1
|
Altabas V, Marinković Radošević J, Špoljarec L, Uremović S, Bulum T. The Impact of Modern Anti-Diabetic Treatment on Endothelial Progenitor Cells. Biomedicines 2023; 11:3051. [PMID: 38002051 PMCID: PMC10669792 DOI: 10.3390/biomedicines11113051] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 11/08/2023] [Accepted: 11/09/2023] [Indexed: 11/26/2023] Open
Abstract
Diabetes is one of the leading chronic diseases globally with a significant impact on mortality. This condition is associated with chronic microvascular and macrovascular complications caused by vascular damage. Recently, endothelial progenitor cells (EPCs) raised interest due to their regenerative properties. EPCs are mononuclear cells that are derived from different tissues. Circulating EPCs contribute to regenerating the vessel's intima and restoring vascular function. The ability of EPCs to repair vascular damage depends on their number and functionality. Diabetic patients have a decreased circulating EPC count and impaired EPC function. This may at least partially explain the increased risk of diabetic complications, including the increased cardiovascular risk in these patients. Recent studies have confirmed that many currently available drugs with proven cardiovascular benefits have beneficial effects on EPC count and function. Among these drugs are also medications used to treat different types of diabetes. This manuscript aims to critically review currently available evidence about the ways anti-diabetic treatment affects EPC biology and to provide a broader context considering cardiovascular complications. The therapies that will be discussed include lifestyle adjustments, metformin, sulphonylureas, gut glucosidase inhibitors, thiazolidinediones, dipeptidyl peptidase 4 inhibitors, glucagon-like peptide 1 receptor analogs, sodium-glucose transporter 2 inhibitors, and insulin.
Collapse
Affiliation(s)
- Velimir Altabas
- Department of Endocrinology, Diabetes and Metabolic Diseases, Sestre Milosrdnice University Clinical Hospital, 10000 Zagreb, Croatia
- School of Medicine, University of Zagreb, 10000 Zagreb, Croatia
| | - Jelena Marinković Radošević
- Department of Endocrinology, Diabetes and Metabolic Diseases, Sestre Milosrdnice University Clinical Hospital, 10000 Zagreb, Croatia
| | - Lucija Špoljarec
- Department of Endocrinology, Diabetes and Metabolic Diseases, Sestre Milosrdnice University Clinical Hospital, 10000 Zagreb, Croatia
| | | | - Tomislav Bulum
- Department of Endocrinology, Diabetes and Metabolic Diseases, Sestre Milosrdnice University Clinical Hospital, 10000 Zagreb, Croatia
- Vuk Vrhovac University Clinic for Diabetes, Endocrinology and Metabolic Diseases, Merkur University Hospital, 10000 Zagreb, Croatia
| |
Collapse
|
2
|
Cholesteryl ester transfer protein: An enigmatic pharmacology – Antagonists and agonists. Atherosclerosis 2018; 278:286-298. [DOI: 10.1016/j.atherosclerosis.2018.09.035] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Revised: 09/04/2018] [Accepted: 09/25/2018] [Indexed: 12/31/2022]
|
3
|
Scheen AJ. Effects of glucose-lowering agents on surrogate endpoints and hard clinical renal outcomes in patients with type 2 diabetes. DIABETES & METABOLISM 2018; 45:110-121. [PMID: 30477733 DOI: 10.1016/j.diabet.2018.10.003] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Revised: 09/17/2018] [Accepted: 10/08/2018] [Indexed: 12/12/2022]
Abstract
Diabetic kidney disease (DKD) represents an enormous burden in patients with type 2 diabetes mellitus (T2DM). Preclinical studies using most glucose-lowering agents have suggested renal-protective effects, but the proposed mechanisms of renoprotection have yet to be defined, and the promising results from experimental studies remain to be translated into human clinical findings to improve the prognosis of patients at risk of DKD. Also, it is important to distinguish effects on surrogate endpoints, such as decreases in albuminuria and estimated glomerular filtration rate (eGFR), and hard clinical endpoints, such as progression to end-stage renal disease (ESRD) and death from renal causes. Data regarding insulin therapy are surprisingly scarce, and it is nearly impossible to separate the effects of better glucose control from those of insulin per se, whereas favourable preclinical data with metformin, thiazolidinediones and dipeptidyl peptidase (DPP)-4 inhibitors are plentiful, and positive effects have been observed in clinical studies, at least for surrogate endpoints. The most favourable renal results have been reported with glucagon-like peptide-1 receptor agonists (GLP-1RAs) and sodium-glucose cotransporter type-2 inhibitors (SGLT2is). Significant reductions in both albuminuria and eGFR decline have been reported with these classes of glucose-lowering medications compared with placebo and other glucose-lowering agents. Moreover, in large prospective cardiovascular outcome trials using composite renal outcomes as secondary endpoints, both GLP-1RAs and SGLT2is added to standard care reduced renal outcomes combining persistent macro-albuminuria, doubling of serum creatinine, progression to ESRD and kidney-related death; however, to date, only SGLT2is have been clearly shown to reduce such hard clinical outcomes. Yet, as the renoprotective effects of SGLT2is and GLP-1RAs appear to be independent of glucose-lowering activity, the underlying mechanisms are still a matter of debate. For this reason, further studies with renal outcomes as primary endpoints are now awaited in T2DM patients at high risk of DKD, including trials evaluating the potential add-on benefits of combined GLP-1RA-SGLT2i therapies.
Collapse
Affiliation(s)
- A J Scheen
- Division of Clinical Pharmacology, Centre for Interdisciplinary Research on Medicines (CIRM), University of Liège, Liège, Belgium; Division of Diabetes, Nutrition and Metabolic Disorders, Department of Medicine, CHU de Liège, Liège, Belgium.
| |
Collapse
|
4
|
Attallah MI, Ibrahim AN, Elnaggar RA. Effects of Pioglitazone and Irbesartan on Endothelial Dysfunction on Experimentally Streptozotocin-Induced Diabetic Nephropathy in Rats. EGYPTIAN JOURNAL OF BASIC AND CLINICAL PHARMACOLOGY 2018. [DOI: 10.11131/2018/101368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Magdy I. Attallah
- Department of Medical Pharmacology, Faculty of Medicine, Cairo University, Kasr Alainy, Cairo, Egypt
| | - Amany N. Ibrahim
- Department of Clinical Pharmacology, Faculty of Medicine, Benha University, Benha, Qalubiya, Egypt
| | - Reham Abdelrahman Elnaggar
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Misr University for Science and Technology (MUST), 6th of October City, Giza, Egypt
| |
Collapse
|
5
|
Chen L, Cao Y, Zhang H, Lv D, Zhao Y, Liu Y, Ye G, Chai Y. Network pharmacology-based strategy for predicting active ingredients and potential targets of Yangxinshi tablet for treating heart failure. JOURNAL OF ETHNOPHARMACOLOGY 2018; 219:359-368. [PMID: 29366769 DOI: 10.1016/j.jep.2017.12.011] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Revised: 11/14/2017] [Accepted: 12/11/2017] [Indexed: 05/16/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Yangxinshi tablet (YXST) is an effective treatment for heart failure and myocardial infarction; it consists of 13 herbal medicines formulated according to traditional Chinese Medicine (TCM) practices. It has been used for the treatment of cardiovascular disease for many years in China. MATERIALS AND METHODS In this study, a network pharmacology-based strategy was used to elucidate the mechanism of action of YXST for the treatment of heart failure. Cardiovascular disease-related protein target and compound databases were constructed for YXST. A molecular docking platform was used to predict the protein targets of YXST. The affinity between proteins and ingredients was determined using surface plasmon resonance (SPR) assays. The action modes between targets and representative ingredients were calculated using Glide docking, and the related pathways were predicted using the Kyoto Encyclopedia of Genes and Genomes (KEGG) database. RESULTS A protein target database containing 924 proteins was constructed; 179 compounds in YXST were identified, and 48 compounds with high relevance to the proteins were defined as representative ingredients. Thirty-four protein targets of the 48 representative ingredients were analyzed and classified into two categories: immune and cardiovascular systems. The SPR assay and molecular docking partly validated the interplay between protein targets and representative ingredients. Moreover, 28 pathways related to heart failure were identified, which provided directions for further research on YXST. CONCLUSIONS This study demonstrated that the cardiovascular protective effect of YXST mainly involved the immune and cardiovascular systems. Through the research strategy based on network pharmacology, we analysis the complex system of YXST and found 48 representative compounds, 34 proteins and 28 related pathways of YXST, which could help us understand the underlying mechanism of YSXT's anti-heart failure effect. The network-based investigation could help researchers simplify the complex system of YXSY. It may also offer a feasible approach to decipher the chemical and pharmacological bases of other TCM formulas.
