp (Amaranthus tuberculatus (Moq.) J. D. Sauer) is one of the most pernicious weeds in cropping systems of the USA due to its evolved resistance against several herbicide sites-of-action, including protoporphyrinogen oxidase inhibitors (PPO-R). Currently, the only source of PPO-R documented in waterhemp is ΔG210 of PPX2. Gene flow may not only lead to a transfer of herbicide-resistant alleles, but also produce a hybrid genotype more competitively fit than one or both parents. However, investigating gene flow of Amaranthus species has been of interest in the past two decades with limited evidence. RESULTS Here, a high-throughput MiSeq amplicon sequencing method was used to investigate alterations of the PPX2 gene in 146 PPO-R waterhemp populations across five Midwest states of the USA. Five R128 codons of PPX2, novel to waterhemp, were found including AGG (R), GGA (G), GGG (G), AAA (K) and ATA (I). R128G, R128I, and R128K were found in 11, 3, and 2 populations, respectively. R128G and R128I, but not R128K, conferred fomesafen resistance in a bacterial system. Sequence alignment of the R128 region of PPX2 identified a tumble pigweed (Amaranthus albus)-type and Palmer amaranth (Amaranthus palmeri)-type PPX2 allele to be present and widespread in the surveyed waterhemp populations, thus providing strong evidence of gene flow between Amaranthus species. CONCLUSION Using a next-generation sequencing method, we identified two PPO target-site mutations R128G/I novel to waterhemp and provided evidence of gene flow of Amaranthus species in a large group of screened waterhemp populations from five Midwest states of the USA. © 2019 Society of Chemical Industry.
Collapse
Affiliation(s)
- Haozhen Nie
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN, USA
| | - Brent C Mansfield
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN, USA
| | - Nick T Harre
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN, USA
| | - Julie M Young
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN, USA
| | - Nicholas R Steppig
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN, USA
| | - Bryan G Young
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN, USA
| |
Collapse
|
17
|
Gaines TA, Patterson EL, Neve P. Molecular mechanisms of adaptive evolution revealed by global selection for glyphosate resistance. THE NEW PHYTOLOGIST 2019; 223:1770-1775. [PMID: 31002387 DOI: 10.1111/nph.15858] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Accepted: 04/09/2019] [Indexed: 06/09/2023]
Abstract
The human-directed, global selection for glyphosate resistance in weeds has revealed a fascinating diversity of evolved resistance mechanisms, including herbicide sequestration in the vacuole, a rapid cell death response, nucleotide polymorphisms in the herbicide target (5-enolpyruvylshikimate-3-phosphate synthase, EPSPS) and increased gene copy number of EPSPS. For this latter mechanism, two distinct molecular genetic mechanisms have been observed, a tandem duplication mechanism and a large extrachromosomal circular DNA (eccDNA) that is tethered to the chromosomes and passed to gametes at meiosis. These divergent mechanisms have a range of consequences for the spread, fitness, and inheritance of resistance traits, and, particularly in the case of the eccDNA, demonstrate how evolved herbicide resistance can generate new insights into plant adaptation to contemporary environmental stress.
Collapse
Affiliation(s)
- Todd A Gaines
- Department of Bioagricultural Sciences and Pest Management, Colorado State University, 1177 Campus Delivery, Fort Collins, CO, 80523, USA
| | - Eric L Patterson
- Department of Bioagricultural Sciences and Pest Management, Colorado State University, 1177 Campus Delivery, Fort Collins, CO, 80523, USA
- Department of Genetics and Biochemistry, Clemson University, Clemson, SC, 29634, USA
| | - Paul Neve
- Rothamsted Research, West Common, Harpenden, Hertfordshire, AL5 2JQ, UK
| |
Collapse
|
18
|
Vieira BC, Luck JD, Amundsen KL, Gaines TA, Werle R, Kruger GR. Response of Amaranthus spp. following exposure to sublethal herbicide rates via spray particle drift. PLoS One 2019; 14:e0220014. [PMID: 31318947 PMCID: PMC6638980 DOI: 10.1371/journal.pone.0220014] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Accepted: 07/05/2019] [Indexed: 01/29/2023] Open
Abstract
The adverse consequences of herbicide drift towards sensitive crops have been extensively reported in the literature. However, little to no information is available on the consequences of herbicide drift onto weed species inhabiting boundaries of agricultural fields. Exposure to herbicide drift could be detrimental to long-term weed management as several weed species have evolved herbicide-resistance after recurrent selection with sublethal herbicide rates This study investigated the deposition of glyphosate, 2,4-D, and dicamba spray particle drift from applications with two different nozzles in a low speed wind tunnel, and their impact on growth and development of Amaranthus spp. Herbicide drift resulted in biomass reduction or complete plant mortality. Inflection points (distance to 50% biomass reduction) for Amaranthus tuberculatus were 7.7, 4.0, and 4.1 m downwind distance for glyphosate, 2,4-D, and dicamba applications with the flat-fan nozzle, respectively, whereas these values corresponded to 2.8, 2.5, and 1.9 m for applications with the air-inclusion nozzle. Inflection points for Amaranthus palmeri biomass reduction were 16.3, 10.9, and 11.5 m for glyphosate, 2,4-D, and dicamba applications with the flat-fan nozzle, respectively, whereas these values corresponded to 7.6, 5.4, and 5.4 m for applications with the air-inclusion nozzle. Plants were more sensitive to glyphosate at higher exposure rates than other herbicides, whereas plants were more sensitive to 2,4-D and dicamba at lower exposure rates compared to glyphosate. Applications with the flat-fan nozzle resulted in 32.3 and 11.5% drift of the applied rate at 1.0 and 3.0 m downwind, respectively, whereas the air-inclusion nozzle decreased the dose exposure in the same distances (11.4 and 2.7%, respectively). Herbicide drift towards field boundaries was influenced by nozzle design and exposed weeds to herbicide rates previously reported to select for herbicide-resistant biotypes.
