1
|
Rhoten SE, Wenger MJ, De Stefano LA. Iron deficiency negatively affects behavioral measures of learning, indirect neural measures of dopamine, and neural efficiency. COGNITIVE, AFFECTIVE & BEHAVIORAL NEUROSCIENCE 2025; 25:89-113. [PMID: 39638921 DOI: 10.3758/s13415-024-01241-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 10/30/2024] [Indexed: 12/07/2024]
Abstract
Iron deficiency (ID) is the most prevalent nutrient deficiency in the world, with a growing literature documenting the negative effects of ID on perception, attention, and memory. Animal models of ID suggest that dysregulation of dopamine is responsible for the deficits in memory. However, evidence that ID affects dopamine in humans is extremely limited. We report the results of a study involving college-aged women with and without ID learning two different category structures - a rule-based and an information-integration structure - selected based on the putative differential role of dopamine in learning these two structures. ID non-anemic (IDNA) and iron-sufficient (IS) women completed 1200 learning trials for each structure. EEG was collected to assess the effects of ID on features affected by dopaminergic state: error-related negativity (ERN) and positivity (Pe), feedback-related negativity (FRN), and task-related blink rate. In addition, we examined the EEG data for dynamics distinguishing IDNA from IS women, including a measure of neural efficiency. Both groups of women were able to learn both structures. However, IDNA women were initially slower and less accurate than IS women, specifically for the rule-based structure. There were large and persistent group differences in brain dynamics and neural efficiency measures. The results are discussed with respect to the selective impact of ID on initial rule-based learning and the persistent effect of ID on dopamine signaling and energetic efficiency.
Collapse
Affiliation(s)
- Stephanie E Rhoten
- Psychology and Cellular and Behavioral Neurobiology, The University of Oklahoma, 201 Stephenson Parkway, Suite 4100, Norman, OK, 73019, USA
| | - Michael J Wenger
- Psychology and Cellular and Behavioral Neurobiology, The University of Oklahoma, 201 Stephenson Parkway, Suite 4100, Norman, OK, 73019, USA.
| | - Lisa A De Stefano
- Psychology and Cellular and Behavioral Neurobiology, The University of Oklahoma, 201 Stephenson Parkway, Suite 4100, Norman, OK, 73019, USA
| |
Collapse
|
2
|
Nagy NS, Helal M, Alsawy ES, Ali MM, Al-Sherif SS, Essawy AE. Paracentrotus lividus sea urchin gonadal extract mitigates neurotoxicity and inflammatory signaling in a rat model of Parkinson's disease. PLoS One 2024; 19:e0315858. [PMID: 39693313 DOI: 10.1371/journal.pone.0315858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Accepted: 11/23/2024] [Indexed: 12/20/2024] Open
Abstract
The present study investigates the neuroprotective effects of the sea urchin Paracentrotus lividus gonadal extract on rotenone-induced neurotoxicity in a Parkinson's disease (PD) rat model. Parkinson's disease, characterized by the progressive loss of dopaminergic neurons in the substantia nigra (SN), is exacerbated by oxidative stress and neuroinflammation. The study involved fifty Wistar rats divided into five groups: control, dimethyl sulfoxide (DMSO) control, Paracentrotus lividus gonadal extract-treated, rotenone-treated, and combined rotenone with Paracentrotus lividus gonadal extract-treated. Behavioral assessments included the rotarod and open field tests, while biochemical analyses measured oxidative stress markers (malondialdehyde (MDA), nitric oxide (NO), glutathione (GSH)), antioxidants (superoxide dismutase (SOD), catalase (CAT)), pro-inflammatory cytokines (interleukin-1 beta (IL-1β), interleukin-6 (IL-6), tumor necrosis factor-alpha (TNF-α)), and neurotransmitters (dopamine (DA), levodopa (L-Dopa)). Histological and immunohistochemical analyses evaluated the neuronal integrity and tyrosine hydroxylase (TH) and alpha-synuclein expression. The results showed that Paracentrotus lividus gonadal extract significantly mitigated rotenone-induced motor deficits and improved locomotor activity. Biochemically, the extract reduced oxidative stress and inflammation markers while enhancing antioxidant levels. Histologically, it restored neuronal integrity and reduced alpha-synuclein accumulation. Molecularly, it increased tyrosine hydroxylase and dopa decarboxylase gene expression, essential for dopamine synthesis. These findings suggest that Paracentrotus lividus gonadal extract exerts neuroprotective effects by modulating oxidative stress, neuroinflammation, and dopaminergic neuron integrity, highlighting its potential as a therapeutic agent for Parkinson's disease.
Collapse
Affiliation(s)
- Nehal Shawky Nagy
- Faculty of Science, Department of Zoology, Alexandria University, Alexandria, Egypt
| | - Mohamed Helal
- National Institute of Oceanography and Fisheries (NIOF), Cairo, Egypt
- Department of Biology, University of Southern Denmark, Odense, Denmark
| | - Eman Sheta Alsawy
- Faculty of Medicine, Department of Pathology, Alexandria University, Alexandria, Egypt
| | - Mohamad Moustafa Ali
- Department of Medical Biochemistry and Microbiology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | | | - Amina Essawy Essawy
- Faculty of Science, Department of Zoology, Alexandria University, Alexandria, Egypt
| |
Collapse
|
3
|
Newbolds SF, Wenger MJ. Assessing the pattern electroretinogram as a proxy measure for dopamine in the context of iron deficiency. Nutr Neurosci 2024; 27:1131-1142. [PMID: 38272898 DOI: 10.1080/1028415x.2024.2304943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2024]
Abstract
OBJECTIVES Animal studies have suggested that dietary iron deficiency (ID) negatively affects dopamine (DA) synthesis and re-uptake, which in turn negatively affects memory and cognition. This study was intended to assess whether the pattern electroretinogram (pattern ERG) could be used as an indirect measure of DA in college-age women with and without ID by determining the extent to which features of the ERG were sensitive to iron status and were related to other indirect measures of DA. METHODS The pattern ERG was measured in 21 iron deficient non-anemic (IDNA) and 21 iron sufficient (IS) women, who also performed a contrast detection and probabilistic selection task, both with concurrent electroencephalography (EEG). Both spontaneous and task-related blink rates were also measured. RESULTS The implicit times of the A- and B-waves were significantly longer for the IDNA than for the IS women. Both the amplitudes and implicit times of the A- and B-waves were significantly correlated with levels of serum ferritin (sFt). Only the amplitude of the A-wave was correlated with spontaneous blink rate. It was possible to accurately identify a woman's iron status solely on the basis of the implicit time of the B-wave. Finally, the implicit times of the ERG features mediated the relationship between iron levels and accuracy in the probabilistic selection task. CONCLUSIONS Results suggest the utility of the pattern ERG in testing the hypothesis that iron deficiency affects DA levels in humans and that this may be one of the mechanisms by which iron deficiency negatively affects cognition.
Collapse
Affiliation(s)
- Sarah F Newbolds
- Psychology and Cellular and Behavioral Neurobiology, The University of Oklahoma, Norman, OK, USA
| | - Michael J Wenger
- Psychology and Cellular and Behavioral Neurobiology, The University of Oklahoma, Norman, OK, USA
| |
Collapse
|
4
|
Khosousi S, Sturchio A, Appleton E, Paslawski W, Ta M, Nalls M, Singleton AB, Iwaki H, Svenningsson P. Increased CSF DOPA Decarboxylase Correlates with Lower DaT-SPECT Binding: Analyses in Biopark and PPMI Cohorts. Mov Disord 2024; 39:1881-1885. [PMID: 38798037 PMCID: PMC11490393 DOI: 10.1002/mds.29835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 04/15/2024] [Accepted: 05/01/2024] [Indexed: 05/29/2024] Open
Abstract
BACKGROUND Recent studies identified increased cerebrospinal fluid (CSF) DOPA decarboxylase (DDC) as a promising biomarker for parkinsonian disorders, suggesting a compensation to dying dopaminergic neurons. A correlation with 123I-FP-CIT-SPECT (DaT-SPECT) imaging could shed light on this link. OBJECTIVE The objective is to assess the relationship between CSF DDC levels and DaT-SPECT binding values. METHODS A total of 51 and 72 Parkinson's disease (PD) subjects with available DaT-SPECT and CSF DDC levels were selected from the PPMI and Biopark cohorts, respectively. DDC levels were analyzed using proximity extension assay and correlated with DaT-SPECT striatal binding ratios (SBR). All analyses were corrected for age and sex. RESULTS CSF DDC levels in PD patients correlated negatively with DaT-SPECT SBR in both putamen and caudate nucleus. Additionally, SBR decreased with increased DDC levels over time in PD patients. CONCLUSION CSF DDC levels negatively correlate with DaT-SPECT SBR in levodopa-treated PD. © 2024 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Shervin Khosousi
- Laboratory of Translational Neuropharmacology, Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Andrea Sturchio
- Laboratory of Translational Neuropharmacology, Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
- James J. and Joan A. Gardner Family Center for Parkinson’s disease and Movement Disorders, Department of Neurology, University of Cincinnati, Cincinnati, Ohio, USA
| | - Ellen Appleton
- Laboratory of Translational Neuropharmacology, Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Wojciech Paslawski
- Laboratory of Translational Neuropharmacology, Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Michael Ta
- Center for Alzheimer’s and Related Dementias, National Institute on Aging and National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
- DataTecnica LLC, Washington, DC, USA
- Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD, USA
| | - Michael Nalls
- Center for Alzheimer’s and Related Dementias, National Institute on Aging and National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
- DataTecnica LLC, Washington, DC, USA
- Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD, USA
| | - Andrew B. Singleton
- Center for Alzheimer’s and Related Dementias, National Institute on Aging and National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
- Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD, USA
| | - Hirotaka Iwaki
- Center for Alzheimer’s and Related Dementias, National Institute on Aging and National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
- DataTecnica LLC, Washington, DC, USA
- Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD, USA
| | - Per Svenningsson
- Laboratory of Translational Neuropharmacology, Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
5
|
Appleton E, Khosousi S, Ta M, Nalls M, Singleton AB, Sturchio A, Markaki I, Paslawski W, Iwaki H, Svenningsson P. DOPA-decarboxylase is elevated in CSF, but not plasma, in prodromal and de novo Parkinson's disease. Transl Neurodegener 2024; 13:31. [PMID: 38863007 PMCID: PMC11165760 DOI: 10.1186/s40035-024-00421-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 05/09/2024] [Indexed: 06/13/2024] Open
Affiliation(s)
- Ellen Appleton
- Laboratory of Translational Neuropharmacology, Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Shervin Khosousi
- Laboratory of Translational Neuropharmacology, Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Michael Ta
- Center for Alzheimer's and Related Dementias, National Institute On Aging and National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
- DataTecnica LLC, Washington, DC, USA
- Laboratory of Neurogenetics, National Institute On Aging, National Institutes of Health, Bethesda, MD, USA
| | - Michael Nalls
- Center for Alzheimer's and Related Dementias, National Institute On Aging and National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
- DataTecnica LLC, Washington, DC, USA
- Laboratory of Neurogenetics, National Institute On Aging, National Institutes of Health, Bethesda, MD, USA
| | - Andrew B Singleton
- Center for Alzheimer's and Related Dementias, National Institute On Aging and National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
- Laboratory of Neurogenetics, National Institute On Aging, National Institutes of Health, Bethesda, MD, USA
| | - Andrea Sturchio
- Laboratory of Translational Neuropharmacology, Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
- James J. and Joan A. Gardner Family Center for Parkinson's Disease and Movement Disorders, Department of Neurology, University of Cincinnati, Cincinnati, OH, USA
| | - Ioanna Markaki
- Laboratory of Translational Neuropharmacology, Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Wojciech Paslawski
- Laboratory of Translational Neuropharmacology, Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Hirotaka Iwaki
- Center for Alzheimer's and Related Dementias, National Institute On Aging and National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
- DataTecnica LLC, Washington, DC, USA
- Laboratory of Neurogenetics, National Institute On Aging, National Institutes of Health, Bethesda, MD, USA
| | - Per Svenningsson
- Laboratory of Translational Neuropharmacology, Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden.
- Basic and Clinical Neuroscience, King's College London, London, UK.
| |
Collapse
|
6
|
Shebl N, Salama M. From metabolomics to proteomics: understanding the role of dopa decarboxylase in Parkinson's disease. Scientific commentary on: "Comprehensive proteomics of CSF, plasma, and urine identify DDC and other biomarkers of early Parkinson's disease". Acta Neuropathol 2024; 147:88. [PMID: 38761253 DOI: 10.1007/s00401-024-02739-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 05/04/2024] [Accepted: 05/05/2024] [Indexed: 05/20/2024]
Affiliation(s)
- Nourhan Shebl
- Institute of Global Health and Human Ecology, The American University in Cairo, Cairo, Egypt
| | - Mohamed Salama
- Institute of Global Health and Human Ecology, The American University in Cairo, Cairo, Egypt.
- Global Brain Health Institute (GBHI), Trinity College Dublin, Dublin 2, Ireland.
- Faculty of Medicine, Mansoura University, El Mansûra, Egypt.
| |
Collapse
|
7
|
Markova TZ, Ciampa CJ, Parent JH, LaPoint MR, D'Esposito M, Jagust WJ, Berry AS. Poorer aging trajectories are associated with elevated serotonin synthesis capacity. Mol Psychiatry 2023; 28:4390-4398. [PMID: 37460847 PMCID: PMC10792105 DOI: 10.1038/s41380-023-02177-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 06/28/2023] [Accepted: 06/30/2023] [Indexed: 01/18/2024]
Abstract
The dorsal raphe nucleus (DRN) is one of the earliest targets of Alzheimer's disease-related tau pathology and is a major source of brain serotonin. We used [18F]Fluoro-m-tyrosine ([18F]FMT) PET imaging to measure serotonin synthesis capacity in the DRN in 111 healthy adults (18-85 years-old). Similar to reports in catecholamine systems, we found elevated serotonin synthesis capacity in older adults relative to young. To establish the structural and functional context within which serotonin synthesis capacity is elevated in aging, we examined relationships among DRN [18F]FMT net tracer influx (Ki) and longitudinal changes in cortical thickness using magnetic resonance imaging, longitudinal changes in self-reported depression symptoms, and AD-related tau and β-amyloid (Aβ) pathology using cross-sectional [18F]Flortaucipir and [11C]Pittsburgh compound-B PET respectively. Together, our findings point to elevated DRN [18F]FMT Ki as a marker of poorer aging trajectories. Older adults with highest serotonin synthesis capacity showed greatest temporal lobe cortical atrophy. Cortical atrophy was associated with increasing depression symptoms over time, and these effects appeared to be strongest in individuals with highest serotonin synthesis capacity. We did not find direct relationships between serotonin synthesis capacity and AD-related pathology. Exploratory analyses revealed nuanced effects of sex within the older adult group. Older adult females showed the highest DRN synthesis capacity and exhibited the strongest relationships between entorhinal cortex tau pathology and increasing depression symptoms. Together these findings reveal PET measurement of the serotonin system to be a promising marker of aging trajectories relevant to both AD and affective changes in older age.
