1
|
Boldu-Roig J, Sorli-Clemente E, Kuljuh-Causevic A, Loras A, Anton A, Martinez-Cadenas C. Iris Pigmented Lesions: Unraveling the Genetic Basis of Iris Freckles and Nevi. Invest Ophthalmol Vis Sci 2025; 66:62. [PMID: 40261663 PMCID: PMC12020957 DOI: 10.1167/iovs.66.4.62] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2024] [Accepted: 04/01/2025] [Indexed: 04/24/2025] Open
Abstract
Purpose To investigate the diversity of pigmented benign lesions in the human iris, aiming to provide insights for forensic, biomedical, and ophthalmological research. Methods A cohort of 1014 individuals of Spanish descent was analyzed. Digital slit-lamp photographs were used to evaluate iris pigmentation traits, including iris freckles, iris nevi, iris color, and the presence of a pigmented collarette. A candidate gene association study was performed on these pigmentation traits. Results Both iris freckles and nevi were associated with increased age, female sex, pigmented collarette, and eye color (mainly green). Additionally, higher freckle and nevus counts were observed in participants with more facial freckles and cutaneous nevi and were positively associated with each other. After adjustment, a positive significant association was identified between the presence of iris freckles and genetic variants in the IRF4, HERC2, and OCA2 genes, as well as SLC45A2, although only in females. The prevalence of iris nevi was significantly lower compared to freckles. The presence of iris nevi also showed positive associations with genetic variants in IRF4 and HERC2, plus TYR in brown-eyed individuals only. No association was identified between MC1R, the major cutaneous freckle gene, and the presence of iris freckles or nevi. Conclusions The genetic basis of iris freckles and nevi reveals associations with well-known pigmentation genes (particularly IRF4), as well as eye color, sex, and age. These findings contribute to our understanding of iris pigmented benign lesions and their potential implications in conditions such as uveal melanoma, age-related macular degeneration, or solar damage.
Collapse
Affiliation(s)
- Julia Boldu-Roig
- Department of Ophthalmology, Catalan Retina Institute, Barcelona, Spain
| | - Elena Sorli-Clemente
- Department of Ophthalmology, Castellón General University Hospital, Castellón, Spain
| | | | - Alba Loras
- Department of Medicine, Jaume I University of Castellón, Castellón, Spain
| | - Alfonso Anton
- Department of Ophthalmology, Catalan Retina Institute, Barcelona, Spain
| | | |
Collapse
|
2
|
Arnab SP, Dos Santos ALC, Fumagalli M, DeGiorgio M. Efficient detection and characterization of targets of natural selection using transfer learning. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.05.641710. [PMID: 40093065 PMCID: PMC11908262 DOI: 10.1101/2025.03.05.641710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 03/19/2025]
Abstract
Natural selection leaves detectable patterns of altered spatial diversity within genomes, and identifying affected regions is crucial for understanding species evolution. Recently, machine learning approaches applied to raw population genomic data have been developed to uncover these adaptive signatures. Convolutional neural networks (CNNs) are particularly effective for this task, as they handle large data arrays while maintaining element correlations. However, shallow CNNs may miss complex patterns due to their limited capacity, while deep CNNs can capture these patterns but require extensive data and computational power. Transfer learning addresses these challenges by utilizing a deep CNN pre-trained on a large dataset as a feature extraction tool for downstream classification and evolutionary parameter prediction. This approach reduces extensive training data generation requirements and computational needs while maintaining high performance. In this study, we developed TrIdent, a tool that uses transfer learning to enhance detection of adaptive genomic regions from image representations of multilocus variation. We evaluated TrIdent across various genetic, demographic, and adaptive settings, in addition to unphased data and other confounding factors. TrIdent demonstrated improved detection of adaptive regions compared to recent methods using similar data representations. We further explored model interpretability through class activation maps and adapted TrIdent to infer selection parameters for identified adaptive candidates. Using whole-genome haplotype data from European and African populations, TrIdent effectively recapitulated known sweep candidates and identified novel cancer, and other disease-associated genes as potential sweeps.
Collapse
Affiliation(s)
- Sandipan Paul Arnab
- Department of Electrical Engineering and Computer Science, Florida Atlantic University, Boca Raton, FL, USA
| | | | - Matteo Fumagalli
- School of Biological and Behavioural Sciences, Queen Mary University of London, London, UK
- The Alan Turing Institute, London, UK
| | - Michael DeGiorgio
- Department of Electrical Engineering and Computer Science, Florida Atlantic University, Boca Raton, FL, USA
| |
Collapse
|
3
|
Bertolini F, Schiavo G, Bovo S, Ribani A, Dall'Olio S, Zambonelli P, Gallo M, Fontanesi L. Signatures of selection analyses reveal genomic differences among three heavy pig breeds that constitute the genetic backbone of a dry-cured ham production system. Animal 2024; 18:101335. [PMID: 39405958 DOI: 10.1016/j.animal.2024.101335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 09/07/2024] [Accepted: 09/12/2024] [Indexed: 11/18/2024] Open
Abstract
The Italian pig farming industry is unique in its focus on raising heavy pigs primarily for the production of high-quality dry-cured hams. These products require pigs to be slaughtered at a live weight of around 170 kg at 9 months of age. The primary breeds used in this system are Italian Duroc, Italian Landrace, and Italian Large White which are crossed to produce lines that meet standard requirements. Over the past four decades, selection and breeding programmes for these breeds have been subjected to distinct selective pressures to highlight the characteristics of each breed. In this study, we investigated the genome of these breeds by analysing high-density single nucleotide polymorphism data from over 9 000 pigs to scan for signatures of selection using four different methods, two within breeds and two across breeds. This allowed to identify the genomic regions that differentiate these breeds as well as any relevant genes and biological terms. On a global scale, we found that the Italian Duroc breed exhibited a higher genetic differentiation from the Italian Landrace and Italian Large White breeds, with a pairwise FST value of 0.20 compared with the 0.13 between Italian Landrace and Italian Large White. This may reflect either their different origins or the different breeding goals, which are more similar for the Italian Landrace and Italian Large White breeds. Despite these genetic differences at a global level, few signatures of selection regions reached complete fixation, possibly due to challenges in detecting selection linked to quantitative polygenic traits. The differences among the three breeds are confirmed by the low level of overlap in the regions detected. Genetic enrichment analyses of the three breeds revealed pathways and genes related to various productive traits associated with growth and fat deposition. This may indicate a common selection direction aimed at enhancing specific production traits, though different biological mechanisms are likely targeted by the same directional selection in these three breeds. Therefore, these genes may play a critical role in determining the distinctive characteristics of Italian Duroc, Italian Landrace, and Italian Large White, and potentially influence the traits in crossbred pigs derived from them. Overall, the insights gained from this study will contribute to understanding how directional selection has shaped the genome of these heavy pig breeds and to better address selection strategies aimed at enhancing the meat processing industry linked with dry-cured ham production chains.
Collapse
Affiliation(s)
- F Bertolini
- Animal and Food Genomics Group, Division of Animal Sciences, Department of Agricultural and Food Sciences, University of Bologna, Bologna, Italy.
| | - G Schiavo
- Animal and Food Genomics Group, Division of Animal Sciences, Department of Agricultural and Food Sciences, University of Bologna, Bologna, Italy
| | - S Bovo
- Animal and Food Genomics Group, Division of Animal Sciences, Department of Agricultural and Food Sciences, University of Bologna, Bologna, Italy
| | - A Ribani
- Animal and Food Genomics Group, Division of Animal Sciences, Department of Agricultural and Food Sciences, University of Bologna, Bologna, Italy
| | - S Dall'Olio
- Animal and Food Genomics Group, Division of Animal Sciences, Department of Agricultural and Food Sciences, University of Bologna, Bologna, Italy
| | - P Zambonelli
- Animal and Food Genomics Group, Division of Animal Sciences, Department of Agricultural and Food Sciences, University of Bologna, Bologna, Italy
| | - M Gallo
- Associazione Nazionale Allevatori Suini, Roma, Italy
| | - L Fontanesi
- Animal and Food Genomics Group, Division of Animal Sciences, Department of Agricultural and Food Sciences, University of Bologna, Bologna, Italy
| |
Collapse
|
4
|
Taylor M, Mayne C, Coutts L, Kinnane A, Avent I, Cho K, Tahtouh M, Roffey P. Kafka's beautiful eyes: Forensic intelligence utilisation of phenotypic information. Forensic Sci Int 2024; 361:112120. [PMID: 38996541 DOI: 10.1016/j.forsciint.2024.112120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 06/19/2024] [Accepted: 06/21/2024] [Indexed: 07/14/2024]
Abstract
Franz Kafka had beautiful eyes. So striking, that many of the famous author's friends and peers commented on them - but quite variously ('dark', 'brown', 'grey' & 'blue'). Eye colour as perceived by an observer is subjective, being influenced by physiological, environmental, and even sociocultural factors. In a policing context, this does not mean that trait information such as eye colour is not valuable (far from it), but that it must be managed carefully. The Australian Federal Police has recently implemented a forensic DNA phenotyping (FDP, aka. physical trait prediction or PTP) capability, utilising massively parallel sequencing DNA technology to predict an individual's eye colour, biogeographical ancestry and sex from a crime scene sample. This information alone is not itself 'intelligence', but can be used to generate intelligence through holistic analyses undertaken within a transdisciplinary, all-source forensic intelligence (FORINT) framework. FORINT outputs posit abductive propositions typically at the activity/offence level, to provide insight and influence decision making. However, the use of predicted traits requires that they are compared to something; all Australian police databases include fields for physical traits, but no uniform standard is applied across all agencies. Moreover, collection is inconsistent and no automated systems are in place to capture such data systematically. Consider the 'Kafka problem': his peers gave multiply divergent descriptions of his eyes. If a Biology unit had predicted the eye colour of an 'unidentified author' using DNA - how would Kafka be confidently nominated as the contributor? We posit three maxims for law enforcement: (1) To expand the operational utility of forensic science in line with police demands, forensic science should operationalise FDP (e.g. operationally to rank a list of persons of interest, focus lines of enquiry in serious & organised crime, or assist with human remains identification). (2) Such advanced biological techniques are best delivered through an all-source FORINT framework, to maximise opportunities and minimise risk. (3) One cannot pursue techno-scientific advancements in isolation; it is also necessary to influence the operational posture for their implementation. In this paper we explore these issues and provide recommendations relating to (a) police practices, (b) image capture systems, and (c) research opportunities. Phenotypic trait prediction has great potential and can be operationalised effectively through a rigorous FORINT framework. However, there is (continual) work to be done to enhance the operational capabilities that are complementary to - but necessary for - effective forensic science contribution to investigations.
Collapse
Affiliation(s)
| | - Carol Mayne
- Australian Federal Police, Canberra, Australia
| | | | | | | | - Kaymann Cho
- Australian Federal Police, Canberra, Australia
| | | | - Paul Roffey
- Australian Federal Police, Canberra, Australia
| |
Collapse
|
5
|
Giovannangeli CJP, Borrani F, Broussouloux O, Maurelli O, Schmitt L, Candau RB. Pupil light reflex in young elite athletes: autonomic nervous system activity and viscoelastic properties. Front Physiol 2024; 15:1421676. [PMID: 39139480 PMCID: PMC11319167 DOI: 10.3389/fphys.2024.1421676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 07/18/2024] [Indexed: 08/15/2024] Open
Abstract
Introduction: The pupil light reflex (photomotor reflex) has a duration of 3.5 s and is a highly reproducible measurement. Conventionally, the autonomic nervous system (ANS) activity evaluated by this reflex does not consider the viscoelasticity of the iris muscles. This study aims to detect differences in reflex autonomic activity in a supine position with parameters derived from the Kelvin-Voigt viscoelastic model in two distinct groups of elite athletes. Method: Groups formed using a dendrogram analysis based on basal autonomic activity assessed with heart rate variability. Heart rate variability was measured, and the photomotor reflex was modeled. Results: The model showed a high degree of adjustment to the photomotor reflex (r2 = 0.99 ± 0.01). The impulse 3, an indicator of reflex sympathetic activity, revealed a significantly higher activity (ρ ≤ 0.05) in the [sympa/para]+ group compared to the [sympa/para]⁻ group. This result was further supported by a greater relative total redilation amplitude (ρ ≤ 0.05) and a shorter duration of 75% redilation (ρ ≤ 0.01). Finally, the relative total redilation amplitude exhibited a significant correlation with the linear stiffness constant (ρ ≤ 0.001) and the maximum redilation speed with restoring force (ρ ≤ 0.001). Discussion: These results indicate that (i) the photomotor reflex can detect an alteration of the reflex autonomic activity specific to each of the two branches of the ANS (ii) the viscoelastic properties of the iris muscles play a significant role in the energy storage-restitution mechanisms during the photomotor reflex. This approach could allow athletes to benefit from reduced time spent in the analysis of ANS activity, potentially making it an almost daily and automated process.
Collapse
Affiliation(s)
- Cyril J. P. Giovannangeli
- DMeM, INRAE, University of Montpellier, Montpellier, France
- Corsican Center for Sport and Youth, Ajaccio, France
| | - Fabio Borrani
- Department of Biomedical Sciences, University of Lausanne, Lausanne, Switzerland
| | | | | | - Laurent Schmitt
- Professor Emeritus of National School of Mountain Sports/National Ski-Nordic Centre, Premanon, France
| | | |
Collapse
|
6
|
Brancato D, Bruno F, Coniglio E, Sturiale V, Saccone S, Federico C. The Chromatin Organization Close to SNP rs12913832, Involved in Eye Color Variation, Is Evolutionary Conserved in Vertebrates. Int J Mol Sci 2024; 25:6602. [PMID: 38928306 PMCID: PMC11204186 DOI: 10.3390/ijms25126602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Revised: 06/12/2024] [Accepted: 06/12/2024] [Indexed: 06/28/2024] Open
Abstract
The most significant genetic influence on eye color pigmentation is attributed to the intronic SNP rs12913832 in the HERC2 gene, which interacts with the promoter region of the contiguous OCA2 gene. This interaction, through the formation of a chromatin loop, modulates the transcriptional activity of OCA2, directly affecting eye color pigmentation. Recent advancements in technology have elucidated the precise spatial organization of the genome within the cell nucleus, with chromatin architecture playing a pivotal role in regulating various genome functions. In this study, we investigated the organization of the chromatin close to the HERC2/OCA2 locus in human lymphocyte nuclei using fluorescence in situ hybridization (FISH) and high-throughput chromosome conformation capture (Hi-C) data. The 3 Mb of genomic DNA that belonged to the chromosomal region 15q12-q13.1 revealed the presence of three contiguous chromatin loops, which exhibited a different level of compaction depending on the presence of the A or G allele in the SNP rs12913832. Moreover, the analysis of the genomic organization of the genes has demonstrated that this chromosomal region is evolutionarily highly conserved, as evidenced by the analysis of syntenic regions in species from other Vertebrate classes. Thus, the role of rs12913832 variant is relevant not only in determining the transcriptional activation of the OCA2 gene but also in the chromatin compaction of a larger region, underscoring the critical role of chromatin organization in the proper regulation of the involved genes. It is crucial to consider the broader implications of this finding, especially regarding the potential regulatory role of similar polymorphisms located within intronic regions, which do not influence the same gene by modulating the splicing process, but they regulate the expression of adjacent genes. Therefore, caution should be exercised when utilizing whole-exome sequencing for diagnostic purposes, as intron sequences may provide valuable gene regulation information on the region where they reside. Thus, future research efforts should also be directed towards gaining a deeper understanding of the precise mechanisms underlying the role and mode of action of intronic SNPs in chromatin loop organization and transcriptional regulation.