Collapse
Affiliation(s)
- Bruno C. Vieira
- West Central Research and Extension Center, University of Nebraska-Lincoln, North Platte, NE, United States of America
| | - Joe D. Luck
- Department of Biological Systems Engineering, University of Nebraska-Lincoln, Lincoln, NE, United States of America
| | - Keenan L. Amundsen
- Department of Agronomy and Horticulture, University of Nebraska-Lincoln, Lincoln, NE, United States of America
| | - Todd A. Gaines
- Department of Bioagricultural Sciences and Pest Management, Colorado State University, Fort Collins, CO, United States of America
| | - Rodrigo Werle
- Department of Agronomy, University of Wisconsin–Madison, Madison, WI, United States of America
| | - Greg R. Kruger
- West Central Research and Extension Center, University of Nebraska-Lincoln, North Platte, NE, United States of America
| |
Collapse
|
19
|
Hawkins NJ, Bass C, Dixon A, Neve P. The evolutionary origins of pesticide resistance. Biol Rev Camb Philos Soc 2019; 94:135-155. [PMID: 29971903 PMCID: PMC6378405 DOI: 10.1111/brv.12440] [Citation(s) in RCA: 312] [Impact Index Per Article: 52.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2017] [Revised: 06/01/2018] [Accepted: 06/06/2018] [Indexed: 01/24/2023]
Abstract
Durable crop protection is an essential component of current and future food security. However, the effectiveness of pesticides is threatened by the evolution of resistant pathogens, weeds and insect pests. Pesticides are mostly novel synthetic compounds, and yet target species are often able to evolve resistance soon after a new compound is introduced. Therefore, pesticide resistance provides an interesting case of rapid evolution under strong selective pressures, which can be used to address fundamental questions concerning the evolutionary origins of adaptations to novel conditions. We ask: (i) whether this adaptive potential originates mainly from de novo mutations or from standing variation; (ii) which pre-existing traits could form the basis of resistance adaptations; and (iii) whether recurrence of resistance mechanisms among species results from interbreeding and horizontal gene transfer or from independent parallel evolution. We compare and contrast the three major pesticide groups: insecticides, herbicides and fungicides. Whilst resistance to these three agrochemical classes is to some extent united by the common evolutionary forces at play, there are also important differences. Fungicide resistance appears to evolve, in most cases, by de novo point mutations in the target-site encoding genes; herbicide resistance often evolves through selection of polygenic metabolic resistance from standing variation; and insecticide resistance evolves through a combination of standing variation and de novo mutations in the target site or major metabolic resistance genes. This has practical implications for resistance risk assessment and management, and lessons learnt from pesticide resistance should be applied in the deployment of novel, non-chemical pest-control methods.
Collapse
Affiliation(s)
- Nichola J. Hawkins
- Department of Biointeractions and Crop ProtectionRothamsted ResearchHarpendenAL5 4SEU.K.
| | - Chris Bass
- Department of BiosciencesUniversity of Exeter, Penryn CampusCornwallTR10 9FEU.K.
| | - Andrea Dixon
- Department of Biointeractions and Crop ProtectionRothamsted ResearchHarpendenAL5 4SEU.K.
- Department of Plant BiologyUniversity of GeorgiaAthensGA 30602U.S.A.
| | - Paul Neve
- Department of Biointeractions and Crop ProtectionRothamsted ResearchHarpendenAL5 4SEU.K.
| |
Collapse
|
20
|
Palma-Bautista C, Torra J, Garcia MJ, Bracamonte E, Rojano-Delgado AM, Alcántara-de la Cruz R, De Prado R. Reduced Absorption and Impaired Translocation Endows Glyphosate Resistance in Amaranthus palmeri Harvested in Glyphosate-Resistant Soybean from Argentina. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:1052-1060. [PMID: 30624921 DOI: 10.1021/acs.jafc.8b06105] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Amaranthus palmeri S. Watson is probably the worst glyphosate-resistant (GR) weed worldwide. The EPSPS (5-enolpyruvylshikimate-3-phosphate-synthase) gene amplification has been reported as the major target-site-resistance (TSR) mechanism conferring resistance to glyphosate in this species. In this study, TSR and non-target-site-resistance (NTSR) mechanisms to glyphosate were characterized in a putative resistant A. palmeri population (GRP), harvested in a GR soybean crop from Argentina. Glyphosate resistance was confirmed for the GRP population by dose-response assays. No evidence of TSR mechanisms, as well as glyphosate metabolism, was found in this population. Moreover, a susceptible population (GSP) that absorbed about 10% more herbicide than the GRP population was evaluated at different periods after treatment. The GSP population translocated about 20% more glyphosate to the remainder of the shoots and roots at 96 h after treatment than the control, while the GRP population retained 62% of herbicide in the treated leaves. This is the first case of glyphosate resistance in A. palmeri involving exclusively NTSR mechanisms.