Collapse
Affiliation(s)
| | | | | | - Molly R LaPoint
- Helen Wills Neuroscience Institute, University of California Berkeley, Berkeley, CA, 94720, USA
| | - Mark D'Esposito
- Helen Wills Neuroscience Institute, University of California Berkeley, Berkeley, CA, 94720, USA
| | - William J Jagust
- Helen Wills Neuroscience Institute, University of California Berkeley, Berkeley, CA, 94720, USA
- Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | | |
Collapse
|
8
|
Pereira JB, Kumar A, Hall S, Palmqvist S, Stomrud E, Bali D, Parchi P, Mattsson-Carlgren N, Janelidze S, Hansson O. DOPA decarboxylase is an emerging biomarker for Parkinsonian disorders including preclinical Lewy body disease. NATURE AGING 2023; 3:1201-1209. [PMID: 37723208 PMCID: PMC10570139 DOI: 10.1038/s43587-023-00478-y] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Accepted: 08/01/2023] [Indexed: 09/20/2023]
Abstract
The diagnosis of Parkinsonian disorders is currently based on clinical criteria, which have limited sensitivity until most dopaminergic neurons are lost. Here we show that cerebrospinal fluid levels of DOPA decarboxylase (DDC) (also known as aromatic L-amino acid decarboxylase) can accurately identify patients with Lewy body disease (LBD) (area under the curve (AUC) = 0.89; PFDR = 2.6 × 10-13) and are associated with worse cognitive performance (P < 0.05). We also found that DDC can detect preclinical LBD stages in clinically unimpaired individuals with a positive seed amplification α-synuclein assay (AUC = 0.81, P = 1.0 × 10-5) and that this biomarker could predict progression to clinical LBD over a 3-year period in preclinical cases (hazard ratio = 3.7 per s.d. change, confidence interval = 1.1-12.7). Moreover, DDC levels were also increased in atypical Parkinsonian disorders but not in non-Parkinsonian neurodegenerative disorders. These cerebrospinal fluid results were replicated in an independent cohort, where we also found that DDC levels in plasma could identify both LBD and atypical Parkinsonian disorders (AUC = 0.92, P = 1.3 × 10-14). Our results show that DDC might have a future role in clinical practice as a biomarker of dopaminergic dysfunction to detect Parkinsonian disorders even during the preclinical disease stages and predict their progression to clinical LBD.
Collapse
Affiliation(s)
- Joana B Pereira
- Division of Neuro, Department of Clinical Neutaroscience, Karolinska Institutet, Solna, Sweden
- Clinical Memory Research Unit, Department of Clinical Sciences, Lund University, Malmö, Sweden
| | - Atul Kumar
- Clinical Memory Research Unit, Department of Clinical Sciences, Lund University, Malmö, Sweden
| | - Sara Hall
- Clinical Memory Research Unit, Department of Clinical Sciences, Lund University, Malmö, Sweden
- Memory Clinic, Skåne University Hospital, Malmö, Sweden
| | - Sebastian Palmqvist
- Clinical Memory Research Unit, Department of Clinical Sciences, Lund University, Malmö, Sweden
- Memory Clinic, Skåne University Hospital, Malmö, Sweden
| | - Erik Stomrud
- Clinical Memory Research Unit, Department of Clinical Sciences, Lund University, Malmö, Sweden
- Memory Clinic, Skåne University Hospital, Malmö, Sweden
| | - Divya Bali
- Clinical Memory Research Unit, Department of Clinical Sciences, Lund University, Malmö, Sweden
| | - Piero Parchi
- Istituto di Ricovero e Cura a Carattere Scientifico, Istituto delle Scienze Neurologiche di Bologna, Bologna, Italy
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Niklas Mattsson-Carlgren
- Clinical Memory Research Unit, Department of Clinical Sciences, Lund University, Malmö, Sweden
- Department of Neurology, Skåne University Hospital, Lund University, Lund, Sweden
- Wallenberg Center for Molecular Medicine, Lund University, Lund, Sweden
| | - Shorena Janelidze
- Clinical Memory Research Unit, Department of Clinical Sciences, Lund University, Malmö, Sweden
| | - Oskar Hansson
- Clinical Memory Research Unit, Department of Clinical Sciences, Lund University, Malmö, Sweden.
- Memory Clinic, Skåne University Hospital, Malmö, Sweden.
| |
Collapse
|
9
|
Del Campo M, Vermunt L, Peeters CFW, Sieben A, Hok-A-Hin YS, Lleó A, Alcolea D, van Nee M, Engelborghs S, van Alphen JL, Arezoumandan S, Chen-Plotkin A, Irwin DJ, van der Flier WM, Lemstra AW, Teunissen CE. CSF proteome profiling reveals biomarkers to discriminate dementia with Lewy bodies from Alzheimer´s disease. Nat Commun 2023; 14:5635. [PMID: 37704597 PMCID: PMC10499811 DOI: 10.1038/s41467-023-41122-y] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 08/22/2023] [Indexed: 09/15/2023] Open
Abstract
Diagnosis of dementia with Lewy bodies (DLB) is challenging and specific biofluid biomarkers are highly needed. We employed proximity extension-based assays to measure 665 proteins in the cerebrospinal fluid (CSF) from patients with DLB (n = 109), Alzheimer´s disease (AD, n = 235) and cognitively unimpaired controls (n = 190). We identified over 50 CSF proteins dysregulated in DLB, enriched in myelination processes among others. The dopamine biosynthesis enzyme DDC was the strongest dysregulated protein, and could efficiently discriminate DLB from controls and AD (AUC:0.91 and 0.81 respectively). Classification modeling unveiled a 7-CSF biomarker panel that better discriminate DLB from AD (AUC:0.93). A custom multiplex panel for six of these markers (DDC, CRH, MMP-3, ABL1, MMP-10, THOP1) was developed and validated in independent cohorts, including an AD and DLB autopsy cohort. This DLB CSF proteome study identifies DLB-specific protein changes and translates these findings to a practicable biomarker panel that accurately identifies DLB patients, providing promising diagnostic and clinical trial testing opportunities.
Collapse
Affiliation(s)
- Marta Del Campo
- Neurochemistry Laboratory and Biobank, Department of Clinical Chemistry, Amsterdam Neuroscience, Amsterdam University Medical Centers, Location VUmc, Amsterdam, The Netherlands.
- Barcelonaßeta Brain Research Center, Pasqual Maragall Foundation, Barcelona, Spain.
- Departamento de Ciencias Farmacéuticas y de la Salud, Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Madrid, Spain.
| | - Lisa Vermunt
- Neurochemistry Laboratory and Biobank, Department of Clinical Chemistry, Amsterdam Neuroscience, Amsterdam University Medical Centers, Location VUmc, Amsterdam, The Netherlands
- Alzheimer Center Amsterdam, Department of Neurology, Amsterdam Neuroscience, Amsterdam University Medical Centers, Location VUmc, Amsterdam, The Netherlands
| | - Carel F W Peeters
- Mathematical & Statistical Methods group (Biometris), Wageningen University & Research, Wageningen, The Netherlands
| | - Anne Sieben
- Lab of neuropathology, Neurobiobank, Institute Born-Bunge, Antwerp University, Edegem, Belgium
| | - Yanaika S Hok-A-Hin
- Neurochemistry Laboratory and Biobank, Department of Clinical Chemistry, Amsterdam Neuroscience, Amsterdam University Medical Centers, Location VUmc, Amsterdam, The Netherlands
| | - Alberto Lleó
- Department of Neurology, Institut d'Investigacions Biomèdiques Sant Pau (IIB SANT PAU) - Hospital de Sant Pau, Universitat Autònoma de Barcelona, Hospital de la Santa Creu i Sant Pau, Barcelona, Catalunya, Spain
- Center of Biomedical Investigation Network for Neurodegenerative Diseases (CIBERNED), Madrid, Spain
| | - Daniel Alcolea
- Department of Neurology, Institut d'Investigacions Biomèdiques Sant Pau (IIB SANT PAU) - Hospital de Sant Pau, Universitat Autònoma de Barcelona, Hospital de la Santa Creu i Sant Pau, Barcelona, Catalunya, Spain
- Center of Biomedical Investigation Network for Neurodegenerative Diseases (CIBERNED), Madrid, Spain
| | - Mirrelijn van Nee
- Department of Epidemiology & Data Science, Amsterdam Public Health research institute, Amsterdam University Medical Centers, Location VUmc, Amsterdam, The Netherlands
| | - Sebastiaan Engelborghs
- Reference Center for Biological Markers of Dementia (BIODEM), Laboratory of Neurochemistry and Behavior, Institute Born-Bunge, University of Antwerp, Antwerp, Belgium
- Vrije Universiteit Brussel, Center for Neurosciences (C4N), Neuroprotection and Neuromodulation Research Group (NEUR), Brussels, Belgium
- Universitair Ziekenhuis Brussel, Department of Neurology, Brussels, Belgium
| | - Juliette L van Alphen
- Alzheimer Center Amsterdam, Department of Neurology, Amsterdam Neuroscience, Amsterdam University Medical Centers, Location VUmc, Amsterdam, The Netherlands
| | - Sanaz Arezoumandan
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Alice Chen-Plotkin
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - David J Irwin
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Wiesje M van der Flier
- Alzheimer Center Amsterdam, Department of Neurology, Amsterdam Neuroscience, Amsterdam University Medical Centers, Location VUmc, Amsterdam, The Netherlands
- Department of Epidemiology & Data Science, Amsterdam Public Health research institute, Amsterdam University Medical Centers, Location VUmc, Amsterdam, The Netherlands
| | - Afina W Lemstra
- Alzheimer Center Amsterdam, Department of Neurology, Amsterdam Neuroscience, Amsterdam University Medical Centers, Location VUmc, Amsterdam, The Netherlands
| | - Charlotte E Teunissen
- Neurochemistry Laboratory and Biobank, Department of Clinical Chemistry, Amsterdam Neuroscience, Amsterdam University Medical Centers, Location VUmc, Amsterdam, The Netherlands
| |
Collapse
|
10
|
Combining Phenylalanine and Leucine Levels Predicts 30-Day Mortality in Critically Ill Patients Better than Traditional Risk Factors with Multicenter Validation. Nutrients 2023; 15:nu15030649. [PMID: 36771356 PMCID: PMC9921772 DOI: 10.3390/nu15030649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 01/20/2023] [Accepted: 01/24/2023] [Indexed: 01/31/2023] Open
Abstract
In critically ill patients, risk scores are used; however, they do not provide information for nutritional intervention. This study combined the levels of phenylalanine and leucine amino acids (PLA) to improve 30-day mortality prediction in intensive care unit (ICU) patients and to see whether PLA could help interpret the nutritional phases of critical illness. We recruited 676 patients with APACHE II scores ≥ 15 or intubated due to respiratory failure in ICUs, including 537 and 139 patients in the initiation and validation (multicenter) cohorts, respectively. In the initiation cohort, phenylalanine ≥ 88.5 μM (indicating metabolic disturbance) and leucine < 68.9 μM (indicating malnutrition) were associated with higher mortality rate. Based on different levels of phenylalanine and leucine, we developed PLA scores. In different models of multivariable analyses, PLA scores predicted 30-day mortality independent of traditional risk scores (p < 0.001). PLA scores were then classified into low, intermediate, high, and very-high risk categories with observed mortality rates of 9.0%, 23.8%, 45.6%, and 81.8%, respectively. These findings were validated in the multicenter cohort. PLA scores predicted 30-day mortality better than APACHE II and NUTRIC scores and provide a basis for future studies to determine whether PLA-guided nutritional intervention improves the outcomes of patients in ICUs.
Collapse
|
11
|
Salimian M, Reza Sohrabi M, Mortazavinik S. Application of net analyte signal and principal component regression for rapid simultaneous determination of Levodopa and carbidopa in commercial pharmaceutical formulation and breast (human) milk sample using spectrophotometric method. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2022; 283:121741. [PMID: 35994995 DOI: 10.1016/j.saa.2022.121741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 08/02/2022] [Accepted: 08/08/2022] [Indexed: 06/15/2023]
Abstract
In this study, a UV-vis spectrophotometric method coupled with net analyte signal (NAS) and principal component regression (PCR) as multivariate calibration methods were used for the simultaneous determination of levodopa (LEV) and carbidopa (CBD) in prepared mixtures, pharmaceutical formulation, and breast milk sample. The mean recovery of the NAS model was 98.10% and 99.60% for LEV and CBD, respectively. Also, the relative standard deviation (RSD%) values were found to be lower than 5.5% and 4% for LEV and CBD, respectively. On the other hand, the mean recovery of LEV and CBD related to the PCR method was obtained at 96.86% and 92.43%, respectively. K-Fold cross-validation was used to estimate the number of components, which was 7 and 3 with a mean square error prediction (MSEP) of 1.50 and 7.14 for LEV and CBD, respectively. The results revealed that the NAS model was better than the PCR model. Additionally, the proposed NAS-based calibration method was successfully developed for the simultaneous analyses of LEV and CBD in a commercial tablet and breast milk.
Collapse
Affiliation(s)
- Masoumeh Salimian
- Department of Chemistry, Islamic Azad University, North Tehran Branch, Tehran, Iran
| | - Mahmoud Reza Sohrabi
- Department of Chemistry, Islamic Azad University, North Tehran Branch, Tehran, Iran.
| | - Saeed Mortazavinik
- Department of Chemistry, Islamic Azad University, North Tehran Branch, Tehran, Iran
| |
Collapse
|
12
|
Wang CH, Chen WS, Liu MH, Lee CY, Wang MY, Liang CY, Chu CM, Wu HP, Chen WH. Stress Hyperphenylalaninemia Is Associated With Mortality in Cardiac ICU: Clinical Factors, Genetic Variants, and Pteridines. Crit Care Med 2022; 50:1577-1587. [PMID: 35916411 PMCID: PMC9555827 DOI: 10.1097/ccm.0000000000005640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
OBJECTIVES Hyperphenylalaninemia predicts poor outcomes in patients with cardiovascular disease. However, the prognostic value and factors associated with stress hyperphenylalaninemia (SHP) were unknown in critical patients in the cardiac ICU. DESIGN Prospective observational study. SETTING Single-center, cardiac ICU in Taiwan. PATIENTS Patients over 20 years old with Acute Physiology And Chronic Health Evaluation II scores greater than or equal to 15 and/or ventilatory support in the cardiac ICU. INTERVENTIONS We measured plasma phenylalanine levels serially during patients' stays in the ICU to investigate their prognostic value for 90-day mortality. Gene array was performed to identify genetic polymorphisms associated with SHP (phenylalanine level ≥ 11.2 μmol/dL) and to develop a Genetic Risk Score (GRS). We analyzed the associations between SHP and clinical factors and genetic variants and identified the correlation between pteridines and genetic variants. MEASUREMENTS AND MAIN RESULTS The study enrolled 497 patients. Increased phenylalanine concentration was independently associated with increased mortality risk. Patients with SHP had a higher mortality risk compared with those without SHP (log rank = 41.13; p < 0.001). SHP was associated with hepatic and renal dysfunction and with genetic polymorphisms on the pathway of tetrahydrobiopterin (BH4) synthesis (CBR1 and AKR1C3) and recycling (PCBD2). Higher GRSs were associated with lower BH4 bioavailability in response to stress ( p < 0.05). In patients without SHP at baseline, those with GRSs gretaer than or equal to 2 had a higher frequency of developing SHP during the ICU stay (31.5% vs 16.1%; p = 0.001) and a higher mortality risk ( p = 0.004) compared with those with GRSs less than 2. In patients with SHP at baseline, genetic variants did not provide additional prognostic value. CONCLUSIONS SHP in patients admitted to the ICU was associated with a worse prognosis. In patients without SHP, genetic polymorphisms associated with SHP measured using a GRS of greater than or equal to 2 was associated with the subsequent SHP and higher mortality risk.
