1
|
Dou S, Pan W, Pan X, Li Y, Mao J, Cheng J, Yan X, Wang T, Zhou X, Zhang SY, Zhang G. The organic acid metabolites of Bifidobacterium longum subsp. iuvenis alleviate ultraviolet irradiation-induced photoaging. Microbiol Res 2025; 294:128100. [PMID: 39955985 DOI: 10.1016/j.micres.2025.128100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2024] [Revised: 02/10/2025] [Accepted: 02/12/2025] [Indexed: 02/18/2025]
Abstract
Exploring natural antiphotoaging agents is highly desirable. Bifidobacterium longum subsp. iuvenis (Bl. iuvenis) is a newly identified subspecies found in the intestines of infants, and its functions, components and metabolites have not yet been fully elucidated. Here, we demonstrated that Bl. iuvenis YSG is highly efficient in reducing UVB-induced melanin production in melanocytes. Through differential metabolomics analysis, we identified the metabolites 5-hydroxyindole-2-carboxylic acid and aconitic acid as Bl. iuvenis YSG-specific anti-melanogenic substances. Bl. iuvenis YSG potently inhibited melanogenesis by downregulating melanogenic enzymes and directly acting on tyrosinase active sites. Furthermore, B. longum inhibited ROS generation in keratinocytes through its metabolite glycolic acid, increasing the levels of elastin, collagen III and collagen XVII in fibroblasts. We demonstrated that Bl. iuvenis YSG-derived fermentation components not only reduced the number of sunburn cells in UV-irradiated reconstituted human epidermis but also ameliorated ECM damage and epidermal atrophy in ex vivo human epidermis. Our results suggest that mixed metabolites derived from Bl. iuvenis synergistically contribute to antiphotoaging effects, specifically through the production of specific organic acids. These findings revealed that Bl. iuvenis is a novel potential protective agent for photoaging and provided an in-depth study of the underlying mechanism.
Collapse
Affiliation(s)
- Shuheng Dou
- Department of Microbial and Biochemical Pharmacy, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
| | - Wenchan Pan
- Department of Microbial and Biochemical Pharmacy, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
| | - Xiaoyun Pan
- Department of Microbial and Biochemical Pharmacy, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
| | - Yiqiu Li
- Department of Microbial and Biochemical Pharmacy, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
| | - Jinzhu Mao
- Department of Microbial and Biochemical Pharmacy, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
| | - Jing Cheng
- Yatsen Global Innovation R&D Center, No. 210, Wenshui Road, Shanghai, China
| | - Xiufang Yan
- Yatsen Global Innovation R&D Center, No. 210, Wenshui Road, Shanghai, China
| | - Ting Wang
- Yatsen Global Innovation R&D Center, No. 210, Wenshui Road, Shanghai, China
| | - Xie Zhou
- Department of Microbial and Biochemical Pharmacy, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China.
| | - Sophia Yi Zhang
- Yatsen Global Innovation R&D Center, No. 210, Wenshui Road, Shanghai, China.
| | - Ge Zhang
- Department of Microbial and Biochemical Pharmacy, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China.
| |
Collapse
|
2
|
Zhang ZW, Zhao T, Yang MY, Xia WY, Ben HX, Rejinold NS, Zhang J, Choy JH, Long YZ. Durable fibrous nanohybrid sunscreen films with in-situ fabricated enteromorpha polysaccharides for enhanced UV protection. Int J Biol Macromol 2025; 308:142488. [PMID: 40154693 DOI: 10.1016/j.ijbiomac.2025.142488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Revised: 03/07/2025] [Accepted: 03/23/2025] [Indexed: 04/01/2025]
Abstract
Enteromorpha, a coastal green algae species, contains polysaccharides with excellent water solubility, biocompatibility, and antioxidant properties, making them ideal for skincare applications as natural antioxidant additives. This study introduces a modified electrospinning technique to fabricate fibrous nanohybrid sunscreen films incorporating Enteromorpha polysaccharides (EPPs) integrated with polyvinyl butyral (PVB) and titanium oxide (TiO2). The resulting film harnesses EPPs' antioxidant capabilities to protect skin from free radicals generated by TiO2 photocatalysis, while the PVB matrix and electrospun fibers provide water resistance and breathability. The nanohybrid film demonstrated remarkable photostability, maintaining its UV-blocking efficiency even after exposure to 365 nm UV radiation. Additionally, water immersion reduced its UV-blocking rate by only 2 %, confirming its strong water stability. Microscopic analysis showed no residual traces on porcine skin, effectively addressing concerns of pore-clogging and skin irritation often associated with traditional sunscreens.
Collapse
Affiliation(s)
- Zhi-Wei Zhang
- Shandong Key Laboratory of Medical and Health Textile Materials, State Key Laboratory of Bio-Fibers and Eco-Textiles, College of Physics, Qingdao University, Qingdao 266071, China
| | - Tao Zhao
- Shandong Key Laboratory of Medical and Health Textile Materials, State Key Laboratory of Bio-Fibers and Eco-Textiles, College of Physics, Qingdao University, Qingdao 266071, China; College of Textiles and Clothing, Qingdao University, Qingdao 266071, China.
| | - Ming-Yang Yang
- Shandong Key Laboratory of Medical and Health Textile Materials, State Key Laboratory of Bio-Fibers and Eco-Textiles, College of Physics, Qingdao University, Qingdao 266071, China
| | - Wen-Ying Xia
- College of Textiles and Clothing, Qingdao University, Qingdao 266071, China
| | - Hao-Xi Ben
- Shandong Key Laboratory of Medical and Health Textile Materials, State Key Laboratory of Bio-Fibers and Eco-Textiles, College of Physics, Qingdao University, Qingdao 266071, China; College of Textiles and Clothing, Qingdao University, Qingdao 266071, China
| | - N Sanoj Rejinold
- Department of Chemistry, College of Science and Technology, Dankook University, 31116, Republic of Korea
| | - Jun Zhang
- Shandong Key Laboratory of Medical and Health Textile Materials, State Key Laboratory of Bio-Fibers and Eco-Textiles, College of Physics, Qingdao University, Qingdao 266071, China
| | - Jin-Ho Choy
- Intelligent Nanohybrid Materials Laboratory (INML), College of Medicine, Dankook University, 31116, Republic of Korea.
| | - Yun-Ze Long
- Shandong Key Laboratory of Medical and Health Textile Materials, State Key Laboratory of Bio-Fibers and Eco-Textiles, College of Physics, Qingdao University, Qingdao 266071, China.
| |
Collapse
|
3
|
Zhang X, Wen X, Wang Y, Jiang F, Chen Y, Liu Z. Sunscreen Formula of FeO(OH)·H 2O/TiO 2 With Spectral Selectivity to Enhance Collagen Biosynthesis via Fibroblast Test. J Cosmet Dermatol 2025; 24:e70060. [PMID: 39943893 PMCID: PMC11822414 DOI: 10.1111/jocd.70060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 02/04/2025] [Accepted: 02/04/2025] [Indexed: 02/16/2025]
Abstract
OBJECTIVE To develop a sunscreen formula with spectral selectivity that filters harmful light (280-550 nm) while allowing beneficial light (550-760 nm) to permeate and thus to boost collagen generation. METHODS A variety of sunscreen filters and their combinations were tested for transmittance spectrum. The spectral selectivity was quantified by Selection Index (SI), and the optimal formula was identified. Then, human dermal fibroblasts (HDFs) were subjected to simulated sunlight exposure with the application of this formula. The cell viability and collagen levels were measured post-exposure. RESULTS The combination of TiO2 and FeO(OH)·H2O displays spectral selectivity and reaches the optimal SI value at the mixing ratio of 64:36. This mixture, when formulated with traditional UV filters, significantly elevates the level of Collagen I. CONCLUSION This work uncovers the influence of spectral selectivity on the enhancement of sunscreen performance and proposes a filter combination with spectral selectivity. This formula, when integrated with conventional UV sunscreens, allows for the beneficial effects of sunlight to be more pronounced. This discovery may provide fresh insights for the design of future sunscreen products.
Collapse
Affiliation(s)
- Xun Zhang
- Bloomage Biotech Co. Ltd.JinanShandongChina
| | - Ximing Wen
- Bloomage Biotech Co. Ltd.JinanShandongChina
| | | | | | | | - Zhe Liu
- Bloomage Biotech Co. Ltd.JinanShandongChina
| |
Collapse
|
4
|
Yang Y, Wu Y, Xiang L, Picardo M, Zhang C. Deciphering the role of skin aging in pigmentary disorders. Free Radic Biol Med 2025; 227:638-655. [PMID: 39674424 DOI: 10.1016/j.freeradbiomed.2024.12.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 12/08/2024] [Accepted: 12/11/2024] [Indexed: 12/16/2024]
Abstract
Skin aging is a complex biological process involving intrinsic and extrinsic factors. Skin aging contains alterations at the tissue, cellular, and molecular levels. Currently, there is increasing evidence that skin aging occurs not only in time-dependent chronological aging but also plays a role in skin pigmentary disorders. This review provides an in-depth analysis of the impact of skin aging on different types of pigmentary disorders, including both hyperpigmentation disorders such as melasma and senile lentigo and hypopigmentation disorders such as vitiligo, idiopathic guttate hypomelanosis and graying of hair. In addition, we explore the mechanisms of skin aging on pigmentation regulation and suggest several potential therapeutic approaches for skin aging and aging-related pigmentary disorders.
Collapse
Affiliation(s)
- Yiwen Yang
- Department of Dermatology, Huashan Hospital, Fudan University, No.12 Wulumuqi Zhong Road, Shanghai 200040, PR China
| | - Yue Wu
- Department of Dermatology, Huashan Hospital, Fudan University, No.12 Wulumuqi Zhong Road, Shanghai 200040, PR China
| | - Leihong Xiang
- Department of Dermatology, Huashan Hospital, Fudan University, No.12 Wulumuqi Zhong Road, Shanghai 200040, PR China
| | - Mauro Picardo
- Istituto Dermopatico Immacolata, IDI-RCCS, Rome, Italy.
| | - Chengfeng Zhang
- Department of Dermatology, Huashan Hospital, Fudan University, No.12 Wulumuqi Zhong Road, Shanghai 200040, PR China.
| |
Collapse
|
5
|
Sharma K, Dixon KM, Münch G, Chang D, Zhou X. Ultraviolet and infrared radiation in Australia: assessing the benefits, risks, and optimal exposure guidelines. Front Public Health 2024; 12:1505904. [PMID: 39744344 PMCID: PMC11688272 DOI: 10.3389/fpubh.2024.1505904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Accepted: 12/04/2024] [Indexed: 01/11/2025] Open
Abstract
Despite extensive research, determining the optimal level of sunlight exposure for human health remains a challenge, emphasizing the need for ongoing scientific inquiry into this critical aspect of human well-being. This review aims to elucidate how different components of the solar spectrum, particularly near-infrared (NIR) radiation and ultraviolet radiation (UVR) affect human health in diverse ways depending on factors such as time of day and duration of exposure. Sunlight has beneficial effects from the production of melatonin by NIR and vitamin D by UVB. Sunlight also causes harmful effects as evidenced by oxidative stress and DNA damage. Exposure to morning and evening sunlight when the UV index is below 3 is suggested to be beneficial for harnessing its positive effects while avoiding the harmful effects of UVR when the UV index is 3 or higher. Understanding the optimal timing and duration of sunlight exposure is crucial for harnessing its beneficial effects while minimizing its harmful consequences by adopting appropriate sun protection measures. By adhering to sun protection guidelines when the UV index is 3 or more and incorporating strategic exposure to NIR rays when the UV index is less than 3, individuals can optimize their health outcomes while mitigating the risks associated with sun exposure. Given that the effects of sun exposure can be both harmful and beneficial, and Australia's unique geographical position where it experiences the highest levels of exposure to sunlight, it is vital to understand the appropriate level and timing of sun exposure to live healthy under the Australian sun.