Collapse
Affiliation(s)
| | - Joel Torra
- Department d'Hortofructicultura, Botànica i Jardineria, Agrotecnio , Universitat de Lleida , 25198 , Lleida , Spain
| | | | - Enzo Bracamonte
- Faculty of Agricultural Sciences , National University of Cordoba (UNC) , 5001 Cordoba , Argentina
| | | | | | | |
Collapse
|
21
|
Oliveira MC, Gaines TA, Patterson EL, Jhala AJ, Irmak S, Amundsen K, Knezevic SZ. Interspecific and intraspecific transference of metabolism-based mesotrione resistance in dioecious weedy Amaranthus. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2018; 96:1051-1063. [PMID: 30218635 DOI: 10.1111/tpj.14089] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Revised: 08/01/2018] [Accepted: 09/06/2018] [Indexed: 06/08/2023]
Abstract
Pollen-mediated gene flow (PMGF) might play an important role in dispersing herbicide resistance alleles in dioecious weedy Amaranthus species. Field experiments in a concentric donor-receptor design were conducted to quantify two sets of PMGF studies, an interspecific (Amaranthus tuberculatus × Amaranthus palmeri) and an intraspecific (A. tuberculatus × A. tuberculatus). In both studies, PMGF was evaluated using a resistant A. tuberculatus phenotype with enhanced mesotrione detoxification via P450 enzymes as a source of resistance alleles. For interspecific hybridization, more than 104 000 putative hybrid seedlings were screened with three markers, one phenotypic and two molecular. The two molecular markers used, including 2-bp polymorphisms in the internal transcribed spacer region, distinguished A. palmeri, A. tuberculatus and their hybrids. Results showed that 0.1% hybridization between A. tuberculatus × A. palmeri occurred under field research conditions. For intraspecific hybridization, 22 582 seedlings were screened to assess the frequency of gene flow. The frequency of gene flow (FGF ) varied with distance, direction and year of the study. The farthest distance for 90% reduction of FGF was at 69 m in 2015 however, after averaging across directions it was 13.1 and 26.1 m in 2014 and 2015, respectively. This study highlights the transfer of metabolism-based mesotrione resistance from A. tuberculatus to A. palmeri under field research conditions. The results presented here might aid in the rapid detection of A. palmeri among other Amaranthus species and show that PMFG could be expediting the increase of herbicide resistance in A. palmeri and A. tuberculatus across US crop production areas.
Collapse
Affiliation(s)
- Maxwel C Oliveira
- Department of Agronomy and Horticulture, University of Nebraska-Lincoln, Lincoln, NE, USA
| | - Todd A Gaines
- Department of Bioagricultural Sciences and Pest Management, Colorado State University, Fort Collins, CO, USA
| | - Eric L Patterson
- Department of Bioagricultural Sciences and Pest Management, Colorado State University, Fort Collins, CO, USA
| | - Amit J Jhala
- Department of Agronomy and Horticulture, University of Nebraska-Lincoln, Lincoln, NE, USA
| | - Suat Irmak
- Department of Biological Systems Engineering, University of Nebraska-Lincoln, Lincoln, NE, USA
| | - Keenan Amundsen
- Department of Agronomy and Horticulture, University of Nebraska-Lincoln, Lincoln, NE, USA
| | - Stevan Z Knezevic
- Department of Agronomy and Horticulture, University of Nebraska-Lincoln, Lincoln, NE, USA
| |
Collapse
|
22
|
Vieira BC, Samuelson SL, Alves GS, Gaines TA, Werle R, Kruger GR. Distribution of glyphosate-resistant Amaranthus spp. in Nebraska. PEST MANAGEMENT SCIENCE 2018; 74:2316-2324. [PMID: 29095567 DOI: 10.1002/ps.4781] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2017] [Revised: 10/25/2017] [Accepted: 10/26/2017] [Indexed: 06/07/2023]
Abstract
BACKGROUND Palmer amaranth (Amaranthus palmeri S. Wats.), common waterhemp (Amaranthus tuberculatus var. rudis), and redroot pigweed (Amaranthus retroflexus L.) are major weeds occurring in fields throughout Nebraska with recurrent grower complaints regarding control with glyphosate. The objective of this study was to investigate the frequency and distribution of glyphosate-resistant Palmer amaranth, common waterhemp, and redroot pigweed populations in Nebraska. The study also aimed to investigate how agronomic practices influence the occurrence of glyphosate resistance in the three Amaranthus species. RESULTS Glyphosate resistance was widespread in common waterhemp (81% of the screened populations), few Palmer amaranth populations were glyphosate-resistant (6% of the screened populations), whereas no glyphosate-resistant redroot pigweed populations were identified in Nebraska. Weed species, geographic region within the state, and current crop were the most important factors predicting the occurrence of glyphosate resistance in fields infested with Amaranthus species in Nebraska. CONCLUSION The intensive glyphosate selection pressure exerted in soybean (Glycine max) fields in eastern Nebraska is one of the major factors causing widespread occurrence of glyphosate resistance in common waterhemp in the state. The relatively low frequency of glyphosate-resistant Palmer amaranth in the state highlights the importance of the application timing and the adoption of multiple modes of action in weed management practices to delay the evolution of glyphosate resistance. © 2017 Society of Chemical Industry.