Collapse
Affiliation(s)
- Langdong Chen
- School of Pharmacy, Second Military Medical University, Shanghai 200433, China
| | - Yan Cao
- School of Pharmacy, Second Military Medical University, Shanghai 200433, China
| | - Hai Zhang
- Department of Pharmacy, Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai 201204, China
| | - Diya Lv
- School of Pharmacy, Second Military Medical University, Shanghai 200433, China
| | - Yahong Zhao
- Central Research Institute, Shanghai Pharmaceuticals Holding Co. Ltd., Shanghai 201203, China
| | - Yanjun Liu
- Central Research Institute, Shanghai Pharmaceuticals Holding Co. Ltd., Shanghai 201203, China
| | - Guan Ye
- Central Research Institute, Shanghai Pharmaceuticals Holding Co. Ltd., Shanghai 201203, China.
| | - Yifeng Chai
- School of Pharmacy, Second Military Medical University, Shanghai 200433, China.
| |
Collapse
|
6
|
Mousleh R, Al Laham S, Al-Manadili A. The Preventive Role of Pioglitazone in Glycerol-Induced Acute Kidney Injury in Rats during Two Different Treatment Periods. IRANIAN JOURNAL OF MEDICAL SCIENCES 2018; 43:184-194. [PMID: 29749987 PMCID: PMC5936850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
BACKGROUND Acute kidney injury is the most life-threatening complication of rhabdomyolysis. Glycerol is commonly used to induce this injury. The aim was to investigate the renoprotective effects of pioglitazone and the possible advantage of administering the drug for a longer period. METHODS Twenty-four male Albino Wistar rats were randomly divided into 4 groups (n=6/group): (A) control, (B) glycerol (50%, 10 mL/kg intramuscularly), (C) glycerol+pioglitazone (10 mg/kg orally for 3 days), and (D) glycerol+pioglitazone (for 6 days). Serum urea and creatinine levels were measured to assess the renal function. Reduced glutathione (GSH) levels and histological alterations were also measured. Statistical analysis was performed using Prism (version 6). The numerical data were evaluated by ANOVA, followed by the Tukey tests. The categorical data were evaluated by the Mann-Whitney test and the Fisher exact tests. P<0.05 was considered significant. RESULTS In the glycerol-injected rats, the serum urea and creatinine levels were increased (P<0.001), while the GSH levels were decreased (P<0.001) compared to Group A. The nephrotoxicity showed significant tubular (P=0.01) and glomerular (P=0.02) injuries. In the pioglitazone-treated rats, the changes in the serum biomarkers and in the GSH levels were reversed in Group C (P=0.01) and in Group D (P=0.01). The microscopic examinations of the kidneys also showed some improvement. No obvious statistically significant difference was found between these 2 preventive groups in most studied features. CONCLUSION These results indicate that pioglitazone might have nephroprotective effects in this injury model. Pioglitazone succeeded in producing this effect within 3 days. Doubling the drug administration period did not produce any significant superior benefit.