Collapse
Affiliation(s)
- Kirti Sharma
- NICM Health Research Institute, Western Sydney University, Westmead, NSW, Australia
| | - Katie M. Dixon
- School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW, Australia
| | - Gerald Münch
- NICM Health Research Institute, Western Sydney University, Westmead, NSW, Australia
- Pharmacology Unit, School of Medicine, Western Sydney University, Campbelltown Campus, Sydney, NSW, Australia
| | - Dennis Chang
- NICM Health Research Institute, Western Sydney University, Westmead, NSW, Australia
| | - Xian Zhou
- NICM Health Research Institute, Western Sydney University, Westmead, NSW, Australia
| |
Collapse
|
6
|
Qutob SS, Roesch SPM, Smiley S, Bellier P, Williams A, Cook KB, Meier MJ, Rowan-Carroll A, Yauk CL, McNamee JP. Transcriptome analysis in mouse skin after exposure to ultraviolet radiation from a canopy sunbed. Photochem Photobiol 2024; 100:1378-1398. [PMID: 38317517 DOI: 10.1111/php.13917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 01/17/2024] [Accepted: 01/24/2024] [Indexed: 02/07/2024]
Abstract
Exposure to ultraviolet radiation (UV-R), from both natural and artificial tanning, heightens the risk of skin cancer by inducing molecular changes in cells and tissues. Despite established transcriptional alterations at a molecular level due to UV-R exposure, uncertainties persist regarding UV radiation characterization and subsequent genomic changes. Our study aimed to mechanistically explore dose- and time-dependent gene expression changes, that may drive short-term (e.g., sunburn) and long-term actinic (e.g., skin cancer) consequences. Using C57BL/6N mouse skin, we analyzed transcriptomic expression following exposure to five erythemally weighted UV-R doses (0, 5, 10, 20, and 40 mJ/cm2) emitted by a UV-R tanning device. At 96 h post-exposure, 5 mJ/cm2 induced 116 statistically significant differentially expressed genes (DEGs) associated with structural changes from UV-R damage. The highest number of significant gene expression changes occurred at 6 and 48 h post-exposure in the 20 and 40 mJ/cm2 dose groups. Notably, at 40 mJ/cm2, 13 DEGs related to skin barrier homeostasis were consistently perturbed across all timepoints. UV-R exposure activated pathways involving oxidative stress, P53 signaling, inflammation, biotransformation, skin barrier maintenance, and innate immunity. This in vivo study's transcriptional data offers mechanistic insights into both short-term and potential non-threshold-dependent long-term health effects of UV-R tanning.
Collapse
Affiliation(s)
- Sami S Qutob
- Consumer and Clinical Radiation Protection Bureau, Health Canada, Ottawa, Ontario, Canada
| | - Samantha P M Roesch
- Consumer and Clinical Radiation Protection Bureau, Health Canada, Ottawa, Ontario, Canada
| | - Sandy Smiley
- Consumer and Clinical Radiation Protection Bureau, Health Canada, Ottawa, Ontario, Canada
| | - Pascale Bellier
- Consumer and Clinical Radiation Protection Bureau, Health Canada, Ottawa, Ontario, Canada
| | - Andrew Williams
- Environmental Health Science and Research Bureau, Health Canada, Ottawa, Ontario, Canada
| | - Kate B Cook
- Environmental Health Science and Research Bureau, Health Canada, Ottawa, Ontario, Canada
| | - Matthew J Meier
- Environmental Health Science and Research Bureau, Health Canada, Ottawa, Ontario, Canada
| | - Andrea Rowan-Carroll
- Environmental Health Science and Research Bureau, Health Canada, Ottawa, Ontario, Canada
| | - Carole L Yauk
- Department of Biology, University of Ottawa, Ottawa, Ontario, Canada
| | - James P McNamee
- Consumer and Clinical Radiation Protection Bureau, Health Canada, Ottawa, Ontario, Canada
| |
Collapse
|
7
|
de Dormael R, Sextius P, Bourokba N, Mainguene E, Tachon R, Gaurav K, Jouni H, Bastien P, Diridollou S. 2-Mercaptonicotinoyl glycine prevents UV-induced skin darkening and delayed tanning in healthy subjects: A randomized controlled clinical study. J Cosmet Dermatol 2024; 23:1745-1752. [PMID: 38372022 DOI: 10.1111/jocd.16200] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 12/22/2023] [Accepted: 01/17/2024] [Indexed: 02/20/2024]
Abstract
BACKGROUND Chronic nonextreme sun exposure induces two mechanisms of skin pigmentation, causing immediate darkening and delayed tanning. A new molecule, 2-mercaptonicotinoyl glycine (2-MNG), has been shown in vitro to inhibit both immediate darkening and new melanin synthesis via covalent conjugation of the thiol group of 2-MNG to melanin precursors. OBJECTIVE To evaluate 2-MNG in preventing both mechanisms in vivo. METHODS In a randomized, intra-individual and controlled study, 33 subjects with melanin-rich skin were exposed to UV daylight on designated areas on the back and treated with a cosmetic formula containing 0.5% or 1% 2-MNG alone or 0.5% 2-MNG in association with lipohydroxy acid (LHA, 0.3%) plus Mexoryl-SX (MSX, 1.5%). The respective vehicles were used as controls and 4-n-butyl-resorcinol (4-n-BR, 2.5%) as a positive reference. RESULTS 2-MNG alone significantly reduced immediate darkening and inhibited new melanin production when compared with vehicle, with higher performance at 1% than at 0.5%. 2-MNG at 0.5% in association with LHA and MSX showed significantly higher performance than 2-MNG 0.5% alone. 2-MNG at 0.5% and 1% showed significantly better performance than 4-n-BR. CONCLUSIONS 2-MNG inhibited both UV-induced skin pigmentation mechanisms in vivo. The association of 2-MNG with LHA plus MSX showed the highest efficacy on melanin-rich skin with pigmentation induced by UV exposure.
Collapse
Affiliation(s)
| | - P Sextius
- L'Oréal Research and Innovation, France
| | | | - E Mainguene
- L'Oréal Research and Innovation, Shanghai, China
| | - R Tachon
- L'Oréal Research and Innovation, Sakado, Takatsu-ku Kawasaki, Japan
| | - K Gaurav
- L'Oréal Research and Innovation, Chembur, Mumbai, India
| | - H Jouni
- L'Oréal Research and Innovation, France
| | - P Bastien
- L'Oréal Research and Innovation, France
| | | |
Collapse
|
8
|
Rydz E, Telfer J, Quinn EK, Fazel SS, Holmes E, Pennycook G, Peters CE. Canadians' knowledge of cancer risk factors and belief in cancer myths. BMC Public Health 2024; 24:329. [PMID: 38291409 PMCID: PMC10829248 DOI: 10.1186/s12889-024-17832-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 01/20/2024] [Indexed: 02/01/2024] Open
Abstract
BACKGROUND Many untrue statements about cancer prevention and risks are circulating. The objective of this study was to assess Canadians' awareness of known cancer risk factors and cancer myths (untruths or statements that are not completely true), and to explore how awareness may vary by sociodemographic and cognitive factors. METHODS Cancer myths were identified by conducting scans of published, grey literature, and social media. Intuitive-analytic thinking disposition scores included were actively open- and close-minded thinking, as well as preference for intuitive and effortful thinking. A survey was administered online to participants aged 18 years and older through Prolific. Results were summarized descriptively and analyzed using chi-square tests, as well as Spearman rank and Pearson correlations. RESULTS Responses from 734 Canadians were received. Participants were better at identifying known cancer risk factors (70% of known risks) compared to cancer myths (49%). Bivariate analyses showed differential awareness of known cancer risk factors (p < 0.05) by population density and income, cancer myths by province, and for both by ethnicity, age, and all thinking disposition scores. Active open-minded thinking and preference for effortful thinking were associated with greater discernment. Tobacco-related risk factors were well-identified (> 90% correctly identified), but recognition of other known risk factors was poor (as low as 23% for low vegetable and fruit intake). Mythical cancer risk factors with high support were consuming additives (61%), feeling stressed (52%), and consuming artificial sweeteners (49%). High uncertainty of causation was observed for glyphosate (66% neither agreed or disagreed). For factors that reduce cancer risk, reasonable awareness was observed for HPV vaccination (60%), but there was a high prevalence in cancer myths, particularly that consuming antioxidants (65%) and organic foods (45%) are protective, and some uncertainty whether drinking red wine (41%), consuming vitamins (32%), and smoking cannabis (30%) reduces cancer risk. CONCLUSIONS While Canadians were able to identify tobacco-related cancer risk factors, many myths were believed and numerous risk factors were not recognized. Cancer myths can be harmful in themselves and can detract the public's attention from and action on established risk factors.
Collapse
Affiliation(s)
- E Rydz
- School of Population and Public Health, CAREX Canada, University of British Columbia, Vancouver, Canada
- Department of Oncology, Cumming School of Medicine, University of Calgary, Calgary, Canada
| | - J Telfer
- School of Population and Public Health, CAREX Canada, University of British Columbia, Vancouver, Canada
| | - E K Quinn
- School of Population and Public Health, CAREX Canada, University of British Columbia, Vancouver, Canada
- Department of Oncology, Cumming School of Medicine, University of Calgary, Calgary, Canada
| | - S S Fazel
- Department of Oncology, Cumming School of Medicine, University of Calgary, Calgary, Canada
| | - E Holmes
- Canadian Cancer Society, Toronto, Canada
| | - G Pennycook
- Department of Psychology, Cornell University, New York, USA
| | - C E Peters
- School of Population and Public Health, CAREX Canada, University of British Columbia, Vancouver, Canada.
- Department of Oncology, Cumming School of Medicine, University of Calgary, Calgary, Canada.
- BC Centre for Disease Control, Vancouver, BC, Canada.
- BC Cancer, Vancouver, BC, Canada.
| |
Collapse
|
9
|
Roy T, Boateng ST, Uddin MB, Banang-Mbeumi S, Yadav RK, Bock CR, Folahan JT, Siwe-Noundou X, Walker AL, King JA, Buerger C, Huang S, Chamcheu JC. The PI3K-Akt-mTOR and Associated Signaling Pathways as Molecular Drivers of Immune-Mediated Inflammatory Skin Diseases: Update on Therapeutic Strategy Using Natural and Synthetic Compounds. Cells 2023; 12:1671. [PMID: 37371141 PMCID: PMC10297376 DOI: 10.3390/cells12121671] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 06/10/2023] [Accepted: 06/12/2023] [Indexed: 06/29/2023] Open
Abstract
The dysregulated phosphatidylinositol-3-kinase (PI3K)-Akt-mammalian target of rapamycin (mTOR) signaling pathway has been implicated in various immune-mediated inflammatory and hyperproliferative dermatoses such as acne, atopic dermatitis, alopecia, psoriasis, wounds, and vitiligo, and is associated with poor treatment outcomes. Improved comprehension of the consequences of the dysregulated PI3K/Akt/mTOR pathway in patients with inflammatory dermatoses has resulted in the development of novel therapeutic approaches. Nonetheless, more studies are necessary to validate the regulatory role of this pathway and to create more effective preventive and treatment methods for a wide range of inflammatory skin diseases. Several studies have revealed that certain natural products and synthetic compounds can obstruct the expression/activity of PI3K/Akt/mTOR, underscoring their potential in managing common and persistent skin inflammatory disorders. This review summarizes recent advances in understanding the role of the activated PI3K/Akt/mTOR pathway and associated components in immune-mediated inflammatory dermatoses and discusses the potential of bioactive natural products, synthetic scaffolds, and biologic agents in their prevention and treatment. However, further research is necessary to validate the regulatory role of this pathway and develop more effective therapies for inflammatory skin disorders.
Collapse
Affiliation(s)
- Tithi Roy
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana at Monroe, Monroe, LA 71209, USA; (T.R.); (S.T.B.); (S.B.-M.); (R.K.Y.); (C.R.B.); (J.T.F.); (A.L.W.)
| | - Samuel T. Boateng
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana at Monroe, Monroe, LA 71209, USA; (T.R.); (S.T.B.); (S.B.-M.); (R.K.Y.); (C.R.B.); (J.T.F.); (A.L.W.)
| | - Mohammad B. Uddin
- Department of Toxicology and Cancer Biology, Center for Research on Environmental Diseases, College of Medicine, University of Kentucky, Lexington, KY 40536, USA;
| | - Sergette Banang-Mbeumi
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana at Monroe, Monroe, LA 71209, USA; (T.R.); (S.T.B.); (S.B.-M.); (R.K.Y.); (C.R.B.); (J.T.F.); (A.L.W.)