Collapse
Affiliation(s)
- Chao-Hung Wang
- Heart Failure Research Center, Division of Cardiology, Department of Internal Medicine, Chang Gung Memorial Hospital, Keelung, Taiwan
- School of Medicine, Chang Gung University College of Medicine, Taoyuan, Taiwan
| | - Wei-Siang Chen
- Heart Failure Research Center, Division of Cardiology, Department of Internal Medicine, Chang Gung Memorial Hospital, Keelung, Taiwan
- Intensive Care Unit, Division of Cardiology, Department of Internal Medicine, Chang Gung Memorial Hospital, Keelung, Taiwan
| | - Min-Hui Liu
- Heart Failure Research Center, Division of Cardiology, Department of Internal Medicine, Chang Gung Memorial Hospital, Keelung, Taiwan
- Department of Nursing, Chang Gung Memorial Hospital, Keelung, Taiwan
| | - Chi-Ying Lee
- Department of Medical Science, Institute of Bioinformatics and Structural Biology, National Tsing Hua University, Hsinchu, Taiwan
| | - Mei-Ying Wang
- Heart Failure Research Center, Division of Cardiology, Department of Internal Medicine, Chang Gung Memorial Hospital, Keelung, Taiwan
- Intensive Care Unit, Division of Cardiology, Department of Internal Medicine, Chang Gung Memorial Hospital, Keelung, Taiwan
| | - Chung-Yu Liang
- Heart Failure Research Center, Division of Cardiology, Department of Internal Medicine, Chang Gung Memorial Hospital, Keelung, Taiwan
- Intensive Care Unit, Division of Cardiology, Department of Internal Medicine, Chang Gung Memorial Hospital, Keelung, Taiwan
| | - Chien-Ming Chu
- Division of pulmonary, critical care and sleep medicine, Chang Gung Memorial Hospital, Keelung, Taiwan
| | - Huang-Ping Wu
- Division of pulmonary, critical care and sleep medicine, Chang Gung Memorial Hospital, Keelung, Taiwan
| | - Wen-Hsin Chen
- Heart Failure Research Center, Division of Cardiology, Department of Internal Medicine, Chang Gung Memorial Hospital, Keelung, Taiwan
- Intensive Care Unit, Division of Cardiology, Department of Internal Medicine, Chang Gung Memorial Hospital, Keelung, Taiwan
| |
Collapse
|
13
|
The Cell Membrane of a Novel Rhizobium phaseoli Strain Is the Crucial Target for Aluminium Toxicity and Tolerance. Cells 2022; 11:cells11050873. [PMID: 35269493 PMCID: PMC8909678 DOI: 10.3390/cells11050873] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 02/17/2022] [Accepted: 02/28/2022] [Indexed: 01/01/2023] Open
Abstract
Soils with low pH and high aluminium (Al) contamination restrict common bean production, mainly due to adverse effects on rhizobia. We isolated a novel rhizobium strain, B3, from Kenyan soil which is more tolerant to Al stress than the widely used commercial strain CIAT899. B3 was resistant to 50 µM Al and recovered from 100 µM Al stress, while CIAT899 did not. Calcein labeling showed that less Al binds to the B3 membranes and less ATP and mScarlet-1 protein, a cytoplasmic marker, leaked out of B3 than CIAT899 cells in Al-containing media. Expression profiles showed that the primary targets of Al are genes involved in membrane biogenesis, metal ions binding and transport, carbohydrate, and amino acid metabolism and transport. The identified differentially expressed genes suggested that the intracellular γ-aminobutyric acid (GABA), glutathione (GSH), and amino acid levels, as well as the amount of the extracellular exopolysaccharide (EPS), might change during Al stress. Altered EPS levels could also influence biofilm formation. Therefore, these parameters were investigated in more detail. The GABA levels, extracellular EPS production, and biofilm formation increased, while GSH and amino acid level decreased. In conclusion, our comparative analysis identified genes that respond to Al stress in R. phaseoli. It appears that a large portion of the identified genes code for proteins stabilizing the plasma membrane. These genes might be helpful for future studies investigating the molecular basis of Al tolerance and the characterization of candidate rhizobial isolates that perform better in Al-contaminated soils than commercial strains.
Collapse
|
14
|
Park SW, Kim TE, Jung YK. Glutathione-decorated fluorescent carbon quantum dots for sensitive and selective detection of levodopa. Anal Chim Acta 2021; 1165:338513. [PMID: 33975692 DOI: 10.1016/j.aca.2021.338513] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 04/08/2021] [Accepted: 04/09/2021] [Indexed: 12/28/2022]
Abstract
Levodopa has been a standard drug for treating Parkinson's disease since the 1960s, but it has caused many side effects such as wearing-off, motor fluctuation, and dystonia. In this work, we developed glutathione-conjugated carbon quantum dots (GSH-CQDs) as a novel fluorescent sensor for sensitive and selective detection of levodopa. The GSH-CQDs were prepared by EDC/NHS coupling reaction of glutathione (GSH) with amine-functionalized CQDs (N-CQDs) synthesized using meta-phenylenediamine and ethylenediamine. The synthesized GSH-CQDs emitted bright green fluorescence with a high quantum yield (QY) of 22.42 ± 6.88%. However, upon the addition of levodopa to GSH-CQDs under alkaline conditions, the fluorescence of GSH-CQDs was quenched. Since levodopa is converted to dopaquinone in an alkaline environment, it is presumed that thiol groups of GHS-CQDs form covalent bonds with dopaquinone, causing fluorescence quenching through photoinduced electron transfer. Therefore, as the concentration of levodopa increased, the fluorescence intensity of GSH-CQDs was gradually decreased. Under optimal conditions, a linear response was observed in the range of 0.05-1 μM, and limit of detection (LOD) was determined to be 0.057 μM. The GSH-CQDs exhibited high specificity to levodopa over other non-target biological substances, quinone derivatives, and Parkinson's medications. Furthermore, the capability of this GSH-CQDs sensor for monitoring levodopa in human serum were validated with excellent precision and recovery rates of 100.20-103.33%.
Collapse
Affiliation(s)
- Seok Won Park
- Department of Nanoscience and Engineering, Inje University, Gimhae, 50834, Republic of Korea
| | - Tae Eun Kim
- Department of Nanoscience and Engineering, Inje University, Gimhae, 50834, Republic of Korea
| | - Yun Kyung Jung
- Department of Nanoscience and Engineering, Inje University, Gimhae, 50834, Republic of Korea; School of Biomedical Engineering, Inje University, Gimhae, 50834, Republic of Korea.
| |
Collapse
|
15
|
Wu WJ, Lu CW, Wang SE, Lin CL, Su LY, Wu CH. MPTP toxicity causes vocal, auditory, orientation and movement defects in the echolocation bat. Neuroreport 2021; 32:125-134. [PMID: 33323836 DOI: 10.1097/wnr.0000000000001574] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) can damage dopaminergic neurons in the substantia nigra in many mammals with biochemical and cellular changes that are relatively similar to those observed in Parkinson's disease. Our study examined whether MPTP-treated echolocation bats can cause changes in bat echolocation system. By considering ultrasound spectrums, auditory brainstem-evoked potentials and flight trajectories of normal bats, we observed that the vocal, auditory, orientation and movement functions of MPTP-treated bats were significantly impaired, and they exhibited various symptoms resembling those in patients with Parkinson's disease. Our immunohistochemistry and western blot analyses further indicated that expression of vocal-related FOXP2 in the superior colliculus, auditory-related otoferlin in the inferior colliculus, dopamine synthesis-related aromatic l-amino acid decarboxylase in the substantia nigra and dopamine receptor in the striatum was significantly decreased. Furthermore, protein expression related to inflammation, oxidative stress and apoptosis in the substantia nigra was significantly increased in MPTP-treated bats. These results indicate that inflammation, oxidative stress and apoptosis may be instrumental in dopaminergic neurodegeneration in the substantia nigra. The vocal, auditory and orientation and movement dysfunctions of MPTP-treated bats are relatively consistent with symptoms of Parkinson's disease.
Collapse
MESH Headings
- 1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine/pharmacology
- Animals
- Apoptosis/drug effects
- Aromatic-L-Amino-Acid Decarboxylases/drug effects
- Aromatic-L-Amino-Acid Decarboxylases/metabolism
- Chiroptera
- Dopaminergic Neurons/drug effects
- Dopaminergic Neurons/metabolism
- Dopaminergic Neurons/pathology
- Echolocation/drug effects
- Evoked Potentials, Auditory, Brain Stem/drug effects
- Flight, Animal/drug effects
- Forkhead Transcription Factors/drug effects
- Forkhead Transcription Factors/metabolism
- Inferior Colliculi/drug effects
- Inferior Colliculi/metabolism
- Inflammation
- Membrane Proteins/drug effects
- Membrane Proteins/metabolism
- Movement/drug effects
- Orientation, Spatial/drug effects
- Oxidative Stress
- Parkinson Disease
- Parkinsonian Disorders/metabolism
- Parkinsonian Disorders/pathology
- Parkinsonian Disorders/physiopathology
- Receptors, Dopamine/drug effects
- Receptors, Dopamine/metabolism
- Substantia Nigra/drug effects
- Substantia Nigra/metabolism
- Substantia Nigra/pathology
- Superior Colliculi/drug effects
- Superior Colliculi/metabolism
- Vocalization, Animal/drug effects
Collapse
Affiliation(s)
- Wan-Jhen Wu
- Department of Life Science, School of Life Science, National Taiwan Normal University, Taipei, Taiwan
| | | | | | | | | | | |
Collapse
|
16
|
Troncoso-Escudero P, Sepulveda D, Pérez-Arancibia R, Parra AV, Arcos J, Grunenwald F, Vidal RL. On the Right Track to Treat Movement Disorders: Promising Therapeutic Approaches for Parkinson's and Huntington's Disease. Front Aging Neurosci 2020; 12:571185. [PMID: 33101007 PMCID: PMC7497570 DOI: 10.3389/fnagi.2020.571185] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Accepted: 08/17/2020] [Indexed: 12/17/2022] Open
Abstract
Movement disorders are neurological conditions in which patients manifest a diverse range of movement impairments. Distinct structures within the basal ganglia of the brain, an area involved in movement regulation, are differentially affected for every disease. Among the most studied movement disorder conditions are Parkinson's (PD) and Huntington's disease (HD), in which the deregulation of the movement circuitry due to the loss of specific neuronal populations in basal ganglia is the underlying cause of motor symptoms. These symptoms are due to the loss principally of dopaminergic neurons of the substantia nigra (SN) par compacta and the GABAergic neurons of the striatum in PD and HD, respectively. Although these diseases were described in the 19th century, no effective treatment can slow down, reverse, or stop disease progression. Available pharmacological therapies have been focused on preventing or alleviating motor symptoms to improve the quality of life of patients, but these drugs are not able to mitigate the progressive neurodegeneration. Currently, considerable therapeutic advances have been achieved seeking a more efficacious and durable therapeutic effect. Here, we will focus on the new advances of several therapeutic approaches for PD and HD, starting with the available pharmacological treatments to alleviate the motor symptoms in both diseases. Then, we describe therapeutic strategies that aim to restore specific neuronal populations or their activity. Among the discussed strategies, the use of Neurotrophic factors (NTFs) and genetic approaches to prevent the neuronal loss in these diseases will be described. We will highlight strategies that have been evaluated in both Parkinson's and Huntington's patients, and also the ones with strong preclinical evidence. These current therapeutic techniques represent the most promising tools for the safe treatment of both diseases, specifically those aimed to avoid neuronal loss during disease progression.
Collapse
Affiliation(s)
- Paulina Troncoso-Escudero
- Center for Integrative Biology, Faculty of Sciences, Universidad Mayor, Santiago, Chile
- Faculty of Medicine, Biomedical Neuroscience Institute, University of Chile, Santiago, Chile
- Program of Cellular and Molecular Biology, Institute of Biomedical Sciences, University of Chile, Santiago, Chile
- Center for Geroscience, Brain Health, and Metabolism, University of Chile, Santiago, Chile
| | - Denisse Sepulveda
- Center for Integrative Biology, Faculty of Sciences, Universidad Mayor, Santiago, Chile
- Faculty of Medicine, Biomedical Neuroscience Institute, University of Chile, Santiago, Chile
- Center for Geroscience, Brain Health, and Metabolism, University of Chile, Santiago, Chile
| | - Rodrigo Pérez-Arancibia
- Center for Integrative Biology, Faculty of Sciences, Universidad Mayor, Santiago, Chile
- Faculty of Medicine, Biomedical Neuroscience Institute, University of Chile, Santiago, Chile
- Center for Geroscience, Brain Health, and Metabolism, University of Chile, Santiago, Chile
| | - Alejandra V. Parra
- Center for Integrative Biology, Faculty of Sciences, Universidad Mayor, Santiago, Chile
- Faculty of Medicine, Biomedical Neuroscience Institute, University of Chile, Santiago, Chile
- Program of Cellular and Molecular Biology, Institute of Biomedical Sciences, University of Chile, Santiago, Chile
- Center for Geroscience, Brain Health, and Metabolism, University of Chile, Santiago, Chile
| | - Javiera Arcos
- Center for Integrative Biology, Faculty of Sciences, Universidad Mayor, Santiago, Chile
- Faculty of Medicine, Biomedical Neuroscience Institute, University of Chile, Santiago, Chile
- Center for Geroscience, Brain Health, and Metabolism, University of Chile, Santiago, Chile
| | - Felipe Grunenwald
- Center for Integrative Biology, Faculty of Sciences, Universidad Mayor, Santiago, Chile
- Faculty of Medicine, Biomedical Neuroscience Institute, University of Chile, Santiago, Chile
- Center for Geroscience, Brain Health, and Metabolism, University of Chile, Santiago, Chile
| | - Rene L. Vidal
- Center for Integrative Biology, Faculty of Sciences, Universidad Mayor, Santiago, Chile
- Faculty of Medicine, Biomedical Neuroscience Institute, University of Chile, Santiago, Chile
- Center for Geroscience, Brain Health, and Metabolism, University of Chile, Santiago, Chile
| |
Collapse
|
17
|
Cui D, Mesaros A, Burdeos G, Voigt I, Giavalisco P, Hinze Y, Purrio M, Neumaier B, Drzezga A, Obata Y, Endepols H, Xu X. Dnmt3a2/Dnmt3L Overexpression in the Dopaminergic System of Mice Increases Exercise Behavior through Signaling Changes in the Hypothalamus. Int J Mol Sci 2020; 21:ijms21176297. [PMID: 32878077 PMCID: PMC7504350 DOI: 10.3390/ijms21176297] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2020] [Revised: 08/23/2020] [Accepted: 08/27/2020] [Indexed: 12/27/2022] Open
Abstract
Dnmt3a2, a de novo DNA methyltransferase, is induced by neuronal activity and participates in long-term memory formation with the increased expression of synaptic plasticity genes. We wanted to determine if Dnmt3a2 with its partner Dnmt3L may influence motor behavior via the dopaminergic system. To this end, we generated a mouse line, Dnmt3a2/3LDat/wt, with dopamine transporter (DAT) promotor driven Dnmt3a2/3L overexpression. The mice were studied with behavioral paradigms (e.g., cylinder test, open field, and treadmill), brain slice patch clamp recordings, ex vivo metabolite analysis, and in vivo positron emission tomography (PET) using the dopaminergic tracer 6-[18F]FMT. The results showed that spontaneous activity and exercise performance were enhanced in Dnmt3a2/3LDat/wt mice compared to Dnmt3a2/3Lwt/wt controls. Dopaminergic substantia nigra pars compacta neurons of Dnmt3a2/3LDat/wt animals displayed a higher fire frequency and excitability. However, dopamine concentration was not increased in the striatum, and dopamine metabolite concentration was even significantly decreased. Striatal 6-[18F]FMT uptake, reflecting aromatic L-amino acid decarboxylase activity, was the same in Dnmt3a2/3LDat/wt mice and controls. [18F]FDG PET showed that hypothalamic metabolic activity was tightly linked to motor behavior in Dnmt3a2/3LDat/wt mice. Furthermore, dopamine biosynthesis and motor-related metabolic activity were correlated in the hypothalamus. Our findings suggest that Dnmt3a2/3L, when overexpressed in dopaminergic neurons, modulates motor performance via activation of the nigrostriatal pathway. This does not involve increased dopamine synthesis.