Collapse
Affiliation(s)
- Rama Mousleh
- Departmentof Pharmacology and Toxicology, Faculty of Pharmacy, Damascus University, Damascus, Syria
| | - Shaza Al Laham
- Departmentof Pharmacology and Toxicology, Faculty of Pharmacy, Damascus University, Damascus, Syria
| | - Ahmad Al-Manadili
- Departmentof Oral Histopathology, Faculty of Dentistry, Damascus University, Damascus, Syria
| |
Collapse
|
7
|
Thiazolidinediones and Edema: Recent Advances in the Pathogenesis of Thiazolidinediones-Induced Renal Sodium Retention. PPAR Res 2015; 2015:646423. [PMID: 26074951 PMCID: PMC4446477 DOI: 10.1155/2015/646423] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2015] [Accepted: 05/03/2015] [Indexed: 02/07/2023] Open
Abstract
Thiazolidinediones (TZDs) are one of the major classes of antidiabetic drugs that are used widely. TZDs improve insulin resistance by activating peroxisome proliferator-activated receptor gamma (PPARγ) and ameliorate diabetic and other nephropathies, at least, in experimental animals. However, TZDs have side effects, such as edema, congestive heart failure, and bone fracture, and may increase bladder cancer risk. Edema and heart failure, which both probably originate from renal sodium retention, are of great importance because these side effects make it difficult to continue the use of TZDs. However, the pathogenesis of edema remains a matter of controversy. Initially, upregulation of the epithelial sodium channel (ENaC) in the collecting ducts by TZDs was thought to be the primary cause of edema. However, the results of other studies do not support this view. Recent data suggest the involvement of transporters in the proximal tubule, such as sodium-bicarbonate cotransporter and sodium-proton exchanger. Other studies have suggested that sodium-potassium-chloride cotransporter 2 in the thick ascending limb of Henle and aquaporins are also possible targets for TZDs. This paper will discuss the recent advances in the pathogenesis of TZD-induced sodium reabsorption in the renal tubules and edema.
Collapse
|
8
|
Lapice E, Monticelli A, Cocozza S, Pinelli M, Cocozza S, Bruzzese D, Riccardi G, Vaccaro O. The PPARγ2 Pro12Ala variant is protective against progression of nephropathy in people with type 2 diabetes. J Transl Med 2015; 13:85. [PMID: 25889595 PMCID: PMC4358785 DOI: 10.1186/s12967-015-0448-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2014] [Accepted: 02/27/2015] [Indexed: 01/08/2023] Open
Abstract
Objective Cross-sectional studies suggest the association between diabetic nephropathy and the PPARγ2 Pro12Ala polymorphism of the peroxisome proliferator-activated receptor γ2 (PPARγ2). Prospective data are limited to microalbuminuria and no information on renal function is available to date. The present study evaluates the association between the Pro12Ala polymorphism of PPARγ2 and the progression of albuminuria and decay in glomerular filtration rate (GFR) in type 2 diabetes. Patients and measurements We studied 256 patients with an average 5-year follow-up. Among others, urinary albumin excretion rate (UAER) was measured on spot sample, GFR was estimated with the CKD-EPI Equation. Results Baseline UAER and GFR were similar for carriers or non-carriers of the polymorphism. At follow-up no significant changes from baseline were observed for UAER or eGFR in carriers of the Pro12Ala polymorphism whereas a significant increase in UAER [17 (11.3-37.9) versus 24.5 (13.8-49.9) μg/mg, p < 0.006)] and a significant reduction in the eGFR (82.8 ± 14.5 versus 80.3 ± 17.3 ml/min/1.73, m2 p = 0.02), were observed in non carriers of the Pro12Ala polymorphism. Progression of nephropathy - defined according to a combined end point of UAER and eGFR- i.e. doubling of baseline UAER to at least 100 μg/mg, or new onset microalbuminuria, or progression from micro to macroalbuminuria, or 25% reduction of eGFR, or annualized eGFR decline >3 ml/min/year - was significantly less frequent in Ala carriers than non carriers (11.4% vs 35.8%; p < 0.01); HR adjusted for baseline age, AER, eGFR, HbA1c, diabetes duration and blood pressure was 0.32 (0.12-0.80). Conclusions This study found that among patients with type 2 diabetes, the PPARγ2 Pro12Ala polymorphism is protective against progression of nephropathy and decay of renal function independent of major confounders.