- Division for Research and Innovation, POHOFI Inc., Madison, WI 53744, USA
- School of Nursing and Allied Health Sciences, Louisiana Delta Community College, Monroe, LA 71203, USA
| | - Rajesh K. Yadav
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana at Monroe, Monroe, LA 71209, USA; (T.R.); (S.T.B.); (S.B.-M.); (R.K.Y.); (C.R.B.); (J.T.F.); (A.L.W.)
| | - Chelsea R. Bock
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana at Monroe, Monroe, LA 71209, USA; (T.R.); (S.T.B.); (S.B.-M.); (R.K.Y.); (C.R.B.); (J.T.F.); (A.L.W.)
| | - Joy T. Folahan
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana at Monroe, Monroe, LA 71209, USA; (T.R.); (S.T.B.); (S.B.-M.); (R.K.Y.); (C.R.B.); (J.T.F.); (A.L.W.)
| | - Xavier Siwe-Noundou
- Department of Pharmaceutical Sciences, School of Pharmacy, Sefako Makgatho Health Sciences University, P.O. Box 218, Pretoria 0208, South Africa;
| | - Anthony L. Walker
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana at Monroe, Monroe, LA 71209, USA; (T.R.); (S.T.B.); (S.B.-M.); (R.K.Y.); (C.R.B.); (J.T.F.); (A.L.W.)
| | - Judy A. King
- Department of Pathology and Translational Pathobiology, LSU Health Shreveport, 1501 Kings Highway, Shreveport, LA 71103, USA;
- College of Medicine, Belmont University, 900 Belmont Boulevard, Nashville, TN 37212, USA
| | - Claudia Buerger
- Department of Dermatology, Venerology and Allergology, Clinic of the Goethe University, 60590 Frankfurt am Main, Germany;
| | - Shile Huang
- Department of Biochemistry and Molecular Biology, Louisiana State University Health Sciences Center, 1501 Kings Highway, Shreveport, LA 71130, USA;
- Department of Hematology and Oncology, Louisiana State University Health Sciences Center, 1501 Kings Highway, Shreveport, LA 71130, USA
- Feist-Weiller Cancer Center, Louisiana State University Health Sciences Center, Shreveport, LA 71130, USA
| | - Jean Christopher Chamcheu
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana at Monroe, Monroe, LA 71209, USA; (T.R.); (S.T.B.); (S.B.-M.); (R.K.Y.); (C.R.B.); (J.T.F.); (A.L.W.)
- Department of Pathology and Translational Pathobiology, LSU Health Shreveport, 1501 Kings Highway, Shreveport, LA 71103, USA;
| |
Collapse
|
10
|
Kim DH, Shin DW, Lim BO. Fermented Aronia melanocarpa Inhibits Melanogenesis through Dual Mechanisms of the PI3K/AKT/GSK-3β and PKA/CREB Pathways. Molecules 2023; 28:molecules28072981. [PMID: 37049743 PMCID: PMC10095632 DOI: 10.3390/molecules28072981] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 03/20/2023] [Accepted: 03/20/2023] [Indexed: 03/29/2023] Open
Abstract
UV light causes excessive oxidative stress and abnormal melanin synthesis, which results in skin hyperpigmentation disorders such as freckles, sunspots, and age spots. Much research has been carried out to discover natural plants for ameliorating these disorders. Aronia melanocarpa contains various polyphenolic compounds with antioxidative activities, but its effects on melanogenesis have not been fully elucidated. In this study, we investigated the inhibitory effect of fermented Aronia melanocarpa (FA) fermented with Monascus purpureus on melanogenesis and its underlying mechanism in the B16F10 melanoma cell line. Our results indicate that FA inhibited tyrosinase activity and melanogenesis in alpha-melanocyte-stimulating hormone (α-MSH)-induced B16F10 cells. FA significantly downregulated the PKA/CREB pathway, resulting in decreased protein levels of tyrosinase, TRP-1, and MITF. FA also inhibited the transcription of MITF by increasing the phosphorylation levels of both GSK3β and AKT. Interestingly, we demonstrated that these results were owing to the significant increase in gallic acid, a phenolic compound of Aronia melanocarpa produced after the fermentation of Monascus purpureus. Taken together, our research suggests that Aronia melanocarpa fermented with Monascus purpureus acts as a melanin inhibitor and can be used as a potential cosmetic or therapeutic for improving hyperpigmentation disorders.
Collapse
Affiliation(s)
- Da Hee Kim
- Department of Applied Life Science, Graduate School, BK21 Program, Konkuk University, Chungju 27478, Republic of Korea
| | - Dong Wook Shin
- College of Biomedical and Health Science, Konkuk University, Chungju 27478, Republic of Korea
- Correspondence: (D.W.S.); (B.O.L.); Tel.: +82-43-840-3693 (D.W.S.); +82-43-840-3570 (B.O.L.)
| | - Beong Ou Lim
- Department of Applied Life Science, Graduate School, BK21 Program, Konkuk University, Chungju 27478, Republic of Korea
- Correspondence: (D.W.S.); (B.O.L.); Tel.: +82-43-840-3693 (D.W.S.); +82-43-840-3570 (B.O.L.)
| |
Collapse
|
11
|
Jindal M, Kaur M, Nagpal M, Singh M, Aggarwal G, Dhingra GA. Skin Cancer Management: Current Scenario And Future Perspectives. Curr Drug Saf 2023; 18:143-158. [PMID: 35422227 DOI: 10.2174/1574886317666220413113959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 12/04/2021] [Accepted: 01/16/2022] [Indexed: 11/22/2022]
Abstract
Skin cancer is a life-threatening disease and has caused significant loss to human health across the globe. Its prevalence has been increasing every year and is one of the common malignancies in the case of organ transplant recipients, of which 95% constitute basal cell and squamous cell carcinomas. The prime factor causing skin cancer is UV radiation. Around the 20th century, sunlight was the primary cause of skin cancer. A novel hypothesis by US scientists stated that cutaneous melanoma was mainly due to recurrent exposure to the sun, whereas keratinocyte cancer occurred due to progressive accumulation of sun exposure. Management of skin cancer is done via various approaches, including cryotherapy, radiotherapy, and photodynamic therapy. Post-discovery of X-rays, radiotherapy has proven to treat skin cancers to some extent, but the indications are uncertain since it depends upon the type of tumour and surgical treatment required for the patient. Due to various limitations of skin cancer treatment and increased severity, there is a requirement for cost-effective, novel, and efficient treatment. Various nanocarriers such as SLNs, magnetic nanoparticles, gold nanoparticles, carbon nanotubes, etc., are the potential carriers in the management and prognosis of both non-melanoma and melanoma skin cancer. Various research and review databases and patent reports have been studied, and information compiled to extract the results. The review also discusses the role of various nanocarriers in treating and diagnosing skin cancer.
Collapse
Affiliation(s)
- Mehak Jindal
- Chitkara College of Pharmacy, Chitkara University, Chandigarh-Patiala National Highway, Rajpura, India
| | - Malkiet Kaur
- Chitkara College of Pharmacy, Chitkara University, Chandigarh-Patiala National Highway, Rajpura, India
| | - Manju Nagpal
- Chitkara College of Pharmacy, Chitkara University
| | - Manjinder Singh
- Chitkara College of Pharmacy, Chitkara University, Chandigarh-Patiala National Highway, Rajpura, India
| | - Geeta Aggarwal
- Delhi Pharmaceutical Sciences and Research University, Pushp Vihar, Sector-3 MB Road, New Delhi 110017, India
| | | |
Collapse
|
12
|
Abstract
The incidence of cutaneous melanoma has been increasing worldwide, and melanoma disproportionately contributes to skin cancer mortality. The pathogenesis of melanoma involves genetic and environmental factors, and while the effects of ultraviolet B radiation on melanoma development are well researched, fewer studies have investigated the role of ultraviolet A (UVA) radiation. We comprehensively reviewed cell, animal and epidemiology studies on the association between UVA exposure and melanomagenesis. UVA radiation has been found to have negative effects on melanocytes due to the induction of oxidative stress, dysregulation of gene transcription and creation of mutagenic photoproducts in DNA. Animal studies demonstrate adverse effects of UVA on melanocytes, including the development of melanoma. Epidemiology studies, of varying quality, that examined participants' exposure to tanning devices which use UVA radiation primarily found that UVA exposure increased the risk for melanoma. Some studies reported larger associations with increased frequency of device use, suggestive of a dose-response relationship. Overall, we found that many studies supported a positive association between UVA exposure and melanoma on both molecular and population levels. Understanding the role of UVA in the development of melanoma will inform the implementation of preventive health interventions, such as those related to sunscreen development and use and increasing restrictions on indoor tanning.
Collapse
Affiliation(s)
- Raj P Fadadu
- Department of Dermatology, University of California
- Dermatology Service, San Francisco Veterans Affairs Health Care Center, San Francisco, California, USA
| | - Maria L Wei
- Department of Dermatology, University of California
- Dermatology Service, San Francisco Veterans Affairs Health Care Center, San Francisco, California, USA
| |
Collapse
|
13
|
Wilkinson EL, Ashton L, Kerns JG, Allinson SL, Mort RL. Fingerprinting of skin cells by live cell Raman spectroscopy reveals melanoma cell heterogeneity and cell-type-specific responses to UVR. Exp Dermatol 2022; 31:1543-1553. [PMID: 35700136 PMCID: PMC9796253 DOI: 10.1111/exd.14625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 05/26/2022] [Accepted: 06/09/2022] [Indexed: 01/01/2023]
Abstract
Raman spectroscopy is an emerging dermatological technique with the potential to discriminate biochemically between cell types in a label-free and non-invasive manner. Here, we use live single-cell Raman spectroscopy and principal component analysis (PCA) to fingerprint mouse melanoblasts, melanocytes, keratinocytes and melanoma cells. We show the differences in their spectra are attributable to biomarkers in the melanin biosynthesis pathway and that melanoma cells are a heterogeneous population that sit on a trajectory between undifferentiated melanoblasts and differentiated melanocytes. We demonstrate the utility of Raman spectroscopy as a highly sensitive tool to probe the melanin biosynthesis pathway and its immediate response to ultraviolet (UV) irradiation revealing previously undescribed opposing responses to UVA and UVB irradiation in melanocytes. Finally, we identify melanocyte-specific accumulation of β-carotene correlated with a stabilisation of the UVR response in lipids and proteins consistent with a β-carotene-mediated photoprotective mechanism. In summary, our data show that Raman spectroscopy can be used to determine the differentiation status of cells of the melanocyte lineage and describe the immediate and temporal biochemical changes associated with UV exposure which differ depending on cell type, differentiation status and competence to synthesise melanin. Our work uniquely applies Raman spectroscopy to discriminate between cell types by biological function and differentiation status while they are growing in culture. In doing so, we demonstrate for the first time its utility as a tool with which to probe the melanin biosynthesis pathway.
Collapse
Affiliation(s)
- Emma L. Wilkinson
- Division of Biomedical and Life Sciences, Faculty of Health and MedicineLancaster UniversityLancasterUK
| | - Lorna Ashton
- Department of ChemistryLancaster UniversityLancasterUK
| | - Jemma G. Kerns
- Lancaster Medical School, Faculty of Health and MedicineLancaster UniversityLancasterUK
| | - Sarah L. Allinson
- Division of Biomedical and Life Sciences, Faculty of Health and MedicineLancaster UniversityLancasterUK
| | - Richard L. Mort
- Division of Biomedical and Life Sciences, Faculty of Health and MedicineLancaster UniversityLancasterUK
| |
Collapse
|
14
|
Bernerd F, Passeron T, Castiel I, Marionnet C. The Damaging Effects of Long UVA (UVA1) Rays: A Major Challenge to Preserve Skin Health and Integrity. Int J Mol Sci 2022; 23:ijms23158243. [PMID: 35897826 PMCID: PMC9368482 DOI: 10.3390/ijms23158243] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 07/21/2022] [Accepted: 07/25/2022] [Indexed: 02/04/2023] Open
Abstract
Within solar ultraviolet (UV) light, the longest UVA1 wavelengths, with significant and relatively constant levels all year round and large penetration properties, produce effects in all cutaneous layers. Their effects, mediated by numerous endogenous chromophores, primarily involve the generation of reactive oxygen species (ROS). The resulting oxidative stress is the major mode of action of UVA1, responsible for lipid peroxidation, protein carbonylation, DNA lesions and subsequent intracellular signaling cascades. These molecular changes lead to mutations, apoptosis, dermis remodeling, inflammatory reactions and abnormal immune responses. The altered biological functions contribute to clinical consequences such as hyperpigmentation, inflammation, photoimmunosuppression, sun allergies, photoaging and photocancers. Such harmful impacts have also been reported after the use of UVA1 phototherapy or tanning beds. Furthermore, other external aggressors, such as pollutants and visible light (Vis), were shown to induce independent, cumulative and synergistic effects with UVA1 rays. In this review, we synthetize the biological and clinical effects of UVA1 and the complementary effects of UVA1 with pollutants or Vis. The identified deleterious biological impact of UVA1 contributing to clinical consequences, combined with the predominance of UVA1 rays in solar UV radiation, constitute a solid rational for the need for a broad photoprotection, including UVA1 up to 400 nm.