Collapse
Affiliation(s)
| | | | | | | | - Salvatore Saccone
- Department Biological, Geological and Environmental Sciences, University of Catania, Via Androne 81, 95124 Catania, Italy; (D.B.); (F.B.); (E.C.); (V.S.); (C.F.)
| | | |
Collapse
|
7
|
Chang Y, Wu S, Li J, Bao H, Wu C. Identification of Candidate Genes for Red-Eyed (Albinism) Domestic Guppies Using Genomic and Transcriptomic Analyses. Int J Mol Sci 2024; 25:2175. [PMID: 38396851 PMCID: PMC10888696 DOI: 10.3390/ijms25042175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 02/05/2024] [Accepted: 02/07/2024] [Indexed: 02/25/2024] Open
Abstract
Guppies are small tropical fish with brightly colored bodies and variable tail shapes. There are two phenotypes of domestic guppy eye color: red and black. The wild type is black-eyed. The main object of this study was to identify candidate genes for the red-eyed phenotype in domestic guppies. We hope to provide molecular genetic information for the development of new domestic guppy strains. Additionally, the results also contribute to basic research concerning guppies. In this study, 121 domestic guppies were used for genomic analysis (GWAS), and 44 genes were identified. Furthermore, 21 domestic guppies were used for transcriptomic analysis, and 874 differentially expressed genes (DEGs) were identified, including 357 upregulated and 517 downregulated genes. Through GO and KEGG enrichment, we identified some important terms or pathways mainly related to melanin biosynthesis and ion transport. qRT-PCR was also performed to verify the differential expression levels of four important candidate genes (TYR, OCA2, SLC45A2, and SLC24A5) between red-eyed and black-eyed guppies. Based on the results of genomic and transcriptomic analyses, we propose that OCA2 is the most important candidate gene for the red-eyed phenotype in guppies.
Collapse
Affiliation(s)
| | | | | | - Haigang Bao
- National Engineering Laboratory for Animal Breeding, Beijing Key Laboratory for Animal Genetic Improvement, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (Y.C.); (S.W.); (J.L.); (C.W.)
| | | |
Collapse
|
8
|
Becher D, Jmel H, Kheriji N, Sarno S, Kefi R. Genetic landscape of forensic DNA phenotyping markers among Mediterranean populations. Forensic Sci Int 2024; 354:111906. [PMID: 38128201 DOI: 10.1016/j.forsciint.2023.111906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 12/02/2023] [Indexed: 12/23/2023]
Abstract
Forensic DNA Phenotyping can reveal the appearance of an unknown individual by predicting the External Visible Characteristics (EVC) from DNA obtained at the crime scene. Our aim is to characterize the genetic landscape of Human identification markers responsible for EVC among Mediterranean populations compared to other worldwide groups. We conducted an exhaustive search for genes involved in EVC variation. Then, variants located on these genes were extracted from public genotypic data of Mediterranean, American, African and East Asiatic populations. The genetic landscape of these Human identification markers, their allelic distribution and admixture analyses, were determined using plink, R and ADMIXTURE softwares. Our results showed that the Mediterranean populations appear close to the Mexican populations and distinguished from sub Saharan African populations living in the USA and from East Asiatic populations. We highlighted a total of 103454 common variants shared between the studied populations and among them, 25 common variants associated with EVC. Interestingly, genotype frequencies results showed that the rs17646946, rs13016869, rs977588, rs1805008 and rs2240751 variants located respectively in the TCHH, PRKCE, OCA2, MC1R and MFSD12 genes are significantly different between the Mediterranean and Asiatic populations. The genotype frequencies of the variants rs977589 and rs7179994 located in the OCA2 gene, and of rs12913832 and rs2240751 located respectively in HERC2 and MFSD12 genes are significantly different between the Mediterranean and American populations. Our work generates a large number of EVC variants that could be a valuable resource for future studies in the forensic field.
Collapse
Affiliation(s)
- Dorra Becher
- Laboratory of Biomedical Genomics and Oncogenetics, Institut Pasteur de Tunis, BP 74, 13 Place Pasteur, Tunis 1002, Tunisia; Directorate of Technical and Scientific Police, Sub-Directorate of Forensic and Scientific Laboratories, Tunis,Tunisia; University of Carthage, National Institute of Applied Science and Technology, Tunis, Tunisia
| | - Haifa Jmel
- Laboratory of Biomedical Genomics and Oncogenetics, Institut Pasteur de Tunis, BP 74, 13 Place Pasteur, Tunis 1002, Tunisia; Genetic Typing Service, Institut Pasteur de Tunis, BP 74, 13 Place Pasteur, Tunis 1002, Tunisia; University of Tunis El Manar, 2092 El Manar I, Tunis, Tunisia
| | - Nadia Kheriji
- Laboratory of Biomedical Genomics and Oncogenetics, Institut Pasteur de Tunis, BP 74, 13 Place Pasteur, Tunis 1002, Tunisia; University of Tunis El Manar, 2092 El Manar I, Tunis, Tunisia
| | - Stefania Sarno
- Laboratory of Molecular Anthropology and Centre for Genome Biology, Department of Biological, Geological and Environmental Sciences, University of Bologna, Bologna, Italy
| | - Rym Kefi
- Laboratory of Biomedical Genomics and Oncogenetics, Institut Pasteur de Tunis, BP 74, 13 Place Pasteur, Tunis 1002, Tunisia; Genetic Typing Service, Institut Pasteur de Tunis, BP 74, 13 Place Pasteur, Tunis 1002, Tunisia; University of Tunis El Manar, 2092 El Manar I, Tunis, Tunisia.
| |
Collapse
|
9
|
Li DL, Tao YJ, Li J, Zhong H, Pan CW, Zhang T. Iris colour and subjective emotional status in Chinese adolescents. J Affect Disord 2023; 340:476-481. [PMID: 37579886 DOI: 10.1016/j.jad.2023.08.064] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 07/21/2023] [Accepted: 08/11/2023] [Indexed: 08/16/2023]
Abstract
BACKGROUND Understanding the iris colour might be a useful biomarker in predicting emotional health status. We aimed to examine the relationship of iris colour with subjective emotional status in a sample of Chinese adolescents aged 13 to 14 years. METHODS A total of 2346 students from ten middle schools in Mojiang participated the examination. The emotional health status was measured by the adolescent self-reported PedsQL 4.0. We obtained standardized slit-lamp photographs and developed a grading system assessing iris colour (higher grade denoting darker). Logistic regression models were fitted to assess the relationship between iris colour and emotional status. RESULTS The trend of decreasing negative emotional status with darker iris colour was significantly. Compared with grades 1 and 2 of iris colour, the students with grades 4 and 5 had less negative emotional status (ORfear = 0.56, 95 % CI: 0.41, 0.76; ORsadness = 0.67, 95 % CI: 0.49, 0.92; ORanger = 0.71, 95 % CI: 0.52, 0.98). In addition, the trend did not change after adjusting for potential confounders, including height, waist circumstance, sleep habits and computer times in logistic regression models. LIMITATIONS Only negative emotional indexes were selected as evaluative materials, it is unclear whether the pattern found in the present study also exists with regard to positive emotional indexes, such as happiness. CONCLUSION Darker iris colour might be associated with less negative emotional status in Chinese adolescents.
Collapse
Affiliation(s)
- Dan-Lin Li
- School of Public Health, Suzhou Medical College of Soochow University, Suzhou, China
| | - Yi-Jin Tao
- Department of Ophthalmology, the First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Jun Li
- Department of Ophthalmology, the Affiliated Hospital of Yunnan University, Kunming, China; Department of Ophthalmology, the Second People's Hospital of Yunnan Province, Kunming, China
| | - Hua Zhong
- Department of Ophthalmology, the First Affiliated Hospital of Kunming Medical University, Kunming, China.
| | - Chen-Wei Pan
- School of Public Health, Suzhou Medical College of Soochow University, Suzhou, China.
| | - Tianyang Zhang
- School of Public Health, Suzhou Medical College of Soochow University, Suzhou, China; Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University, Okayama, Japan.
| |
Collapse
|
10
|
Gour A, Tibrewal S, Garg A, Vohra M, Ratna R, Sangwan VS. New horizons in aniridia management: Clinical insights and therapeutic advances. Taiwan J Ophthalmol 2023; 13:467-478. [PMID: 38249501 PMCID: PMC10798387 DOI: 10.4103/tjo.tjo-d-23-00140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 10/11/2023] [Indexed: 01/23/2024] Open
Abstract
Congenital aniridia is a rare genetic eye disorder characterized by the complete or partial absence of the iris from birth. Various theories and animal models have been proposed to understand and explain the pathogenesis of aniridia. In the majority of cases, aniridia is caused by a mutation in the PAX6 gene, which affects multiple structures within the eye. Treating these ocular complications is challenging and carries a high risk of side effects. However, emerging approaches for the treatment of aniridia-associated keratopathy, iris abnormalities, cataract abnormalities, and foveal hypoplasia show promise for improved outcomes. Genetic counseling plays a very important role to make informed choices. We also provide an overview of the newer diagnostic and therapeutic approaches such as next generation sequencing, gene therapy, in vivo silencing, and miRNA modulation.
Collapse
Affiliation(s)
- Abha Gour
- Department of Cornea and Anterior Segment, Dr. Shroff’s Charity Eye Hospital, New Delhi, India
- Eicher-Shroff Centre for Stem Cell Research, Dr. Shroff’s Charity Eye Hospital, New Delhi, India
| | - Shailaja Tibrewal
- Department of Pediatric Ophthalmology and Strabismus, Dr. Shroff’s Charity Eye Hospital, New Delhi, India
- Department of Ocular Genetics, Dr. Shroff’s Charity Eye Hospital, New Delhi, India
| | - Aastha Garg
- Department of Cornea and Anterior Segment, Dr. Shroff’s Charity Eye Hospital, New Delhi, India
| | - Mehak Vohra
- Eicher-Shroff Centre for Stem Cell Research, Dr. Shroff’s Charity Eye Hospital, New Delhi, India
| | - Ria Ratna
- Department of Ocular Genetics, Dr. Shroff’s Charity Eye Hospital, New Delhi, India
| | - Virender Singh Sangwan
- Department of Cornea and Anterior Segment, Dr. Shroff’s Charity Eye Hospital, New Delhi, India
- Eicher-Shroff Centre for Stem Cell Research, Dr. Shroff’s Charity Eye Hospital, New Delhi, India
| |
Collapse
|
11
|
Valachová M, Lisá E. Dispositional mindfulness and BIS/BAS up-close: can the self-regulation of people be seen in the eyes? Front Psychol 2023; 14:1217129. [PMID: 37637927 PMCID: PMC10448391 DOI: 10.3389/fpsyg.2023.1217129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 07/31/2023] [Indexed: 08/29/2023] Open
Abstract
Introduction Pigmentation in animal models is related to behavioral regulation and development, suggesting that both may belong to the same biological system. However, such models are poorly documented in humans. The current study explored personality and group differences in self-regulation among healthy subjects and their specific eye structures (contraction furrows and pigment spots). Three objectives were proposed: to analyze statistical differences in dispositional mindfulness (DM), behavioral inhibition system (BIS), and behavioral approach system (BAS) among subjects with a specific iris type of contraction furrows and pigment spots. Methods The study sample consisted of 194 university students. One month after taking photographs of their eyes, the students completed the online scales of DM, BIS, and BAS. Results DM was negatively related to pigment spots (rs = -0.193; p < 0.01). Cluster analysis of the iris structures converged at a four-cluster solution. The cluster types 2 (absence of pigment spots and contraction furrows extending 8/10 of iris circle or more) and 3 (one or more pigment spots and contraction furrows extending 8/10 of iris circle or more) significantly differed in DM with a small effect size (F = 3.37; p = 0.021; η2 = 0.051). Participants with contraction furrows (8/10 or more circle extent) and without pigment spots had a significantly higher DM than those with pigment spots. No significant differences existed among the iris types in BIS/BAS. Discussion Future research directions are suggested.
Collapse
Affiliation(s)
| | - Elena Lisá
- Institute of Applied Psychology, Faculty of Social and Economic Sciences, Comenius University in Bratislava, Bratislava, Slovakia
| |
Collapse
|
12
|
Brancato D, Coniglio E, Bruno F, Agostini V, Saccone S, Federico C. Forensic DNA Phenotyping: Genes and Genetic Variants for Eye Color Prediction. Genes (Basel) 2023; 14:1604. [PMID: 37628655 PMCID: PMC10454093 DOI: 10.3390/genes14081604] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 07/31/2023] [Accepted: 08/08/2023] [Indexed: 08/27/2023] Open
Abstract
In recent decades, the use of genetic polymorphisms related to specific phenotypes, such as eye color, has greatly contributed to the development of the research field called forensic DNA phenotyping (FDP), enabling the investigators of crime cases to reduce the number of suspects, making their work faster and more precise. Eye color is a polygenic phenotype, and many genetic variants have been highlighted, with the major contributor being the HERC2-OCA2 locus, where many single nucleotide variations (SNPs) were identified. Interestingly, the HERC2-OCA2 locus, containing the intronic SNP rs12913832, the major eye color determinant, shows a high level of evolutionary conservation across many species of vertebrates. Currently, there are some genetic panels to predict eye color by genomic DNA analysis, even if the exact role of the SNP variants in the formation of eye color is still poorly understood, with a low level of predictivity in the so-called intermediate eye color. Many variants in OCA2, HERC2, and other genes lie in introns or correspond to synonymous variants, highlighting greater complexity in the mechanism of action of such genes than a simple missense variation. Here, we show the main genes involved in oculocutaneous pigmentation and their structural and functional features, as well as which genetic variants show the highest level of eye color predictivity in currently used FDP assays. Despite the great recent advances and impact of FDP in criminal cases, it is necessary to enhance scientific research to better understand the mechanism of action behind each genetic variant involved in eye color, with the goal of obtaining higher levels of prediction.