Collapse
Affiliation(s)
- Di Cui
- Max Planck Institute for Biology of Ageing, Joseph-Stelzmann-Str. 9b, 50931 Cologne, Germany; (A.M.); (G.B.); (I.V.); (P.G.); (Y.H.); (M.P.)
- Correspondence: (D.C.); (X.X.)
| | - Andrea Mesaros
- Max Planck Institute for Biology of Ageing, Joseph-Stelzmann-Str. 9b, 50931 Cologne, Germany; (A.M.); (G.B.); (I.V.); (P.G.); (Y.H.); (M.P.)
| | - Gregor Burdeos
- Max Planck Institute for Biology of Ageing, Joseph-Stelzmann-Str. 9b, 50931 Cologne, Germany; (A.M.); (G.B.); (I.V.); (P.G.); (Y.H.); (M.P.)
- Institute for Animal Nutrition and Physiology, Christian Albrechts University Kiel, Hermann-Rodewald Street, 9, 24118 Kiel, Germany
| | - Ingo Voigt
- Max Planck Institute for Biology of Ageing, Joseph-Stelzmann-Str. 9b, 50931 Cologne, Germany; (A.M.); (G.B.); (I.V.); (P.G.); (Y.H.); (M.P.)
| | - Patrick Giavalisco
- Max Planck Institute for Biology of Ageing, Joseph-Stelzmann-Str. 9b, 50931 Cologne, Germany; (A.M.); (G.B.); (I.V.); (P.G.); (Y.H.); (M.P.)
| | - Yvonne Hinze
- Max Planck Institute for Biology of Ageing, Joseph-Stelzmann-Str. 9b, 50931 Cologne, Germany; (A.M.); (G.B.); (I.V.); (P.G.); (Y.H.); (M.P.)
| | - Martin Purrio
- Max Planck Institute for Biology of Ageing, Joseph-Stelzmann-Str. 9b, 50931 Cologne, Germany; (A.M.); (G.B.); (I.V.); (P.G.); (Y.H.); (M.P.)
| | - Bernd Neumaier
- University of Cologne, Faculty of Medicine and University Hospital Cologne, Institute of Radiochemistry and Experimental Molecular Imaging, Kerpener Str. 62, 50937 Cologne, Germany; (B.N.); (H.E.)
- Institute for Neuroscience and Medicine, INM-5: Nuclear Chemistry, Forschungszentrum Jülich GmbH, Wilhelm-Johnen-Str., 52425 Jülich, Germany
| | - Alexander Drzezga
- Department of Nuclear Medicine, University of Cologne, Faculty of Medicine and University Hospital Cologne, Kerpener Str. 62, 50937 Köln, Germany;
| | - Yayoi Obata
- Department of Bioscience, Tokyo University of Agriculture, Faculty of Life Sciences, 1-1-1 Sakuragaoka, Setagaya-ku, Tokyo 156-8502, Japan;
| | - Heike Endepols
- University of Cologne, Faculty of Medicine and University Hospital Cologne, Institute of Radiochemistry and Experimental Molecular Imaging, Kerpener Str. 62, 50937 Cologne, Germany; (B.N.); (H.E.)
- Institute for Neuroscience and Medicine, INM-5: Nuclear Chemistry, Forschungszentrum Jülich GmbH, Wilhelm-Johnen-Str., 52425 Jülich, Germany
- Department of Nuclear Medicine, University of Cologne, Faculty of Medicine and University Hospital Cologne, Kerpener Str. 62, 50937 Köln, Germany;
| | - Xiangru Xu
- Max Planck Institute for Biology of Ageing, Joseph-Stelzmann-Str. 9b, 50931 Cologne, Germany; (A.M.); (G.B.); (I.V.); (P.G.); (Y.H.); (M.P.)
- Department of Anesthesiology, Yale University School of Medicine, 10 Amistad Street, New Haven, CT 06519, USA
- Correspondence: (D.C.); (X.X.)
| |
Collapse
|
18
|
Espadas I, Keifman E, Palomo-Garo C, Burgaz S, García C, Fernández-Ruiz J, Moratalla R. Beneficial effects of the phytocannabinoid Δ 9-THCV in L-DOPA-induced dyskinesia in Parkinson's disease. Neurobiol Dis 2020; 141:104892. [PMID: 32387338 DOI: 10.1016/j.nbd.2020.104892] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2020] [Revised: 04/17/2020] [Accepted: 04/27/2020] [Indexed: 02/07/2023] Open
Abstract
The antioxidant and CB2 receptor agonist properties of Δ9-tetrahydrocannabivarin (Δ9-THCV) afforded neuroprotection in experimental Parkinson's disease (PD), whereas its CB1 receptor antagonist profile at doses lower than 5 mg/kg caused anti-hypokinetic effects. In the present study, we investigated the anti-dyskinetic potential of Δ9-THCV (administered i.p. at 2 mg/kg for two weeks), which had not been investigated before. This objective was investigated after inducing dyskinesia by repeated administration of L-DOPA (i.p. at 10 mg/kg) in a genetic model of dopaminergic deficiency, Pitx3ak mutant mice, which serves as a useful model for testing anti-dyskinetic agents. The daily treatment of these mice with L-DOPA for two weeks progressively increased the time spent in abnormal involuntary movements (AIMs) and elevated their horizontal and vertical activities (as measured in a computer-aided actimeter), signs that reflected the dyskinetic state of these mice. Interestingly, when combined with L-DOPA from the first injection, Δ9-THCV delayed the appearance of all these signs and decreased their intensity, with a reduction in the levels of FosB protein and the histone pAcH3 (measured by immunohistochemistry), which had previously been found to be elevated in the basal ganglia in L-DOPA-induced dyskinesia. In addition to the anti-dyskinetic effects of Δ9-THCV when administered at the onset of L-DOPA treatment, Δ9-THCV was also effective in attenuating the intensity of dyskinesia when administered for three consecutive days once these signs were already present (two weeks after the onset of L-DOPA treatment). In summary, our data support the anti-dyskinetic potential of Δ9-THCV, both to delay the occurrence and to attenuate the magnitude of dyskinetic signs. Although further studies are clearly required to determine the clinical significance of these data in humans, the results nevertheless situate Δ9-THCV in a promising position for developing a cannabinoid-based therapy for patients with PD.
Collapse
Affiliation(s)
- Isabel Espadas
- Instituto Cajal-CSIC, Madrid, Spain; Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), ISCIII, Madrid, Spain
| | | | - Cristina Palomo-Garo
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), ISCIII, Madrid, Spain; Instituto Universitario de Investigación en Neuroquímica, Departamento de Bioquímica y Biología Molecular, Facultad de Medicina, Universidad Complutense, Madrid, Spain; Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain
| | - Sonia Burgaz
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), ISCIII, Madrid, Spain; Instituto Universitario de Investigación en Neuroquímica, Departamento de Bioquímica y Biología Molecular, Facultad de Medicina, Universidad Complutense, Madrid, Spain; Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain
| | - Concepción García
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), ISCIII, Madrid, Spain; Instituto Universitario de Investigación en Neuroquímica, Departamento de Bioquímica y Biología Molecular, Facultad de Medicina, Universidad Complutense, Madrid, Spain; Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain
| | - Javier Fernández-Ruiz
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), ISCIII, Madrid, Spain; Instituto Universitario de Investigación en Neuroquímica, Departamento de Bioquímica y Biología Molecular, Facultad de Medicina, Universidad Complutense, Madrid, Spain; Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain.
| | - Rosario Moratalla
- Instituto Cajal-CSIC, Madrid, Spain; Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), ISCIII, Madrid, Spain.
| |
Collapse
|
19
|
Mei M, Zhou Y, Liu M, Zhao F, Wang C, Ding J, Lu M, Hu G. Antioxidant and anti-inflammatory effects of dexrazoxane on dopaminergic neuron degeneration in rodent models of Parkinson's disease. Neuropharmacology 2019; 160:107758. [DOI: 10.1016/j.neuropharm.2019.107758] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Revised: 06/04/2019] [Accepted: 09/02/2019] [Indexed: 12/11/2022]
|
20
|
Katsaiti I, Nixon J. Are There Benefits in Adding Catechol-O Methyltransferase Inhibitors in the Pharmacotherapy of Parkinson's Disease Patients? A Systematic Review. JOURNAL OF PARKINSONS DISEASE 2019; 8:217-231. [PMID: 29614697 DOI: 10.3233/jpd-171225] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
BACKGROUND A qualified consensus suggests that a combination of levodopa with a peripherally acting dopa decarboxylase inhibitor continues to present the gold standard treatment of Parkinson's disease (PD). However, as the disease progresses the therapeutic window of levodopa becomes narrowed. Pharmacological strategies for motor fluctuations are focused on providing less pulsatile and more continuous dopaminergic stimulation. Peripheral catechol-O-methyltransferase (COMT) inhibition improves the bioavailability of levodopa and results in a prolonged response. OBJECTIVE The primary aim of this study was to investigate the efficacy and safety of the two available COMT inhibitors; entacapone and tolcapone and the recently introduced opicapone. METHODS Electronic databases were systematically searched for original studies published within the last 37 years. In addition, lists of identified studies, reviews and their references were examined. RESULTS Twelve studies fulfilled the inclusion criteria. 3701 patients with PD were included in this systematic review. CONCLUSIONS Adjuvant treatment of PD patients experiencing motor fluctuations with entacapone resulted in improvement of motor function and was well tolerated. Therefore, entacapone presented an acceptable benefit to risk ratio. Tolcapone appeared to result in a greater therapeutic effect. However, this was not consistent across all motor variables and studies, and thus would not support its use, given the current onerous monitoring that is required. Opicapone was not associated with adverse reactions in a phase III trial but did not present a greater efficacy than entacapone, and thus further studies are required in order to illustrate its cost effectiveness.
Collapse
Affiliation(s)
- Irene Katsaiti
- Current Medical Student, Lancaster Medical School, Lancaster, UK
| | - John Nixon
- Consultant Neurologist, Lancashire Teaching Hospitals NHS Foundation Trust, Preston, UK
| |
Collapse
|
21
|
Batalhão IG, Lima D, Russi APM, Boscolo CNP, Silva DGH, Pereira TSB, Bainy ACD, de Almeida EA. Effects of methylphenidate on the aggressive behavior, serotonin and dopamine levels, and dopamine-related gene transcription in brain of male Nile tilapia (Oreochromis niloticus). FISH PHYSIOLOGY AND BIOCHEMISTRY 2019; 45:1377-1391. [PMID: 31054043 DOI: 10.1007/s10695-019-00645-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Accepted: 04/22/2019] [Indexed: 06/09/2023]
Abstract
The occurrence of pharmaceuticals in the aquatic environment has increased considerably in the last decades, causing negative biochemical, physiological, and behavioral effects in aquatic organisms. In this study, we evaluated the effects of methylphenidate (MPH) on the aggressive behavior, dopamine-related gene transcript levels, monoamine levels, and carboxylesterase transcript levels and activity in the brain of male Nile tilapia (Oreochromis niloticus). Carboxylesterase activity was also measured in the liver and gills. Fish were exposed for 5 days to MPH at 20 and 100 ng L-1. Fish exposed to 100 ng L-1 of MPH showed increased aggressiveness and decreased dopamine (DA) and serotonin (5-HT) levels. No changes were observed in plasma testosterone levels and in the transcript levels of D1 and D2 dopamine receptors, dopamine transporter (DAT), and carboxylesterase 2 (CES2). Exposure to 100 ng L-1 of MPH caused a decrease in the transcript levels of carboxylesterase 3 (CES3) and an increase in tyrosine hydroxylase (TH), while exposure to 20 ng L-1 of MPH increased the transcript levels of D5 dopamine receptor. Carboxylesterase activity was unchanged in the brain and liver and increased in the gills of fish exposed to 20 ng L-1. These results indicate that MPH at 100 ng L-1 increases aggressiveness in Nile tilapia, possibly due to a decrease in 5-HT levels in the brain and alterations in dopamine levels and dopamine-related genes.
Collapse
Affiliation(s)
- Isabela Gertrudes Batalhão
- Department of Chemistry and Environmental Sciences, UNESP - Sao Paulo State University, São Paulo, Brazil
| | - Daína Lima
- Department of Biochemistry, UFSC - Federal University of Santa Catarina, Florianópolis, SP, Brazil
| | - Ana Paula Montedor Russi
- Department of Physiology, UNESP - Sao Paulo State University, Jaboticabal, São Paulo, SP, Brazil
| | | | | | - Thiago Scremin Boscolo Pereira
- UNIRP - University Center of Rio Preto, São José do Rio Preto, SP, Brazil
- FACERES - Morphofunctional Laboratory, FACERES Medical School, São José do Rio Preto, SP, Brazil
| | - Afonso Celso Dias Bainy
- Department of Biochemistry, UFSC - Federal University of Santa Catarina, Florianópolis, SP, Brazil
| | - Eduardo Alves de Almeida
- Department of Natural Sciences, FURB Fundação Universidade Regional de Blumenau, Blumenau, SC, Brazil.
| |
Collapse
|
22
|
A Metabonomics Investigation into the Therapeutic Effects of BuChang NaoXinTong Capsules on Reversing the Amino Acid-Protein Interaction Network of Cerebral Ischemia. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:7258624. [PMID: 31015890 PMCID: PMC6446104 DOI: 10.1155/2019/7258624] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Revised: 01/10/2019] [Accepted: 01/16/2019] [Indexed: 02/05/2023]
Abstract
Background Amino acids (AAs) in cerebrospinal fluid (CSF) play a pivotal role in cerebral ischemia (CI). BuChang NaoXinTong Capsules (BNC) are widely prescribed in Chinese medicine for the treatment of cerebrovascular and cardiovascular diseases. Methods In order to investigate the therapeutic effects and pharmacological mechanisms of BNC on reversing CI from a system level, an amino acid-protein interaction imbalanced network of CI containing metabolites of AAs, key regulatory enzymes, and proteins was constructed for the first time. Furthermore, a novel method for detecting the ten AAs in CSF was developed by UPLC-QQQ-MS in an effort to validate the imbalanced networks and the therapeutic effects of BNC via analysis of metabolites. Results Based on a middle cerebral artery occlusion (MCAO) rat model, the dynamic levels of amino acids in CSF 3, 6, 12, and 24 h after MCAO were analyzed. Up to 24 h, the accumulated nine AA biomarkers were found to significantly change in the MCAO group compared to the sham group and exhibited an obvious tendency for returning to baseline values after BNC treatment. In addition, based on the imbalanced network of CI, four key enzymes that regulate the generation of BNC-mediated AA biomarkers were selected and validated using an enzyme-linked immunosorbent assay and western blotting. Finally, aromatic-L-amino-acid decarboxylase (AADC) was found to be one of the putative targets for BNC-mediated protection against CI. Conclusion This study provides new strategies to explore the mechanism of cerebral ischemia and help discover the potential mechanism of BNC.