Collapse
Affiliation(s)
- Françoise Bernerd
- L’Oréal Research and Innovation, 1 Avenue Eugène Schueller, 93600 Aulnay sous Bois, France;
- Correspondence: ; Tel.: +33-(0)1-48-68-95-95
| | - Thierry Passeron
- Department of Dermatology, CHU Nice, University Côte d’Azur, 151, Route de Ginestière, 06200 Nice, France;
- Research Center C3M, INSERM Unit 1065, University Côte d’Azur, 06200 Nice, France
| | - Isabelle Castiel
- L’Oréal Research and Innovation, 3 Rue Dora Maar, 93400 Saint-Ouen, France;
| | - Claire Marionnet
- L’Oréal Research and Innovation, 1 Avenue Eugène Schueller, 93600 Aulnay sous Bois, France;
| |
Collapse
|
15
|
The Double-Edged Sword of Oxidative Stress in Skin Damage and Melanoma: From Physiopathology to Therapeutical Approaches. Antioxidants (Basel) 2022; 11:antiox11040612. [PMID: 35453297 PMCID: PMC9027913 DOI: 10.3390/antiox11040612] [Citation(s) in RCA: 63] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 03/15/2022] [Accepted: 03/21/2022] [Indexed: 02/06/2023] Open
Abstract
The skin is constantly exposed to exogenous and endogenous sources of reactive oxygen species (ROS). An adequate balance between ROS levels and antioxidant defenses is necessary for the optimal cell and tissue functions, especially for the skin, since it must face additional ROS sources that do not affect other tissues, including UV radiation. Melanocytes are more exposed to oxidative stress than other cells, also due to the melanin production process, which itself contributes to generating ROS. There is an increasing amount of evidence that oxidative stress may play a role in many skin diseases, including melanoma, being the primary cause or being a cofactor that aggravates the primary condition. Indeed, oxidative stress is emerging as another major force involved in all the phases of melanoma development, not only in the arising of the malignancy but also in the progression toward the metastatic phenotype. Furthermore, oxidative stress seems to play a role also in chemoresistance and thus has become a target for therapy. In this review, we discuss the existing knowledge on oxidative stress in the skin, examining sources and defenses, giving particular consideration to melanocytes. Therefore, we focus on the significance of oxidative stress in melanoma, thus analyzing the possibility to exploit the induction of oxidative stress as a therapeutic strategy to improve the effectiveness of therapeutic management of melanoma.
Collapse
|
16
|
Wang Z, Lu F, Li X, Guo Y, Li J, He L. Chinese women with melasma exhibit a low minimal erythema dose to both UVA and UVB. PHOTODERMATOLOGY, PHOTOIMMUNOLOGY & PHOTOMEDICINE 2022; 38:38-43. [PMID: 34171129 DOI: 10.1111/phpp.12713] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 06/11/2021] [Accepted: 06/19/2021] [Indexed: 12/18/2022]
Abstract
BACKGROUND Melasma is a common disorder manifested by symmetric hyperpigmentation of sun-exposed skin. Although ultraviolet (UV) radiation is a known risk factor of melasma, whether skin sensitivities to UVA and/or UVB differ between healthy controls and female patients with melasma is unknown. METHODS Minimal erythema dose (MED)-UVA and MED-UVB results were compared between female patients with melasma and healthy controls. Additionally, relationships between MED values and Melasma Area and Severity Index (MASI) scores, and skin color were assessed. RESULTS The melasma and control groups included 142 and 137 subjects, respectively. Compared with healthy control group, our melasma group had lower MED-UVA (P < .001) and MED-UVB (P < .05). MASI scores were negatively correlated with MED-UVA and MED-UVB (P < .001). Additionally, Skin a* values in melasma-involved skin were negatively correlated with MED-UVA (P < .05). Skin b* values in melasma-involved skin were negatively correlated with MED-UVB and MED-UVA (P < .05). CONCLUSIONS Patients with melasma exhibit a low MED to both UVA and UVB, rendering them have a predisposition to an increased UV sensitivity. Because of the association between melasma and UV sensitivity, sun exposure should be avoided to alleviate or prevent melasma.
Collapse
Affiliation(s)
- Zixu Wang
- Department of Dermatology, First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Fengyan Lu
- Department of Dermatology, Qujing Affiliated Hospital of Kunming Medical University, Qujing, China
| | - Xing Li
- Department of Dermatology, People's Hospital of Chuxiong Yi Autonomous Prefecture, Chuxiong, China
| | - Yanni Guo
- Department of Dermatology, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, China
| | - Jiajing Li
- Department of Dermatology, First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Li He
- Department of Dermatology, First Affiliated Hospital of Kunming Medical University, Kunming, China
| |
Collapse
|
17
|
|
18
|
Guan LL, Lim HW, Mohammad TF. Sunscreens and Photoaging: A Review of Current Literature. Am J Clin Dermatol 2021; 22:819-828. [PMID: 34387824 PMCID: PMC8361399 DOI: 10.1007/s40257-021-00632-5] [Citation(s) in RCA: 76] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/29/2021] [Indexed: 12/17/2022]
Abstract
Sunscreens have been on the market for many decades as a means of protection against ultraviolet-induced erythema. Over the years, evidence has also shown their efficacy in the prevention of photoaging, dyspigmentation, DNA damage, and photocarcinogenesis. In the USA, most broad-spectrum sunscreens provide protection against ultraviolet B (UVB) radiation and short-wavelength ultraviolet A (UVA) radiation. Evidence suggests that visible light and infrared light may play a role in photoaging and should be considered when choosing a sunscreen. Currently, there is a paucity of US FDA-approved filters that provide protection against long UVA (> 370 nm) and none against visible light. Additionally, various sunscreen additives such as antioxidants and photolyases have also been reported to protect against and possibly reverse signs of photoaging. This literature review evaluates the utility of sunscreen in protecting against photoaging and further explores the requirements for an ideal sunscreen.
Collapse
Affiliation(s)
- Linna L Guan
- Department of Dermatology, Henry Ford Health Systems, Henry Ford Medical Center-New Center One, 3031 W. Grand Boulevard, Suite 800, Detroit, MI, 48202, USA
| | - Henry W Lim
- Department of Dermatology, Henry Ford Health Systems, Henry Ford Medical Center-New Center One, 3031 W. Grand Boulevard, Suite 800, Detroit, MI, 48202, USA
| | - Tasneem F Mohammad
- Department of Dermatology, Henry Ford Health Systems, Henry Ford Medical Center-New Center One, 3031 W. Grand Boulevard, Suite 800, Detroit, MI, 48202, USA.
| |
Collapse
|
19
|
Baranoski GVG, Alencar P, Van Leeuwen SR, Chen TF. Tanning-Elicited Variations in the Ultraviolet Absorption Spectra of the Cutaneous Tissues: Skin Photobiology and Photomedicine Implications. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2021; 2021:4262-4267. [PMID: 34892164 DOI: 10.1109/embc46164.2021.9630396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
When ultraviolet radiation is absorbed within the cutaneous tissues, it can trigger a number of phenomena that can have detrimental or beneficial consequences to an individual's health. Tanning is among the most visually noticeable of these phenomena. It may result in significant changes in skin pigmentation and thickness. These spectrally-dependent physiological responses, in turn, can elicit variations in the ultraviolet absorption profiles of the cutaneous tissues and, consequently, alter the occurrence of other ultraviolet-induced photobiological processes such as the breaking of DNA strands and the synthesis of previtamin D3. These tanning-elicited variations in the cutaneous tissues' absorption profiles is often tied to the increased presence of melanin throughout these tissues. However, during the tanning, shifts in the relative content of this pigment within certain skin layers can also be observed. In particular, the stratum basale, the innermost epidermal layer where melanogenesis takes place, can have its relative melanin content significantly reduced in comparison with other epidermal layers. Since the aforementioned photobiological phenomena are preferentially brought about within this layer, such pigmentation shifts may have a more pivotal role in skin photobiology than has been assumed to date. Accordingly, in this work, we investigate the impact of spectrally-dependent tanning-elicited physiological responses, with a particular focus on the inter-layer melanin distribution patterns, on the absorption profiles of the main cutaneous tissues. We also examine how variations in these absorption profiles may alter the outcomes of photo-triggered phenomena associated with the onset of different medical conditions. Our findings are expected to contribute to the advance of the current understanding about skin photobiology, which is indispensable for the success of photomedicine initiatives involving this highly complex organ.
Collapse
|
20
|
Liu H, Dong Z. Cancer Etiology and Prevention Principle: "1 + X". Cancer Res 2021; 81:5377-5395. [PMID: 34470778 DOI: 10.1158/0008-5472.can-21-1862] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 08/16/2021] [Accepted: 08/31/2021] [Indexed: 11/16/2022]
Abstract
Cancer was previously thought to be an inevitable aspect of human health with no effective treatments. However, the results of in-depth cancer research suggest that most types of cancer may be preventable. Therefore, a comprehensive understanding of the disparities in cancer burden caused by different risk factors is essential to inform and improve cancer prevention and control. Here, we propose the cancer etiology and prevention principle "1 + X," where 1 denotes the primary risk factor for a cancer and X represents the secondary contributing risk factors for the cancer. We elaborate upon the "1 + X" principle with respect to risk factors for several different cancer types. The "1 + X" principle can be used for precise prevention of cancer by eliminating the main cause of a cancer and minimizing the contributing factors at the same time.
Collapse
Affiliation(s)
- Hui Liu
- Department of Pathophysiology, School of Basic Medical Sciences, College of Medicine, Zhengzhou University, Zhengzhou, Henan, China
- China-US (Henan) Hormel Cancer Institute, Zhengzhou, Henan, China
| | - Zigang Dong
- Department of Pathophysiology, School of Basic Medical Sciences, College of Medicine, Zhengzhou University, Zhengzhou, Henan, China.
- China-US (Henan) Hormel Cancer Institute, Zhengzhou, Henan, China
| |
Collapse
|
21
|
Abstract
Melanocytes are highly specialised dendritic cells that transfer melanin to keratinocytes in subcellular lysosome-like organelles called melanosomes, where melanin is synthesised and stored. Melanin is a complex pigment that provides colour and photoprotection to the skin, hair, and eyes of mammals. The regulation of melanogenesis includes various mechanisms and factors including genetic, environmental, and endocrine factors. Knowledge of the pigmentation process is important not only to understand hyperpigmentation but also to design treatments and therapies to treat them. Whitening cosmetics with anti-melanogenesis activity are very popular. In the present manuscript, we review the mechanisms and the signalling pathways involved in skin pigmentation and we specifically focus on the alteration of melanogenesis that leads to melasma and results in hyperpigmentation. Finally, current therapies and treatments including topical, oral, and phototherapies are discussed and described, with a special emphasis on the cosmetics’ action.
Collapse
|
22
|
Qutob SS, McNamee JP, Brion O. Prevalence of tanning equipment use among Canadians. Prev Med Rep 2021; 22:101356. [PMID: 33850696 PMCID: PMC8022241 DOI: 10.1016/j.pmedr.2021.101356] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 02/22/2021] [Accepted: 02/26/2021] [Indexed: 11/22/2022] Open
Abstract
The objective of this study was to collect prevalence estimates of indoor tanning usage and associated injuries in Canada. The rapid response component of the 2019 Canadian Community Health Survey collected data on the use of tanning equipment in the previous 12 months, including reasons for use, frequency/duration of use, precautions taken and adverse reactions or injuries. The 2019 research findings were as follows, an estimated 3.0% (95% CI: 2.5-3.4%) of Canadians reported that they had used indoor tanning equipment in the past year. Among users, 71.1% (95% CI: 63.9-78.3%) were female and females aged 18-34 were significantly more prevalent users compared to females aged 45 or older. The prevalence of indoor tanning was higher among people without a university degree; however, there were no differences in prevalence by household income or region. Most users indicated they used indoor tanning equipment within a tanning salon (75.3%: 95% CI: 69.1-81.6%) and the most common reason for usage was to develop a "protective" base tan (72.1%: 95% CI: 65.2-78.9%). Over one third (39.2%: 95% CI: 31.1-47.2%) of all users reported 10 or more sessions in the past year. The prevalence of indoor UV tanning usage is declining in Canada. Similar to results in 2014, the majority of users continue to be female, with a large number in the 18 to 34 age group.