Collapse
Affiliation(s)
- Desiree Brancato
- Department Biological, Geological, Environmental Sciences, University of Catania, Via Androne 81, 95124 Catania, Italy; (D.B.); (E.C.); (F.B.); (C.F.)
| | - Elvira Coniglio
- Department Biological, Geological, Environmental Sciences, University of Catania, Via Androne 81, 95124 Catania, Italy; (D.B.); (E.C.); (F.B.); (C.F.)
| | - Francesca Bruno
- Department Biological, Geological, Environmental Sciences, University of Catania, Via Androne 81, 95124 Catania, Italy; (D.B.); (E.C.); (F.B.); (C.F.)
| | - Vincenzo Agostini
- Department Science and Technical Innovation, University of Eastern Piedmont, Viale Teresa Michel 11, 15121 Alessandria, Italy;
| | - Salvatore Saccone
- Department Biological, Geological, Environmental Sciences, University of Catania, Via Androne 81, 95124 Catania, Italy; (D.B.); (E.C.); (F.B.); (C.F.)
| | - Concetta Federico
- Department Biological, Geological, Environmental Sciences, University of Catania, Via Androne 81, 95124 Catania, Italy; (D.B.); (E.C.); (F.B.); (C.F.)
| |
Collapse
|
13
|
Association between Variants in the OCA2-HERC2 Region and Blue Eye Colour in HERC2 rs12913832 AA and AG Individuals. Genes (Basel) 2023; 14:genes14030698. [PMID: 36980970 PMCID: PMC10048254 DOI: 10.3390/genes14030698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 03/01/2023] [Accepted: 03/09/2023] [Indexed: 03/14/2023] Open
Abstract
The OCA2-HERC2 region is strongly associated with human pigmentation, especially eye colour. The HERC2 SNP rs12913832 is currently the best-known predictor for blue and brown eye colour. However, in a previous study we found that 43 of 166 Norwegians with the brown eye colour genotype rs12913832:AA or AG, did not have the expected brown eye colour. In this study, we carried out massively parallel sequencing of a ~500 kbp HERC2-OCA2 region in 94 rs12913832:AA and AG Norwegians (43 blue-eyed and 51 brown-eyed) to search for novel blue eye colour variants. The new candidate variants were subsequently typed in a Norwegian biobank population (total n = 519) for population specific association analysis. We identified five new variants, rs74409036:A, rs78544415:T, rs72714116:T, rs191109490:C and rs551217952:C, to be the most promising candidates for explaining blue eye colour in individuals with the rs12913832:AA and AG genotype. Additionally, we confirmed the association of the missense variants rs74653330:T and rs121918166:T with blue eye colour, and observed lighter skin colour in rs74653330:T individuals. In total, 37 (86%) of the 43 blue-eyed rs12913832:AA and AG Norwegians could potentially be explained by these seven variants, and we suggest including them in future prediction models.
Collapse
|
14
|
You J, Yusupova M, Zippin JH. The potential impact of melanosomal pH and metabolism on melanoma. Front Oncol 2022; 12:887770. [PMID: 36483028 PMCID: PMC9723380 DOI: 10.3389/fonc.2022.887770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 08/08/2022] [Indexed: 11/23/2022] Open
Abstract
Melanin is synthesized in melanocytes and is transferred into keratinocytes to block the effects of ultraviolet (UV) radiation and is important for preventing skin cancers including melanoma. However, it is known that after melanomagenesis and melanoma invasion or metastases, melanin synthesis still occurs. Since melanoma cells are no longer involved in the sun tanning process, it is unclear why melanocytes would maintain melanin synthesis after melanomagenesis has occurred. Aside from blocking UV-induced DNA mutation, melanin may provide other metabolic functions that could benefit melanoma. In addition, studies have suggested that there may be a selective advantage to melanin synthesis in melanoma; however, mechanisms regulating melanin synthesis outside the epidermis or hair follicle is unknown. We will discuss how melanosomal pH controls melanin synthesis in melanocytes and how melanosomal pH control of melanin synthesis might function in melanoma. We will also discuss potential reasons why melanin synthesis might be beneficial for melanoma cellular metabolism and provide a rationale for why melanin synthesis is not limited to benign melanocytes.
Collapse
|
15
|
Fontanesi L. Genetics and genomics of pigmentation variability in pigs: A review. Livest Sci 2022. [DOI: 10.1016/j.livsci.2022.105079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
16
|
The retinal pigmentation pathway in human albinism: Not so black and white. Prog Retin Eye Res 2022; 91:101091. [PMID: 35729001 DOI: 10.1016/j.preteyeres.2022.101091] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 05/24/2022] [Accepted: 05/26/2022] [Indexed: 12/16/2022]
Abstract
Albinism is a pigment disorder affecting eye, skin and/or hair. Patients usually have decreased melanin in affected tissues and suffer from severe visual abnormalities, including foveal hypoplasia and chiasmal misrouting. Combining our data with those of the literature, we propose a single functional genetic retinal signalling pathway that includes all 22 currently known human albinism disease genes. We hypothesise that defects affecting the genesis or function of different intra-cellular organelles, including melanosomes, cause syndromic forms of albinism (Hermansky-Pudlak (HPS) and Chediak-Higashi syndrome (CHS)). We put forward that specific melanosome impairments cause different forms of oculocutaneous albinism (OCA1-8). Further, we incorporate GPR143 that has been implicated in ocular albinism (OA1), characterised by a phenotype limited to the eye. Finally, we include the SLC38A8-associated disorder FHONDA that causes an even more restricted "albinism-related" ocular phenotype with foveal hypoplasia and chiasmal misrouting but without pigmentation defects. We propose the following retinal pigmentation pathway, with increasingly specific genetic and cellular defects causing an increasingly specific ocular phenotype: (HPS1-11/CHS: syndromic forms of albinism)-(OCA1-8: OCA)-(GPR143: OA1)-(SLC38A8: FHONDA). Beyond disease genes involvement, we also evaluate a range of (candidate) regulatory and signalling mechanisms affecting the activity of the pathway in retinal development, retinal pigmentation and albinism. We further suggest that the proposed pigmentation pathway is also involved in other retinal disorders, such as age-related macular degeneration. The hypotheses put forward in this report provide a framework for further systematic studies in albinism and melanin pigmentation disorders.
Collapse
|
17
|
Haase B, Willet CE, Chew T, Samaha G, Child G, Wade CM. De-novo and genome-wide meta-analyses identify a risk haplotype for congenital sensorineural deafness in Dalmatian dogs. Sci Rep 2022; 12:15439. [PMID: 36104420 PMCID: PMC9474838 DOI: 10.1038/s41598-022-19535-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 08/30/2022] [Indexed: 11/29/2022] Open
Abstract
Congenital sensorineural deafness (CSD) has been reported to affect up to 30% of Dalmatian dogs world-wide and while unilaterally deaf dogs can live a close to normal life, dogs suffering bilateral deafness are frequently euthanized. Extreme-white coat patterning as encoded by the gene Melanocyte Inducing Transcription Factor (MITF) has long been postulated as the major risk factor for CSD in the Dalmatian breed. While attempts to identify causative risk variants associated with CSD have been numerous, no genome-wide association study has positively identified MITF as a risk locus for either bilateral or unilateral deafness in the Dalmatian breed to date. In this study, we identified an association with CSD on CFA20 in the vicinity of MITF within Australian Dalmatian dogs. Although not genome-wide significant, the association signal was validated by reanalysing publicly available data and merging the wider data resource with the local data to improve statistical power. The merged data, representing three major global populations of Dalmatian dogs, enabled us to identify a single, well-defined genome-wide significant risk haplotype for CSD. The haplotype was formed by three genome-wide significant associated markers (BICF2G630233852T>C, BICF2G630233861T>C, BICF2G630233888G>A) on CFA20 with 62% of bilaterally deaf dogs homozygous for the risk haplotype (CCA), while 30% of bilaterally deaf and 45% of hearing dogs carried one copy of the risk haplotype. Animals homozygous or heterozygous for the low-risk haplotype were less likely to be unilaterally deaf. While the association between the risk haplotype and deafness is incomplete, animals homozygous for the risk haplotype were 10-times more likely to be bilaterally deaf. Although the underlying causative variants are yet to be discovered, results from this study can now assist with reducing deafness in Dalmatian dogs.
Collapse
|
18
|
Harsono M, Chilakala S, Bohn S, Pivnick EK, Pourcyrous M. A Newborn Infant with Congenital Central Hypoventilation Syndrome and Pupillary Abnormalities: A Literature Review. AJP Rep 2022; 12:e139-e143. [PMID: 36187199 PMCID: PMC9522484 DOI: 10.1055/a-1883-0140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 06/01/2022] [Indexed: 12/02/2022] Open
Abstract
We present a neonate with early onset apnea and bradycardia in the absence of primary cardiorespiratory and central nervous system disorders that eventually required chronic ventilator support starting at 6 hours of life. Molecular testing of paired-like homeobox 2b (PHOX2B) gene mutation confirmed the diagnosis of congenital central hypoventilation syndrome (CCHS). CCHS is a rare genetic disorder characterized by impaired central respiratory control with or without broad spectrum of autonomic nervous system (ANS) dysregulations. Ocular ANS dysregulation is a rare finding in CCHS individuals, and it is usually discovered later in life. However, the ophthalmic evaluation of this neonate on first day of life revealed persistent mild dilated oval pupils with limited light reactivity.
Collapse
Affiliation(s)
- Mimily Harsono
- Division of Neonatal-Perinatal Medicine, Department of Pediatrics, University of Tennessee Health Science Center, Le Bonheur Children's Hospital, Memphis, Tennessee
| | - Sandeep Chilakala
- Division of Neonatal-Perinatal Medicine, Department of Pediatrics, University of Tennessee Health Science Center, Le Bonheur Children's Hospital, Memphis, Tennessee
| | - Shiva Bohn
- Division of Pediatric Ophthalmology, Department of Ophthalmology, University of Tennessee Health Science Center, Le Bonheur Children's Hospital, Memphis, Tennessee
| | - Eniko K Pivnick
- Division of Pediatric Ophthalmology, Department of Ophthalmology, University of Tennessee Health Science Center, Le Bonheur Children's Hospital, Memphis, Tennessee.,Division of Medical Genetic, Department of Pediatrics, University of Tennessee Health Science Center, Le Bonheur Children's Hospital, Memphis, Tennessee
| | - Massroor Pourcyrous
- Division of Neonatal-Perinatal Medicine, Department of Pediatrics, University of Tennessee Health Science Center, Le Bonheur Children's Hospital, Memphis, Tennessee
| |
Collapse
|
19
|
Gelmi MC, Houtzagers LE, Strub T, Krossa I, Jager MJ. MITF in Normal Melanocytes, Cutaneous and Uveal Melanoma: A Delicate Balance. Int J Mol Sci 2022; 23:6001. [PMID: 35682684 PMCID: PMC9181002 DOI: 10.3390/ijms23116001] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 05/23/2022] [Accepted: 05/24/2022] [Indexed: 02/04/2023] Open
Abstract
Microphthalmia-associated transcription factor (MITF) is an important regulator of melanogenesis and melanocyte development. Although it has been studied extensively in cutaneous melanoma, the role of MITF in uveal melanoma (UM) has not been explored in much detail. We review the literature about the role of MITF in normal melanocytes, in cutaneous melanoma, and in UM. In normal melanocytes, MITF regulates melanocyte development, melanin synthesis, and melanocyte survival. The expression profile and the behaviour of MITF-expressing cells suggest that MITF promotes local proliferation and inhibits invasion, inflammation, and epithelial-to-mesenchymal (EMT) transition. Loss of MITF expression leads to increased invasion and inflammation and is more prevalent in malignant cells. Cutaneous melanoma cells switch between MITF-high and MITF-low states in different phases of tumour development. In UM, MITF loss is associated with loss of BAP1 protein expression, which is a marker of poor prognosis. These data indicate a dual role for MITF in benign and malignant melanocytic cells.
Collapse
Affiliation(s)
- Maria Chiara Gelmi
- Department of Ophthalmology, Leiden University Medical Center, P.O. Box 9600, 2300 RC Leiden, The Netherlands; (M.C.G.); (L.E.H.)
| | - Laurien E. Houtzagers
- Department of Ophthalmology, Leiden University Medical Center, P.O. Box 9600, 2300 RC Leiden, The Netherlands; (M.C.G.); (L.E.H.)
| | - Thomas Strub
- Université Côte d’Azur, 06103 Nice, France; (T.S.); (I.K.)
- Inserm, Biology and Pathologies of Melanocytes, Team1, Equipe Labellisée Ligue 2020, Centre Méditerranéen de Médecine Moléculaire, 06204 Nice, France
| | - Imène Krossa
- Université Côte d’Azur, 06103 Nice, France; (T.S.); (I.K.)