Collapse
Affiliation(s)
- Emanuela Lapice
- Department of Clinical Medicine and Surgery, University of Naples Federico II, Via S Pansini 5, Naples, 80131, Italy.
| | - Antonella Monticelli
- Department of Cellular and Molecular Biology and Pathology A. Califano DBPCM, University of Naples Federico II, Via S Pansini 5, Naples, 80131, Italy. .,IEOS CNR, Via S Pansini 5, Naples, 80131, Italy.
| | - Sergio Cocozza
- Department of Cellular and Molecular Biology and Pathology A. Califano DBPCM, University of Naples Federico II, Via S Pansini 5, Naples, 80131, Italy.
| | - Michele Pinelli
- Department of Cellular and Molecular Biology and Pathology A. Califano DBPCM, University of Naples Federico II, Via S Pansini 5, Naples, 80131, Italy.
| | - Sara Cocozza
- Department of Clinical Medicine and Surgery, University of Naples Federico II, Via S Pansini 5, Naples, 80131, Italy.
| | - Dario Bruzzese
- Department of Public Health, University of Naples Federico II, Via S Pansini 5, Naples, 80131, Italy.
| | - Gabriele Riccardi
- Department of Clinical Medicine and Surgery, University of Naples Federico II, Via S Pansini 5, Naples, 80131, Italy.
| | - Olga Vaccaro
- Department of Clinical Medicine and Surgery, University of Naples Federico II, Via S Pansini 5, Naples, 80131, Italy.
| |
Collapse
|
9
|
Rani N, Bharti S, Bhatia J, Tomar A, Nag TC, Ray R, Arya DS. Inhibition of TGF-β by a novel PPAR-γ agonist, chrysin, salvages β-receptor stimulated myocardial injury in rats through MAPKs-dependent mechanism. Nutr Metab (Lond) 2015; 12:11. [PMID: 25774203 PMCID: PMC4359541 DOI: 10.1186/s12986-015-0004-7] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2014] [Accepted: 02/06/2015] [Indexed: 12/19/2022] Open
Abstract
Background Pharmacological stimulation of peroxisome proliferator-activated receptor-gamma (PPAR-γ) has been recognized as a molecular switch in alleviating myocardial injury through modulating oxidative, inflammatory and apoptotic signaling pathways. This study was designed to elucidate the effect of chrysin, a novel PPAR-γ agonist and its functional interaction with TGF-β/MAPKs in isoproterenol-challenged myocardial injury in rats. Methods Male Wistar Albino rats were either subjected to vehicle (1.5 mL/kg, p.o.) or chrysin (15–60 mg/kg, p.o.) for 28 days. Isoproterenol (85 mg/kg, s.c.) was administered to rats on 27th and 28th day to induce myocardial injury. Results Chrysin dose dependently improved ventricular (±LVdP/dtmax and LVEDP) and hemodynamic (SAP, MAP and DAP) dysfunction in isoproterenol-insulted rats. This beneficial effect of chrysin was well supported with increased expression of PPAR-γ and decreased expression of TGF-β as evidenced by western blotting and immunohistochemistry analysis. Moreover, downstream signaling pathway of TGF-β viz. P-ERK½/ERK½ activation and P-JNK/JNK, P-p38/p38 and MMP-2 inhibition were also observed. Chrysin also attenuated NF-κBp65 and IKK-β expressions, TNF-α level and TUNEL positivity thereby validating its anti-inflammatory and anti-apoptotic properties. Additionally, chrysin in a dose dependent fashion improved NO level, redox status of the myocardium (GSH and MDA levels and SOD, GSHPx and CAT activities), cardiac injury markers (CK-MB and LDH levels) and oxidative DNA damage marker (8-OHdG level) and displayed preservation of subcellular and ultrastructural components. Conclusion We established that activation of PPAR-γ and inhibition of TGF-β via MAPKs dependent mechanism is critical for cardioprotective effect of chrysin.