Collapse
Affiliation(s)
- Bruno C Vieira
- West Central Research and Extension Center, University of Nebraska-Lincoln, North Platte, NE, USA
| | - Spencer L Samuelson
- Department of Soil and Crop Sciences, Texas A&M University, College Station, TX, USA
| | - Guilherme S Alves
- Institute of Agricultural Sciences, Federal University of Uberlândia, Uberlândia, MG, Brazil
| | - Todd A Gaines
- Department of Bioagricultural Sciences and Pest Management, Colorado State University, Fort Collins, CO, USA
| | - Rodrigo Werle
- West Central Research and Extension Center, University of Nebraska-Lincoln, North Platte, NE, USA
| | - Greg R Kruger
- West Central Research and Extension Center, University of Nebraska-Lincoln, North Platte, NE, USA
| |
Collapse
|
23
|
Oliveira MC, Gaines TA, Dayan FE, Patterson EL, Jhala AJ, Knezevic SZ. Reversing resistance to tembotrione in an Amaranthus tuberculatus (var. rudis) population from Nebraska, USA with cytochrome P450 inhibitors. PEST MANAGEMENT SCIENCE 2018; 74:2296-2305. [PMID: 28799707 DOI: 10.1002/ps.4697] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Revised: 08/01/2017] [Accepted: 08/04/2017] [Indexed: 05/10/2023]
Abstract
BACKGROUND A population of Amaranthus tuberculatus (var. rudis) was confirmed resistant to 4-hydroxyphenylpyruvate dioxygenase (HPPD)-inhibitor herbicides (mesotrione, tembotrione, and topramezone) in a seed corn/soybean rotation in Nebraska. Further investigation confirmed a non-target-site resistance mechanism in this population. The main objective of this study was to explore the role of cytochrome P450 inhibitors in restoring the efficacy of HPPD-inhibitor herbicides on the HPPD-inhibitor resistant A. tuberculatus population from Nebraska, USA (HPPD-R). RESULTS Enhanced metabolism via cytochrome P450 enzymes is the mechanism of resistance in HPPD-R. Amitrole partially restored the activity of mesotrione, whereas malathion, amitrole, and piperonyl butoxide restored the activity of tembotrione and topramezone in HPPD-R. Although corn was injured through malathion followed by mesotrione application a week after treatment, the injury was transient, and the crop recovered. CONCLUSION The use of cytochrome P450 inhibitors with tembotrione may provide a new way of controlling HPPD-inhibitor resistant A. tuberculatus, but further research is needed to identify the cytochrome P450 candidate gene(s) conferring metabolism-based resistance. The results presented here aid to gain an insight into non-target-site resistance weed management strategies. © 2017 Society of Chemical Industry.
Collapse
Affiliation(s)
- Maxwel C Oliveira
- Department of Agronomy and Horticulture, University of Nebraska-Lincoln, Concord, NE, USA
| | - Todd A Gaines
- Department of Bioagricultural Sciences and Pest Management, Colorado State University in Fort Collins, CO, USA
| | - Franck E Dayan
- Department of Bioagricultural Sciences and Pest Management, Colorado State University in Fort Collins, CO, USA
| | - Eric L Patterson
- Department of Bioagricultural Sciences and Pest Management, Colorado State University in Fort Collins, CO, USA
| | - Amit J Jhala
- Department of Agronomy and Horticulture, University of Nebraska-Lincoln, Lincoln, NE, USA
| | - Stevan Z Knezevic
- Department of Agronomy and Horticulture, University of Nebraska-Lincoln, Concord, NE, USA
| |
Collapse
|
24
|
Patterson EL, Pettinga DJ, Ravet K, Neve P, Gaines TA. Glyphosate Resistance and EPSPS Gene Duplication: Convergent Evolution in Multiple Plant Species. J Hered 2018; 109:117-125. [PMID: 29040588 DOI: 10.1093/jhered/esx087] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2017] [Accepted: 10/02/2017] [Indexed: 12/20/2022] Open
Abstract
One of the increasingly widespread mechanisms of resistance to the herbicide glyphosate is copy number variation (CNV) of the 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS) gene. EPSPS gene duplication has been reported in 8 weed species, ranging from 3 to 5 extra copies to more than 150 extra copies. In the case of Palmer amaranth (Amaranthus palmeri), a section of >300 kb containing EPSPS and many other genes has been replicated and inserted at new loci throughout the genome, resulting in significant increase in total genome size. The replicated sequence contains several classes of mobile genetic elements including helitrons, raising the intriguing possibility of extra-chromosomal replication of the EPSPS-containing sequence. In kochia (Kochia scoparia), from 3 to more than 10 extra EPSPS copies are arranged as a tandem gene duplication at one locus. In the remaining 6 weed species that exhibit EPSPS gene duplication, little is known about the underlying mechanisms of gene duplication or their entire sequence. There is mounting evidence that adaptive gene amplification is an important mode of evolution in the face of intense human-mediated selection pressure. The convergent evolution of CNVs for glyphosate resistance in weeds, through at least 2 different mechanisms, may be indicative of a more general importance for this mechanism of adaptation in plants. CNVs warrant further investigation across plant functional genomics for adaptation to biotic and abiotic stresses, particularly for adaptive evolution on rapid time scales.