Collapse
Affiliation(s)
- Sami S. Qutob
- Consumer and Clinical Radiation Protection Bureau, Health Effects and Assessment Division at Health Canada, Canada
| | - James P. McNamee
- Consumer and Clinical Radiation Protection Bureau, Health Effects and Assessment Division at Health Canada, Canada
| | - Orly Brion
- Environmental Health Science and Research Bureau, Population Studies Division at Health Canada, Canada
| |
Collapse
|
23
|
Maher M, Ahmad H, Nishawy E, Li Y, Luo J. Novel Transcriptome Study and Detection of Metabolic Variations in UV-B-Treated Date Palm ( Phoenix dactylifera cv. Khalas). Int J Mol Sci 2021; 22:2564. [PMID: 33806362 PMCID: PMC7961990 DOI: 10.3390/ijms22052564] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 02/14/2021] [Accepted: 02/17/2021] [Indexed: 11/16/2022] Open
Abstract
Date palm (Phoenix dactylifera) is one of the most widespread fruit crop species and can tolerate drastic environmental conditions that may not be suitable for other fruit species. Excess UV-B stress is one of the greatest concerns for date palm trees and can cause genotoxic effects. Date palm responds to UV-B irradiation through increased DEG expression levels and elaborates upon regulatory metabolic mechanisms that assist the plants in adjusting to this exertion. Sixty-day-old Khalas date palm seedlings (first true-leaf stage) were treated with UV-B (wavelength, 253.7 nm; intensity, 75 μW cm-2 for 72 h (16 h of UV light and 8 h of darkness). Transcriptome analysis revealed 10,249 and 12,426 genes whose expressions were upregulated and downregulated, respectively, compared to the genes in the control. Furthermore, the differentially expressed genes included transcription factor-encoding genes and chloroplast- and photosystem-related genes. Liquid chromatography-tandem mass spectrometry (LC-MS/MS) was used to detect metabolite variations. Fifty metabolites, including amino acids and flavonoids, showed changes in levels after UV-B excess. Amino acid metabolism was changed by UV-B irradiation, and some amino acids interacted with precursors of different pathways that were used to synthesize secondary metabolites, i.e., flavonoids and phenylpropanoids. The metabolite content response to UV-B irradiation according to hierarchical clustering analysis showed changes in amino acids and flavonoids compared with those of the control. Amino acids might increase the function of scavengers of reactive oxygen species by synthesizing flavonoids that increase in response to UV-B treatment. This study enriches the annotated date palm unigene sequences and enhances the understanding of the mechanisms underlying UV-B stress through genetic manipulation. Moreover, this study provides a sequence resource for genetic, genomic and metabolic studies of date palm.
Collapse
Affiliation(s)
- Mohamed Maher
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan 430070, China; (M.M.); (H.A.); (E.N.); (Y.L.)
- Department of Biochemistry, College of Agriculture, Zagazig University, Zagazig 44511, Egypt
| | - Hasan Ahmad
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan 430070, China; (M.M.); (H.A.); (E.N.); (Y.L.)
- National Gene Bank, Agricultural Research Center (ARC), Giza 12619, Egypt
| | - Elsayed Nishawy
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan 430070, China; (M.M.); (H.A.); (E.N.); (Y.L.)
- Desert Research Center, Genetics Resource Department, Egyptian Deserts Gene Bank, Cairo 11735, Egypt
| | - Yufei Li
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan 430070, China; (M.M.); (H.A.); (E.N.); (Y.L.)
| | - Jie Luo
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan 430070, China; (M.M.); (H.A.); (E.N.); (Y.L.)
- Institute of Tropical Agriculture and Forestry of Hainan University, Haikou 570288, China
| |
Collapse
|
24
|
Yardman-Frank JM, Fisher DE. Skin pigmentation and its control: From ultraviolet radiation to stem cells. Exp Dermatol 2020; 30:560-571. [PMID: 33320376 DOI: 10.1111/exd.14260] [Citation(s) in RCA: 90] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
In the light of substantial discoveries in epithelial and hair pigmentation pathophysiology, this review summarizes the current understanding of skin pigmentation mechanisms. Melanocytes are pigment-producing cells, and their key regulating transcription factor is the melanocyte-specific microphthalmia-associated transcription factor (m-MITF). Ultraviolet (UV) radiation is a unique modulator of skin pigmentation influencing tanning pathways. The delayed tanning pathway occurs as UVB produces keratinocyte DNA damage, causing p53-mediated expression of the pro-opiomelanocortin (POMC) gene that is processed to release α-melanocyte-stimulating hormone (α-MSH). α-MSH stimulates the melanocortin 1 receptor (MC1R) on melanocytes, leading to m-MITF expression and melanogenesis. POMC cleavage also releases β-endorphin, which creates a neuroendocrine pathway that promotes UV-seeking behaviours. Mutations along the tanning pathway can affect pigmentation and increase the risk of skin malignancies. MC1R variants have received considerable attention, yet the allele is highly polymorphic with varied phenotypes. Vitiligo presents with depigmented skin lesions due to autoimmune destruction of melanocytes. UVB phototherapy stimulates melanocyte stem cells in the hair bulge to undergo differentiation and upwards migration resulting in perifollicular repigmentation of vitiliginous lesions, which is under sophisticated signalling control. Melanocyte stem cells, normally quiescent, undergo cyclic activation/differentiation and downward migration with the hair cycle, providing pigment to hair follicles. Physiological hair greying results from progressive loss of melanocyte stem cells and can be accelerated by acute stress-induced, sympathetic driven hyperproliferation of the melanocyte stem cells. Ultimately, by reviewing the pathways governing epithelial and follicular pigmentation, numerous areas of future research and potential points of intervention are highlighted.
Collapse
Affiliation(s)
| | - David E Fisher
- Department of Dermatology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
25
|
Vieyra-Garcia PA, Wolf P. A deep dive into UV-based phototherapy: Mechanisms of action and emerging molecular targets in inflammation and cancer. Pharmacol Ther 2020; 222:107784. [PMID: 33316286 DOI: 10.1016/j.pharmthera.2020.107784] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Accepted: 11/25/2020] [Indexed: 02/07/2023]
Abstract
UV-based phototherapy (including psoralen plus UVA (PUVA), UVB and UVA1) has a long, successful history in the management of numerous cutaneous disorders. Photoresponsive diseases are etiologically diverse, but most involve disturbances in local (and occasionally systemic) inflammatory cells and/or abnormalities in keratinocytes that trigger inflammation. UV-based phototherapy works by regulating the inflammatory component and inducing apoptosis of pathogenic cells. This results in a fascinating and complex network of simultaneous events-immediate transcriptional changes in keratinocytes, immune cells, and pigment cells; the emergence of apoptotic bodies; and the trafficking of antigen-presenting cells in skin-that quickly transform the microenvironment of UV-exposed skin. Molecular elements in this system of UV recognition and response include chromophores, metabolic byproducts, innate immune receptors, neurotransmitters and mediators such as chemokines and cytokines, antimicrobial peptides, and platelet activating factor (PAF) and PAF-like molecules that simultaneously shape the immunomodulatory effects of UV and their interplay with the microbiota of the skin and beyond. Phototherapy's key effects-proapoptotic, immunomodulatory, antipruritic, antifibrotic, propigmentary, and pro-prebiotic-promote clinical improvement in various skin diseases such as psoriasis, atopic dermatitis (AD), graft-versus-host disease (GvHD), vitiligo, scleroderma, and cutaneous T-cell lymphoma (CTCL) as well as prevention of polymorphic light eruption (PLE). As understanding of phototherapy improves, new therapies (UV- and non-UV-based) are being developed that will modify regulatory T-cells (Treg), interact with (resident) memory T-cells and /or utilize agonists and antagonists as well as antibodies targeting soluble molecules such as cytokines and chemokines, transcription factors, and a variety of membrane-associated receptors.
Collapse
Affiliation(s)
- Pablo A Vieyra-Garcia
- Department of Dermatology, Medical University of Graz, Auenbruggerplatz 8, Graz A-8036, Austria.
| | - Peter Wolf
- Department of Dermatology, Medical University of Graz, Auenbruggerplatz 8, Graz A-8036, Austria.
| |
Collapse
|
26
|
Ghosh D. Computational aspects towards understanding the photoprocesses in eumelanin. WILEY INTERDISCIPLINARY REVIEWS-COMPUTATIONAL MOLECULAR SCIENCE 2020. [DOI: 10.1002/wcms.1505] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Debashree Ghosh
- School of Chemical Sciences Indian Association for the Cultivation of Science Kolkata India
| |
Collapse
|
27
|
Protective Effects of Salicornia europaea on UVB-Induced Misoriented Cell Divisions in Skin Epithelium. COSMETICS 2020. [DOI: 10.3390/cosmetics7020044] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Correct orientation of cell division is extremely important in the maintenance, regeneration, and repair of continuously proliferating tissues, such as the epidermis. Regulation of the axis of division of epidermal cells prevents the apoptosis-induced compensatory proliferation, and eventually the cancer. Thus, the orientation of cell division is critical for maintaining the tissue architecture. In this study, we investigated the effects of S. europaea extract on the texture of human skin and the behavior of these cells during skin morphogenesis. In sun-exposed skin, S. europaea improved the texture. A multilayered, highly differentiated in vitro skin model indicated that, S. europaea extract suppressed the UVB-induced changes in the morphology of basal keratinocytes. Orientation of cell division was determined by measuring the axis of mitosis in the vertical sections of our experimental model. Analyses of the digital images revealed that S. europaea preserved the axis of division of basal keratinocytes from UVB-induced perturbations. Our findings uncover a new mechanism by which S. europaea responds to the spindle misorientation induced by UVB.
Collapse
|
28
|
Felton SJ, Shin BB, Watson REB, Kift R, Webb AR, Rhodes LE. Photoprotection conferred by low level summer sunlight exposures against pro-inflammatory UVR insult. Photochem Photobiol Sci 2020; 19:810-818. [PMID: 33856672 DOI: 10.1039/c9pp00452a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Accepted: 03/31/2020] [Indexed: 11/21/2022]
Affiliation(s)
- S J Felton
- Dermatology Research Centre, School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester and Salford Royal NHS Foundation Trust, Manchester Academic Health Science Centre, The University of Manchester, Manchester, UK
- Salford Royal NHS Foundation Trust, Manchester Academic Health Science Centre, The University of Manchester, Manchester, UK
| | - B B Shin
- Dermatology Research Centre, School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester and Salford Royal NHS Foundation Trust, Manchester Academic Health Science Centre, The University of Manchester, Manchester, UK
- Salford Royal NHS Foundation Trust, Manchester Academic Health Science Centre, The University of Manchester, Manchester, UK
| | - R E B Watson
- Dermatology Research Centre, School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester and Salford Royal NHS Foundation Trust, Manchester Academic Health Science Centre, The University of Manchester, Manchester, UK
- Salford Royal NHS Foundation Trust, Manchester Academic Health Science Centre, The University of Manchester, Manchester, UK
| | - R Kift
- School of Earth and Environmental Sciences, Faculty of Science and Engineering, The University of Manchester, Manchester, UK
| | - A R Webb
- School of Earth and Environmental Sciences, Faculty of Science and Engineering, The University of Manchester, Manchester, UK
| | - L E Rhodes
- Dermatology Research Centre, School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester and Salford Royal NHS Foundation Trust, Manchester Academic Health Science Centre, The University of Manchester, Manchester, UK.
- Salford Royal NHS Foundation Trust, Manchester Academic Health Science Centre, The University of Manchester, Manchester, UK.
| |
Collapse
|
29
|
Gorgisen G, Ozkol H, Tuluce Y, Arslan A, Ecer Y, Keskin S, Kaya Z, Ragbetli MC. Silibinin and ellagic acid increase the expression of insulin receptor substrate 1 protein in ultraviolet irradiated rat skin. Biotech Histochem 2020; 95:641-646. [PMID: 32347127 DOI: 10.1080/10520295.2020.1753238] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022] Open
Abstract
Daily exposure to ultraviolet (UV) light induces inflammation and tumorigenesis in the skin. Silibinin and ellagic acid are natural products that exhibit anti-inflammatory and anti-tumorigenic properties. Insulin receptor substrate protein 1 (IRS1) is important for skin homeostasis and physiology, but its activity following UV radiation remains unclear. We investigated the effects of ellagic acid and silibinin on IRS1 expression in ultraviolet A (UVA) and ultraviolet B (UVB) irradiated rat skin. Forty-two female Wistar rats were divided randomly into six groups of seven animals. The dorsal skin of rats was exposed to UVA + UVB, then treated with ellagic acid and silibinin by gavage. IRS1 expression in skin tissues was determined by western blot analysis. IRS1 expression increased significantly following treatment with ellagic acid and silibinin in UVA + UVB irradiated skin compared to the UVA + UVB only group. After UVA + UVB treatment, ellagic acid effected greater induction of IRS1 expression than silibinin. Our findings suggest that the photoprotective roles of ellagic acid and silibinin may be due to induction of IRS1 expression in UVA + UVB treated rat skin.