Collapse
Affiliation(s)
- Neha Rani
- Department of Pharmacology, All India Institute of Medical Sciences, New Delhi, 110029 India
| | - Saurabh Bharti
- Department of Pharmacology, All India Institute of Medical Sciences, New Delhi, 110029 India
| | - Jagriti Bhatia
- Department of Pharmacology, All India Institute of Medical Sciences, New Delhi, 110029 India
| | - Ameesha Tomar
- Department of Pharmacology, All India Institute of Medical Sciences, New Delhi, 110029 India
| | - T C Nag
- Department of Anatomy, All India Institute of Medical Sciences, New Delhi, 110029 India
| | - Ruma Ray
- Department of Pathology, All India Institute of Medical Sciences, New Delhi, 110029 India
| | - Dharamvir Singh Arya
- Department of Pharmacology, All India Institute of Medical Sciences, New Delhi, 110029 India
| |
Collapse
|
10
|
Yeh WJ, Yang HY, Chen JR. Soy β-conglycinin retards progression of diabetic nephropathy via modulating the insulin sensitivity and angiotensin-converting enzyme activity in rats fed with high salt diet. Food Funct 2014; 5:2898-904. [DOI: 10.1039/c4fo00379a] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
11
|
Effects of CP-900691, a novel peroxisome proliferator-activated receptor α, agonist on diabetic nephropathy in the BTBR ob/ob mouse. J Transl Med 2014; 94:851-62. [PMID: 24955894 PMCID: PMC4404155 DOI: 10.1038/labinvest.2014.80] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2013] [Revised: 05/02/2014] [Accepted: 05/20/2014] [Indexed: 12/14/2022] Open
Abstract
Piperidine-based peroxisome proliferator-activated receptor-α agonists are agents that are efficacious in improving lipid, glycemic, and inflammatory indicators in diabetes and obesity. This study sought to determine whether CP-900691 ((S)-3-[3-(1-carboxy-1-methyl-ethoxy)-phenyl]-piperidine-1-carboxylic acid 4-trifluoromethyl-benzyl ester; CP), a member of this novel class of agents, by decreasing plasma triglycerides, could prevent diabetic nephropathy in the Black and Tan, BRachyuric (BTBR) ob/ob mouse model of type 2 diabetes mellitus. Four-week old female BTBR WT and BTBR ob/ob mice received either regular chow or one containing CP (3 mg/kg per day) for 14 weeks. CP elevated plasma high-density lipoprotein, albuminuria, and urinary excretion of 8-epi PGF(2α), a product of the nonenzymatic metabolism of arachidonic acid and whose production is elevated in oxidative stress, in BTBR WT mice. In BTBR ob/ob mice, CP reduced plasma triglycerides and non-esterified fatty acids, fasting blood glucose, body weight, and plasma interleukin-6, while concomitantly improving insulin resistance. Despite these beneficial metabolic effects, CP had no effect on elevated plasma insulin, 8-epi PGF(2α) excretion, and albuminuria, and surprisingly, did not ameliorate the development of diabetic nephropathy, having no effect on the accumulation of renal macrophages, glomerular hypertrophy, and increased mesangial matrix expansion. In addition, CP did not increase plasma high-density lipoprotein in BTBR ob/ob mice, while paradoxically increasing total cholesterol levels. These findings indicate that 8-epi PGF(2α), possibly along with hyperinsulinemia and inflammatory and dysfunctional lipoproteins, is integral to the development of diabetic nephropathy and should be considered as a potential target of therapy in the treatment of diabetic nephropathy.