Collapse
Affiliation(s)
- Eric L Patterson
- Department of Bioagricultural Sciences and Pest Management, Colorado State University, Fort Collins
| | - Dean J Pettinga
- Department of Bioagricultural Sciences and Pest Management, Colorado State University, Fort Collins
| | - Karl Ravet
- Department of Bioagricultural Sciences and Pest Management, Colorado State University, Fort Collins
| | - Paul Neve
- Rothamsted Research, Biointeractions and Crop Protection Department, West Common, Harpenden, Hertfordshire, UK
| | - Todd A Gaines
- Department of Bioagricultural Sciences and Pest Management, Colorado State University, Fort Collins
| |
Collapse
|
25
|
Oliveira MC, Gaines TA, Jhala AJ, Knezevic SZ. Inheritance of Mesotrione Resistance in an Amaranthus tuberculatus (var. rudis) Population from Nebraska, USA. FRONTIERS IN PLANT SCIENCE 2018; 9:60. [PMID: 29456544 PMCID: PMC5801304 DOI: 10.3389/fpls.2018.00060] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Accepted: 01/11/2018] [Indexed: 05/19/2023]
Abstract
A population of Amaranthus tuberculatus (var. rudis) evolved resistance to 4-hydroxyphenylpyruvate dioxygenase (HPPD) inhibitor herbicides (mesotrione, tembotrione, and topramezone) in Nebraska. The level of resistance was the highest to mesotrione, and the mechanism of resistance in this population is metabolism-based likely via cytochrome P450 enzymes. The increasing number of weeds resistant to herbicides warrants studies on the ecology and evolutionary factors contributing for resistance evolution, including inheritance of resistance traits. In this study, we investigated the genetic control of mesotrione resistance in an A. tuberculatus population from Nebraska, USA. Results showed that reciprocal crosses in the F1 families exhibited nuclear inheritance, which allows pollen movement carrying herbicide resistance alleles. The mode of inheritance varied from incomplete recessive to incomplete dominance depending upon the F1 family. Observed segregation patterns for the majority of the F2 and back-cross susceptible (BC/S) families did not fit to a single major gene model. Therefore, multiple genes are likely to confer metabolism-based mesotrione resistance in this A. tuberculatus population from Nebraska. The results of this study aid to understand the genetics and inheritance of a non-target-site based mesotrione resistant A. tuberculatus population from Nebraska, USA.
Collapse
Affiliation(s)
- Maxwel C. Oliveira
- Department of Agronomy and Horticulture, University of Nebraska-Lincoln, Concord, NE, United States
- *Correspondence: Maxwel C. Oliveira
| | - Todd A. Gaines
- Department of Bioagricultural Sciences and Pest Management, Colorado State University, Fort Collins, CO, United States
| | - Amit J. Jhala
- Department of Agronomy and Horticulture, University of Nebraska-Lincoln, Lincoln, NE, United States
| | - Stevan Z. Knezevic
- Department of Agronomy and Horticulture, University of Nebraska-Lincoln, Concord, NE, United States
| |
Collapse
|
26
|
Danilova TV, Akhunova AR, Akhunov ED, Friebe B, Gill BS. Major structural genomic alterations can be associated with hybrid speciation in Aegilops markgrafii (Triticeae). THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2017; 92:317-330. [PMID: 28776783 DOI: 10.1111/tpj.13657] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Revised: 07/21/2017] [Accepted: 07/31/2017] [Indexed: 05/19/2023]
Abstract
During evolutionary history many grasses from the tribe Triticeae have undergone interspecific hybridization, resulting in allopolyploidy; whereas homoploid hybrid speciation was found only in rye. Homoeologous chromosomes within the Triticeae preserved cross-species macrocolinearity, except for a few species with rearranged genomes. Aegilops markgrafii, a diploid wild relative of wheat (2n = 2x = 14), has a highly asymmetrical karyotype that is indicative of chromosome rearrangements. Molecular cytogenetics and next-generation sequencing were used to explore the genome organization. Fluorescence in situ hybridization with a set of wheat cDNAs allowed the macrostructure and cross-genome homoeology of the Ae. markgrafii chromosomes to be established. Two chromosomes maintained colinearity, whereas the remaining were highly rearranged as a result of inversions and inter- and intrachromosomal translocations. We used sets of barley and wheat orthologous gene sequences to compare discrete parts of the Ae. markgrafii genome involved in the rearrangements. Analysis of sequence identity profiles and phylogenic relationships grouped chromosome blocks into two distinct clusters. Chromosome painting revealed the distribution of transposable elements and differentiated chromosome blocks into two groups consistent with the sequence analyses. These data suggest that introgressive hybridization accompanied by gross chromosome rearrangements might have had an impact on karyotype evolution and homoploid speciation in Ae. markgrafii.
Collapse
Affiliation(s)
- Tatiana V Danilova
- Department of Plant Pathology, Kansas State University, Manhattan, KS, USA
| | - Alina R Akhunova
- Department of Plant Pathology, Kansas State University, Manhattan, KS, USA
| | - Eduard D Akhunov
- Department of Plant Pathology, Kansas State University, Manhattan, KS, USA
| | - Bernd Friebe
- Department of Plant Pathology, Kansas State University, Manhattan, KS, USA
| | - Bikram S Gill
- Department of Plant Pathology, Kansas State University, Manhattan, KS, USA
| |
Collapse
|
27
|
Dillon A, Varanasi VK, Danilova TV, Koo DH, Nakka S, Peterson DE, Tranel PJ, Friebe B, Gill BS, Jugulam M. Physical Mapping of Amplified Copies of the 5-Enolpyruvylshikimate-3-Phosphate Synthase Gene in Glyphosate-Resistant Amaranthus tuberculatus. PLANT PHYSIOLOGY 2017; 173:1226-1234. [PMID: 27956489 PMCID: PMC5291031 DOI: 10.1104/pp.16.01427] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2016] [Accepted: 12/10/2016] [Indexed: 05/04/2023]
Abstract
Recent and rapid evolution of resistance to glyphosate, the most widely used herbicides, in several weed species, including common waterhemp (Amaranthus tuberculatus), poses a serious threat to sustained crop production. We report that glyphosate resistance in A tuberculatus was due to amplification of the 5-enolpyruvylshikimate-3-P synthase (EPSPS) gene, which encodes the molecular target of glyphosate. There was a positive correlation between EPSPS gene copies and its transcript expression. We analyzed the distribution of EPSPS copies in the genome of A tuberculatus using fluorescence in situ hybridization on mitotic metaphase chromosomes and interphase nuclei. Fluorescence in situ hybridization analysis mapped the EPSPS gene to pericentromeric regions of two homologous chromosomes in glyphosate sensitive A tuberculatus In glyphosate-resistant plants, a cluster of EPSPS genes on the pericentromeric region on one pair of homologous chromosomes was detected. Intriguingly, two highly glyphosate-resistant plants harbored an additional chromosome with several EPSPS copies besides the native chromosome pair with EPSPS copies. These results suggest that the initial event of EPSPS gene duplication may have occurred because of unequal recombination mediated by repetitive DNA. Subsequently, gene amplification may have resulted via several other mechanisms, such as chromosomal rearrangements, deletion/insertion, transposon-mediated dispersion, or possibly by interspecific hybridization. This report illustrates the physical mapping of amplified EPSPS copies in A tuberculatus.