- Inserm, Biology and Pathologies of Melanocytes, Team1, Equipe Labellisée Ligue 2020, Centre Méditerranéen de Médecine Moléculaire, 06204 Nice, France
| | - Martine J. Jager
- Department of Ophthalmology, Leiden University Medical Center, P.O. Box 9600, 2300 RC Leiden, The Netherlands; (M.C.G.); (L.E.H.)
| |
Collapse
|
20
|
Mobuchon L, Derrien AC, Houy A, Verrier T, Pierron G, Cassoux N, Milder M, Deleuze JF, Boland A, Scelo G, Cancel-Tassin G, Cussenot O, Rodrigues M, Noirel J, Machiela MJ, Stern MH. Different Pigmentation Risk Loci for High-Risk Monosomy 3 and Low-Risk Disomy 3 Uveal Melanomas. J Natl Cancer Inst 2022; 114:302-309. [PMID: 34424336 PMCID: PMC8826635 DOI: 10.1093/jnci/djab167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 07/06/2021] [Accepted: 08/19/2021] [Indexed: 11/12/2022] Open
Abstract
BACKGROUND Uveal melanoma (UM), a rare malignant tumor of the eye, is predominantly observed in populations of European ancestry. UMs carrying a monosomy 3 (M3) frequently relapse mainly in the liver, whereas UMs with disomy 3 (D3) are associated with more favorable outcome. Here, we explored the UM genetic predisposition factors in a large genome-wide association study (GWAS) of 1142 European UM patients and 882 healthy controls . METHODS We combined 2 independent datasets (Global Screening Array) with the dataset described in a previously published GWAS in UM (Omni5 array), which were imputed separately and subsequently merged. Patients were stratified according to their chromosome 3 status, and identified UM risk loci were tested for differential association with M3 or D3 subgroups. All statistical tests were 2-sided. RESULTS We recapitulated the previously identified risk locus on chromosome 5 on CLPTM1L (rs421284: odds ratio [OR] =1.58, 95% confidence interval [CI] = 1.35 to 1.86; P = 1.98 × 10-8) and identified 2 additional risk loci involved in eye pigmentation: IRF4 locus on chromosome 6 (rs12203592: OR = 1.76, 95% CI = 1.44 to 2.16; P = 3.55 × 10-8) and HERC2 locus on chromosome 15 (rs12913832: OR= 0.57, 95% CI = 0.48 to 0.67; P = 1.88 × 10-11). The IRF4 rs12203592 single-nucleotide polymorphism was found to be exclusively associated with risk for the D3 UM subtype (ORD3 = 2.73, 95% CI = 1.87 to 3.97; P = 1.78 × 10-7), and the HERC2 rs12913832 single-nucleotide polymorphism was exclusively associated with risk for the M3 UM subtype (ORM3 = 2.43, 95% CI = 1.79 to 3.29; P = 1.13 × 10-8). However, the CLPTM1L risk locus was equally statistically significant in both subgroups. CONCLUSIONS This work identified 2 additional UM risk loci known for their role in pigmentation. Importantly, we demonstrate that UM tumor biology and metastatic potential are influenced by patients' genetic backgrounds.
Collapse
Affiliation(s)
- Lenha Mobuchon
- Inserm U830, DNA Repair and Uveal Melanoma (D.R.U.M), Equipe Labellisée par la Ligue Nationale Contre le Cancer, Institut Curie, PSL Research University, Paris, France
| | - Anne-Céline Derrien
- Inserm U830, DNA Repair and Uveal Melanoma (D.R.U.M), Equipe Labellisée par la Ligue Nationale Contre le Cancer, Institut Curie, PSL Research University, Paris, France
| | - Alexandre Houy
- Inserm U830, DNA Repair and Uveal Melanoma (D.R.U.M), Equipe Labellisée par la Ligue Nationale Contre le Cancer, Institut Curie, PSL Research University, Paris, France
| | - Thibault Verrier
- Inserm U830, DNA Repair and Uveal Melanoma (D.R.U.M), Equipe Labellisée par la Ligue Nationale Contre le Cancer, Institut Curie, PSL Research University, Paris, France
| | - Gaëlle Pierron
- Somatic Genetic Unit, Department of Genetics, Institut Curie, PSL Research University, Paris, France
| | - Nathalie Cassoux
- Department of Ocular Oncology, Institut Curie, Paris, France
- Faculty of Medicine, University of Paris Descartes, Paris, France
| | - Maud Milder
- Inserm CIC BT 1418, Institut Curie, PSL Research University, Paris, France
| | - Jean-François Deleuze
- Université Paris-Saclay, CEA, Centre National de Recherche en Génomique Humaine, Evry, France
| | - Anne Boland
- Université Paris-Saclay, CEA, Centre National de Recherche en Génomique Humaine, Evry, France
| | - Ghislaine Scelo
- International Agency for Research on Cancer (IARC), Lyon, France
- Cancer Epidemiology Unit, Department of Medical Sciences, University of Turin, Turin, Italy
| | - Géraldine Cancel-Tassin
- CeRePP, Tenon Hospital, Paris, France
- Sorbonne University, GRC n°5 Predictive Onco-Urology, AP-HP, Tenon Hospital, Paris, France
| | - Olivier Cussenot
- CeRePP, Tenon Hospital, Paris, France
- Sorbonne University, GRC n°5 Predictive Onco-Urology, AP-HP, Tenon Hospital, Paris, France
| | - Manuel Rodrigues
- Inserm U830, DNA Repair and Uveal Melanoma (D.R.U.M), Equipe Labellisée par la Ligue Nationale Contre le Cancer, Institut Curie, PSL Research University, Paris, France
- Department of Medical Oncology, Institut Curie, PSL Research University, Paris, France
| | - Josselin Noirel
- Laboratoire GBCM (EA7528), CNAM, HESAM Université, Paris, France
| | - Mitchell J Machiela
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD 20892, USA
| | - Marc-Henri Stern
- Inserm U830, DNA Repair and Uveal Melanoma (D.R.U.M), Equipe Labellisée par la Ligue Nationale Contre le Cancer, Institut Curie, PSL Research University, Paris, France
| |
Collapse
|
21
|
Tian C, Duan L, Fu C, He J, Dai J, Zhu G. Study on the Correlation Between Iris Characteristics and Schizophrenia. Neuropsychiatr Dis Treat 2022; 18:811-820. [PMID: 35431547 PMCID: PMC9005354 DOI: 10.2147/ndt.s361614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 04/01/2022] [Indexed: 11/23/2022] Open
Abstract
BACKGROUND Recently, researchers have conducted many studies on the potential contribution of the retina and other eye structures on schizophrenia. This study aimed to evaluate differences in iris characteristics between patients with schizophrenia and healthy individuals so as to find more easily accessible and easily measurable biomarkers with a view to improving clinical assessments and furthering our understanding of the disease. METHODS Overall, 80 patients with schizophrenia and 52 healthy individuals were included in the case group and the control group, respectively. Iris images were collected from all subjects to compare differences in the structure and color of the iris. The Positive and Negative Symptom Scale (PANSS) and the Modified Overt Aggression Scale (MOAS) were used to evaluate the clinical symptoms and characteristics of 45 first-episode untreated schizophrenics, and analyzed correlations between iris characteristics and schizophrenia symptoms. RESULTS There were significant differences in iris crypts (P<0.05) and pigment spots (P<0.01) between the case and control group, but no significant difference was found in iris wrinkles (P<0.05). The logistic regression analysis demonstrated that the total iris crypts [odds ratio (OR) 1.166, 95% confidence interval (CI) 1.022-1.330] and total iris pigment spots (OR 1.815, 95% CI 1.186-2.775) increased the risk of suffering from schizophrenia. Furthermore, it was demonstrated that the number of iris crypts was positively associated with the MOAS score (r=0.474, P<0.01). Moreover, the number of the iris pigment spots (r=0.395, P<0.01) and wrinkles (r=0.309, P<0.05) were positively correlated with the subjects' negative symptom scores, respectively. CONCLUSION Iris crypts and pigment spots were identified as potential biomarkers for detecting schizophrenia. In patients with first-episode untreated schizophrenia, iris characteristics may help psychiatrists to identify the illness and its severity, and to detect characteristic clinical symptoms.
Collapse
Affiliation(s)
- Chunsheng Tian
- Department of Psychiatry, The First Affiliated Hospital of China Medical University, Shenyang, 110001, People's Republic of China.,Shenyang Mental Health Center, Shenyang, 110168, People's Republic of China
| | - Li Duan
- Department of Psychiatry, The First Affiliated Hospital of China Medical University, Shenyang, 110001, People's Republic of China.,School of Nursing, Chengde Medical University, Chengde, 067000, People's Republic of China
| | - Chunfeng Fu
- Department of Psychiatry, The First Affiliated Hospital of China Medical University, Shenyang, 110001, People's Republic of China
| | - Juan He
- Department of Psychiatry, The First Affiliated Hospital of China Medical University, Shenyang, 110001, People's Republic of China
| | - Jiali Dai
- Department of Psychiatry, The First Affiliated Hospital of China Medical University, Shenyang, 110001, People's Republic of China
| | - Gang Zhu
- Department of Psychiatry, The First Affiliated Hospital of China Medical University, Shenyang, 110001, People's Republic of China
| |
Collapse
|
22
|
Maclary ET, Phillips B, Wauer R, Boer EF, Bruders R, Gilvarry T, Holt C, Yandell M, Shapiro MD. Two Genomic Loci Control Three Eye Colors in the Domestic Pigeon (Columba livia). Mol Biol Evol 2021; 38:5376-5390. [PMID: 34459920 PMCID: PMC8662629 DOI: 10.1093/molbev/msab260] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
The iris of the eye shows striking color variation across vertebrate species, and may play important roles in crypsis and communication. The domestic pigeon (Columba livia) has three common iris colors, orange, pearl (white), and bull (dark brown), segregating in a single species, thereby providing a unique opportunity to identify the genetic basis of iris coloration. We used comparative genomics and genetic mapping in laboratory crosses to identify two candidate genes that control variation in iris color in domestic pigeons. We identified a nonsense mutation in the solute carrier SLC2A11B that is shared among all pigeons with pearl eye color, and a locus associated with bull eye color that includes EDNRB2, a gene involved in neural crest migration and pigment development. However, bull eye is likely controlled by a heterogeneous collection of alleles across pigeon breeds. We also found that the EDNRB2 region is associated with regionalized plumage depigmentation (piebalding). Our study identifies two candidate genes for eye colors variation, and establishes a genetic link between iris and plumage color, two traits that vary widely in the evolution of birds and other vertebrates.
Collapse
Affiliation(s)
- Emily T Maclary
- School of Biological Sciences, University of Utah, Salt Lake City, UT, USA
| | - Bridget Phillips
- School of Biological Sciences, University of Utah, Salt Lake City, UT, USA
| | - Ryan Wauer
- School of Biological Sciences, University of Utah, Salt Lake City, UT, USA
| | - Elena F Boer
- School of Biological Sciences, University of Utah, Salt Lake City, UT, USA
| | - Rebecca Bruders
- School of Biological Sciences, University of Utah, Salt Lake City, UT, USA
| | - Tyler Gilvarry
- School of Biological Sciences, University of Utah, Salt Lake City, UT, USA
| | - Carson Holt
- Department of Human Genetics and Utah Center for Genetic Discovery, University of Utah, Salt Lake City, UT, USA
| | - Mark Yandell
- Department of Human Genetics and Utah Center for Genetic Discovery, University of Utah, Salt Lake City, UT, USA
| | - Michael D Shapiro
- School of Biological Sciences, University of Utah, Salt Lake City, UT, USA
| |
Collapse
|
23
|
Perrett DI, Sprengelmeyer R. Clothing Aesthetics: Consistent Colour Choices to Match Fair and Tanned Skin Tones. Iperception 2021; 12:20416695211053361. [PMID: 34804470 PMCID: PMC8597069 DOI: 10.1177/20416695211053361] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Accepted: 09/16/2021] [Indexed: 11/25/2022] Open
Abstract
Fashion stylists advise clothing colours according to personal categories that depend on skin, hair and eye colour. These categories are not defined scientifically, and advised colours are inconsistent. Such caveats may explain the lack of formal tests of clothing colour aesthetics. We assessed whether observers preferred clothing colours that are linked to variation in melanin levels among White women. For this, we presented 12 women's faces: six with fair skin (relatively lower in melanin) and six with tanned skin (relatively higher in melanin). Across two experiments, observers (N = 96 and 75) selected the colour (hue and saturation or hue and value) of simulated clothing that most suited the skin tone of each face. Observers showed strong preferences for red and blue hues, and in addition favoured ‘cool’ blue hues to match fair skin and ‘warm’ orange/red hues to match tanned skin. This finding suggests that skin tone can determine colour preferences for clothes.
Collapse
|
24
|
Silva LDFD, Lima ASB, Dall’Oglio CF, Hallal RJ. Heterocromia de íris: uma revisão das condições que podem afetar a pigmentação iridiana. REVISTA BRASILEIRA DE OFTALMOLOGIA 2021. [DOI: 10.37039/1982.8551.20210050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
25
|
Predicting eye and hair colour in a Norwegian population using Verogen's ForenSeq™ DNA signature prep kit. Forensic Sci Int Genet 2021; 56:102620. [PMID: 34735941 DOI: 10.1016/j.fsigen.2021.102620] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 09/24/2021] [Accepted: 10/21/2021] [Indexed: 01/01/2023]
Abstract
Prediction of eye and hair colour from DNA can be an important investigative tool in forensic cases if conventional DNA profiling fails to match DNA from any known suspects or cannot obtain a hit in a DNA database. The HIrisPlex model for simultaneous eye and hair colour predictions was developed for forensic usage. To genotype a DNA sample, massively parallel sequencing (MPS) has brought new possibilities to the analysis of forensic DNA samples. As part of an in-house validation, this study presents the genotyping and predictive performance of the HIrisPlex SNPs in a Norwegian study population, using Verogen's ForenSeq™ DNA Signature Prep Kit on the MiSeq FGx system and the HIrisPlex webtool. DNA-profiles were successfully typed with DNA input down to 125 pg. In samples with DNA input < 125 pg, false homozygotes were observed with as many as 92 reads. Prediction accuracies in terms of AUC were high for red (0.97) and black (0.93) hair colours, as well as blue (0.85) and brown (0.94) eye colours. The AUCs for blond (0.72) and brown (0.70) hair colour were considerably lower. None of the individuals was predicted to have intermediate eye colour. Therefore, the error rates of the overall eye colour predictions were 37% with no predictive probability threshold (pmax) and 26% with a probability threshold of 0.7. We also observed that more than half of the incorrect predictions were for individuals carrying the rs12913832 GG genotype. For hair colour, 65% of the individuals were correctly predicted when using the highest probability category approach. The main error was observed for individuals with brown hair colour that were predicted to have blond hair. Utilising the prediction guide approach increased the correct predictions to 75%. Assessment of phenotype-genotype associations of eye colours using a quantitative eye colour score (PIE-score), revealed that rs12913832 AA individuals of Norwegian descent had statistically significantly higher PIE-score (less brown eye colour) than individuals of non-northern European descent. To our knowledge, this has not been reported in other studies. Our study suggests that careful assessment of the target population prior to the implementation of forensic DNA phenotyping to case work is beneficial.