Collapse
|
23
|
Maia TV, Conceição VA. Dopaminergic Disturbances in Tourette Syndrome: An Integrative Account. Biol Psychiatry 2018; 84:332-344. [PMID: 29656800 DOI: 10.1016/j.biopsych.2018.02.1172] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2017] [Revised: 02/04/2018] [Accepted: 02/25/2018] [Indexed: 12/28/2022]
Abstract
Tourette syndrome (TS) is thought to involve dopaminergic disturbances, but the nature of those disturbances remains controversial. Existing hypotheses suggest that TS involves 1) supersensitive dopamine receptors, 2) overactive dopamine transporters that cause low tonic but high phasic dopamine, 3) presynaptic dysfunction in dopamine neurons, or 4) dopaminergic hyperinnervation. We review evidence that contradicts the first two hypotheses; we also note that the last two hypotheses have traditionally been considered too narrowly, explaining only small subsets of findings. We review all studies that have used positron emission tomography and single-photon emission computerized tomography to investigate the dopaminergic system in TS. The seemingly diverse findings from those studies have typically been interpreted as pointing to distinct mechanisms, as evidenced by the various hypotheses concerning the nature of dopaminergic disturbances in TS. We show, however, that the hyperinnervation hypothesis provides a simple, parsimonious explanation for all such seemingly diverse findings. Dopaminergic hyperinnervation likely causes increased tonic and phasic dopamine. We have previously shown, using a computational model of the role of dopamine in basal ganglia, that increased tonic dopamine and increased phasic dopamine likely increase the propensities to express and learn tics, respectively. There is therefore a plausible mechanistic link between dopaminergic hyperinnervation and TS via increased tonic and phasic dopamine. To further bolster this argument, we review evidence showing that all medications that are effective for TS reduce signaling by tonic dopamine, phasic dopamine, or both.
Collapse
Affiliation(s)
- Tiago V Maia
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal.
| | - Vasco A Conceição
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
| |
Collapse
|
24
|
A brain targeting functionalized liposomes of the dopamine derivative N-3,4-bis(pivaloyloxy)-dopamine for treatment of Parkinson's disease. J Control Release 2018; 277:173-182. [PMID: 29588159 DOI: 10.1016/j.jconrel.2018.03.019] [Citation(s) in RCA: 73] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Revised: 02/26/2018] [Accepted: 03/19/2018] [Indexed: 12/26/2022]
Abstract
Parkinson's disease (PD) remains one of the most common neurodegenerative movement disorders with limited treatment options available. A dopamine derivative N-3,4-bis(pivaloyloxy)-dopamine (BPD) previously developed in our group has demonstrated superior therapeutic outcome compared to levodopa in a PD mice model. To further improve the therapeutic performance of BPD, a brain targeted drug delivery system was designed using a 29 amino-acid peptide (RVG29) derived from rabies virus glycoprotein as the targeting ligand. RVG29 functionalized liposomes (RVG29-lip) showed significantly higher uptake efficiency in murine brain endothelial cells and dopaminergic cells, and high penetration efficiency across the blood brain barrier (BBB) in vitro. In vivo and ex vivo distribution studies demonstrated RVG29-lip selectively distributed to the brain, striatum and substantia nigra. Furthermore, BPD loaded RVG29-lip (BPD-RVG29-lip) exhibited improved therapeutic efficacy in a PD mouse model, while causing no obvious systemic toxicity after intravenous administration. Thus, BPD-RVG29-lip represents a highly promising approach for the brain targeted treatment of PD.
Collapse
|
25
|
Post MR, Lieberman OJ, Mosharov EV. Can Interactions Between α-Synuclein, Dopamine and Calcium Explain Selective Neurodegeneration in Parkinson's Disease? Front Neurosci 2018; 12:161. [PMID: 29593491 PMCID: PMC5861202 DOI: 10.3389/fnins.2018.00161] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2017] [Accepted: 02/27/2018] [Indexed: 12/11/2022] Open
Abstract
Several lines of evidence place alpha-synuclein (aSyn) at the center of Parkinson's disease (PD) etiology, but it is still unclear why overexpression or mutated forms of this protein affect some neuronal populations more than others. Susceptible neuronal populations in PD, dopaminergic neurons of the substantia nigra pars compacta (SNpc) and the locus coeruleus (LC), are distinguished by relatively high cytoplasmic concentrations of dopamine and calcium ions. Here we review the evidence for the multi-hit hypothesis of neurodegeneration, including recent papers that demonstrate synergistic interactions between aSyn, calcium ions and dopamine that may lead to imbalanced protein turnover and selective susceptibility of these neurons. We conclude that decreasing the levels of any one of these toxicity mediators can be beneficial for the survival of SNpc and LC neurons, providing multiple opportunities for targeted drug interventions aimed at modifying the course of PD.
Collapse
Affiliation(s)
- Michael R Post
- Departments of Psychiatry and Neurology, New York State Psychiatric Institute, Columbia University Medical Center, New York, NY, United States
| | - Ori J Lieberman
- Departments of Psychiatry and Neurology, New York State Psychiatric Institute, Columbia University Medical Center, New York, NY, United States
| | - Eugene V Mosharov
- Departments of Psychiatry and Neurology, New York State Psychiatric Institute, Columbia University Medical Center, New York, NY, United States
| |
Collapse
|
26
|
Abstract
BACKGROUND The microtubule-associated protein tau accumulates into toxic aggregates in multiple neurodegenerative diseases. We found previously that loss of D2-family dopamine receptors ameliorated tauopathy in multiple models including a Caenorhabditis elegans model of tauopathy. METHODS To better understand how loss of D2-family dopamine receptors can ameliorate tau toxicity, we screened a collection of C. elegans mutations in dopamine-related genes (n = 45) for changes in tau transgene-induced behavioral defects. These included many genes responsible for dopamine synthesis, metabolism, and signaling downstream of the D2 receptors. RESULTS We identified one dopamine synthesis gene, DOPA decarboxylase (DDC), as a suppressor of tau toxicity in tau transgenic worms. Loss of the C. elegans DDC gene, bas-1, ameliorated the behavioral deficits of tau transgenic worms, reduced phosphorylated and detergent-insoluble tau accumulation, and reduced tau-mediated neuron loss. Loss of function in other genes in the dopamine and serotonin synthesis pathways did not alter tau-induced toxicity; however, their function is required for the suppression of tau toxicity by bas-1. Additional loss of D2-family dopamine receptors did not synergize with bas-1 suppression of tauopathy phenotypes. CONCLUSIONS Loss of the DDC bas-1 reduced tau-induced toxicity in a C. elegans model of tauopathy, while loss of no other dopamine or serotonin synthesis genes tested had this effect. Because loss of activity upstream of DDC could reduce suppression of tau by DDC, this suggests the possibility that loss of DDC suppresses tau via the combined accumulation of dopamine precursor levodopa and serotonin precursor 5-hydroxytryptophan.
Collapse
|
27
|
Molina-Mateo D, Fuenzalida-Uribe N, Hidalgo S, Molina-Fernández C, Abarca J, Zárate RV, Escandón M, Figueroa R, Tevy MF, Campusano JM. Characterization of a presymptomatic stage in a Drosophila Parkinson's disease model: Unveiling dopaminergic compensatory mechanisms. Biochim Biophys Acta Mol Basis Dis 2017; 1863:2882-2890. [DOI: 10.1016/j.bbadis.2017.07.013] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Revised: 06/24/2017] [Accepted: 07/13/2017] [Indexed: 12/31/2022]
|
28
|
Multivariate pharmacokinetic/pharmacodynamic (PKPD) analysis with metabolomics shows multiple effects of remoxipride in rats. Eur J Pharm Sci 2017; 109:431-440. [DOI: 10.1016/j.ejps.2017.08.031] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Revised: 08/25/2017] [Accepted: 08/28/2017] [Indexed: 01/12/2023]
|
29
|
Pappan KL, Kennedy AD, Magoulas PL, Hanchard NA, Sun Q, Elsea SH. Clinical Metabolomics to Segregate Aromatic Amino Acid Decarboxylase Deficiency From Drug-Induced Metabolite Elevations. Pediatr Neurol 2017; 75:66-72. [PMID: 28823629 DOI: 10.1016/j.pediatrneurol.2017.06.014] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Revised: 06/22/2017] [Accepted: 06/26/2017] [Indexed: 12/21/2022]
Abstract
BACKGROUND Phenotyping technologies featured in the diagnosis of inborn errors of metabolism, such as organic acid, amino acid, and acylcarnitine analyses, recently have been supplemented by broad-scale untargeted metabolomic phenotyping. We investigated the analyte changes associated with aromatic amino acid decarboxylase (AADC) deficiency and dopamine medication treatment. METHODS Using an untargeted metabolomics platform, we analyzed ethylenediaminetetraacetic acid plasma specimens, and biomarkers were identified by comparing the biochemical profile of individual patient samples to a pediatric-centric population cohort. RESULTS Elevated 3-methoxytyrosine (average z score 5.88) accompanied by significant decreases of dopamine 3-O-sulfate (-2.77), vanillylmandelate (-2.87), and 3-methoxytyramine sulfate (-1.44) were associated with AADC deficiency in three samples from two patients. In five non-AADC patients treated with carbidopa-levodopa, levels of 3-methoxytyrosine were elevated (7.65); however, the samples from non-AADC patients treated with DOPA-elevating drugs had normal or elevated levels of metabolites downstream of aromatic l-amino acid decarboxylase, including dopamine 3-O-sulfate (2.92), vanillylmandelate (0.33), and 3-methoxytyramine sulfate (5.07). In one example, a plasma metabolomic phenotype pointed to a probable AADC deficiency and prompted the evaluation of whole exome sequencing data, identifying homozygosity for a known pathogenic variant, whereas whole exome analysis in a second patient revealed compound heterozygosity for two variants of unknown significance. CONCLUSIONS These data demonstrate the power of combining broad-scale genotyping and phenotyping technologies to diagnose inherited neurometabolic disorders and suggest that metabolic phenotyping of plasma can be used to identify AADC deficiency and to distinguish it from non-AADC patients with elevated 3-methoxytyrosine caused by DOPA-raising medications.
Collapse
Affiliation(s)
| | | | - Pilar L Magoulas
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas
| | - Neil A Hanchard
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas
| | - Qin Sun
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas
| | - Sarah H Elsea
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas.
| |
Collapse
|
30
|
Abstract
This review will illustrate the process of moving from an idea through preclinical research and Galenic developments into clinical investigations and finally to approval by regulatory agencies within the European Union. The two new treatment strategies described, levodopa/carbidopa intestinal gel and levodopa/carbidopa microtablets, for advanced Parkinson's disease, have been developed in collaborative research within departments at Uppsala University. With this historical approach, reference priority is given to reports considered to be of special importance for this more than two decades long process 'from bedside to bench to bedside'.
Collapse
Affiliation(s)
| | - Dag Nyholm
- CONTACT Dag Nyholm Department of Neuroscience, Neurology, Uppsala University, Uppsala University Hospital, SE-75185 Uppsala, Sweden
| |
Collapse
|
31
|
Non-human primate models of PD to test novel therapies. J Neural Transm (Vienna) 2017; 125:291-324. [PMID: 28391443 DOI: 10.1007/s00702-017-1722-y] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2016] [Accepted: 04/04/2017] [Indexed: 12/13/2022]
Abstract
Non-human primate (NHP) models of Parkinson disease show many similarities with the human disease. They are very useful to test novel pharmacotherapies as reviewed here. The various NHP models of this disease are described with their characteristics including the macaque, the marmoset, and the squirrel monkey models. Lesion-induced and genetic models are described. There is no drug to slow, delay, stop, or cure Parkinson disease; available treatments are symptomatic. The dopamine precursor, L-3,4-dihydroxyphenylalanine (L-Dopa) still remains the gold standard symptomatic treatment of Parkinson. However, involuntary movements termed L-Dopa-induced dyskinesias appear in most patients after chronic treatment and may become disabling. Dyskinesias are very difficult to manage and there is only amantadine approved providing only a modest benefit. In this respect, NHP models have been useful to seek new drug targets, since they reproduce motor complications observed in parkinsonian patients. Therapies to treat motor symptoms in NHP models are reviewed with a discussion of their translational value to humans. Disease-modifying treatments tested in NHP are reviewed as well as surgical treatments. Many biochemical changes in the brain of post-mortem Parkinson disease patients with dyskinesias are reviewed and compare well with those observed in NHP models. Non-motor symptoms can be categorized into psychiatric, autonomic, and sensory symptoms. These symptoms are present in most parkinsonian patients and are already installed many years before the pre-motor phase of the disease. The translational usefulness of NHP models of Parkinson is discussed for non-motor symptoms.
Collapse
|
32
|
Blits B, Petry H. Perspective on the Road toward Gene Therapy for Parkinson's Disease. Front Neuroanat 2017; 10:128. [PMID: 28119578 PMCID: PMC5220060 DOI: 10.3389/fnana.2016.00128] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2016] [Accepted: 12/20/2016] [Indexed: 11/19/2022] Open
Abstract
Many therapeutic strategies aimed at relieving symptoms of Parkinson’s disease (PD) are currently used for treatment of this disease. With a hallmark of progressive degeneration of dopaminergic neurons, the absence of properly operational dopaminergic circuitry becomes a therapeutic target. Following diagnosis, dopamine replacement can be given in the form of L-DOPA (L-3,4-dihydroxyphenylalanine). Even though it is recognized as standard of care, this treatment strategy does not prevent the affected neurons from degenerating. Therefore, studies have been performed using gene therapy (GT) to make dopamine (DA) available from within the brain using an artificial DA circuitry. One approach is to administer a GT aimed at delivering the key enzymes for DA synthesis using a lentiviral vector system (Palfi et al., 2014). A similar approach has been investigated with adeno-associated virus (AAV) expressing aromatic L-amino acid decarboxylase, tyrosine hydroxylase, and GTP-cyclohydrolase I (Bankiewicz et al., 2000), which are downregulated in PD. Another GT approach to mitigate symptoms of PD used AAV-mediated delivery of GAD-67 (glutamate decarboxylase) (Kaplitt et al., 2007). This approach mimics the inhibitory effect of DA neurons on their targets, in reducing motor abnormalities. Finally, disease modifying strategies have been undertaken using neurotrophic factors such as neurturin (NTN) (Marks et al., 2008; Bartus et al., 2013a) or are ongoing with the closely related Glial cell line-derived neurotrophic factor. Those approaches are aiming at rescuing the degenerating neurons. All of the above mentioned strategies have their own merits, but also some disadvantages. So far, none of clinical applied GT studies has resulted in significant clinical benefit, although some clinical studies are ongoing and results are expected over the next few years.