Collapse
Affiliation(s)
- Andrew Dillon
- Department of Agronomy, Wheat Genetics Resource Center, Kansas State University, Manhattan, Kansas 66506 (A.D., V.K.V., S.N., D.E.P., M.J.)
- Department of Plant Pathology, Kansas State University, Manhattan, Kansas 66506 (T.V.D., D.-H.K., B.F., B.S.G.); and
- Department of Crop Sciences, University of Illinois, Urbana-Champaign, Illinois 61801 (P.J.T.)
| | - Vijay K Varanasi
- Department of Agronomy, Wheat Genetics Resource Center, Kansas State University, Manhattan, Kansas 66506 (A.D., V.K.V., S.N., D.E.P., M.J.)
- Department of Plant Pathology, Kansas State University, Manhattan, Kansas 66506 (T.V.D., D.-H.K., B.F., B.S.G.); and
- Department of Crop Sciences, University of Illinois, Urbana-Champaign, Illinois 61801 (P.J.T.)
| | - Tatiana V Danilova
- Department of Agronomy, Wheat Genetics Resource Center, Kansas State University, Manhattan, Kansas 66506 (A.D., V.K.V., S.N., D.E.P., M.J.)
- Department of Plant Pathology, Kansas State University, Manhattan, Kansas 66506 (T.V.D., D.-H.K., B.F., B.S.G.); and
- Department of Crop Sciences, University of Illinois, Urbana-Champaign, Illinois 61801 (P.J.T.)
| | - Dal-Hoe Koo
- Department of Agronomy, Wheat Genetics Resource Center, Kansas State University, Manhattan, Kansas 66506 (A.D., V.K.V., S.N., D.E.P., M.J.)
- Department of Plant Pathology, Kansas State University, Manhattan, Kansas 66506 (T.V.D., D.-H.K., B.F., B.S.G.); and
- Department of Crop Sciences, University of Illinois, Urbana-Champaign, Illinois 61801 (P.J.T.)
| | - Sridevi Nakka
- Department of Agronomy, Wheat Genetics Resource Center, Kansas State University, Manhattan, Kansas 66506 (A.D., V.K.V., S.N., D.E.P., M.J.)
- Department of Plant Pathology, Kansas State University, Manhattan, Kansas 66506 (T.V.D., D.-H.K., B.F., B.S.G.); and
- Department of Crop Sciences, University of Illinois, Urbana-Champaign, Illinois 61801 (P.J.T.)
| | - Dallas E Peterson
- Department of Agronomy, Wheat Genetics Resource Center, Kansas State University, Manhattan, Kansas 66506 (A.D., V.K.V., S.N., D.E.P., M.J.)
- Department of Plant Pathology, Kansas State University, Manhattan, Kansas 66506 (T.V.D., D.-H.K., B.F., B.S.G.); and
- Department of Crop Sciences, University of Illinois, Urbana-Champaign, Illinois 61801 (P.J.T.)
| | - Patrick J Tranel
- Department of Agronomy, Wheat Genetics Resource Center, Kansas State University, Manhattan, Kansas 66506 (A.D., V.K.V., S.N., D.E.P., M.J.)
- Department of Plant Pathology, Kansas State University, Manhattan, Kansas 66506 (T.V.D., D.-H.K., B.F., B.S.G.); and
- Department of Crop Sciences, University of Illinois, Urbana-Champaign, Illinois 61801 (P.J.T.)
| | - Bernd Friebe
- Department of Agronomy, Wheat Genetics Resource Center, Kansas State University, Manhattan, Kansas 66506 (A.D., V.K.V., S.N., D.E.P., M.J.)
- Department of Plant Pathology, Kansas State University, Manhattan, Kansas 66506 (T.V.D., D.-H.K., B.F., B.S.G.); and
- Department of Crop Sciences, University of Illinois, Urbana-Champaign, Illinois 61801 (P.J.T.)
| | - Bikram S Gill
- Department of Agronomy, Wheat Genetics Resource Center, Kansas State University, Manhattan, Kansas 66506 (A.D., V.K.V., S.N., D.E.P., M.J.)