Collapse
|
26
|
Li Y, Li WQ, Li T, Qureshi AA, Cho E. Eye color and the risk of skin cancer. Cancer Causes Control 2021; 33:109-116. [PMID: 34687387 DOI: 10.1007/s10552-021-01508-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Accepted: 10/08/2021] [Indexed: 10/20/2022]
Abstract
Melanoma, basal cell carcinoma (BCC) and squamous cell carcinoma (SCC) are the most common skin cancers. The incidence rates of all three types of skin cancers have increased in the past three decades. Light pigmentary traits have been recognized as one of the host risk factors for skin cancer, but findings on associations between eye colors and risk of skin cancers have been inconsistent.We performed a prospective analysis to examine the association between eye colors and risk of skin cancers using the Health Professionals Follow-up Study (HPFS). Cox proportional hazard models were applied to estimate relative risks (RRs) and their 95% confidence intervals (CIs). Effect modifications due to hair color and skin reaction to sun were also examined.The HPFS included 35,662 males. During a median follow-up of 19 years (1988-2012), 445 melanoma, 1123 SCC, and 7198 BCC cases were documented. Compared to those whose eye colors were dark or brown, participants with hazel/green/medium and blue/light colors had a 24% (RR = 1.24, 95% CI: 1.06-1.45) and a 19% (RR = 1.19, 95% CI: 1.01-1.41) higher risk of SCC, respectively. Similarly, a higher risk of BCC was observed in participants with hazel/green/medium eye colors (RR = 1.16, 95% CI: 1.09-1.23) and blue/light eye colors (RR = 1.17, 95% CI: 1.10-1.25). We did not find significant associations between eye color and risk of melanoma. Lighter eye color was associated with increased risks of SCC and BCC among those with dark hair colors (p for interaction ≤ 0.02).In conclusion, in this large prospective study of men, we found that light eye colors were associated with higher risks of SCC and BCC, but not melanoma. Further studies are needed to confirm this association in other populations.
Collapse
Affiliation(s)
- Yueyao Li
- Department of Dermatology, The Warren Alpert Medical School of Brown University, Providence, RI, USA
| | - Wen-Qing Li
- Department of Dermatology, The Warren Alpert Medical School of Brown University, Providence, RI, USA.,Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Cancer Epidemiology, Peking University Cancer Hospital & Institute, Beijing, China.,Department of Epidemiology, Brown School of Public Health, Providence, RI, USA
| | - Tricia Li
- Department of Dermatology, The Warren Alpert Medical School of Brown University, Providence, RI, USA.,Channing Division of Network Medicine, Department of Medicine, Brigham and Womens Hospital, Boston, MA, USA
| | - Abrar A Qureshi
- Department of Dermatology, The Warren Alpert Medical School of Brown University, Providence, RI, USA.,Department of Epidemiology, Brown School of Public Health, Providence, RI, USA
| | - Eunyoung Cho
- Department of Dermatology, The Warren Alpert Medical School of Brown University, Providence, RI, USA. .,Department of Epidemiology, Brown School of Public Health, Providence, RI, USA. .,Channing Division of Network Medicine, Department of Medicine, Brigham and Womens Hospital, Boston, MA, USA.
| |
Collapse
|
27
|
Ozturk T, Ozsaygili C, Topsakal U. Relationship of skeletal malocclusion with eye and hair color in Turkish adolescent patients. APOS TRENDS IN ORTHODONTICS 2021. [DOI: 10.25259/apos_189_2020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Objectives:
The aim of this study was to establish whether a relationship exists between eye and hair color and orthodontic anomalies; an association has never been evaluated previously.
Materials and Methods:
The records of 406 adolescent patients to the Erciyes University Faculty of Dentistry for orthodontic treatment were included in this retrospective cohort study. Participants were divided into sagittal (Class I, Class II, and Class III) and vertical (low angle, normal angle, and high angle) skeletal malocclusion classes. Moreover, participants were also divided by their eye (brown, green, or blue) and hair (black, brown, or blonde) color. Collated data were statistically evaluated using the SPSS software by applying the one-way analysis of variance, Kruskal–Wallis, the Pearson Chi-square, and Fisher’s exact tests. Statistical significance was accepted at P < 0.05.
Results:
No statistically significant relationships were identified between sagittal and skeletal malocclusion and eye color (P > 0.05). However, the sella-nasion-b and CoGn parameters of brown-eyed individuals were significantly smaller than individuals with other eye colors (P < 0.05). Moreover, a statistically significant difference was established for the CoA, CoGn, and ANS-Me parameters between the different hair groups (P < 0.05). All three parameters were significantly lower in brown-haired individuals compared to individuals with black haired (P < 0.05).
Conclusion:
This study identified no significant association between the eye and hair color variable, with similarly formed craniofacial structures, and with the sagittal and vertical skeletal malocclusion. Therefore, any malocclusion estimation assumption formed based on either the hair or eye color of an individual will be incorrect.
Collapse
Affiliation(s)
- Taner Ozturk
- Department of Orthodontics, Erciyes University, Kayseri, Turkey,
| | - Cemal Ozsaygili
- Department of Ophthalmology, Kayseri City Training and Research Hospital, Kayseri, Turkey,
| | - Ugur Topsakal
- Department of Orthodontics, Erciyes University, Kayseri, Turkey,
| |
Collapse
|
28
|
Vural E, Hazar L, Çağlayan M, Çelebi ARC. Evaluation of choroidal thickness in light-coloured eyes. Eur J Ophthalmol 2021; 32:1636-1641. [PMID: 34218695 DOI: 10.1177/11206721211029470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
OBJECTIVE The aim of this study was to determine whether iris colour is related to the choroidal thickness of healthy individuals. METHODS Healthy participants were divided into two groups. Group 1 had light-coloured eyes (blue and green), and group 2 had dark-coloured eyes (brown). The main outcome measures were iris thickness, subfoveal choroidal thickness and nasal and temporal choroidal thicknesses 500 µm away from the fovea. RESULTS Group 1 comprised 31 subjects with light-coloured eyes, and group 2 had 31 subjects with dark eyes. The mean ages of groups 1 and 2 were 26.7 ± 7.5 years and 24.1 ± 5.8 years, respectively (p = 0.14). The choroidal thicknesses of the subfoveal, nasal and temporal regions were 336.3 ± 52.1 µm, 321.9 ± 43.6 µm and 318.4 ± 49.2 µm, respectively, in group 1 and 396.5 ± 76.9 µm, 372 ± 79.3 µm and 379.6 ± 82.4 µm, respectively, in group 2. All the values in group 1 were statistically lower than those in group 2 (p = 0.001, p = 0.001 and p = 0.003, respectively). The iris thickness in group 1 (493.73 ± 95.44 µm) was thinner than in group 2 (524.61 ± 69.74 µm) but not statistically significant (p = 0.141). CONCLUSION The results showed that a thinner choroid can be seen in disease-free light-coloured eyes. The iris colour should be considered among the factors affecting the choroidal thickness, such as age, sex, race and refractive error.
Collapse
Affiliation(s)
- Esra Vural
- Department of Ophthalmology, Kayseri City Hospital, Kayseri, Turkey
| | - Leyla Hazar
- Department of Ophthalmology, Dicle University School of Medicine, Diyarbakır, Turkey
| | - Mehtap Çağlayan
- Department of Ophthalmology, Gazi Yaşargil Training and Research Hospital, Diyarbakır, Turkey
| | - Ali Rıza Cenk Çelebi
- Department of Ophthalmology, Acıbadem University, Faculty of Medicine, İstanbul, Turkey
| |
Collapse
|
29
|
Fernández A, Hayashi M, Garrido G, Montero A, Guardia A, Suzuki T, Montoliu L. Genetics of non-syndromic and syndromic oculocutaneous albinism in human and mouse. Pigment Cell Melanoma Res 2021; 34:786-799. [PMID: 33960688 DOI: 10.1111/pcmr.12982] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 04/21/2021] [Accepted: 04/26/2021] [Indexed: 01/12/2023]
Abstract
Oculocutaneous albinism (OCA) is the most frequent presentation of albinism, a heterogeneous rare genetic condition generally associated with variable alterations in pigmentation and with a profound visual impairment. There are non-syndromic and syndromic types of OCA, depending on whether the gene product affected impairs essentially the function of melanosomes or, in addition, that of other lysosome-related organelles (LROs), respectively. Syndromic OCA can be more severe and associated with additional systemic consequences, beyond pigmentation and vision alterations. In addition to OCA, albinism can also be presented without obvious skin and hair pigmentation alterations, in ocular albinism (OA), and a related genetic condition known as foveal hypoplasia, optic nerve decussation defects, and anterior segment dysgenesis (FHONDA). In this review, we will focus only in the genetics of skin pigmentation in OCA, both in human and mouse, updating our current knowledge on this subject.
Collapse
Affiliation(s)
- Almudena Fernández
- Department of Molecular and Cellular Biology, National Centre for Biotechnology (CNB-CSIC), Madrid, Spain.,CIBERER-ISCIII, Madrid, Spain
| | - Masahiro Hayashi
- Department of Dermatology, Yamagata University Faculty of Medicine, Yamagata, Japan
| | - Gema Garrido
- Department of Molecular and Cellular Biology, National Centre for Biotechnology (CNB-CSIC), Madrid, Spain.,CIBERER-ISCIII, Madrid, Spain
| | - Andrea Montero
- Department of Molecular and Cellular Biology, National Centre for Biotechnology (CNB-CSIC), Madrid, Spain.,CIBERER-ISCIII, Madrid, Spain
| | - Ana Guardia
- Department of Molecular and Cellular Biology, National Centre for Biotechnology (CNB-CSIC), Madrid, Spain.,CIBERER-ISCIII, Madrid, Spain
| | - Tamio Suzuki
- Department of Dermatology, Yamagata University Faculty of Medicine, Yamagata, Japan
| | - Lluis Montoliu
- Department of Molecular and Cellular Biology, National Centre for Biotechnology (CNB-CSIC), Madrid, Spain.,CIBERER-ISCIII, Madrid, Spain
| |
Collapse
|
30
|
Yorzinski JL, Harbourne A, Thompson W. Sclera color in humans facilitates gaze perception during daytime and nighttime. PLoS One 2021; 16:e0249137. [PMID: 33780503 PMCID: PMC8006985 DOI: 10.1371/journal.pone.0249137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Accepted: 03/11/2021] [Indexed: 11/19/2022] Open
Abstract
Species vary widely in the conspicuousness of their eye morphology and this could influence gaze perception. Eyes with conspicuous morphology can enhance gaze perception while eyes with camouflaged morphology may hinder gaze perception. While evidence suggests that conspicuous eye morphology enhances gaze perception, little is known about how environmental conditions affect this interaction. Thus, we investigated whether environmental light conditions affect gaze perception. Human subjects (Homo sapiens) were instructed to find direct-gaze faces within arrays of averted-gaze faces or to find averted-gaze faces within arrays of directed-gaze faces. The faces were displayed under conditions simulating nighttime or daytime conditions. Furthermore, the faces had naturally-colored sclera (white) or modified sclera (same color as the iris). Participants were fastest and most accurate in detecting faces during the daytime and nighttime conditions when the sclera were naturally-colored. Participants were worst at detecting faces with modified sclera during the nighttime conditions. These results suggest that eyes with conspicuous morphology enhance gaze perception during both daytime and nighttime conditions.
Collapse
Affiliation(s)
- Jessica L. Yorzinski
- Department of Ecology and Conservation Biology, Texas A&M University, College Station, Texas, United States of America
| | - Amy Harbourne
- Department of English, Texas A&M University, College Station, Texas, United States of America
| | - William Thompson
- School of Computing, University of Utah, Salt Lake City, Utah, United States of America
| |
Collapse
|
31
|
Lasisi T. The constraints of racialization: How classification and valuation hinder scientific research on human variation. AMERICAN JOURNAL OF PHYSICAL ANTHROPOLOGY 2021; 175:376-386. [PMID: 33675042 DOI: 10.1002/ajpa.24264] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 02/15/2021] [Accepted: 02/17/2021] [Indexed: 12/18/2022]
Abstract
Human biological variation has historically been studied through the lens of racialization. Despite a general shift away from the use of overt racial terminologies, the underlying racialized frameworks used to describe and understand human variation still remain. Even in relatively recent anthropological and biomedical work, we can observe clear manifestations of such racial thinking. This paper shows how classification and valuation are two specific processes which facilitate racialization and hinder attempts to move beyond such frameworks. The bias induced by classification distorts descriptions of phenotypic variation in a way that erroneously portrays European populations as more variable than others. Implicit valuation occurs in tandem with classification and produces narratives of superiority/inferiority for certain phenotypic variants without an objective biological basis. The bias of racialization is a persistent impediment stemming from the inheritance of scientific knowledge developed under explicitly racial paradigms. It is also an internalized cognitive distortion cultivated through socialization in a world where racialization is inescapable. Though undeniably challenging, this does not present an insurmountable barrier, and this bias can be mitigated through the critical evaluation of past work, the active inclusion of marginalized perspectives, and the direct confrontation of institutional structures enforcing racialized paradigms.
Collapse
Affiliation(s)
- Tina Lasisi
- Department of Anthropology, Pennsylvania State University, State College, Pennsylvania, USA
| |
Collapse
|
32
|
Simcoe M, Valdes A, Liu F, Furlotte NA, Evans DM, Hemani G, Ring SM, Smith GD, Duffy DL, Zhu G, Gordon SD, Medland SE, Vuckovic D, Girotto G, Sala C, Catamo E, Concas MP, Brumat M, Gasparini P, Toniolo D, Cocca M, Robino A, Yazar S, Hewitt A, Wu W, Kraft P, Hammond CJ, Shi Y, Chen Y, Zeng C, Klaver CCW, Uitterlinden AG, Ikram MA, Hamer MA, van Duijn CM, Nijsten T, Han J, Mackey DA, Martin NG, Cheng CY, Hinds DA, Spector TD, Kayser M, Hysi PG. Genome-wide association study in almost 195,000 individuals identifies 50 previously unidentified genetic loci for eye color. SCIENCE ADVANCES 2021; 7:eabd1239. [PMID: 33692100 PMCID: PMC7946369 DOI: 10.1126/sciadv.abd1239] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Accepted: 01/25/2021] [Indexed: 05/03/2023]
Abstract
Human eye color is highly heritable, but its genetic architecture is not yet fully understood. We report the results of the largest genome-wide association study for eye color to date, involving up to 192,986 European participants from 10 populations. We identify 124 independent associations arising from 61 discrete genomic regions, including 50 previously unidentified. We find evidence for genes involved in melanin pigmentation, but we also find associations with genes involved in iris morphology and structure. Further analyses in 1636 Asian participants from two populations suggest that iris pigmentation variation in Asians is genetically similar to Europeans, albeit with smaller effect sizes. Our findings collectively explain 53.2% (95% confidence interval, 45.4 to 61.0%) of eye color variation using common single-nucleotide polymorphisms. Overall, our study outcomes demonstrate that the genetic complexity of human eye color considerably exceeds previous knowledge and expectations, highlighting eye color as a genetically highly complex human trait.