Collapse
Affiliation(s)
- G Gorgisen
- Department of Medical Biology, Van Yuzuncu Yil University Medical School , Van, Turkey
| | - H Ozkol
- Department of Medical Biology, Van Yuzuncu Yil University Medical School , Van, Turkey
| | - Y Tuluce
- Department of Medical Biology, Van Yuzuncu Yil University Medical School , Van, Turkey
| | - A Arslan
- Department of Medical Biology, Van Yuzuncu Yil University Medical School , Van, Turkey
| | - Y Ecer
- Department of Medical Biology, Van Yuzuncu Yil University Medical School , Van, Turkey
| | - S Keskin
- Department of Medical Histology and Embryology, Van Yuzuncu Yil University Medical School , Van, Turkey
| | - Z Kaya
- Department of Medical Biology, Van Yuzuncu Yil University Medical School , Van, Turkey
| | - M C Ragbetli
- Department of Medical Histology and Embryology, Van Yuzuncu Yil University Medical School , Van, Turkey
| |
Collapse
|
30
|
Sunscreens in the United States: Current Status and Future Outlook. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1268:355-379. [DOI: 10.1007/978-3-030-46227-7_18] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
31
|
Chamcheu JC, Roy T, Uddin MB, Banang-Mbeumi S, Chamcheu RCN, Walker AL, Liu YY, Huang S. Role and Therapeutic Targeting of the PI3K/Akt/mTOR Signaling Pathway in Skin Cancer: A Review of Current Status and Future Trends on Natural and Synthetic Agents Therapy. Cells 2019; 8:cells8080803. [PMID: 31370278 PMCID: PMC6721560 DOI: 10.3390/cells8080803] [Citation(s) in RCA: 130] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2019] [Revised: 07/26/2019] [Accepted: 07/29/2019] [Indexed: 12/16/2022] Open
Abstract
The mammalian or mechanistic target of rapamycin (mTOR) and associated phosphatidyl-inositiol 3-kinase (PI3K)/protein kinase B (Akt) pathways regulate cell growth, differentiation, migration, and survival, as well as angiogenesis and metabolism. Dysregulation of these pathways is frequently associated with genetic/epigenetic alterations and predicts poor treatment outcomes in a variety of human cancers including cutaneous malignancies like melanoma and non-melanoma skin cancers. Recently, the enhanced understanding of the molecular and genetic basis of skin dysfunction in patients with skin cancers has provided a strong basis for the development of novel therapeutic strategies for these obdurate groups of skin cancers. This review summarizes recent advances in the roles of PI3K/Akt/mTOR and their targets in the development and progression of a broad spectrum of cutaneous cancers and discusses the current progress in preclinical and clinical studies for the development of PI3K/Akt/mTOR targeted therapies with nutraceuticals and synthetic small molecule inhibitors.
Collapse
Affiliation(s)
| | - Tithi Roy
- College of Pharmacy, University of Louisiana at Monroe, Monroe, LA 71209-0497, USA
| | | | - Sergette Banang-Mbeumi
- College of Pharmacy, University of Louisiana at Monroe, Monroe, LA 71209-0497, USA
- Division for Research and Innovation, POHOFI Inc., P.O. Box 44067, Madison, WI 53744, USA
- School of Nursing and Allied Health Sciences, Louisiana Delta Community College, Monroe, LA 71203, USA
| | | | - Anthony L Walker
- College of Pharmacy, University of Louisiana at Monroe, Monroe, LA 71209-0497, USA
| | - Yong-Yu Liu
- College of Pharmacy, University of Louisiana at Monroe, Monroe, LA 71209-0497, USA
| | - Shile Huang
- Department of Biochemistry and Molecular Biology, Louisiana State University Health Sciences Center, 1501 Kings Highway, Shreveport, LA 71130-3932, USA
- Feist-Weiller Cancer Center, Louisiana State University Health Sciences Center, Shreveport, LA 71130-3932, USA
| |
Collapse
|
32
|
O'Sullivan DE, Brenner DR, Demers PA, Villeneuve PJ, Friedenreich CM, King WD. Indoor tanning and skin cancer in Canada: A meta-analysis and attributable burden estimation. Cancer Epidemiol 2019; 59:1-7. [PMID: 30639817 DOI: 10.1016/j.canep.2019.01.004] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Revised: 12/22/2018] [Accepted: 01/04/2019] [Indexed: 12/31/2022]
Abstract
BACKGROUND Consistent epidemiologic and experimental studies have demonstrated that UV-emitting tanning devices cause melanoma and non-melanoma skin cancer. The purpose of this study was to estimate the relative risk of skin cancer associated with the use of indoor tanning devices relevant to Canada, to estimate the proportion and number of skin cancers in Canada in 2015 that were attributable to indoor tanning, and to explore differences by age and sex. METHODS Skin cancer cases attributable to the use of an indoor tanning devices were estimated using Levin's population attributable risk (PAR) formula. Relative risks for skin cancer subtypes that were relevant to Canada were estimated through meta-analyses and prevalence of indoor tanning was estimated from the 2006 National Sun Survey. Age- and sex-specific melanoma data for 2015 were obtained from the Canadian Cancer Registry, while estimated NMSC incidence data were obtained from the 2015 Canadian Cancer Statistics report. RESULTS Ever use of indoor tanning devices was associated with relative risks of 1.38 (95% CI 1.22-1.58) for melanoma, 1.39 (1.10-1.76) for basal cell carcinoma (BCC), and 1.49 (1.23-1.80) for squamous cell carcinoma (SCC). Overall, 7.0% of melanomas, 5.2% of BCCs, and 7.5% of SCCs in 2015 were attributable to ever of indoor tanning devices. PARs were higher for women and decreased with age. CONCLUSION Indoor tanning contributes to a considerable burden of skin cancer in Canada. Strategies aimed at reducing use should be increased and a total ban or restrictions on use and UV-intensity should be considered by health regulators.
Collapse
Affiliation(s)
- Dylan E O'Sullivan
- Department of Public Health Sciences, Queen's University, Kingston, Ontario, Canada.
| | - Darren R Brenner
- Department of Cancer Epidemiology and Prevention Research, Cancer Control Alberta, Alberta Health Services, Calgary, Alberta, Canada; Department of Oncology and Community Health Sciences, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Paul A Demers
- Occupational Cancer Research Centre, Toronto, Ontario, Canada
| | - Paul J Villeneuve
- Department of Health Sciences, Carleton University, Ottawa, Ontario, Canada
| | - Christine M Friedenreich
- Department of Cancer Epidemiology and Prevention Research, Cancer Control Alberta, Alberta Health Services, Calgary, Alberta, Canada; Department of Oncology and Community Health Sciences, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Will D King
- Department of Public Health Sciences, Queen's University, Kingston, Ontario, Canada
| | | |
Collapse
|
33
|
Tanaka H, Yamashita Y, Umezawa K, Hirobe T, Ito S, Wakamatsu K. The Pro-Oxidant Activity of Pheomelanin is Significantly Enhanced by UVA Irradiation: Benzothiazole Moieties Are More Reactive than Benzothiazine Moieties. Int J Mol Sci 2018; 19:E2889. [PMID: 30249034 PMCID: PMC6213070 DOI: 10.3390/ijms19102889] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Revised: 09/22/2018] [Accepted: 09/22/2018] [Indexed: 11/18/2022] Open
Abstract
It is generally considered that eumelanin (EM) is photoprotective while pheomelanin (PM) is phototoxic. A recent study using a mouse model demonstrated that PM produces reactive oxygen species (ROS) that cause DNA damage and eventually lead to melanomagenesis. A biochemical study showed that PM possesses a pro-oxidant activity. PM consists of benzothiazine (BT) and benzothiazole (BZ) moieties, BT moieties being transformed to BZ moieties by heat or light. In this study, we compared the effects of ultraviolet A (UVA) irradiation using synthetic PMs with different BT to BZ ratios and using various coat color mouse hairs. We found that UVA irradiation of BZ-PM increased glutathione (GSH) depletion and generated more H₂O₂ than UVA irradiation of BT-PM. Non-irradiated controls did not exhibit strong pro-oxidant activities. Upon UVA irradiation, yellow mouse hairs oxidized GSH and produced H₂O₂ faster than black or albino mouse hairs. Next, to examine the mechanism of the pro-oxidant activity of BT-PM and BZ-PM, we examined the pro-oxidant activities of 7-(2-amino-2-carboxyethyl)-dihydro-1,4-benzothiazine-3-carboxylic acid (DHBTCA) and 6-(2-amino-2-carboxyethyl)-4-hydroxybenzothiazole (BZ-AA) as BT and BZ monomers, respectively. Their pro-oxidant activities were similar, but a large difference was seen in the effects of ROS scavengers, which suggests that the redox reactions may proceed via singlet oxygen in BZ-AA and via superoxide anions in DHBTCA. These results show that UVA enhances the pro-oxidant activity of PM, in particular BZ-PM.
Collapse
Affiliation(s)
- Hitomi Tanaka
- Department of Chemistry, Fujita Health University School of Health Sciences, 1-98 Dengakugakubo, Kutsukake-cho, Toyoake, Aichi 470-1192, Japan.
| | - Yui Yamashita
- Department of Chemistry, Fujita Health University School of Health Sciences, 1-98 Dengakugakubo, Kutsukake-cho, Toyoake, Aichi 470-1192, Japan.
| | - Kana Umezawa
- Department of Chemistry, Fujita Health University School of Health Sciences, 1-98 Dengakugakubo, Kutsukake-cho, Toyoake, Aichi 470-1192, Japan.
| | - Tomohisa Hirobe
- Laboratory for Cell Culture and Pathology, Shinjuku Skin Clinic, Kawase Building BF1, Shinjuku 3-17-5, Shinjuku-ku, Tokyo 160-0022, Japan.
| | - Shosuke Ito
- Department of Chemistry, Fujita Health University School of Health Sciences, 1-98 Dengakugakubo, Kutsukake-cho, Toyoake, Aichi 470-1192, Japan.
| | - Kazumasa Wakamatsu
- Department of Chemistry, Fujita Health University School of Health Sciences, 1-98 Dengakugakubo, Kutsukake-cho, Toyoake, Aichi 470-1192, Japan.
| |
Collapse
|
34
|
Indoor tanning and the risk of developing non-cutaneous cancers: a systematic review and meta-analysis. Cancer Causes Control 2018; 29:937-950. [DOI: 10.1007/s10552-018-1070-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Accepted: 08/08/2018] [Indexed: 01/08/2023]
|
35
|
Baranoski GVG, Chen TF, Van Leeuwen SR. Unveiling the Impact of Distinct Melanosome Arrangements on the Attenuation of Cancer-Inducing Ultraviolet Radiation. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2018; 2018:6153-6157. [PMID: 30441739 DOI: 10.1109/embc.2018.8513646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
The exposure of human skin to ultraviolet radiation (UVR) can trigger a wide array of biological responses, including photocarcinogenesis. Melanin, either in colloidal form or encapsulated into melanosomes, is known to be the main UVR attenuation substance acting within the cutaneous tissues. Although many studies have addressed the protective role of this pigment against the harmful effects of UVR exposure, the impact of different melanosome arrangements on the mitigation of these effects remains to be quantitatively verified. The difficulties to resolve this open question can be mainly attributed to the intrinsic practical limitations of in vivo and in vitro experiments involving skin specimens. In this paper, we describe controlled in silico experiments that allowed us to overcome such limitations and provide quantitative evidence for the clarification of this question. Besides contributing to a more robust understanding of the physiological parameters associated with cutaneous UVR attenuation, our findings can be incorporated into the development of more effective strategies for the evaluation of individuals' susceptibility to UVR exposure. Such strategies are essential for the prevention of UVR-induced pathologies, particularly skin cancer.
Collapse
|
36
|
de Assis LVM, Moraes MN, Magalhães-Marques KK, Castrucci AMDL. Melanopsin and rhodopsin mediate UVA-induced immediate pigment darkening: Unravelling the photosensitive system of the skin. Eur J Cell Biol 2018; 97:150-162. [PMID: 29395480 DOI: 10.1016/j.ejcb.2018.01.004] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Revised: 01/12/2018] [Accepted: 01/19/2018] [Indexed: 11/25/2022] Open
Abstract
The mammalian skin has a photosensitive system comprised by several opsins, including rhodopsin (OPN2) and melanopsin (OPN4). Recently, our group showed that UVA (4.4 kJ/m2) leads to immediate pigment darkening (IPD) in murine normal and malignant melanocytes. We show the role of OPN2 and OPN4 as UVA sensors: UVA-induced IPD was fully abolished when OPN4 was pharmacologically inhibited by AA9253 or when OPN2 and OPN4 were knocked down by siRNA in both cell lines. Our data, however, demonstrate that phospholipase C/protein kinase C pathway, a classical OPN4 pathway, is not involved in UVA-induced IPD in either cell line. Nonetheless, in both cell types we have shown that: a) intracellular calcium signal is necessary for UVA-induced IPD; b) the involvement of CaMK II, whose inhibition, abolished the UVA-induced IPD; c) the role of CAMK II/NOS/sGC/cGMP pathway in the process since inhibition of either NOS or sGC abolished the UVA-induced IPD. Taken altogether, we show that OPN2 and OPN4 participate in IPD induced by UVA in murine normal and malignant melanocytes through a conserved common pathway. Interestingly, upon knockdown of OPN2 or OPN4, the UVA-driven IPD is completely lost, which suggests that both opsins are required and cooperatively signal in murine both cell lines. The participation of OPN2 and OPN4 system in UVA radiation-induced response, if proven to take place in human skin, may represent an interesting pharmacological target for the treatment of depigmentary disorders and skin-related cancer.