- Department of Plant Pathology, Kansas State University, Manhattan, Kansas 66506 (T.V.D., D.-H.K., B.F., B.S.G.); and
- Department of Crop Sciences, University of Illinois, Urbana-Champaign, Illinois 61801 (P.J.T.)
| | - Mithila Jugulam
- Department of Agronomy, Wheat Genetics Resource Center, Kansas State University, Manhattan, Kansas 66506 (A.D., V.K.V., S.N., D.E.P., M.J.);
- Department of Plant Pathology, Kansas State University, Manhattan, Kansas 66506 (T.V.D., D.-H.K., B.F., B.S.G.); and
- Department of Crop Sciences, University of Illinois, Urbana-Champaign, Illinois 61801 (P.J.T.)
| |
Collapse
|
28
|
Wright AA, Molin WT, Nandula VK. Distinguishing between weedy Amaranthus species based on intron 1 sequences from the 5-enolpyruvylshikimate-3-phosphate synthase gene. PEST MANAGEMENT SCIENCE 2016; 72:2347-2354. [PMID: 27005944 DOI: 10.1002/ps.4280] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Revised: 03/18/2016] [Accepted: 03/21/2016] [Indexed: 06/05/2023]
Abstract
BACKGROUND Hybridization between Amaranthus species and the potential for herbicide resistance to be transferred by hybridization are of growing concern in the weed science community. Early detection of evolved herbicide resistance and hybrids expressing resistance to single or multiple herbicides is important to develop an effective control strategy. RESULTS A PCR test was developed for quick identification of weedy amaranths and any hybrids. The sequences of intron 1 for the 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS; EC 2.5.1.19) gene were determined for Amaranthus palmeri, A. spinosus, A. retroflexus, A. blitoides, A. viridis, A. tuberculatus and A. hybridus. These sequences were aligned and primers were developed in areas where the sequence differed between species. Species-specific primers and cycle conditions were successfully developed. These primers produce a single robust band only for the species for which they were designed. CONCLUSION The PCR techniques described here allow identification of a weedy amaranth or suspect hybrid in a few hours. Using a similar target, it may be possible to design simple PCR tests to identify even more difficult to distinguish weed species or weeds prone to interspecific hybridization. Published 2016. This article is a U.S. Government work and is in the public domain in the USA.
Collapse
Affiliation(s)
- Alice A Wright
- Crop Production Systems Research Unit, USDA-ARS, Stoneville, MS, USA
| | - William T Molin
- Crop Production Systems Research Unit, USDA-ARS, Stoneville, MS, USA.
| | - Vijay K Nandula
- Crop Production Systems Research Unit, USDA-ARS, Stoneville, MS, USA
| |
Collapse
|
29
|
Nandula VK, Wright AA, Bond JA, Ray JD, Eubank TW, Molin WT. EPSPS amplification in glyphosate-resistant spiny amaranth (Amaranthus spinosus): a case of gene transfer via interspecific hybridization from glyphosate-resistant Palmer amaranth (Amaranthus palmeri). PEST MANAGEMENT SCIENCE 2014; 70:1902-9. [PMID: 24497375 DOI: 10.1002/ps.3754] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2013] [Revised: 12/24/2013] [Accepted: 01/27/2014] [Indexed: 05/11/2023]
Abstract
BACKGROUND Amaranthus spinosus, a common weed of pastures, is a close relative of Amaranthus palmeri, a problematic agricultural weed with widespread glyphosate resistance. These two species have been known to hybridize, allowing for transfer of glyphosate resistance. Glyphosate-resistant A. spinosus was recently suspected in a cotton field in Mississippi. RESULTS Glyphosate-resistant A. spinosus biotypes exhibited a fivefold increase in resistance compared with a glyphosate-susceptible biotype. EPSPS was amplified 33-37 times and expressed 37 times more in glyphosate-resistant A. spinosus biotypes than in a susceptible biotype. The EPSPS sequence in resistant A. spinosus plants was identical to the EPSPS in glyphosate-resistant A. palmeri, but differed at 29 nucleotides from the EPSPS in susceptible A. spinosus plants. PCR analysis revealed similarities between the glyphosate-resistant A. palmeri amplicon and glyphosate-resistant A. spinosus. CONCLUSIONS Glyphosate resistance in A. spinosus is caused by amplification of the EPSPS gene. Evidence suggests that part of the EPSPS amplicon from resistant A. palmeri is present in glyphosate-resistant A. spinosus. This is likely due to a hybridization event between A. spinosus and glyphosate-resistant A. palmeri somewhere in the lineage of the glyphosate-resistant A. spinosus plants. Published 2014. This article is a U.S. Government work and is in the public domain in the USA.
Collapse
Affiliation(s)
- Vijay K Nandula
- Crop Production Systems Research Unit, USDA-ARS, Stoneville, MS, USA
| | | | | | | | | | | |
Collapse
|
30
|
Sammons RD, Gaines TA. Glyphosate resistance: state of knowledge. PEST MANAGEMENT SCIENCE 2014; 70:1367-77. [PMID: 25180399 PMCID: PMC4260172 DOI: 10.1002/ps.3743] [Citation(s) in RCA: 247] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2013] [Revised: 01/17/2014] [Accepted: 01/25/2014] [Indexed: 05/18/2023]
Abstract
Studies of mechanisms of resistance to glyphosate have increased current understanding of herbicide resistance mechanisms. Thus far, single-codon non-synonymous mutations of EPSPS (5-enolypyruvylshikimate-3-phosphate synthase) have been rare and, relative to other herbicide mode of action target-site mutations, unconventionally weak in magnitude for resistance to glyphosate. However, it is possible that weeds will emerge with non-synonymous mutations of two codons of EPSPS to produce an enzyme endowing greater resistance to glyphosate. Today, target-gene duplication is a common glyphosate resistance mechanism and could become a fundamental process for developing any resistance trait. Based on competition and substrate selectivity studies in several species, rapid vacuole sequestration of glyphosate occurs via a transporter mechanism. Conversely, as the chloroplast requires transporters for uptake of important metabolites, transporters associated with the two plastid membranes may separately, or together, successfully block glyphosate delivery. A model based on finite glyphosate dose and limiting time required for chloroplast loading sets the stage for understanding how uniquely different mechanisms can contribute to overall glyphosate resistance.