Collapse
Affiliation(s)
- Mark Simcoe
- Department of Twins Research and Genetic Epidemiology, King's College London, London, UK
- Department of Ophthalmology, King's College London, London, UK
| | - Ana Valdes
- Department of Twins Research and Genetic Epidemiology, King's College London, London, UK
- Division of Rheumatology, Orthopaedics and Dermatology, School of Medicine, University of Nottingham, Nottingham, UK
| | - Fan Liu
- Department of Genetic Identification, Erasmus MC University Medical Center Rotterdam, Rotterdam, Netherlands
- Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | | | - David M Evans
- University of Queensland Diamantina Institute, University of Queensland, Brisbane, Queensland, Australia
- MRC Integrative Epidemiology Unit, University of Bristol, Bristol, UK
| | - Gibran Hemani
- MRC Integrative Epidemiology Unit, University of Bristol, Bristol, UK
- Population Health Sciences Bristol Medical School University of Bristol, Bristol, UK
| | - Susan M Ring
- MRC Integrative Epidemiology Unit, University of Bristol, Bristol, UK
- Population Health Sciences Bristol Medical School University of Bristol, Bristol, UK
| | - George Davey Smith
- MRC Integrative Epidemiology Unit, University of Bristol, Bristol, UK
- Population Health Sciences Bristol Medical School University of Bristol, Bristol, UK
| | - David L Duffy
- QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Gu Zhu
- QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Scott D Gordon
- QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Sarah E Medland
- QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Dragana Vuckovic
- Department of Medical Sciences, University of Trieste, Trieste, Italy
- Institute for Maternal and Child Health IRCCS "Burlo Garofolo", Trieste, Italy
- Epidemiology and Biostatistics Department, Faculty of Medicine, School of Public Health, Imperial College London, London, UK
| | - Giorgia Girotto
- Department of Medical Sciences, University of Trieste, Trieste, Italy
- Institute for Maternal and Child Health IRCCS "Burlo Garofolo", Trieste, Italy
| | - Cinzia Sala
- Division of Genetics of Common Disorders, S. Raffaele Scientific Institute, Milan, Italy
| | - Eulalia Catamo
- Department of Medical Sciences, University of Trieste, Trieste, Italy
| | - Maria Pina Concas
- Institute for Maternal and Child Health IRCCS "Burlo Garofolo", Trieste, Italy
| | - Marco Brumat
- Department of Medical Sciences, University of Trieste, Trieste, Italy
| | - Paolo Gasparini
- Department of Medical Sciences, University of Trieste, Trieste, Italy
- Institute for Maternal and Child Health IRCCS "Burlo Garofolo", Trieste, Italy
| | - Daniela Toniolo
- Division of Genetics of Common Disorders, S. Raffaele Scientific Institute, Milan, Italy
| | - Massimiliano Cocca
- Institute for Maternal and Child Health IRCCS "Burlo Garofolo", Trieste, Italy
| | - Antonietta Robino
- Institute for Maternal and Child Health IRCCS "Burlo Garofolo", Trieste, Italy
| | - Seyhan Yazar
- Centre for Ophthalmology and Visual Science, University of Western Australia, Lions Eye Institute, Perth, Australia
| | - Alex Hewitt
- Centre for Ophthalmology and Visual Science, University of Western Australia, Lions Eye Institute, Perth, Australia
- Centre for Eye Research Australia, University of Melbourne, Department of Ophthalmology, Royal Victorian Eye and Ear Hospital, Melbourne, Australia
- School of Medicine, Menzies Research Institute Tasmania, University of Tasmania, Hobart, Australia
| | - Wenting Wu
- Department of Epidemiology, Fairbanks School of Public Health, Indiana University, and Indiana University Melvin and Bren Simon Cancer Center, Indianapolis, IN, USA
| | - Peter Kraft
- Program in Genetic Epidemiology and Statistical Genetics, Harvard T.H. Chan School of Public Health, Harvard University, Boston, MA, USA
| | - Christopher J Hammond
- Department of Twins Research and Genetic Epidemiology, King's College London, London, UK
- Department of Ophthalmology, King's College London, London, UK
| | - Yuan Shi
- Singapore Eye Research Institute, Singapore National Eye Center, Singapore
| | - Yan Chen
- Department of Genetic Identification, Erasmus MC University Medical Center Rotterdam, Rotterdam, Netherlands
- Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Changqing Zeng
- Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China
| | - Caroline C W Klaver
- Department of Ophthalmology, Erasmus MC University Medical Center Rotterdam, Rotterdam, Netherlands
- Department of Epidemiology, Erasmus MC University Medical Center Rotterdam, Rotterdam, Netherlands
- Department of Ophthalmology, Radboud University Medical Center, Nijmegen, Netherlands
| | - Andre G Uitterlinden
- Department of Epidemiology, Erasmus MC University Medical Center Rotterdam, Rotterdam, Netherlands
- Department of Internal Medicine, Erasmus MC University Medical Center Rotterdam, Rotterdam, Netherlands
| | - M Arfan Ikram
- Department of Epidemiology, Erasmus MC University Medical Center Rotterdam, Rotterdam, Netherlands
| | - Merel A Hamer
- Department of Dermatology, Erasmus MC University Medical Center Rotterdam, Rotterdam, Netherlands
| | - Cornelia M van Duijn
- Department of Epidemiology, Erasmus MC University Medical Center Rotterdam, Rotterdam, Netherlands
- Nuffield Department of Population Health, University of Oxford, Oxford, UK
| | - Tamar Nijsten
- Department of Dermatology, Erasmus MC University Medical Center Rotterdam, Rotterdam, Netherlands
| | - Jiali Han
- Department of Epidemiology, Fairbanks School of Public Health, Indiana University, and Indiana University Melvin and Bren Simon Cancer Center, Indianapolis, IN, USA
| | - David A Mackey
- Centre for Ophthalmology and Visual Science, University of Western Australia, Lions Eye Institute, Perth, Australia
| | - Nicholas G Martin
- QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Ching-Yu Cheng
- Singapore Eye Research Institute, Singapore National Eye Center, Singapore
- Duke-NUS Medical School, Singapore
| | | | - Timothy D Spector
- Department of Twins Research and Genetic Epidemiology, King's College London, London, UK
| | - Manfred Kayser
- Department of Genetic Identification, Erasmus MC University Medical Center Rotterdam, Rotterdam, Netherlands.
| | - Pirro G Hysi
- Department of Twins Research and Genetic Epidemiology, King's College London, London, UK.
- Department of Ophthalmology, King's College London, London, UK
| |
Collapse
|
33
|
Rayner JE, Duffy DL, Smit DJ, Jagirdar K, Lee KJ, De’Ambrosis B, Smithers BM, McMeniman EK, McInerney-Leo AM, Schaider H, Stark MS, Soyer HP, Sturm RA. Germline and somatic albinism variants in amelanotic/hypomelanotic melanoma: Increased carriage of TYR and OCA2 variants. PLoS One 2020; 15:e0238529. [PMID: 32966289 PMCID: PMC7510969 DOI: 10.1371/journal.pone.0238529] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Accepted: 08/18/2020] [Indexed: 12/30/2022] Open
Abstract
Amelanotic/hypomelanotic melanoma is a clinicopathologic subtype with absent or minimal melanin. This study assessed previously reported coding variants in albinism genes (TYR, OCA2, TYRP1, SLC45A2, SLC24A5, LRMDA) and common intronic, regulatory variants of OCA2 in individuals with amelanotic/hypomelanotic melanoma, pigmented melanoma cases and controls. Exome sequencing was available for 28 individuals with amelanotic/hypomelanotic melanoma and 303 individuals with pigmented melanoma, which were compared to whole exome data from 1144 Australian controls. Microarray genotyping was available for a further 17 amelanotic/hypomelanotic melanoma, 86 pigmented melanoma, 147 melanoma cases (pigmentation unknown) and 652 unaffected controls. Rare deleterious variants in TYR/OCA1 were more common in amelanotic/hypomelanotic melanoma cases than pigmented melanoma cases (set mixed model association tests P = 0.0088). The OCA2 hypomorphic allele p.V443I was more common in melanoma cases (1.8%) than controls (1.0%, X2 P = 0.02), and more so in amelanotic/hypomelanotic melanoma (4.4%, X2 P = 0.007). No amelanotic/hypomelanotic melanoma cases carried an eye and skin darkening haplotype of OCA2 (including rs7174027), present in 7.1% of pigmented melanoma cases (P = 0.0005) and 9.4% controls. Variants in TYR and OCA2 may play a role in amelanotic/hypomelanotic melanoma susceptibility. We suggest that somatic loss of function at these loci could contribute to the loss of tumor pigmentation, consistent with this we found a higher rate of somatic mutation in TYR/OCA2 in amelanotic/hypomelanotic melanoma vs pigmented melanoma samples (28.6% vs 3.0%; P = 0.021) from The Cancer Genome Atlas Skin Cutaneous Melanoma collection.
Collapse
Affiliation(s)
- Jenna E. Rayner
- Dermatology Research Centre, The University of Queensland Diamantina Institute, The University of Queensland, Brisbane, Qld, Australia
| | - David L. Duffy
- Dermatology Research Centre, The University of Queensland Diamantina Institute, The University of Queensland, Brisbane, Qld, Australia
- QIMR Berghofer Medical Research Institute, Brisbane, Qld, Australia
| | - Darren J. Smit
- Dermatology Research Centre, The University of Queensland Diamantina Institute, The University of Queensland, Brisbane, Qld, Australia
| | - Kasturee Jagirdar
- Dermatology Research Centre, The University of Queensland Diamantina Institute, The University of Queensland, Brisbane, Qld, Australia
| | - Katie J. Lee
- Dermatology Research Centre, The University of Queensland Diamantina Institute, The University of Queensland, Brisbane, Qld, Australia
| | - Brian De’Ambrosis
- Dermatology Department, Princess Alexandra Hospital, Brisbane, Qld, Australia
- Faculty of Medicine, The University of Queensland, Brisbane, Qld, Australia
- South East Dermatology, Annerley, Brisbane, Qld, Australia
| | - B. Mark Smithers
- Queensland Melanoma Project, School of Medicine, The University of Queensland, Brisbane, Qld, Australia
| | - Erin K. McMeniman
- Dermatology Research Centre, The University of Queensland Diamantina Institute, The University of Queensland, Brisbane, Qld, Australia
- Dermatology Department, Princess Alexandra Hospital, Brisbane, Qld, Australia
| | - Aideen M. McInerney-Leo
- Dermatology Research Centre, The University of Queensland Diamantina Institute, The University of Queensland, Brisbane, Qld, Australia
| | - Helmut Schaider
- Dermatology Research Centre, The University of Queensland Diamantina Institute, The University of Queensland, Brisbane, Qld, Australia
| | - Mitchell S. Stark
- Dermatology Research Centre, The University of Queensland Diamantina Institute, The University of Queensland, Brisbane, Qld, Australia
| | - H. Peter Soyer
- Dermatology Research Centre, The University of Queensland Diamantina Institute, The University of Queensland, Brisbane, Qld, Australia
- Dermatology Department, Princess Alexandra Hospital, Brisbane, Qld, Australia
| | - Richard A. Sturm
- Dermatology Research Centre, The University of Queensland Diamantina Institute, The University of Queensland, Brisbane, Qld, Australia
- * E-mail:
| |
Collapse
|
34
|
Kidd KK, Pakstis AJ, Donnelly MP, Bulbul O, Cherni L, Gurkan C, Kang L, Li H, Yun L, Paschou P, Meiklejohn KA, Haigh E, Speed WC. The distinctive geographic patterns of common pigmentation variants at the OCA2 gene. Sci Rep 2020; 10:15433. [PMID: 32963319 PMCID: PMC7508881 DOI: 10.1038/s41598-020-72262-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Accepted: 08/17/2020] [Indexed: 11/25/2022] Open
Abstract
Oculocutaneous Albinism type 2 (OCA2) is a gene of great interest because of genetic variation affecting normal pigmentation variation in humans. The diverse geographic patterns for variant frequencies at OCA2 have been evident but have not been systematically investigated, especially outside of Europe. Here we examine population genetic variation in and near the OCA2 gene from a worldwide perspective. The very different patterns of genetic variation found across world regions suggest strong selection effects may have been at work over time. For example, analyses involving the variants that affect pigmentation of the iris argue that the derived allele of the rs1800407 single nucleotide polymorphism, which produces a hypomorphic protein, may have contributed to the previously demonstrated positive selection in Europe for the enhancer variant responsible for light eye color. More study is needed on the relationships of the genetic variation at OCA2 to variation in pigmentation in areas beyond Europe.