Collapse
Affiliation(s)
- Bas Blits
- Neurobiology Research, uniQure BV Amsterdam, Netherlands
| | - Harald Petry
- Neurobiology Research, uniQure BV Amsterdam, Netherlands
| |
Collapse
|
33
|
Neuromolecular imaging, a nanobiotechnology for Parkinson's disease: advancing pharmacotherapy for personalized medicine. J Neural Transm (Vienna) 2016; 124:57-78. [PMID: 27796511 DOI: 10.1007/s00702-016-1633-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2016] [Accepted: 10/10/2016] [Indexed: 12/15/2022]
Abstract
Evaluating each patient and animal as its own control achieves personalized medicine, which honors the hippocratic philosophy, explaining that "it is far more important to know what person has the disease than what disease the person has." Similarly, individualizing molecular signaling directly from the patient's brain in real time is essential for providing prompt, patient-based treatment as dictated by the point of care. Fortunately, nanotechnology effectively treats many neurodegenerative diseases. In particular, the new medicinal frontier for the discovery of therapy for Parkinson's disease is nanotechnology and nanobiotechnology. Indeed, the unique nanotechnology of neuromolecular imaging combined with the series of nanobiosensors enables continuous videotracking of molecular neurotransmitters in both the normal physiologic and disease states with long-term electrochemical operational stability. This nanobiotechnology is able to track a signal in real time with excellent temporal and spatial resolution directly from each patient's brain to a computer as subjects are behaving during movement, normal and/or dysfunctional including prion-like Parkinson's behavioral biometrics. Moreover, the molecular signaling performed by these nanobiosensors live streams directly online and originates from precise neuroanatomic brain sites such as, in this case, the dorsal striatum in basal ganglia. Thus, the nanobiotechnology studies discussed herein imaged neuromolecules with and without L-3,4-dihydroxyphenylalanine (L-DOPA) in dorsal striatal basal ganglia neurons. Parkinsonian and non-Parkinsonian animals were video-tracked, and images were readily seen on a laptop via a potentiostat using a semiderivative electrical circuit. Administered L-DOPA doses were 50 and 100 mg/kg intraperitoneally (ip); the same experimental paradigm was used to image and then contrast data. Results showed that the baseline release of biogenic amine molecules was significantly above detection limits in non-Parkinsonian animals. After administration of L-DOPA, biogenic amines significantly increased in these non-Parkinson's animals. Nevertheless, it is intriguing to see that L-DOPA could not enable synaptic dopamine release in Parkinson's animals, thereby demonstrating that biogenic amines are biomarkers for Parkinson's disease. Biomarkers are biochemical, genetic, or molecular measures of biological reactions. Importantly, there were other significant biomarkers present in Parkinsonian animals and absent in non-Parkinsonian animals; these were peptide neurotransmitters that include dynorphin and somatostatin in the brain with detection limits of 40 nM for dynorphin and 37 nM for somatostatin (see Table 1). Furthermore, L-DOPA significantly increased these peptide biomarkers, dynorphin and somatostatin, in Parkinson's animals. Targeting biomarkers enables new diagnostic devices and treatments for Parkinson's disease through nanotechnology and nanobiotechnology.
Collapse
|
34
|
Qi L, Thomas E, White SH, Smith SK, Lee CA, Wilson LR, Sombers LA. Unmasking the Effects of L-DOPA on Rapid Dopamine Signaling with an Improved Approach for Nafion Coating Carbon-Fiber Microelectrodes. Anal Chem 2016; 88:8129-36. [PMID: 27441547 DOI: 10.1021/acs.analchem.6b01871] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
L-DOPA has been the gold standard for symptomatic treatment of Parkinson's disease. However, its efficacy wanes over time as motor complications develop. Very little is known about how L-DOPA therapy affects the dynamics of fluctuating dopamine concentrations in the striatum on a rapid time scale (seconds). Electrochemical studies investigating the effects of L-DOPA treatment on electrically evoked dopamine release have reported conflicting results with significant variability. We hypothesize that the uncertainty in the electrochemical data is largely due to electrode fouling caused by polymerization of L-DOPA and endogenous catecholamines on the electrode surface. Thus, we have systematically optimized the procedure for fabricating cylindrical, Nafion-coated, carbon-fiber microelectrodes. This has enabled rapid and reliable detection of L-DOPA's effects on striatal dopamine signaling in intact rat brain using fast-scan cyclic voltammetry. An acute dose of 5 mg/kg L-DOPA had no significant effect on dopamine dynamics, demonstrating the highly efficient regulatory mechanisms at work in the intact brain. In contrast, administration of 200 mg/kg L-DOPA significantly increased the amplitude of evoked dopamine release by ∼200%. Overall, this work describes a reliable tool that allows a better measure of L-DOPA augmented dopamine release in vivo, measured using fast-scan cyclic voltammetry. It provides a methodology that improves the stability and performance of the carbon-fiber microelectrode when studying the molecular mechanisms underlying L-DOPA therapy and also promises to benefit a wide variety of studies because Nafion is so commonly used in electroanalytical chemistry.
Collapse
Affiliation(s)
- Lingjiao Qi
- Department of Chemistry, North Carolina State University , Raleigh, North Carolina 27695, United States
| | - Elina Thomas
- Department of Chemistry, North Carolina State University , Raleigh, North Carolina 27695, United States
| | - Stephanie H White
- Department of Chemistry, North Carolina State University , Raleigh, North Carolina 27695, United States
| | - Samantha K Smith
- Department of Chemistry, North Carolina State University , Raleigh, North Carolina 27695, United States
| | - Christie A Lee
- Department of Chemistry, North Carolina State University , Raleigh, North Carolina 27695, United States
| | - Leslie R Wilson
- Department of Chemistry, North Carolina State University , Raleigh, North Carolina 27695, United States
| | - Leslie A Sombers
- Department of Chemistry, North Carolina State University , Raleigh, North Carolina 27695, United States
| |
Collapse
|
35
|
De Deurwaerdère P, Di Giovanni G, Millan MJ. Expanding the repertoire of L-DOPA's actions: A comprehensive review of its functional neurochemistry. Prog Neurobiol 2016; 151:57-100. [PMID: 27389773 DOI: 10.1016/j.pneurobio.2016.07.002] [Citation(s) in RCA: 93] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2016] [Revised: 06/18/2016] [Accepted: 07/03/2016] [Indexed: 01/11/2023]
Abstract
Though a multi-facetted disorder, Parkinson's disease is prototypically characterized by neurodegeneration of nigrostriatal dopaminergic neurons of the substantia nigra pars compacta, leading to a severe disruption of motor function. Accordingly, L-DOPA, the metabolic precursor of dopamine (DA), is well-established as a treatment for the motor deficits of Parkinson's disease despite long-term complications such as dyskinesia and psychiatric side-effects. Paradoxically, however, despite the traditional assumption that L-DOPA is transformed in residual striatal dopaminergic neurons into DA, the mechanism of action of L-DOPA is neither simple nor entirely clear. Herein, focussing on its influence upon extracellular DA and other neuromodulators in intact animals and experimental models of Parkinson's disease, we highlight effects other than striatal generation of DA in the functional profile of L-DOPA. While not excluding a minor role for glial cells, L-DOPA is principally transformed into DA in neurons yet, interestingly, with a more important role for serotonergic than dopaminergic projections. Moreover, in addition to the striatum, L-DOPA evokes marked increases in extracellular DA in frontal cortex, nucleus accumbens, the subthalamic nucleus and additional extra-striatal regions. In considering its functional profile, it is also important to bear in mind the marked (probably indirect) influence of L-DOPA upon cholinergic, GABAergic and glutamatergic neurons in the basal ganglia and/or cortex, while anomalous serotonergic transmission is incriminated in the emergence of L-DOPA elicited dyskinesia and psychosis. Finally, L-DOPA may exert intrinsic receptor-mediated actions independently of DA neurotransmission and can be processed into bioactive metabolites. In conclusion, L-DOPA exerts a surprisingly complex pattern of neurochemical effects of much greater scope that mere striatal transformation into DA in spared dopaminergic neurons. Their further experimental and clinical clarification should help improve both L-DOPA-based and novel strategies for controlling the motor and other symptoms of Parkinson's disease.
Collapse
Affiliation(s)
- Philippe De Deurwaerdère
- CNRS (Centre National de la Recherche Scientifique), Institut des Maladies Neurodégénératives, UMR CNRS 5293, F-33000 Bordeaux, France.
| | - Giuseppe Di Giovanni
- Neuroscience Division, School of Biosciences, Cardiff University, Cardiff, UK; Department of Physiology & Biochemistry, Faculty of Medicine and Surgery, University of Malta, Malta
| | - Mark J Millan
- Institut de Recherche Servier, Pole for Therapeutic Innovation in Neuropsychiatry, 78290 Croissy/Seine,Paris, France
| |
Collapse
|
36
|
Shariatgorji M, Strittmatter N, Nilsson A, Källback P, Alvarsson A, Zhang X, Vallianatou T, Svenningsson P, Goodwin RJA, Andren PE. Simultaneous imaging of multiple neurotransmitters and neuroactive substances in the brain by desorption electrospray ionization mass spectrometry. Neuroimage 2016; 136:129-38. [PMID: 27155126 DOI: 10.1016/j.neuroimage.2016.05.004] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2015] [Revised: 04/26/2016] [Accepted: 05/02/2016] [Indexed: 02/07/2023] Open
Abstract
With neurological processes involving multiple neurotransmitters and neuromodulators, it is important to have the ability to directly map and quantify multiple signaling molecules simultaneously in a single analysis. By utilizing a molecular-specific approach, namely desorption electrospray ionization mass spectrometry imaging (DESI-MSI), we demonstrated that the technique can be used to image multiple neurotransmitters and their metabolites (dopamine, dihydroxyphenylacetic acid, 3-methoxytyramine, serotonin, glutamate, glutamine, aspartate, γ-aminobutyric acid, adenosine) as well as neuroactive drugs (amphetamine, sibutramine, fluvoxamine) and drug metabolites in situ directly in brain tissue sections. The use of both positive and negative ionization modes increased the number of identified molecular targets. Chemical derivatization by charge-tagging the primary amines of molecules significantly increased the sensitivity, enabling the detection of low abundant neurotransmitters and other neuroactive substances previously undetectable by MSI. The sensitivity of the imaging approach of neurochemicals has a great potential in many diverse applications in fields such as neuroscience, pharmacology, drug discovery, neurochemistry, and medicine.
Collapse
Affiliation(s)
- Mohammadreza Shariatgorji
- Biomolecular Imaging and Proteomics, National Resource for Mass Spectrometry Imaging, Department of Pharmaceutical Biosciences, Uppsala University, Box 591, SE-75124 Uppsala, Sweden
| | | | - Anna Nilsson
- Biomolecular Imaging and Proteomics, National Resource for Mass Spectrometry Imaging, Department of Pharmaceutical Biosciences, Uppsala University, Box 591, SE-75124 Uppsala, Sweden
| | - Patrik Källback
- Biomolecular Imaging and Proteomics, National Resource for Mass Spectrometry Imaging, Department of Pharmaceutical Biosciences, Uppsala University, Box 591, SE-75124 Uppsala, Sweden
| | - Alexandra Alvarsson
- Center for Molecular Medicine, Department of Neurology and Clinical Neuroscience, Karolinska Institutet and Karolinska University Hospital, 17176 Stockholm, Sweden
| | - Xiaoqun Zhang
- Center for Molecular Medicine, Department of Neurology and Clinical Neuroscience, Karolinska Institutet and Karolinska University Hospital, 17176 Stockholm, Sweden
| | - Theodosia Vallianatou
- Biomolecular Imaging and Proteomics, National Resource for Mass Spectrometry Imaging, Department of Pharmaceutical Biosciences, Uppsala University, Box 591, SE-75124 Uppsala, Sweden
| | - Per Svenningsson
- Center for Molecular Medicine, Department of Neurology and Clinical Neuroscience, Karolinska Institutet and Karolinska University Hospital, 17176 Stockholm, Sweden
| | | | - Per E Andren
- Biomolecular Imaging and Proteomics, National Resource for Mass Spectrometry Imaging, Department of Pharmaceutical Biosciences, Uppsala University, Box 591, SE-75124 Uppsala, Sweden.
| |
Collapse
|
37
|
Ren LQ, Wienecke J, Hultborn H, Zhang M. Production of Dopamine by Aromatic l-Amino Acid Decarboxylase Cells after Spinal Cord Injury. J Neurotrauma 2016; 33:1150-60. [PMID: 26830512 DOI: 10.1089/neu.2015.4037] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Aromatic l-amino acid decarboxylase (AADC) cells are widely distributed in the spinal cord, and their functions are largely unknown. We have previously found that AADC cells in the spinal cord could increase their ability to produce serotonin (5-hydroxytryptamine) from 5-hydroxytryptophan after spinal cord injury (SCI). Because AADC is a common enzyme catalyzing 5-hydroxytryptophan to serotonin and l-3,4-dihydroxyphenylalanine (l-dopa) to dopamine (DA), it seems likely that the ability of AADC cells using l-dopa to synthesize DA is also increased. To prove whether or not this is the case, a similar rat sacral SCI model and a similar experimental paradigm were adopted as that which we had used previously. In the chronic SCI rats (> 45 days), no AADC cells expressed DA if there was no exogenous l-dopa application. However, following administration of a peripheral AADC inhibitor (carbidopa) with or without a monoamine oxidase inhibitor (pargyline) co-application, systemic administration of l-dopa resulted in ∼94% of AADC cells becoming DA-immunopositive in the spinal cord below the lesion, whereas in normal or sham-operated rats none or very few of AADC cells became DA-immunopositive with the same treatment. Using tail electromyography, spontaneous tail muscle activity was increased nearly fivefold over the baseline level. When pretreated with a central AADC inhibitor (NSD-1015), further application of l-dopa failed to increase the motoneuron activity although the expression of DA in the AADC cells was not completely inhibited. These findings demonstrate that AADC cells in the spinal cord below the lesion gain the ability to produce DA from its precursor in response to SCI. This ability also enables the AADC cells to produce 5-HT and trace amines, and likely contributes to the development of hyperexcitability. These results might also be implicated for revealing the pathological mechanisms underlying l-dopa-induced dyskinesia in Parkinson's disease.
Collapse
Affiliation(s)
- Li-Qun Ren
- 1 Department of Neuroscience and Pharmacology, University of Copenhagen , Copenhagen, Denmark .,2 Laboratory of Spinal Injury and Rehabilitation, Chengde Medical University , Chengde, China
| | - Jacob Wienecke
- 1 Department of Neuroscience and Pharmacology, University of Copenhagen , Copenhagen, Denmark .,3 Department of Nutrition, Exercise, and Sports, University of Copenhagen , Copenhagen, Denmark
| | - Hans Hultborn
- 1 Department of Neuroscience and Pharmacology, University of Copenhagen , Copenhagen, Denmark .,2 Laboratory of Spinal Injury and Rehabilitation, Chengde Medical University , Chengde, China
| | - Mengliang Zhang
- 1 Department of Neuroscience and Pharmacology, University of Copenhagen , Copenhagen, Denmark .,4 Neuronano Research Center, Department of Experimental Medical Sciences, Lund University , Lund, Sweden
| |
Collapse
|
38
|
Functional constituents of a local serotonergic system, intrinsic to the human coronary artery smooth muscle cells. Mol Biol Rep 2015; 42:1295-307. [PMID: 25861735 DOI: 10.1007/s11033-015-3874-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2014] [Accepted: 03/31/2015] [Indexed: 10/23/2022]
Abstract
Human coronary artery smooth muscle cells (HCASMCs) play an important role in the pathogenesis of coronary atherosclerosis and coronary artery diseases (CAD). Serotonin is a mediator known to produce vascular smooth muscle cell mitogenesis and contribute to coronary atherosclerosis. We hypothesize that the HCASMC possesses certain functional constituents of the serotonergic system such as: tryptophan hydroxylase and serotonin transporter. Our aim was to examine the presence of functional tryptophan hydroxylase-1 (TPH1) and serotonin transporter (SERT) in HCASMCs. The mRNA transcripts by qPCR and protein expression by Western blot of TPH1 and SERT were examined. The specificity and accuracy of the primers were verified using DNA gel electrophoresis and sequencing of qPCR products. The functionality of SERT was examined using a fluorescence dye-based serotonin transporter assay. The enzymatic activity of TPH was evaluated using UPLC. The HCASMCs expressed both mRNA transcripts and protein of SERT and TPH. The qPCR showed a single melt curve peak for both transcripts and in sequence analysis the amplicons were aligned with the respective genes. SERT and TPH enzymatic activity was present in the HCASMCs. Taken together, both TPH and SERT are functionally expressed in HCASMCs. These findings are novel and represent an initial step in examining the clinical relevance of the serotonergic system in HCASMCs and its role in the pathogenesis of coronary atherosclerosis and CAD.