Collapse
Affiliation(s)
- Leonardo Vinícius Monteiro de Assis
- Laboratory of Comparative Physiology of Pigmentation, Department of Physiology, Institute of Biosciences, University of São Paulo, São Paulo, Brazil
| | - Maria Nathalia Moraes
- Laboratory of Comparative Physiology of Pigmentation, Department of Physiology, Institute of Biosciences, University of São Paulo, São Paulo, Brazil
| | - Keila Karoline Magalhães-Marques
- Laboratory of Comparative Physiology of Pigmentation, Department of Physiology, Institute of Biosciences, University of São Paulo, São Paulo, Brazil
| | - Ana Maria de Lauro Castrucci
- Laboratory of Comparative Physiology of Pigmentation, Department of Physiology, Institute of Biosciences, University of São Paulo, São Paulo, Brazil; Department of Biology, University of Virginia, Charlottesville, VA, USA.
| |
Collapse
|
37
|
Reble C, Gersonde I, Schanzer S, Meinke MC, Helfmann J, Lademann J. Evaluation of detection distance-dependent reflectance spectroscopy for the determination of the sun protection factor using pig ear skin. JOURNAL OF BIOPHOTONICS 2018; 11:e201600257. [PMID: 28516475 DOI: 10.1002/jbio.201600257] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2016] [Revised: 02/27/2017] [Accepted: 02/28/2017] [Indexed: 06/07/2023]
Abstract
Determination of sun protection factors (SPFs) is currently an invasive method, which is based on erythema formation (phototest). Here we describe an optical setup and measurement methodology for the determination of SPFs based on diffuse reflectance spectroscopy, which measures UV-reflectance spectra at 4 distances from the point of illumination. Due to a high spatial variation of the reflectance data, most likely due to inhomogeneities of the sunscreen distribution, data of 50 measurement positions are averaged. A dependence of the measured SPF on detection distance is significant for 3 sunscreens, while being inconclusive for 2 sunscreens due to high inter-sample variations. Using pig ear skin samples (n=6), the obtained SPF of 5 different commercial sunscreens corresponds to the SPF values of certified test institutes in 3 cases and is lower for 2 sunscreens of the same manufacturer, suggesting a formulation specific reason for the discrepancy. The results demonstrate that the measurement can be performed with a UV dose below the minimal erythema dose. We conclude the method may be considered as a potential noninvasive in vivo alternative to the invasive in vivo phototest, but further tests on different sunscreen formulations are still necessary.
Collapse
Affiliation(s)
- Carina Reble
- Charité-Universitätsmedizin Berlin, Department of Dermatology, Venerology and Allergology, Charitéplatz 1, 10117 Berlin, Germany
| | - Ingo Gersonde
- Laser- und Medizin-Technologie Berlin GmbH, Berlin (LMTB), Fabeckstraße 60-62, 14195 Berlin, Germany
| | - Sabine Schanzer
- Charité-Universitätsmedizin Berlin, Department of Dermatology, Venerology and Allergology, Charitéplatz 1, 10117 Berlin, Germany
| | - Martina C Meinke
- Charité-Universitätsmedizin Berlin, Department of Dermatology, Venerology and Allergology, Charitéplatz 1, 10117 Berlin, Germany
| | - Jürgen Helfmann
- Laser- und Medizin-Technologie Berlin GmbH, Berlin (LMTB), Fabeckstraße 60-62, 14195 Berlin, Germany
| | - Jürgen Lademann
- Charité-Universitätsmedizin Berlin, Department of Dermatology, Venerology and Allergology, Charitéplatz 1, 10117 Berlin, Germany
| |
Collapse
|
38
|
Ito S, Wakamatsu K, Sarna T. Photodegradation of Eumelanin and Pheomelanin and Its Pathophysiological Implications. Photochem Photobiol 2017; 94:409-420. [PMID: 28873228 DOI: 10.1111/php.12837] [Citation(s) in RCA: 84] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Accepted: 08/21/2017] [Indexed: 12/11/2022]
Abstract
Eumelanin is photoprotective for pigmented tissues while pheomelanin is phototoxic. In this review, we summarize current understanding of how eumelanin and pheomelanin structures are modified by ultraviolet A (UVA) and also by visible light and how reactive oxygen species participate in those processes. Alkaline hydrogen peroxide oxidation was employed to characterize eumelanin and benzothiazole-type pheomelanin, giving pyrrole-2,3,5-tricarboxylic acid (PTCA) and thiazole-2,4,5-tricarboxylic acid (TTCA), respectively. Reductive hydrolysis with hydroiodic acid gives 4-amino-3-hydroxyphenylalanine (4-AHP) from the benzothiazine moiety of pheomelanin. The results show that the photoaging of eumelanin gives rise to free PTCA (produced by peroxidation in situ) and pyrrole-2,3,4,5-tetracarboxylic acid (PTeCA, produced by cross-linking). The TTCA/4-AHP ratio increases with photoaging, indicating the conversion of benzothiazine to the benzothiazole moiety. Analysis of those markers and their ratios show that both eumelanin and pheomelanin in human retinal pigment epithelium melanosomes undergo extensive structural modifications due to their lifelong exposure to blue light. Using synthetic melanins, we also found that singlet oxygen, in addition to superoxide anions, is photogenerated and quenched upon UVA irradiation. The (patho)physiological significance of those findings is discussed in relation to the tanning process, to melanomagenesis in the skin and to age-related macular degeneration in the eyes.
Collapse
Affiliation(s)
- Shosuke Ito
- Department of Chemistry, Fujita Health University School of Health Sciences, Aichi, Japan
| | - Kazumasa Wakamatsu
- Department of Chemistry, Fujita Health University School of Health Sciences, Aichi, Japan
| | - Tadeusz Sarna
- Department of Biophysics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| |
Collapse
|
39
|
Hu QM, Yi WJ, Su MY, Jiang S, Xu SZ, Lei TC. Induction of retinal-dependent calcium influx in human melanocytes by UVA or UVB radiation contributes to the stimulation of melanosome transfer. Cell Prolif 2017; 50. [PMID: 28833830 DOI: 10.1111/cpr.12372] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Accepted: 07/21/2017] [Indexed: 12/14/2022] Open
Abstract
OBJECTIVES The transfer of melanosomes from melanocytes to neighbouring keratinocytes is critical to protect the skin from the deleterious effects of ultraviolet A (UVA) and ultraviolet B (UVB) irradiation; however, the initial factor(s) that stimulates melanosome transfer remains unclear. In this study, we investigated the induction of retinal-dependent calcium (Ca2+ ) influx in melanocytes (MCs) by UVA or UVB irradiation and the effect of transient receptor potential cation channel subfamily M member 1 (TRPM1) (melastatin1)-related Ca2+ influx on melanosome transfer. MATERIALS AND METHODS Primary human epidermal MCs were exposed to physiological doses of UVB or UVA light and loaded with a calcium indicator Fluo-4 dye. The change of intracellular calcium of MCs was monitored using a two-photon confocal fluorescence microscopy. MCs were co-cultured with human epidermal keratinocytes (KCs) in the absence or presence of voriconazole (a TRPM1 blocker) or calcium chelators. MCs were also transfected with TRPM1 siRNA for silencing the expression of TRPM1 gene. The melanosome transfer in the co-cultured cells was quantitatively analysed using flow cytometry and was further confirmed by immunofluorescent double-staining. The protein levels and distributions of TRPM1, OPN3 and OPN5 in MCs were measured by Western blotting or immunofluorescent staining. RESULTS The retinal-dependent Ca2+ influx of UVA-exposed melanocytes differed greatly from that of UVB-exposed melanocytes in the timing-phase. The protein expression of TRPM1 in mono- and co-cultured MCs was dose-dependently up-regulated by UVA and UVB. TRPM1 siRNA-mediated knockdown and the blockage of TRPM1 channel using a putative antagonist (voriconazole) significantly inhibited melanosome transfer in co-cultures following UVA or UVB exposure. CONCLUSIONS The distinct time-phases of Ca2+ influx in MCs induced by UVA or UVB contribute to the consecutive stimulation of melanosome transfer, thereby providing a potent photoprotection against harmful UV radiation.
Collapse
Affiliation(s)
- Qing-Mei Hu
- Department of Dermatology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Wen-Juan Yi
- Department of Dermatology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Meng-Yun Su
- Department of Dermatology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Shan Jiang
- Department of Dermatology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Shi-Zheng Xu
- Department of Dermatology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Tie-Chi Lei
- Department of Dermatology, Renmin Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
40
|
Jablonski NG, Chaplin G. The colours of humanity: the evolution of pigmentation in the human lineage. Philos Trans R Soc Lond B Biol Sci 2017; 372:20160349. [PMID: 28533464 PMCID: PMC5444068 DOI: 10.1098/rstb.2016.0349] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/09/2016] [Indexed: 12/16/2022] Open
Abstract
Humans are a colourful species of primate, with human skin, hair and eye coloration having been influenced by a great variety of evolutionary forces throughout prehistory. Functionally naked skin has been the physical interface between the physical environment and the human body for most of the history of the genus Homo, and hence skin coloration has been under intense natural selection. From an original condition of protective, dark, eumelanin-enriched coloration in early tropical-dwelling Homo and Homo sapiens, loss of melanin pigmentation occurred under natural selection as Homo sapiens dispersed into non-tropical latitudes of Africa and Eurasia. Genes responsible for skin, hair and eye coloration appear to have been affected significantly by population bottlenecks in the course of Homo sapiens dispersals. Because specific skin colour phenotypes can be created by different combinations of skin colour-associated genetic markers, loss of genetic variability due to genetic drift appears to have had negligible effects on the highly redundant genetic 'palette' for the skin colour. This does not appear to have been the case for hair and eye coloration, however, and these traits appear to have been more strongly influenced by genetic drift and, possibly, sexual selection.This article is part of the themed issue 'Animal coloration: production, perception, function and application'.
Collapse
Affiliation(s)
- Nina G Jablonski
- Department of Anthropology, The Pennsylvania State University, 409 Carpenter Building, University Park, PA 16802, USA
| | - George Chaplin
- Department of Anthropology, The Pennsylvania State University, 409 Carpenter Building, University Park, PA 16802, USA
| |
Collapse
|
41
|
de Gruijl FR. UV adaptation: Pigmentation and protection against overexposure. Exp Dermatol 2017; 26:557-562. [DOI: 10.1111/exd.13332] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/01/2017] [Indexed: 12/22/2022]
Affiliation(s)
- Frank R. de Gruijl
- Department of Dermatology; Leiden University Medical Center; Leiden The Netherlands
| |
Collapse
|
42
|
Marionnet C, Nouveau S, Hourblin V, Pillai K, Manco M, Bastien P, Tran C, Tricaud C, de Lacharrière O, Bernerd F. UVA1-Induced Skin Darkening Is Associated with Molecular Changes Even in Highly Pigmented Skin Individuals. J Invest Dermatol 2017; 137:1184-1187. [DOI: 10.1016/j.jid.2016.12.016] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2016] [Revised: 12/02/2016] [Accepted: 12/08/2016] [Indexed: 02/07/2023]
|
43
|
Ito S, Kikuta M, Koike S, Szewczyk G, Sarna M, Zadlo A, Sarna T, Wakamatsu K. Roles of reactive oxygen species in UVA-induced oxidation of 5,6-dihydroxyindole-2-carboxylic acid-melanin as studied by differential spectrophotometric method. Pigment Cell Melanoma Res 2017; 29:340-51. [PMID: 26920809 DOI: 10.1111/pcmr.12469] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2015] [Accepted: 02/15/2016] [Indexed: 01/30/2023]
Abstract
Eumelanin photoprotects pigmented tissues from ultraviolet (UV) damage. However, UVA-induced tanning seems to result from the photooxidation of preexisting melanin and does not contribute to photoprotection. We investigated the mechanism of UVA-induced degradation of 5,6-dihydroxyindole-2-carboxylic acid (DHICA)-melanin taking advantage of its solubility in a neutral buffer and using a differential spectrophotometric method to detect subtle changes in its structure. Our methodology is suitable for examining the effects of various agents that interact with reactive oxygen species (ROS) to determine how ROS is involved in the UVA-induced oxidative modifications. The results show that UVA radiation induces the oxidation of DHICA to indole-5,6-quinone-2-carboxylic acid in eumelanin, which is then cleaved to form a photodegraded, pyrrolic moiety and finally to form free pyrrole-2,3,5-tricarboxylic acid. The possible involvement of superoxide radical and singlet oxygen in the oxidation was suggested. The generation and quenching of singlet oxygen by DHICA-melanin was confirmed by direct measurements of singlet oxygen phosphorescence.