Collapse
Affiliation(s)
- Kenneth K Kidd
- Professor Emeritus, Department of Genetics, Yale University School of Medicine, P.O. Box 208005, New Haven, CT, 06520-8005, USA.
| | - Andrew J Pakstis
- Professor Emeritus, Department of Genetics, Yale University School of Medicine, P.O. Box 208005, New Haven, CT, 06520-8005, USA
| | - Michael P Donnelly
- Professor Emeritus, Department of Genetics, Yale University School of Medicine, P.O. Box 208005, New Haven, CT, 06520-8005, USA.,Biological and Environmental Sciences, Troy University, Dothan, AL, 36303, USA
| | - Ozlem Bulbul
- Institute of Forensic Science, Istanbul University-Cerrahpasa, Istanbul, 34500, Turkey
| | - Lotfi Cherni
- Laboratory of Genetics, Immunology and Human Pathologies, Faculty of Sciences of Tunis, University of Tunis El Manar, 2092, Tunis, Tunisia.,Higher Institute of Biotechnology of Monastir, Monastir University, 5000, Monastir, Tunisia
| | - Cemal Gurkan
- Turkish Cypriot DNA Laboratory, Committee on Missing Persons in Cyprus Turkish Cypriot Member Office, Nicosia, North Cyprus), Turkey.,Dr. Fazıl Küçük Faculty of Medicine, Eastern Mediterranean University, Famagusta (North Cyprus), Turkey
| | - Longli Kang
- Key Laboratory forMolecular GeneticMechanisms and Intervention Research On High Altitude Disease of Tibet Autonomous Region, School of Medicine, Xizang Minzu University, Xianyang, 712082, Shaanxi, China.,Key Laboratory of High Altitude Environment and Genes Related To Disease of Tibet Ministry of Education, School of Medicine, Xizang Minzu University, Xianyang, 712082, Shaanxi, China
| | - Hui Li
- MOE State Key Laboratory of Contemporary Anthropology, School of Life Sciences, Fudan University, Shanghai, China
| | - Libing Yun
- Institute of Forensic Medicine, West China College of Preclinical and Forensic Medicine, Sichuan University, No.16. Section 3. RenMin Nan Road, Chengdu, 610041, Sichuan, China
| | - Peristera Paschou
- Department of Biological Sciences, Purdue University, West Lafayette, IN, USA
| | - Kelly A Meiklejohn
- Department of Population Health and Pathobiology, North Carolina State University, 1060 William Moore Drive, Raleigh, NC, 27607, USA
| | - Eva Haigh
- Professor Emeritus, Department of Genetics, Yale University School of Medicine, P.O. Box 208005, New Haven, CT, 06520-8005, USA
| | - William C Speed
- Professor Emeritus, Department of Genetics, Yale University School of Medicine, P.O. Box 208005, New Haven, CT, 06520-8005, USA
| |
Collapse
|
35
|
Dorgaleleh S, Naghipoor K, Barahouie A, Dastaviz F, Oladnabi M. Molecular and biochemical mechanisms of human iris color: A comprehensive review. J Cell Physiol 2020; 235:8972-8982. [DOI: 10.1002/jcp.29824] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Accepted: 05/18/2020] [Indexed: 01/01/2023]
Affiliation(s)
- Saeed Dorgaleleh
- Student Research Committee Golestan University of Medical Sciences Gorgan Iran
| | - Karim Naghipoor
- Student Research Committee Golestan University of Medical Sciences Gorgan Iran
| | - Ahmad Barahouie
- Student Research Committee Golestan University of Medical Sciences Gorgan Iran
| | - Farzad Dastaviz
- Student Research Committee Golestan University of Medical Sciences Gorgan Iran
| | - Morteza Oladnabi
- Gorgan Congenital Malformations Research Center, Golestan University of Medical Sciences Gorgan Iran
- Stem Cell Research Center, Golestan University of Medical Sciences Gorgan Iran
- Department of Medical Genetics, School of Advanced Technologies in Medicine Ischemic Disorders Research Center, Golestan University of Medical Sciences Gorgan Iran
| |
Collapse
|
36
|
Chen E, Bohm K, Rosenblatt M, Kang K. Epigenetic regulation of anterior segment diseases and potential therapeutics. Ocul Surf 2020; 18:383-395. [PMID: 32344150 DOI: 10.1016/j.jtos.2020.04.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Revised: 01/31/2020] [Accepted: 04/03/2020] [Indexed: 12/22/2022]
Abstract
In recent years, technological advances in sequencing have accelerated our understanding of epigenetics in ocular development and ophthalmic diseases. We now know that epigenetic modifications are necessary for normal ocular development and biological processes such as corneal wound healing and ocular surface repair, while aberrant epigenetic regulation underlies the pathogenesis of a wide range of ocular diseases, including cataracts and various diseases of the ocular surface. As the epigenetics of the eye is a constantly changing field of medicine, this comprehensive review focuses on innovations and scientific discoveries related to epigenetic control of anterior segment diseases that were published in the English literature in the past five years. These recent studies attempt to elucidate therapeutic targets for the anterior segment pathological processes. Already, recent studies have shown therapeutic potential in targeting epigenetic mechanisms of ocular diseases, and new epigenetic therapies are on the verge of being introduced to clinical practice. New drug targets can potentially emerge as we make further discoveries within this field.
Collapse
Affiliation(s)
- Eric Chen
- Illinois Eye and Ear Infirmary, Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, IL, United States
| | - Kelley Bohm
- Illinois Eye and Ear Infirmary, Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, IL, United States
| | - Mark Rosenblatt
- Illinois Eye and Ear Infirmary, Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, IL, United States
| | - Kai Kang
- Illinois Eye and Ear Infirmary, Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, IL, United States.
| |
Collapse
|
37
|
Moscatelli G, Bovo S, Schiavo G, Mazzoni G, Bertolini F, Dall'Olio S, Fontanesi L. Genome-wide association studies for iris pigmentation and heterochromia patterns in Large White pigs. Anim Genet 2020; 51:409-419. [PMID: 32232994 DOI: 10.1111/age.12930] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/06/2020] [Indexed: 01/13/2023]
Abstract
Eye colour genetics have been extensively studied in humans since the rediscovery of Mendel's laws. This trait was first interpreted using simplistic genetic models but soon it was realised that it is more complex. In this study, we analysed eye colour variability in a Large White pig population (n = 897) and report the results of GWASs based on several comparisons including pigs having four main eye colour categories (three with both pigmented eyes of different brown grades: pale, 17.9%; medium, 14.8%; and dark, 54.3%; another one with both eyes completely depigmented, 3.8%) and heterochromia patterns (heterochromia iridis - depigmented iris sectors in pigmented irises, 3.2%; heterochromia iridum - one whole eye iris of depigmented phenotype and the other eye with the iris completely pigmented, 5.9%). Pigs were genotyped with the Illumina PorcineSNP60 BeadChip and GEMMA was used for the association analyses. The results indicated that SLC45A2 (on chromosome 16, SSC16), EDNRB (SSC11) and KITLG (SSC5) affect the different grades of brown pigmentation of the eyes, the bilateral eye depigmentation defect and the heterochromia iridis defect recorded in this white pig population respectively. These genes are involved in several mechanisms affecting pigmentation. Significant associations for the eye depigmented patterns were also identified for SNPs on two SSC4 regions (including two candidate genes: NOTCH2 and PREX2) and on SSC6, SSC8 and SSC14 (including COL17A1 as candidate gene). This study provided useful information to understand eye pigmentation mechanisms, further valuing the pig as animal model to study complex phenotypes in humans.
Collapse
Affiliation(s)
- G Moscatelli
- Division of Animal Sciences, Department of Agricultural and Food Sciences, University of Bologna, Viale G. Fanin 46, 40127, Bologna, Italy
| | - S Bovo
- Division of Animal Sciences, Department of Agricultural and Food Sciences, University of Bologna, Viale G. Fanin 46, 40127, Bologna, Italy
| | - G Schiavo
- Division of Animal Sciences, Department of Agricultural and Food Sciences, University of Bologna, Viale G. Fanin 46, 40127, Bologna, Italy
| | - G Mazzoni
- Department of Health Technology, Technical University of Denmark, Lyngby, 2800, Denmark
| | - F Bertolini
- National Institute of Aquatic Resources, Technical University of Denmark, Lyngby, 2800, Denmark
| | - S Dall'Olio
- Division of Animal Sciences, Department of Agricultural and Food Sciences, University of Bologna, Viale G. Fanin 46, 40127, Bologna, Italy
| | - L Fontanesi
- Division of Animal Sciences, Department of Agricultural and Food Sciences, University of Bologna, Viale G. Fanin 46, 40127, Bologna, Italy
| |
Collapse
|
38
|
Soh ZD, Thakur S, Majithia S, Nongpiur ME, Cheng CY. Iris and its relevance to angle closure disease: a review. Br J Ophthalmol 2020; 105:3-8. [PMID: 32193222 DOI: 10.1136/bjophthalmol-2020-316075] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Accepted: 03/04/2020] [Indexed: 12/18/2022]
Abstract
Glaucoma is a leading cause of irreversible visual impairment, and primary angle closure glaucoma (PACG) affects Asians disproportionately. Whereas advances in ocular imaging have identified several anatomical risk factors, our ability to predict PACG still requires considerable improvement. The iris plays a crucial role in the pathophysiology of angle closure disease, either through a mechanical or vascular mechanism. Irises of closed-angle eyes inhibit vastly different structural constituents as compared with those of open-angle eyes, thereby effecting variations in biomechanical properties and iris fluid conductivity. The clinical consequences include a smaller change in iris volume on pupil dilation in closed-angle eyes, thereby bringing the iris and trabecular meshwork closer in apposition. In this review, we summarise the potential role of the iris in the pathogenesis of angle closure disease.
Collapse
Affiliation(s)
- Zhi Da Soh
- Ocular Epidemiology Research Group, Singapore Eye Research Institute, Singapore
| | - Sahil Thakur
- Ocular Epidemiology Research Group, Singapore Eye Research Institute, Singapore
| | - Shivani Majithia
- Ocular Epidemiology Research Group, Singapore Eye Research Institute, Singapore
| | - Monisha Esther Nongpiur
- Glaucoma, Singapore Eye Research Institute, Singapore.,Ophthalmology & Visual Sciences Academic Clinical Program (Eye ACP), Duke-NUS Medical School, Singapore
| | - Ching-Yu Cheng
- Ocular Epidemiology Research Group, Singapore Eye Research Institute, Singapore .,Ophthalmology & Visual Sciences Academic Clinical Program (Eye ACP), Duke-NUS Medical School, Singapore.,Department of Ophthalmology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| |
Collapse
|
39
|
Classification of Genetically Identical Left and Right Irises Using a Convolutional Neural Network. ELECTRONICS 2019. [DOI: 10.3390/electronics8101109] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
As one of the most reliable biometric identification techniques, iris recognition has focused on the differences in iris textures without considering the similarities. In this work, we investigate the correlation between the left and right irises of an individual using a VGG16 convolutional neural network. Experimental results with two independent iris datasets show that a remarkably high classification accuracy of larger than 94% can be achieved when identifying if two irises (left and right) are from the same or different individuals. This exciting finding suggests that the similarities between genetically identical irises that are indistinguishable using traditional Daugman’s approaches can be detected by deep learning. We expect this work will shed light on further studies on the correlation between irises and/or other biometric identifiers of genetically identical or related individuals, which would find potential applications in criminal investigations.
Collapse
|
40
|
Abstract
Human skin and hair color are visible traits that can vary dramatically within and across ethnic populations. The genetic makeup of these traits-including polymorphisms in the enzymes and signaling proteins involved in melanogenesis, and the vital role of ion transport mechanisms operating during the maturation and distribution of the melanosome-has provided new insights into the regulation of pigmentation. A large number of novel loci involved in the process have been recently discovered through four large-scale genome-wide association studies in Europeans, two large genetic studies of skin color in Africans, one study in Latin Americans, and functional testing in animal models. The responsible polymorphisms within these pigmentation genes appear at different population frequencies, can be used as ancestry-informative markers, and provide insight into the evolutionary selective forces that have acted to create this human diversity.
Collapse
Affiliation(s)
- William J Pavan
- Genetic Disease Research Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland 20892, USA;
| | - Richard A Sturm
- Dermatology Research Centre, The University of Queensland Diamantina Institute, The University of Queensland, Brisbane, Queensland 4102, Australia;
| |
Collapse
|
41
|
Predicting adult height from DNA variants in a European-Asian admixed population. Int J Legal Med 2019; 133:1667-1679. [PMID: 30976986 DOI: 10.1007/s00414-019-02039-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Accepted: 03/05/2019] [Indexed: 01/12/2023]
Abstract
Accurate genomic profiling for adult height is of high practical relevance in forensics genetics. Adult height is a classical reference trait in the field of human complex trait genetics characterized by highly polygenic nature and relatively high heritability. A meta-analysis of genome-wide association studies by the Genetic Investigation of Anthropocentric Traits (GIANT) consortium has identified 697 DNA variants associated with adult height in Europeans; however, whether these variants will still be informative in non-Europeans is still in question. The present study investigated the predictive power of these 697 height-associated SNPs in 687 Uyghurs of European-Asian admixed origin. Among all GIANT SNPs, 11% showed nominally significant association (6.78 × 10-4 < p < 0.05) with adult height in the Uyghur population and among the significant SNPs 77% of allele effects were in the same direction as those in Europeans reported in the GIANT study. Fitting linear and logistic models using a polygenic score consisting of all GIANT SNPs resulted in an 80-20 cross-validated mean R2 of 10.08% (95% CI 3.16-18.40%) for quantitative height prediction and a mean AUC value of 0.65 (95% CI 0.57-0.72%) for qualitative "above average" prediction. Fine-tuning the SNP set using their association p values considerably improved the prediction results (number of SNPs = 62, R2 = 15.59%, 95% CI 6.80-25.71%; AUC = 0.70, 95% CI 62-0.77) in the Uyghurs. Overall, our findings demonstrate substantial differences between the European and Asian populations in the genetics of adult height, emphasizing the importance of population heterogeneity underlying the genetic architecture of adult height.
Collapse
|
42
|
Abstract
PURPOSE Severe corneal disease contributes significantly to the global burden of blindness. Corneal allograft surgery remains the most commonly used treatment, but does not succeed long term in every patient, and the odds of success fall with each repeated graft. The Boston keratoprosthesis type I has emerged as an alternative to repeat corneal allograft. However, cost limits its use in resource-poor settings, where most corneal blind individuals reside. METHODS All aspects of the Boston keratoprosthesis design process were examined to determine areas of potential modification and simplification, with dual goals to reduce cost and improve the cosmetic appearance of the device in situ. RESULTS Minor modifications in component design simplified keratoprosthesis manufacturing. Proportional machinist time could be further reduced by adopting a single axial length for aphakic eyes, and a single back plate diameter. The cosmetic appearance was improved by changing the shape of the back plate holes from round to radial, with a petaloid appearance, and by anodization of back plate titanium to impute a more natural color. CONCLUSIONS We have developed a modified Boston keratoprosthesis type I, which we call the "Lucia." The Lucia retains the 2 piece design and ease of assembly of the predicate device, but would allow for manufacturing at a reduced cost. Its appearance should prove more acceptable to implanted patients. Successful keratoprosthesis outcomes require daily medications for the life of the patient and rigorous, frequent, postoperative care. Effective implementation of the device in resource-poor settings will require further innovations in eye care delivery.
Collapse
|
43
|
Nonsense mutation in PMEL is associated with yellowish plumage colour phenotype in Japanese quail. Sci Rep 2018; 8:16732. [PMID: 30425278 PMCID: PMC6233202 DOI: 10.1038/s41598-018-34827-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Accepted: 10/12/2018] [Indexed: 11/08/2022] Open
Abstract
The L strain of Japanese quail exhibits a plumage phenotype that is light yellowish in colour. In this study, we identified a nonsense mutation in the premelanosome protein (PMEL) gene showing complete concordance with the yellowish plumage within a pedigree as well as across strains by genetic linkage analysis of an F2 intercross population using approximately 2,000 single nucleotide polymorphisms (SNPs) that were detected by double digest restriction site-associated DNA sequencing (ddRAD-seq). The yellowish plumage was inherited in an autosomal recessive manner, and the causative mutation was located within an 810-kb genomic region of the LGE22C19W28_E50C23 linkage group (LGE22). This region contained the PMEL gene that is required for the normal melanosome morphogenesis and eumelanin deposition. A nonsense mutation that leads to a marked truncation of the deduced protein was found in PMEL of the mutant. The gene expression level of PMEL decreased substantially in the mutant. Genotypes at the site of the nonsense mutation were fully concordant with plumage colour phenotypes in 196 F2 offspring. The nonsense mutation was not found in several quail strains with non-yellowish plumage. Thus, the yellowish plumage may be caused by the reduced eumelanin content in feathers because of the loss of PMEL function.