Collapse
|
39
|
Mosharov EV, Borgkvist A, Sulzer D. Presynaptic effects of levodopa and their possible role in dyskinesia. Mov Disord 2014; 30:45-53. [PMID: 25450307 DOI: 10.1002/mds.26103] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2014] [Revised: 10/28/2014] [Accepted: 11/01/2014] [Indexed: 12/25/2022] Open
Abstract
Levodopa replacement therapy has long provided the most effective treatment for Parkinson's disease (PD). We review how this dopamine (DA) precursor enhances dopaminergic transmission by providing a greater sphere of neurotransmitter influence as a result of the confluence of increased quantal size and decreased DA reuptake, as well as loading DA as a false transmitter into surviving serotonin neuron synaptic vesicles. We further review literature on how presynaptic dysregulation of DA release after l-dopa might trigger dyskinesias in PD patients.
Collapse
Affiliation(s)
- Eugene V Mosharov
- Departments of Neurology, Columbia University Medical Center, New York, New York, USA
| | | | | |
Collapse
|
40
|
Colamartino M, Santoro M, Duranti G, Sabatini S, Ceci R, Testa A, Padua L, Cozzi R. Evaluation of levodopa and carbidopa antioxidant activity in normal human lymphocytes in vitro: implication for oxidative stress in Parkinson's disease. Neurotox Res 2014; 27:106-17. [PMID: 25355370 DOI: 10.1007/s12640-014-9495-7] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2014] [Revised: 10/08/2014] [Accepted: 10/15/2014] [Indexed: 01/08/2023]
Abstract
The main pathochemical hallmark of Parkinson's disease (PD) is the loss of dopamine in the striatum of the brain, and the oral administration of levodopa (L-dopa) is a treatment that partially restores the dopaminergic transmission. In vitro assays have demonstrated both toxic and protective effects of L-dopa on dopaminergic cells, while in vivo studies have not provided any convincing data. The peripheral metabolic pathways significantly decrease the amount of L-dopa reaching the brain; therefore, all of the current commercial formulations require an association with an inhibitor of dopa-decarboxylase, such as carbidopa. However, the dosage and the actual effectiveness of carbidopa have not yet been well defined. PD patients exhibit a reduced efficiency of the endogenous antioxidant system, and peripheral blood lymphocytes (PBLs) represent a dopaminergic system for use as a cellular model to study the pharmacological treatments of neurodegenerative disorders in addition to analysing the systemic oxidative stress. According to our previous studies demonstrating a protective effect of both L-dopa and carbidopa on neuroblastoma cells in vitro, we used the PBLs of healthy donors to evaluate the modulation of DNA damage by different concentrations of L-dopa and carbidopa in the presence of oxidative stress that was exogenously induced by H2O2. We utilised a TAS assay to evaluate the in vitro direct scavenging activity of L-dopa and carbidopa and analysed the expression of genes that were involved in cellular oxidative metabolism. Our data demonstrate the antioxidant capacity of L-dopa and carbidopa and their ability to protect DNA against oxidative-induced damage that derives from different mechanisms of action.
Collapse
Affiliation(s)
- Monica Colamartino
- Department of Science, University "Roma Tre", Viale Guglielmo Marconi 446, 00146, Rome, Italy
| | | | | | | | | | | | | | | |
Collapse
|
41
|
Palfi S, Gurruchaga JM, Ralph GS, Lepetit H, Lavisse S, Buttery PC, Watts C, Miskin J, Kelleher M, Deeley S, Iwamuro H, Lefaucheur JP, Thiriez C, Fenelon G, Lucas C, Brugières P, Gabriel I, Abhay K, Drouot X, Tani N, Kas A, Ghaleh B, Le Corvoisier P, Dolphin P, Breen DP, Mason S, Guzman NV, Mazarakis ND, Radcliffe PA, Harrop R, Kingsman SM, Rascol O, Naylor S, Barker RA, Hantraye P, Remy P, Cesaro P, Mitrophanous KA. Long-term safety and tolerability of ProSavin, a lentiviral vector-based gene therapy for Parkinson's disease: a dose escalation, open-label, phase 1/2 trial. Lancet 2014; 383:1138-46. [PMID: 24412048 DOI: 10.1016/s0140-6736(13)61939-x] [Citation(s) in RCA: 307] [Impact Index Per Article: 27.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
BACKGROUND Parkinson's disease is typically treated with oral dopamine replacement therapies; however, long-term treatment leads to motor complications and, occasionally, impulse control disorders caused by intermittent stimulation of dopamine receptors and off-target effects, respectively. We aimed to assess the safety, tolerability, and efficacy of bilateral, intrastriatal delivery of ProSavin, a lentiviral vector-based gene therapy aimed at restoring local and continuous dopamine production in patients with advanced Parkinson's disease. METHODS We undertook a phase 1/2 open-label trial with 12-month follow-up at two study sites (France and UK) to assess the safety and efficacy of ProSavin after bilateral injection into the putamen of patients with Parkinson's disease. All patients were then enrolled in a separate open-label follow-up study of long-term safety. Three doses were assessed in separate cohorts: low dose (1·9×10(7) transducing units [TU]); mid dose (4·0×10(7) TU); and high dose (1×10(8) TU). Inclusion criteria were age 48-65 years, disease duration 5 years or longer, motor fluctuations, and 50% or higher motor response to oral dopaminergic therapy. The primary endpoints of the phase 1/2 study were the number and severity of adverse events associated with ProSavin and motor responses as assessed with Unified Parkinson's Disease Rating Scale (UPDRS) part III (off medication) scores, at 6 months after vector administration. Both trials are registered at ClinicalTrials.gov, NCT00627588 and NCT01856439. FINDINGS 15 patients received ProSavin and were followed up (three at low dose, six mid dose, six high dose). During the first 12 months of follow-up, 54 drug-related adverse events were reported (51 mild, three moderate). Most common were increased on-medication dyskinesias (20 events, 11 patients) and on-off phenomena (12 events, nine patients). No serious adverse events related to the study drug or surgical procedure were reported. A significant improvement in mean UPDRS part III motor scores off medication was recorded in all patients at 6 months (mean score 38 [SD 9] vs 26 [8], n=15, p=0·0001) and 12 months (38 vs 27 [8]; n=15, p=0·0001) compared with baseline. INTERPRETATION ProSavin was safe and well tolerated in patients with advanced Parkinson's disease. Improvement in motor behaviour was observed in all patients. FUNDING Oxford BioMedica.
Collapse
Affiliation(s)
- Stéphane Palfi
- AP-HP, Groupe Hospitalier Henri-Mondor, DHU PePsy, UF Neurochirurgie Fonctionnelle, Neurologie, Neurophysiologie, Anesthésie, Centre d'Investigation Clinique 006, Plateforme de Ressources Biologiques, Créteil, France; Université Paris 12, Faculté de Médecine, Créteil, France.
| | - Jean Marc Gurruchaga
- AP-HP, Groupe Hospitalier Henri-Mondor, DHU PePsy, UF Neurochirurgie Fonctionnelle, Neurologie, Neurophysiologie, Anesthésie, Centre d'Investigation Clinique 006, Plateforme de Ressources Biologiques, Créteil, France; Université Paris 12, Faculté de Médecine, Créteil, France
| | | | - Helene Lepetit
- AP-HP, Groupe Hospitalier Henri-Mondor, DHU PePsy, UF Neurochirurgie Fonctionnelle, Neurologie, Neurophysiologie, Anesthésie, Centre d'Investigation Clinique 006, Plateforme de Ressources Biologiques, Créteil, France; Université Paris 12, Faculté de Médecine, Créteil, France
| | - Sonia Lavisse
- CEA, DSV I(2)BM, MIRCen and CNRS URA2210, Fontenay-aux-Roses, France
| | - Philip C Buttery
- John van Geest Centre for Brain Repair and Addenbrooke's Hospital, Cambridge, UK
| | - Colin Watts
- John van Geest Centre for Brain Repair and Addenbrooke's Hospital, Cambridge, UK
| | | | | | | | - Hirokazu Iwamuro
- AP-HP, Groupe Hospitalier Henri-Mondor, DHU PePsy, UF Neurochirurgie Fonctionnelle, Neurologie, Neurophysiologie, Anesthésie, Centre d'Investigation Clinique 006, Plateforme de Ressources Biologiques, Créteil, France; Université Paris 12, Faculté de Médecine, Créteil, France
| | - Jean Pascal Lefaucheur
- AP-HP, Groupe Hospitalier Henri-Mondor, DHU PePsy, UF Neurochirurgie Fonctionnelle, Neurologie, Neurophysiologie, Anesthésie, Centre d'Investigation Clinique 006, Plateforme de Ressources Biologiques, Créteil, France; Université Paris 12, Faculté de Médecine, Créteil, France
| | - Claire Thiriez
- AP-HP, Groupe Hospitalier Henri-Mondor, DHU PePsy, UF Neurochirurgie Fonctionnelle, Neurologie, Neurophysiologie, Anesthésie, Centre d'Investigation Clinique 006, Plateforme de Ressources Biologiques, Créteil, France; Université Paris 12, Faculté de Médecine, Créteil, France
| | - Gilles Fenelon
- AP-HP, Groupe Hospitalier Henri-Mondor, DHU PePsy, UF Neurochirurgie Fonctionnelle, Neurologie, Neurophysiologie, Anesthésie, Centre d'Investigation Clinique 006, Plateforme de Ressources Biologiques, Créteil, France; Université Paris 12, Faculté de Médecine, Créteil, France; INSERM U955, E01, Institut de Recherche Biomédicale, Créteil, France
| | | | - Pierre Brugières
- AP-HP, Groupe Hospitalier Henri-Mondor, DHU PePsy, UF Neurochirurgie Fonctionnelle, Neurologie, Neurophysiologie, Anesthésie, Centre d'Investigation Clinique 006, Plateforme de Ressources Biologiques, Créteil, France; Université Paris 12, Faculté de Médecine, Créteil, France
| | - Inanna Gabriel
- AP-HP, Groupe Hospitalier Henri-Mondor, DHU PePsy, UF Neurochirurgie Fonctionnelle, Neurologie, Neurophysiologie, Anesthésie, Centre d'Investigation Clinique 006, Plateforme de Ressources Biologiques, Créteil, France; Université Paris 12, Faculté de Médecine, Créteil, France
| | - Kou Abhay
- AP-HP, Groupe Hospitalier Henri-Mondor, DHU PePsy, UF Neurochirurgie Fonctionnelle, Neurologie, Neurophysiologie, Anesthésie, Centre d'Investigation Clinique 006, Plateforme de Ressources Biologiques, Créteil, France; Université Paris 12, Faculté de Médecine, Créteil, France
| | - Xavier Drouot
- AP-HP, Groupe Hospitalier Henri-Mondor, DHU PePsy, UF Neurochirurgie Fonctionnelle, Neurologie, Neurophysiologie, Anesthésie, Centre d'Investigation Clinique 006, Plateforme de Ressources Biologiques, Créteil, France; Université Paris 12, Faculté de Médecine, Créteil, France
| | - Naoki Tani
- AP-HP, Groupe Hospitalier Henri-Mondor, DHU PePsy, UF Neurochirurgie Fonctionnelle, Neurologie, Neurophysiologie, Anesthésie, Centre d'Investigation Clinique 006, Plateforme de Ressources Biologiques, Créteil, France; Université Paris 12, Faculté de Médecine, Créteil, France
| | - Aurelie Kas
- CEA, DSV I(2)BM, MIRCen and CNRS URA2210, Fontenay-aux-Roses, France
| | - Bijan Ghaleh
- AP-HP, Groupe Hospitalier Henri-Mondor, DHU PePsy, UF Neurochirurgie Fonctionnelle, Neurologie, Neurophysiologie, Anesthésie, Centre d'Investigation Clinique 006, Plateforme de Ressources Biologiques, Créteil, France; Université Paris 12, Faculté de Médecine, Créteil, France
| | - Philippe Le Corvoisier
- AP-HP, Groupe Hospitalier Henri-Mondor, DHU PePsy, UF Neurochirurgie Fonctionnelle, Neurologie, Neurophysiologie, Anesthésie, Centre d'Investigation Clinique 006, Plateforme de Ressources Biologiques, Créteil, France; Université Paris 12, Faculté de Médecine, Créteil, France
| | - Patrice Dolphin
- AP-HP, Groupe Hospitalier Henri-Mondor, DHU PePsy, UF Neurochirurgie Fonctionnelle, Neurologie, Neurophysiologie, Anesthésie, Centre d'Investigation Clinique 006, Plateforme de Ressources Biologiques, Créteil, France; Université Paris 12, Faculté de Médecine, Créteil, France
| | - David P Breen
- John van Geest Centre for Brain Repair and Addenbrooke's Hospital, Cambridge, UK
| | - Sarah Mason
- John van Geest Centre for Brain Repair and Addenbrooke's Hospital, Cambridge, UK
| | - Natalie Valle Guzman
- John van Geest Centre for Brain Repair and Addenbrooke's Hospital, Cambridge, UK
| | - Nicholas D Mazarakis
- Gene Therapy, Centre of Neuroinflammation and Neurodegeneration, Division of Brain Sciences, Faculty of Medicine, Hammersmith Hospital Campus, London, UK
| | | | | | | | - Olivier Rascol
- CIC9302 and UMR 825, INSERM and Department of Pharmacology and Neurosciences, University Hospital and University of Toulouse III, Toulouse, France
| | | | - Roger A Barker
- John van Geest Centre for Brain Repair and Addenbrooke's Hospital, Cambridge, UK
| | - Philippe Hantraye
- CEA, DSV I(2)BM, MIRCen and CNRS URA2210, Fontenay-aux-Roses, France
| | - Philippe Remy
- AP-HP, Groupe Hospitalier Henri-Mondor, DHU PePsy, UF Neurochirurgie Fonctionnelle, Neurologie, Neurophysiologie, Anesthésie, Centre d'Investigation Clinique 006, Plateforme de Ressources Biologiques, Créteil, France; Université Paris 12, Faculté de Médecine, Créteil, France; CEA, DSV I(2)BM, MIRCen and CNRS URA2210, Fontenay-aux-Roses, France
| | - Pierre Cesaro
- AP-HP, Groupe Hospitalier Henri-Mondor, DHU PePsy, UF Neurochirurgie Fonctionnelle, Neurologie, Neurophysiologie, Anesthésie, Centre d'Investigation Clinique 006, Plateforme de Ressources Biologiques, Créteil, France; Université Paris 12, Faculté de Médecine, Créteil, France; INSERM U955, E01, Institut de Recherche Biomédicale, Créteil, France
| | | |
Collapse
|
42
|
Levodopa induces long-lasting modification in the functional activity of the nigrostriatal pathway. Neurobiol Dis 2013; 62:250-9. [PMID: 24076099 DOI: 10.1016/j.nbd.2013.09.014] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2013] [Revised: 09/13/2013] [Accepted: 09/17/2013] [Indexed: 12/29/2022] Open
Abstract
Much controversy exists concerning the effect of levodopa on striatal dopaminergic markers in Parkinson's disease (PD) and its influence on functional neuroimaging. To deal with this issue we studied the impact of neurotoxin 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) and chronic levodopa administration on striatal (18)F-DOPA uptake (Ki) in an animal model of PD. The levels of several striatal dopaminergic markers and the number of surviving dopaminergic neurons in the substantia nigra (SN) were also assessed. Eleven Macaca fascicularis were included in the study. Eight animals received weekly intravenous injections of MPTP for 7weeks and 3 intact animals served as controls. MPTP-monkeys were divided in two groups. Group I was treated with placebo while Group II received levodopa. Both treatments were maintained for 11months and then followed by a washout period of 6months. (18)F-DOPA positron emission tomography (PET) scans were performed at baseline, after MPTP intoxication, following 11months of treatment, and after a washout period of 1, 3 and 6months. Monkeys were sacrificed 6months after concluding either placebo or levodopa treatment and immediately after the last (18)F-DOPA PET study. Striatal dopamine transporter (DAT) content, tyrosine hydroxylase (TH) content and aromatic l-amino acid decarboxylase (AADC) content were assessed. In Group II (18)F-DOPA PET studies performed at 3 and 6months after interrupting levodopa showed a significantly increased Ki in the anterior putamen as compared to Group I. Levodopa and placebo treated animals exhibited a similar number of surviving dopaminergic cells in the SN. Striatal DAT content was equally reduced in both groups of animals. Animals in Group I exhibited a significant decrease in TH protein content in all the striatal regions assessed. However, in Group II, TH levels were significantly reduced only in the anterior and posterior putamen. Surprisingly, in the levodopa-treated animals the TH levels in the posterior putamen were significantly lower than those in the placebo group. AADC levels in MPTP groups were similar to those of control animals in all striatal areas analyzed. This study shows that chronic levodopa administration to monkeys with partial nigrostriatal degeneration followed by a washout period induces modifications in the functional activity of the dopaminergic nigrostriatal pathway.