Collapse
Affiliation(s)
- Shosuke Ito
- Department of Chemistry, Fujita Health University School of Health Sciences, Toyoake, Aichi, Japan
| | - Marina Kikuta
- Department of Chemistry, Fujita Health University School of Health Sciences, Toyoake, Aichi, Japan
| | - Shota Koike
- Department of Chemistry, Fujita Health University School of Health Sciences, Toyoake, Aichi, Japan
| | - Grzegorz Szewczyk
- Department of Biophysics, Faculty of Biochemistry, Biophysics, and Biotechnology, Jagiellonian University, Krakow, Poland
| | - Michal Sarna
- Department of Biophysics, Faculty of Biochemistry, Biophysics, and Biotechnology, Jagiellonian University, Krakow, Poland
| | - Andrzej Zadlo
- Department of Biophysics, Faculty of Biochemistry, Biophysics, and Biotechnology, Jagiellonian University, Krakow, Poland
| | - Tadeusz Sarna
- Department of Biophysics, Faculty of Biochemistry, Biophysics, and Biotechnology, Jagiellonian University, Krakow, Poland
| | - Kazumasa Wakamatsu
- Department of Chemistry, Fujita Health University School of Health Sciences, Toyoake, Aichi, Japan
| |
Collapse
|
44
|
Delijewski M, Wrześniok D, Beberok A, Rok J, Otręba M, Buszman E. The effect of simultaneous exposure of HEMn-DP and HEMn-LP melanocytes to nicotine and UV-radiation on the cell viability and melanogenesis. ENVIRONMENTAL RESEARCH 2016; 151:44-49. [PMID: 27450998 DOI: 10.1016/j.envres.2016.07.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2016] [Revised: 07/06/2016] [Accepted: 07/07/2016] [Indexed: 06/06/2023]
Abstract
Nicotine is a main compound of tobacco plants and may affect more than a billion people all over the world that are permanently exposed to nicotine from cigarettes, various forms of smoking cessation therapies, electronic cigarettes or second-hand smoke. It is known that nicotine forms complexes with melanin what may lead to accumulation of this alkaloid in tissues of living organisms containing the pigment. This may affect the viability of cells and process of melanin biosynthesis that takes place in melanocytes. Although UV radiation is known to be a particular inductor of melanin biosynthesis, its simultaneous effect with nicotine on this process as well as the viability of human cells containing melanin have not been assessed so far. The aim of this study was to examine the simultaneous impact of nicotine and UV radiation on viability and melanogenesis in cultured normal human melanocytes dark (HEMn-DP) and light (HEMn-LP) pigmented. Nicotine together with UV radiation induced concentration-dependent loss in melanocytes viability. The higher cell loss was observed in dark pigmented melanocytes in comparison to light pigmented cells. Simultaneous exposure of cells to nicotine and UV radiation also caused changes in melanization process in both tested cell lines. The data suggest that simultaneous exposure of melanocytes to nicotine and UV radiation up-regulates melanogenesis and affects cell viability. Observed processes are more pronounced in dark pigmented cells.
Collapse
Affiliation(s)
- Marcin Delijewski
- Department of Pharmaceutical Chemistry, School of Pharmacy with the Division of Laboratory Medicine, Medical University of Silesia, Jagiellońska 4, 41-200 Sosnowiec, Poland
| | - Dorota Wrześniok
- Department of Pharmaceutical Chemistry, School of Pharmacy with the Division of Laboratory Medicine, Medical University of Silesia, Jagiellońska 4, 41-200 Sosnowiec, Poland
| | - Artur Beberok
- Department of Pharmaceutical Chemistry, School of Pharmacy with the Division of Laboratory Medicine, Medical University of Silesia, Jagiellońska 4, 41-200 Sosnowiec, Poland
| | - Jakub Rok
- Department of Pharmaceutical Chemistry, School of Pharmacy with the Division of Laboratory Medicine, Medical University of Silesia, Jagiellońska 4, 41-200 Sosnowiec, Poland
| | - Michał Otręba
- Department of Pharmaceutical Chemistry, School of Pharmacy with the Division of Laboratory Medicine, Medical University of Silesia, Jagiellońska 4, 41-200 Sosnowiec, Poland
| | - Ewa Buszman
- Department of Pharmaceutical Chemistry, School of Pharmacy with the Division of Laboratory Medicine, Medical University of Silesia, Jagiellońska 4, 41-200 Sosnowiec, Poland.
| |
Collapse
|
45
|
van der Rhee HJ, de Vries E, Coebergh JW. Regular sun exposure benefits health. Med Hypotheses 2016; 97:34-37. [PMID: 27876126 DOI: 10.1016/j.mehy.2016.10.011] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2016] [Revised: 09/21/2016] [Accepted: 10/18/2016] [Indexed: 12/23/2022]
Abstract
Since it was discovered that UV radiation was the main environmental cause of skin cancer, primary prevention programs have been started. These programs advise to avoid exposure to sunlight. However, the question arises whether sun-shunning behaviour might have an effect on general health. During the last decades new favourable associations between sunlight and disease have been discovered. There is growing observational and experimental evidence that regular exposure to sunlight contributes to the prevention of colon-, breast-, prostate cancer, non-Hodgkin lymphoma, multiple sclerosis, hypertension and diabetes. Initially, these beneficial effects were ascribed to vitamin D. Recently it became evident that immunomodulation, the formation of nitric oxide, melatonin, serotonin, and the effect of (sun)light on circadian clocks, are involved as well. In Europe (above 50 degrees north latitude), the risk of skin cancer (particularly melanoma) is mainly caused by an intermittent pattern of exposure, while regular exposure confers a relatively low risk. The available data on the negative and positive effects of sun exposure are discussed. Considering these data we hypothesize that regular sun exposure benefits health.
Collapse
Affiliation(s)
- H J van der Rhee
- Department of Dermatology, Haga Teaching Hospital, Leyweg 275, 2545 CH Den Haag, The Netherlands.
| | - E de Vries
- Department of Clinical Epidemiology and Biostatistics, Pontificia Universidad Javeriana, Bogota, Carrera 7 No. 40-62, Colombia; Department of Public Health, Erasmus Medical Center, P.O. Box 2040, 3000 CA Rotterdam, The Netherlands
| | - J W Coebergh
- Department of Public Health, Erasmus Medical Center, P.O. Box 2040, 3000 CA Rotterdam, The Netherlands
| |
Collapse
|
46
|
Watson M, Holman DM, Maguire-Eisen M. Ultraviolet Radiation Exposure and Its Impact on Skin Cancer Risk. Semin Oncol Nurs 2016; 32:241-54. [PMID: 27539279 DOI: 10.1016/j.soncn.2016.05.005] [Citation(s) in RCA: 133] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
OBJECTIVES To review research and evidence-based resources on skin cancer prevention and early detection and their importance for oncology nurses. DATA SOURCES Journal articles, federal reports, cancer surveillance data, behavioral surveillance data. CONCLUSION Most cases of skin cancer are preventable. Survivors of many types of cancer are at increased risk of skin cancers. IMPLICATIONS FOR NURSING PRACTICE Oncology nurses can play an important role in protecting their patients from future skin cancer morbidity and mortality.
Collapse
|
47
|
Cornaghi L, Arnaboldi F, Calò R, Landoni F, Baruffaldi Preis WF, Marabini L, Donetti E. Effects of UV Rays and Thymol/Thymus vulgaris L. Extract in an ex vivo Human Skin Model: Morphological and Genotoxicological Assessment. Cells Tissues Organs 2016; 201:180-92. [PMID: 27023828 DOI: 10.1159/000444361] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/01/2016] [Indexed: 11/19/2022] Open
Abstract
Ultraviolet (UV) radiation is the major environmental factor affecting functions of the skin. Compounds rich in polyphenols, such as Thymus vulgaris leaf extract and thymol, have been proposed for the prevention of UV-induced skin damage. We compared the acute effects induced by UVA and UVB rays on epidermal morphology and proliferation, cytotoxicity, and genotoxicity. Normal human skin explants were obtained from young healthy women (n = 7) after informed consent and cultured at the air-liquid interface overnight. After 24 h, the samples were divided in 2 groups: the former exposed to UVA (16 or 24 J/cm2) and the latter irradiated with UVB (0.24 or 0.72 J/cm2). One hour after the end of irradiation, supernatants were collected for evaluation of the lactate dehydrogenase activity. Twenty-four hours after UVB exposure, biopsies were processed for light and transmission electron microscopy analysis, proliferation, cytotoxicity, and genotoxicity. UVB and UVA rays induced early inhibition of cell proliferation and DNA damage compared to controls. In particular, UVB rays were always more cytotoxic and genotoxic than UVA ones. For this reason, we evaluated the effect of either T. vulgaris L. extract (1.82 µg/ml) or thymol (1 µg/ml) on all samples treated for 1 h before UVB irradiation. While Thymus had a protective action for all of the endpoints evaluated, the action of the extract was less pronounced on epidermal proliferation and morphological features. The results presented in this study could be the basis for investigating the mechanism of thymol and T. vulgaris L. extract against the damage induced by UV radiation.
Collapse
|
48
|
Nilsen LTN, Hannevik M, Veierød MB. Ultraviolet exposure from indoor tanning devices: a systematic review. Br J Dermatol 2016; 174:730-40. [PMID: 26749382 DOI: 10.1111/bjd.14388] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/30/2015] [Indexed: 11/28/2022]
Abstract
Use of indoor tanning devices increases the risk of cutaneous melanoma and nonmelanoma skin cancer. Indoor tanning devices have become important sources of ultraviolet (UV) exposure, both UVB and UVA. This systematic review assessed UV measurements performed in indoor tanning devices related to irradiance level, wavelength distribution and similarities to natural sun. The study was performed in accordance with the MOOSE and PRISMA guidelines. We searched PubMed, Embase and Web of Science from inception to May 2015, and also examined the reference lists of the retrieved studies. Eighteen studies were included. Twelve studies examined the erythema-weighted UV irradiances of indoor tanning devices, 11 studies examined UVB and 13 studies studied UVA. Compliance with irradiance limits was reported in nine studies. Erythema-weighted irradiances were highest in the most recent studies. Most studies had mean values higher than from natural sun and with large variations between devices. All studies except two had mean unweighted UVB irradiances lower than from natural summer sun (at latitudes from 37°S to 35°N), while mean unweighted UVA irradiances were, with one exception, substantially higher than from natural sun. The high values of UVA exposure from modern tanning devices are alarming in light of the increased focus on UVA irradiance as a carcinogen, and as UVA exposure confers little protection against subsequent UV exposure.
Collapse
Affiliation(s)
- L T N Nilsen
- Norwegian Radiation Protection Authority, NO-1332, Østerås, Norway
| | - M Hannevik
- Norwegian Radiation Protection Authority, NO-1332, Østerås, Norway
| | - M B Veierød
- Oslo Center for Biostatistics and Epidemiology, Department of Biostatistics, Institute of Basic Medical Sciences, University of Oslo, 0317, Oslo, Norway
| |
Collapse
|
49
|
Mandal M, Das T, Grewal BK, Ghosh D. Feasibility of Ionization-Mediated Pathway for Ultraviolet-Induced Melanin Damage. J Phys Chem B 2015; 119:13288-93. [DOI: 10.1021/acs.jpcb.5b08750] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Mukunda Mandal
- Physical and Materials Chemistry
Division, CSIR-National Chemical Laboratory, Pune 411008, India
| | - Tamal Das
- Physical and Materials Chemistry
Division, CSIR-National Chemical Laboratory, Pune 411008, India
| | - Baljinder K. Grewal
- Physical and Materials Chemistry
Division, CSIR-National Chemical Laboratory, Pune 411008, India
| | - Debashree Ghosh
- Physical and Materials Chemistry
Division, CSIR-National Chemical Laboratory, Pune 411008, India
| |
Collapse
|
50
|
Reinau D, Meier CR, Blumenthal R, Surber C. Skin Cancer Prevention, Tanning and Vitamin D: A Content Analysis of Print Media in Germany and Switzerland. Dermatology 2015; 232:2-10. [PMID: 26278913 DOI: 10.1159/000435913] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2015] [Accepted: 06/08/2015] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Print media are a major source of health information. OBJECTIVES To analyse press coverage related to skin cancer prevention. METHODS We conducted a content analysis of print media articles pertaining to skin cancer prevention, solaria and vitamin D published in Germany and Switzerland over a 1-year period between 2012 and 2013. RESULTS Overall, 2,103 articles were analysed. Applying sunscreen was by far the most common sun protection recommendation. A considerable number of articles on solaria and vitamin D advocated exposure to ultraviolet radiation to enhance physical appearance and vitamin D photosynthesis, often without mentioning any precaution measures. In total, 26.8% of the articles contained misleading or erroneous statements mostly related to sunscreen use and vitamin D issues. CONCLUSIONS Print media can serve as powerful education tools to foster skin cancer prevention. However, misleading or erroneous reports may negatively impact sun-safe behaviour.
Collapse
Affiliation(s)
- Daphne Reinau
- Basel Pharmacoepidemiology Unit, Division of Clinical Pharmacy and Epidemiology, Department of Pharmaceutical Sciences, University of Basel, Basel, Switzerland
| | | | | | | |
Collapse
|