Collapse
|
44
|
Zhou D, Ota K, Nardin C, Feldman M, Widman A, Wind O, Simon A, Reilly M, Levin LR, Buck J, Wakamatsu K, Ito S, Zippin JH. Mammalian pigmentation is regulated by a distinct cAMP-dependent mechanism that controls melanosome pH. Sci Signal 2018; 11:11/555/eaau7987. [PMID: 30401788 DOI: 10.1126/scisignal.aau7987] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The production of melanin increases skin pigmentation and reduces the risk of skin cancer. Melanin production depends on the pH of melanosomes, which are more acidic in lighter-skinned than in darker-skinned people. We showed that inhibition of soluble adenylyl cyclase (sAC) controlled pigmentation by increasing the pH of melanosomes both in cells and in vivo. Distinct from the canonical melanocortin 1 receptor (MC1R)-dependent cAMP pathway that controls pigmentation by altering gene expression, we found that inhibition of sAC increased pigmentation by increasing the activity of tyrosinase, the rate-limiting enzyme in melanin synthesis, which is more active at basic pH. We demonstrated that the effect of sAC activity on pH and melanin production in human melanocytes depended on the skin color of the donor. Last, we identified sAC inhibitors as a new class of drugs that increase melanosome pH and pigmentation in vivo, suggesting that pharmacologic inhibition of this pathway may affect skin cancer risk or pigmentation conditions.
Collapse
Affiliation(s)
- Dalee Zhou
- Department of Dermatology, Weill Cornell Medical College, New York, NY 10021, USA
| | - Koji Ota
- Department of Dermatology, Weill Cornell Medical College, New York, NY 10021, USA
| | - Charlee Nardin
- Department of Dermatology, Weill Cornell Medical College, New York, NY 10021, USA.,Service de Dermatologie, Centre Hospitalier Universitaire, Besançon 25030, France
| | - Michelle Feldman
- Department of Dermatology, Weill Cornell Medical College, New York, NY 10021, USA
| | - Adam Widman
- Department of Dermatology, Weill Cornell Medical College, New York, NY 10021, USA
| | - Olivia Wind
- Department of Dermatology, Weill Cornell Medical College, New York, NY 10021, USA
| | - Amanda Simon
- Department of Dermatology, Weill Cornell Medical College, New York, NY 10021, USA
| | - Michael Reilly
- Department of Dermatology, Weill Cornell Medical College, New York, NY 10021, USA
| | - Lonny R Levin
- Department of Pharmacology, Weill Cornell Medical College, New York, NY 10065, USA
| | - Jochen Buck
- Department of Pharmacology, Weill Cornell Medical College, New York, NY 10065, USA
| | - Kazumasa Wakamatsu
- Department of Chemistry, Fujita Health University School of Health Sciences, Toyoake 470-1192, Japan
| | - Shosuke Ito
- Department of Chemistry, Fujita Health University School of Health Sciences, Toyoake 470-1192, Japan
| | - Jonathan H Zippin
- Department of Dermatology, Weill Cornell Medical College, New York, NY 10021, USA.
| |
Collapse
|
45
|
Genome-wide association studies for corneal and refractive astigmatism in UK Biobank demonstrate a shared role for myopia susceptibility loci. Hum Genet 2018; 137:881-896. [PMID: 30306274 PMCID: PMC6267700 DOI: 10.1007/s00439-018-1942-8] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2018] [Accepted: 09/25/2018] [Indexed: 01/08/2023]
Abstract
Previous studies have suggested that naturally occurring genetic variation contributes to the risk of astigmatism. The purpose of this investigation was to identify genetic markers associated with corneal and refractive astigmatism in a large-scale European ancestry cohort (UK Biobank) who underwent keratometry and autorefraction at an assessment centre. Genome-wide association studies for corneal and refractive astigmatism were performed in individuals of European ancestry (N = 86,335 and 88,005 respectively), with the mean corneal astigmatism or refractive astigmatism in fellow eyes analysed as a quantitative trait (dependent variable). Genetic correlation between the two traits was calculated using LD Score regression. Gene-based and gene-set tests were carried out using MAGMA. Single marker-based association tests for corneal astigmatism identified four genome-wide significant loci (P < 5 × 10-8) near the genes ZC3H11B (1q41), LINC00340 (6p22.3), HERC2/OCA2 (15q13.1) and NPLOC4/TSPAN10 (17q25.3). Three of these loci also demonstrated genome-wide significant association with refractive astigmatism: LINC00340, HERC2/OCA2 and NPLOC4/TSPAN10. The genetic correlation between corneal and refractive astigmatism was 0.85 (standard error = 0.068, P = 1.37 × 10-35). Here, we have undertaken the largest genome-wide association studies for corneal and refractive astigmatism to date and identified four novel loci for corneal astigmatism, two of which were also novel loci for refractive astigmatism. These loci have previously demonstrated association with axial length (ZC3H11B), myopia (NPLOC4), spherical equivalent refractive error (LINC00340) and eye colour (HERC2). The shared role of these novel candidate genes for astigmatism lends further support to the shared genetic susceptibility of myopia and astigmatism.
Collapse
|
46
|
The genetic architecture of aniridia and Gillespie syndrome. Hum Genet 2018; 138:881-898. [PMID: 30242502 PMCID: PMC6710220 DOI: 10.1007/s00439-018-1934-8] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2018] [Accepted: 09/06/2018] [Indexed: 12/13/2022]
Abstract
Absence of part or all of the iris, aniridia, is a feature of several genetically distinct conditions. This review focuses on iris development and then the clinical features and molecular genetics of these iris malformations. Classical aniridia, a panocular eye malformation including foveal hypoplasia, is the archetypal phenotype associated with heterozygous PAX6 loss-of-function mutations. Since this was identified in 1991, many genetic mechanisms of PAX6 inactivation have been elucidated, the commonest alleles being intragenic mutations causing premature stop codons, followed by those causing C-terminal extensions. Rarely, aniridia cases are associated with FOXC1, PITX2 and/or their regulatory regions. Aniridia can also occur as a component of many severe global eye malformations. Gillespie syndrome—a triad of partial aniridia, non-progressive cerebellar ataxia and intellectual disability—is phenotypically and genotypically distinct from classical aniridia. The causative gene has recently been identified as ITPR1. The same characteristic Gillespie syndrome-like iris, with aplasia of the pupillary sphincter and a scalloped margin, is seen in ACTA2-related multisystemic smooth muscle dysfunction syndrome. WAGR syndrome (Wilms tumour, aniridia, genitourinary anomalies and mental retardation/intellectual disability), is caused by contiguous deletion of PAX6 and WT1 on chromosome 11p. Deletions encompassing BDNF have been causally implicated in the obesity and intellectual disability associated with the condition. Lastly, we outline a genetic investigation strategy for aniridia in light of recent developments, suggesting an approach based principally on chromosomal array and gene panel testing. This strategy aims to test all known aniridia loci—including the rarer, life-limiting causes—whilst remaining simple and practical.
Collapse
|
47
|
Hashemi H, Pakzad R, Yekta A, Shokrollahzadeh F, Ostadimoghaddam H, Mahboubipour H, Khabazkhoob M. Distribution of iris color and its association with ocular diseases in a rural population of Iran. J Curr Ophthalmol 2018; 31:312-318. [PMID: 31528767 PMCID: PMC6742598 DOI: 10.1016/j.joco.2018.05.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Revised: 04/28/2018] [Accepted: 05/05/2018] [Indexed: 11/23/2022] Open
Abstract
Purpose To determine the distribution of iris color and its relationship with some ocular diseases in a rural population of Iran. Methods Two rural areas of the north and southwest of Iran were selected by a cross-sectional study using multi-stage cluster sampling. After selecting samples, the participants had an eye examination including measuring visual acuity, refraction, and Pentacam imaging. Then an eye examination for individuals was performed by slit-lamp. Results Out of 3851 invited people, 3314 participated in this study (participation rate, 86.05%). Dark brown [41.28%, confidence interval (CI) 95% = 31.88–50.68] and blue (0.99%, CI 95% = 0.57–1.41) were the most and the least type of iris colors among participants of this study. Compared to others, people with a dark iris have the biggest anterior chamber depth (ACD), angle and volume while central corneal thickness (CCT), keratometry and pupil were highest among people with a dark brown iris (P < 0.002). Considering the dark brown group as a base group, the chances of being afflicted to cataract among people with dark, light brown, green, and blue irises are 1.89 (CI 95% = 1.25–2.86), 1.53 (CI 95% = 1.17–2.01), 4.60 (CI 95% = 2.17–9.71), and 12.17 (CI 95% = 5.05–29.31), respectively. The chance of being afflicted to myopia among people with green irises and to hyperopia among people with blue irises were high (1.60, CI 95% = 1.08–2.36 and 3.20, CI 95% = 1.03–9.97, respectively). Conclusions Dark brown was the most prevalent iris color in rural areas of Iran. The index of cornea among people with dark and dark brown iris color is higher than other people, and people with light iris color are at a higher risk of developing eye disease such as cataract, corneal opacity, and refractive error. To determine this relationship and its usage for therapeutic and public health purposes, further studies are recommended.
Collapse
Affiliation(s)
- Hassan Hashemi
- Noor Research Center for Ophthalmic Epidemiology, Noor Eye Hospital, Tehran, Iran.,Noor Ophthalmology Research Center, Noor Eye Hospital, Tehran, Iran
| | - Reza Pakzad
- Noor Research Center for Ophthalmic Epidemiology, Noor Eye Hospital, Tehran, Iran
| | - Abbasali Yekta
- Department of Optometry, School of Paramedical Sciences, Mashhad University of Medical Sciences, Mashhad, Iran
| | | | - Hadi Ostadimoghaddam
- Refractive Errors Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hassan Mahboubipour
- Noor Research Center for Ophthalmic Epidemiology, Noor Eye Hospital, Tehran, Iran
| | - Mehdi Khabazkhoob
- Department of Medical Surgical Nursing, School of Nursing and Midwifery, ShahidBeheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
48
|
Is Eye Color Related to Dental Injection Pain? A Prospective, Randomized, Single-blind Study. J Endod 2018; 44:734-737. [DOI: 10.1016/j.joen.2018.01.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Revised: 01/12/2018] [Accepted: 01/19/2018] [Indexed: 01/20/2023]
|
49
|
Laino AM, Berry EG, Jagirdar K, Lee KJ, Duffy DL, Soyer HP, Sturm RA. Iris pigmented lesions as a marker of cutaneous melanoma risk: an Australian case-control study. Br J Dermatol 2018; 178:1119-1127. [PMID: 29315480 DOI: 10.1111/bjd.16323] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/27/2017] [Indexed: 02/04/2023]
Abstract
BACKGROUND Iris naevi and iris freckles have a frequency of 4% and 50% in the European population, respectively. They are associated with dysplastic naevi, but few studies have examined their link to cutaneous melanoma. OBJECTIVES To assess whether iris pigmented lesions are a predictive indicator for cutaneous melanoma. METHODS This is a melanoma case-control study of 1254 European-background Australians. Sun exposure and melanoma history, a saliva sample for DNA analysis and eye photographs taken with a digital camera were collected from 1117 participants. Iris images were assessed by up to four trained observers for the number of iris pigmented lesions. The data were analysed for correlations between iris pigmented lesions and melanoma history. RESULTS Case participants over the age of 40 had similar numbers of iris pigmented lesions to age matched controls (mean 5·7 vs. 5·2, P = 0·02), but in younger case and control participants there was a greater difference (mean 3·96 vs. 2·19, P = 0·004). A logistic regression adjusted for age, sex, skin, hair and eye colour, skin freckling and naevus count found that the presence of three or more iris pigmented lesions increases the melanoma risk 1·45-fold [95% confidence interval (CI) 1·07-1·95]. HERC2/OCA2 rs12913832 and IRF4 rs12203592 influenced both eye colour and the number of iris pigmented lesions. On the HERC2/OCA2 A/A and A/G genotype background there was an increasing proportion of blue eye colour when carrying the IRF4 T allele (P = 3 × 10-4 ) and a higher number of iris pigmented lesions with the IRF4 T/T homozygote (P = 3 × 10-9 ). CONCLUSIONS Iris pigmented lesion count provides additional predictive information for melanoma risk above that from conventional risk factors.
Collapse
Affiliation(s)
- A M Laino
- Dermatology Research Centre, The University of Queensland, UQ Diamantina Institute, Translational Research Institute, Brisbane, 4102, Australia
| | - E G Berry
- Dermatology Research Centre, The University of Queensland, UQ Diamantina Institute, Translational Research Institute, Brisbane, 4102, Australia.,Department of Dermatology, Emory University School of Medicine, Atlanta, 30309, GA, U.S.A
| | - K Jagirdar
- Dermatology Research Centre, The University of Queensland, UQ Diamantina Institute, Translational Research Institute, Brisbane, 4102, Australia
| | - K J Lee
- Dermatology Research Centre, The University of Queensland, UQ Diamantina Institute, Translational Research Institute, Brisbane, 4102, Australia
| | - D L Duffy
- Dermatology Research Centre, The University of Queensland, UQ Diamantina Institute, Translational Research Institute, Brisbane, 4102, Australia.,QIMR Berghofer Medical Research Institute, Brisbane, 4006, Australia
| | - H P Soyer
- Dermatology Research Centre, The University of Queensland, UQ Diamantina Institute, Translational Research Institute, Brisbane, 4102, Australia.,Department of Dermatology, Princess Alexandra Hospital, Brisbane, 4102, Australia
| | - R A Sturm
- Dermatology Research Centre, The University of Queensland, UQ Diamantina Institute, Translational Research Institute, Brisbane, 4102, Australia
| |
Collapse
|
50
|
Szathmáry EJE, Zegura SL, Hammer MF. Exceeding Hrdlička's aims: 100 Years of genetics in anthropology. AMERICAN JOURNAL OF PHYSICAL ANTHROPOLOGY 2018; 165:754-776. [PMID: 29574830 DOI: 10.1002/ajpa.23406] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Revised: 12/21/2017] [Accepted: 12/21/2017] [Indexed: 11/10/2022]
Affiliation(s)
- Emőke J E Szathmáry
- Department of Anthropology, St. Paul's College, University of Manitoba, 70 Dysart Road, Winnipeg, Manitoba, R3T 2M6, Canada
| | | | | |
Collapse
|