Collapse
Affiliation(s)
| | - Todd A Gaines
- Department of Bioagricultural Sciences and Pest Management, Colorado State UniversityFort Collins, CO, USA
| |
Collapse
|
31
|
Lorentz L, Gaines TA, Nissen SJ, Westra P, Strek HJ, Dehne HW, Ruiz-Santaella JP, Beffa R. Characterization of glyphosate resistance in Amaranthus tuberculatus populations. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2014; 62:8134-42. [PMID: 24956036 DOI: 10.1021/jf501040x] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
The evolution of glyphosate-resistant weeds has recently increased dramatically. Six suspected glyphosate-resistant Amaranthus tuberculatus populations were studied to confirm resistance and determine the resistance mechanism. Resistance was confirmed in greenhouse for all six populations with glyphosate resistance factors (R/S) between 5.2 and 7.5. No difference in glyphosate absorption or translocation was observed between resistant and susceptible individuals. No mutation at amino acid positions G101, T102, or P106 was detected in the EPSPS gene coding sequence, the target enzyme of glyphosate. Analysis of EPSPS gene copy number revealed that all glyphosate-resistant populations possessed increased EPSPS gene copy number, and this correlated with increased expression at both RNA and protein levels. EPSPS Vmax and Kcat values were more than doubled in resistant plants, indicating higher levels of catalytically active expressed EPSPS protein. EPSPS gene amplification is the main mechanism contributing to glyphosate resistance in the A. tuberculatus populations analyzed.
Collapse
Affiliation(s)
- Lothar Lorentz
- Bayer CropScience, Industriepark Hoechst, Building H872, 65926 Frankfurt am Main, Germany
| | | | | | | | | | | | | | | |
Collapse
|
32
|
Ribeiro DN, Pan Z, Duke SO, Nandula VK, Baldwin BS, Shaw DR, Dayan FE. Involvement of facultative apomixis in inheritance of EPSPS gene amplification in glyphosate-resistant Amaranthus palmeri. PLANTA 2014; 239:199-212. [PMID: 24142112 DOI: 10.1007/s00425-013-1972-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2013] [Accepted: 09/28/2013] [Indexed: 05/24/2023]
Abstract
The inheritance of glyphosate resistance in two Amaranthus palmeri populations (R1 and R2) was examined in reciprocal crosses (RC) and second reciprocal crosses (2RC) between glyphosate-resistant (R) and -susceptible (S) parents of this dioecious species. R populations and Female-R × Male-S crosses contain higher 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS) gene copy numbers than the S population. EPSPS expression, EPSPS enzyme activity, EPSPS protein quantity, and level of resistance to glyphosate correlated positively with genomic EPSPS relative copy number. Transfer of resistance was more influenced by the female than the male parent in spite of the fact that the multiple copies of EPSPS are amplified in the nuclear genome. This led us to hypothesize that this perplexing pattern of inheritance may result from apomictic seed production in A. palmeri. We confirmed that reproductively isolated R and S female plants produced seeds, indicating that A. palmeri can produce seeds both sexually and apomictically (facultative apomixis). This apomictic trait accounts for the low copy number inheritance in the Female-S × Male-R offsprings. Apomixis may also enhance the stability of the glyphosate resistance trait in the R populations in the absence of reproductive partners.
Collapse
Affiliation(s)
- Daniela N Ribeiro
- Department of Plant and Soil Sciences, Mississippi State University, Starkville, MS, 39762, USA
| | | | | | | | | | | | | |
Collapse
|
33
|
Gaines TA, Wright AA, Molin WT, Lorentz L, Riggins CW, Tranel PJ, Beffa R, Westra P, Powles SB. Identification of genetic elements associated with EPSPs gene amplification. PLoS One 2013; 8:e65819. [PMID: 23762434 PMCID: PMC3677901 DOI: 10.1371/journal.pone.0065819] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2013] [Accepted: 04/28/2013] [Indexed: 01/22/2023] Open
Abstract
Weed populations can have high genetic plasticity and rapid responses to environmental selection pressures. For example, 100-fold amplification of the 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS) gene evolved in the weed species Amaranthus palmeri to confer resistance to glyphosate, the world's most important herbicide. However, the gene amplification mechanism is unknown. We sequenced the EPSPS gene and genomic regions flanking EPSPS loci in A. palmeri, and searched for mobile genetic elements or repetitive sequences. The EPSPS gene was 10,229 bp, containing 8 exons and 7 introns. The gene amplification likely proceeded through a DNA-mediated mechanism, as introns exist in the amplified gene copies and the entire amplified sequence is at least 30 kb in length. Our data support the presence of two EPSPS loci in susceptible (S) A. palmeri, and that only one of these was amplified in glyphosate-resistant (R) A. palmeri. The EPSPS gene amplification event likely occurred recently, as no sequence polymorphisms were found within introns of amplified EPSPS copies from R individuals. Sequences with homology to miniature inverted-repeat transposable elements (MITEs) were identified next to EPSPS gene copies only in R individuals. Additionally, a putative Activator (Ac) transposase and a repetitive sequence region were associated with amplified EPSPS genes. The mechanism controlling this DNA-mediated amplification remains unknown. Further investigation is necessary to determine if the gene amplification may have proceeded via DNA transposon-mediated replication, and/or unequal recombination between different genomic regions resulting in replication of the EPSPS gene.
Collapse
Affiliation(s)
- Todd A Gaines
- Australian Herbicide Resistance Initiative, School of Plant Biology, University of Western Australia, Crawley, Western Australia, Australia.
| | | | | | | | | | | | | | | | | |
Collapse
|