Collapse
|
12
|
The effect of pioglitazone on antioxidant levels and renal histopathology in streptozotocin-induced diabetic rats. ISRN ENDOCRINOLOGY 2013; 2013:858690. [PMID: 23762597 PMCID: PMC3665254 DOI: 10.1155/2013/858690] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/21/2013] [Accepted: 04/07/2013] [Indexed: 01/13/2023]
Abstract
Objective. Diabetic nephropathy is the most commonly seen cause of chronic renal failure, and oxidative stress is important in etiology. In the present study, favorable effects (if any) of the treatment with a thiazolidinedione group drug, pioglitazone, on antioxidant enzyme levels in the renal tissue, renal histopathology, and inflammatory cytokine levels have been investigated. Method. Forty male Wistar rats were divided into 4 groups as the control, diabetic control, and 10 and 30 mg pioglitazone-administered diabetic groups. After 4 weeks, antioxidant enzyme levels in renal tissues and inflammatory markers were investigated. Results. Blood glucose levels did not differ between the diabetic control and drug-administered groups. In pioglitazone-administered rats, histopathological findings such as tubular dilation, necrotic tubular epithelium, glomerular focal necrosis, and vascular consolidation were observed at a lesser extent than the diabetic control group. Any difference was not detected between the diabetic groups with respect to the levels of malondialdehyde, superoxide dismutase, catalase, glutathione, nitric oxide, interleukin-6, and tumor necrosis factor-alpha. Conclusion. Pioglitazone regressed development of histopathological lesions such as glomerular focal necrosis, tubular epithelial necrosis, tubular dilation, and vascular wall consolidation. However, any favorable effect on antioxidant enzyme levels in renal tissues and inflammation markers was not detected.
Collapse
|
13
|
Ahmadian M, Suh JM, Hah N, Liddle C, Atkins AR, Downes M, Evans RM. PPARγ signaling and metabolism: the good, the bad and the future. Nat Med 2013; 19:557-66. [PMID: 23652116 PMCID: PMC3870016 DOI: 10.1038/nm.3159] [Citation(s) in RCA: 1646] [Impact Index Per Article: 137.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2012] [Accepted: 03/06/2013] [Indexed: 11/09/2022]
Abstract
Thiazolidinediones (TZDs) are potent insulin sensitizers that act through the nuclear receptor peroxisome proliferator-activated receptor-γ (PPARγ) and are highly effective oral medications for type 2 diabetes. However, their unique benefits are shadowed by the risk for fluid retention, weight gain, bone loss and congestive heart failure. This raises the question as to whether it is possible to build a safer generation of PPARγ-specific drugs that evoke fewer side effects while preserving insulin-sensitizing potential. Recent studies that have supported the continuing physiologic and therapeutic relevance of the PPARγ pathway also provide opportunities to develop newer classes of molecules that reduce or eliminate adverse effects. This review highlights key advances in understanding PPARγ signaling in energy homeostasis and metabolic disease and also provides new explanations for adverse events linked to TZD-based therapy.
Collapse
Affiliation(s)
- Maryam Ahmadian
- Gene Expression Laboratory, Salk Institute for Biological Studies, La Jolla, California, USA
| | | | | | | | | | | | | |
Collapse
|
14
|
Abstract
Beyond improvement of glucose control, thiazolidinediones exert pleiotropic effects, which may contribute to some cardiovascular protection. PROactive ("PROspective pioglitAzone Clinical Trial In macroVascular Events") has provided valuable, although controversial, information on the impact of pioglitazone on cardiovascular outcomes in a high-risk population of patients with type 2 diabetes and established macrovascular disease. Since 2005, there has been much debate on the relative value of the statistically non-significant 10% reduction in the quite challenging primary composite endpoint (combining cardiovascular disease-driven and procedural events in all vascular beds) versus the statistically significant 16% decrease in the more robust and conventional main secondary endpoint (all-cause mortality, myocardial infarction, and stroke) observed with pioglitazone. Revisiting PROactive deserves much interest following the report of inconclusive results on cardiovascular efficacy and safety of rosiglitazone in RECORD, the withdrawal (limitation) of rosiglitazone because of cardiovascular safety concern, the recent publication of a statement positioning pioglitazone in type 2 diabetes and the near availability of cheaper generics of pioglitazone. Although subanalyses may have more limited value from a statistical viewpoint, they nonetheless can provide valuable information on the drug efficacy/safety profile and clinical insights into which patients might benefit most (in terms of cardiovascular outcomes) from pioglitazone therapy.
Collapse
Affiliation(s)
- André J Scheen
- Division of Diabetes, Nutrition and Metabolic Disorders, and Division of Clinical Pharmacology, Department of Medicine, CHU Sart Tilman, University of Liège, Liège, Belgium.
| |
Collapse
|