Collapse
|
43
|
Lu J, Kanji S, Aggarwal R, Das M, Joseph M, Wu LC, Mao HQ, Pompili VJ, Hadjiconstantinou M, Das H. Hematopoietic stem cells improve dopaminergic neuron in the MPTP-mice. FRONT BIOSCI-LANDMRK 2013; 18:970-81. [PMID: 23747860 PMCID: PMC9930441 DOI: 10.2741/4156] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Because of their ability for self-renewal and neural differentiation, stem cells are believed to be ideal for cell replacement therapy in Parkinson's disease (PD). Nanofiber-expanded human umbilical cord hematopoietic stem cells (HUHSCs) are advantageous to other stem cells as they provide a source of unlimited stem cell production for clinical application. In this study, we investigated whether 1. nanofiber-expanded HUHSCs are capable of neural differentiation in vitro, and 2. they could improve dopaminergic neuron morphology in the caudate/putamen (CPu) and substantia nigra pars compacta (SNc) of the MPTP-mouse model of PD. When cultured under neural differentiation conditions, nanofiber-expanded HUHSCs were able to undergo neural differentiation in vitro, as determined by gene and protein expression of neural markers such as MAP2, NeuN, HuC, GFAP and Oligo2. Thirty days after a single intracardioventricular injection of HUHSCs to MPTP-mice there was a significant recovery of tyrosine hydroxylase (TH) immunostaining in CPu. There was an increase in the size and staining density of TH+ cells in SNc, while their number was unchanged.
Collapse
Affiliation(s)
- Jingwei Lu
- Stem Cell Research Laboratory, Cardiovascular Medicine, Davis Heart and Lung Research Institute, Wexner Medical Center at The Ohio State University, Columbus, Ohio 43210
| | - Suman Kanji
- Stem Cell Research Laboratory, Cardiovascular Medicine, Davis Heart and Lung Research Institute, Wexner Medical Center at The Ohio State University, Columbus, Ohio 43210
| | - Reeva Aggarwal
- Stem Cell Research Laboratory, Cardiovascular Medicine, Davis Heart and Lung Research Institute, Wexner Medical Center at The Ohio State University, Columbus, Ohio 43210
| | - Manjusri Das
- Stem Cell Research Laboratory, Cardiovascular Medicine, Davis Heart and Lung Research Institute, Wexner Medical Center at The Ohio State University, Columbus, Ohio 43210
| | - Matthew Joseph
- Stem Cell Research Laboratory, Cardiovascular Medicine, Davis Heart and Lung Research Institute, Wexner Medical Center at The Ohio State University, Columbus, Ohio 43210
| | - Lai-Chu Wu
- Molecular and Cellular Biochemistry, College of Medicine, Wexner Medical Center at The Ohio State University, Columbus, Ohio
| | - Hai-Quan Mao
- Department of Materials Science and Engineering, John’s Hopkins University, Baltimore, MD
| | - Vincent J. Pompili
- Stem Cell Research Laboratory, Cardiovascular Medicine, Davis Heart and Lung Research Institute, Wexner Medical Center at The Ohio State University, Columbus, Ohio 43210
| | - Maria Hadjiconstantinou
- Departments of Psychiatry and Pharmacology, Division of Molecular Psychopharmacology, Wexner Medical Center at The Ohio State University, Columbus, Ohio
| | - Hiranmoy Das
- Stem Cell Research Laboratory, Cardiovascular Medicine, Davis Heart and Lung Research Institute, Wexner Medical Center at The Ohio State University, Columbus, Ohio 43210
| |
Collapse
|
44
|
Meiser J, Weindl D, Hiller K. Complexity of dopamine metabolism. Cell Commun Signal 2013; 11:34. [PMID: 23683503 PMCID: PMC3693914 DOI: 10.1186/1478-811x-11-34] [Citation(s) in RCA: 460] [Impact Index Per Article: 38.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2013] [Accepted: 05/10/2013] [Indexed: 01/15/2023] Open
Abstract
: Parkinson's disease (PD) coincides with a dramatic loss of dopaminergic neurons within the substantia nigra. A key player in the loss of dopaminergic neurons is oxidative stress. Dopamine (DA) metabolism itself is strongly linked to oxidative stress as its degradation generates reactive oxygen species (ROS) and DA oxidation can lead to endogenous neurotoxins whereas some DA derivatives show antioxidative effects. Therefore, DA metabolism is of special importance for neuronal redox-homeostasis and viability.In this review we highlight different aspects of dopamine metabolism in the context of PD and neurodegeneration. Since most reviews focus only on single aspects of the DA system, we will give a broader overview by looking at DA biosynthesis, sequestration, degradation and oxidation chemistry at the metabolic level, as well as at the transcriptional, translational and posttranslational regulation of all enzymes involved. This is followed by a short overview of cellular models currently used in PD research. Finally, we will address the topic from a medical point of view which directly aims to encounter PD.
Collapse
Affiliation(s)
- Johannes Meiser
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, 7, avenue des Hauts-Fourneaux, L-4362 Esch-Belval, Luxembourg
| | - Daniel Weindl
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, 7, avenue des Hauts-Fourneaux, L-4362 Esch-Belval, Luxembourg
| | - Karsten Hiller
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, 7, avenue des Hauts-Fourneaux, L-4362 Esch-Belval, Luxembourg
| |
Collapse
|
45
|
Revel FG, Moreau JL, Pouzet B, Mory R, Bradaia A, Buchy D, Metzler V, Chaboz S, Groebke Zbinden K, Galley G, Norcross RD, Tuerck D, Bruns A, Morairty SR, Kilduff TS, Wallace TL, Risterucci C, Wettstein JG, Hoener MC. A new perspective for schizophrenia: TAAR1 agonists reveal antipsychotic- and antidepressant-like activity, improve cognition and control body weight. Mol Psychiatry 2013; 18:543-56. [PMID: 22641180 DOI: 10.1038/mp.2012.57] [Citation(s) in RCA: 194] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Schizophrenia is a chronic, severe and highly complex mental illness. Current treatments manage the positive symptoms, yet have minimal effects on the negative and cognitive symptoms, two prominent features of the disease with critical impact on the long-term morbidity. In addition, antipsychotic treatments trigger serious side effects that precipitate treatment discontinuation. Here, we show that activation of the trace amine-associated receptor 1 (TAAR1), a modulator of monoaminergic neurotransmission, represents a novel therapeutic option. In rodents, activation of TAAR1 by two novel and pharmacologically distinct compounds, the full agonist RO5256390 and the partial agonist RO5263397, blocks psychostimulant-induced hyperactivity and produces a brain activation pattern reminiscent of the antipsychotic drug olanzapine, suggesting antipsychotic-like properties. TAAR1 agonists do not induce catalepsy or weight gain; RO5263397 even reduced haloperidol-induced catalepsy and prevented olanzapine from increasing body weight and fat accumulation. Finally, TAAR1 activation promotes vigilance in rats and shows pro-cognitive and antidepressant-like properties in rodent and primate models. These data suggest that TAAR1 agonists may provide a novel and differentiated treatment of schizophrenia as compared with current medication standards: TAAR1 agonists may improve not only the positive symptoms but also the negative symptoms and cognitive deficits, without causing adverse effects such as motor impairments or weight gain.
Collapse
Affiliation(s)
- F G Revel
- Neuroscience Research, Pharmaceuticals Division, F. Hoffmann-La Roche, Basel, Switzerland
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Lu M, Hu G. Targeting metabolic inflammation in Parkinson's disease: implications for prospective therapeutic strategies. Clin Exp Pharmacol Physiol 2013; 39:577-85. [PMID: 22126374 DOI: 10.1111/j.1440-1681.2011.05650.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
1. Parkinson's disease (PD) is one of the most common neurodegenerative disorders and is characterized by a progressive loss of dopaminergic neurons in the substantia nigra pars compacta. Although the aetiology of PD has not been clarified as yet, it is believed that ageing, diet, diabetes and adiposity are associated with PD. 2. Type 2 diabetes and lipid abnormalities share multiple common pathophysiological mechanisms with PD. In particular, inflammation plays a critical role in the destruction of both pancreatic islet β-cells and dopaminergic neurons in the substantia nigra. Emerging evidence indicates that dysfunctions of energy metabolism evoke metabolic inflammation, which differs to the narrow concept of inflammation, participating in systemic pathological processes such as neurodegenerative disease and diabetes. 3. The brain is considered an immunologically privileged organ, free from immune reactions, because it is protected by the blood-brain barrier (BBB). However, studies have shown that there is gradual impairment of neurovascular function with ageing and in neurodegenerative disorders, resulting in abnormal states, including increased BBB permeability. Consequently, harmful elements that would not normally be able to cross the BBB, such as pro-inflammatory factors, reactive oxygen species and neurotoxins, infiltrate into the brain, triggering neural injury. 4. Currently, the drugs available for the treatment of PD only ameliorate the symptoms of the disease. Therapeutic strategies aimed at stopping or modifying disease progression are still being sought. Most recent studies suggest that both central and peripheral inflammation may be dysregulated in PD. Therefore, therapeutic strategies aimed at modulating systemic inflammatory reactions or energy metabolism may represent a goal in neuroprotection in PD.
Collapse
Affiliation(s)
- Ming Lu
- Jiangsu Key Laboratory of Neurodegeneration, Department of Pharmacology, Nanjing Medical University, Nanjing, Jiangsu, China
| | | |
Collapse
|
47
|
Park SY, Kwon D, Mok H, Chung BH. Simple and rapid detection of l-Dopa decarboxylase activity using gold nanoparticles. Analyst 2013; 138:3146-9. [DOI: 10.1039/c3an00009e] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
48
|
Colamartino M, Padua L, Meneghini C, Leone S, Cornetta T, Testa A, Cozzi R. Protective Effects of L-Dopa and Carbidopa Combined Treatments on Human Catecholaminergic Cells. DNA Cell Biol 2012; 31:1572-9. [DOI: 10.1089/dna.2011.1546] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
| | - Luca Padua
- Department of Neurosciences, Institute of Neurology, Catholic University, Rome, Italy
- Don Carlo Gnocchi Foundation, Milan, Italy
| | | | - Stefano Leone
- Department of Biology, University “Roma TRE,” Roma, Italy
| | | | - Antonella Testa
- Radiation Biology and Human Health Unit (UT-BIORAD), Research Centre ENEA, Casaccia, Italy
| | - Renata Cozzi
- Department of Biology, University “Roma TRE,” Roma, Italy
| |
Collapse
|
49
|
Colamartino M, Padua L, Cornetta T, Testa A, Cozzi R. Recent advances in pharmacological therapy of Parkinson’s disease: Levodopa and carbidopa protective effects against DNA oxidative damage. Health (London) 2012. [DOI: 10.4236/health.2012.431177] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
50
|
King JM, Muthian G, Mackey V, Smith M, Charlton C. L-Dihydroxyphenylalanine modulates the steady-state expression of mouse striatal tyrosine hydroxylase, aromatic L-amino acid decarboxylase, dopamine and its metabolites in an MPTP mouse model of Parkinson's disease. Life Sci 2011; 89:638-43. [PMID: 21871902 DOI: 10.1016/j.lfs.2011.08.008] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2011] [Revised: 07/13/2011] [Accepted: 07/27/2011] [Indexed: 10/17/2022]
Abstract
AIMS l-3,4-Dihydroxyphenylalanine (L-DOPA) is the most effective symptomatic treatment for Parkinson's disease (PD), but PD patients usually experience a successful response to L-DOPA therapy followed by a progressive loss of response. L-DOPA efficacy relies on its decarboxylation by aromatic l-amino acid decarboxylase (AAAD) to form dopamine (DA). So exogenous L-DOPA drives the reaction and AAAD becomes the rate limiting enzyme in the supply of DA. In turn, exogenous L-DOPA regulates the expression and activity of AAAD as well as the synthesis of DA and its metabolites, changes that may be linked to the efficacy and side-effects of L-DOPA. MAIN METHODS One-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) mouse PD model was utilized to study the effects of L-DOPA on the steady-state level and activity of AAAD, tyrosine hydroxylase (TH), DA and the metabolites of DA. The MPTP and control mice were treated twice daily with PBS or with 100mg/kg of L-DOPA for 14days and the expression and activity of AAAD, the expression of TH and the levels of DA and its metabolites were determined 24h after L-DOPA or PBS treatment, when exogenous L-DOPA is eliminated. KEY FINDINGS In the MPTP model, L-DOPA reduced the steady-state expression and the activity of striatal AAAD by 52% and 50%, respectively, DA and metabolites were also significantly decreased. SIGNIFICANCE The outcome shows that while L-DOPA replenishes striatal DA it also down-regulates AAAD and the steady-state synthesis and metabolic capability of the dopaminergic system. These findings are important in the precipitation of L-DOPA induced side effects and the management of L-DOPA therapy.
Collapse
Affiliation(s)
- Jennifer M King
- Department of Neuroscience and Pharmacology, 1005 Dr. D.B. Todd Jr. Blvd. Meharry Medical College, Nashville, TN 37208, USA
| | | | | | | | | |
Collapse
|