1
|
Kumari M, Tamang A, Swarnkar M, Kumar P, Kumar D, Warghat AR, Hallan V, Pandey SS. Deciphering the endomicrobiome of Podophyllum hexandrum to reveal the endophytic bacterial-association of in-planta podophyllotoxin biosynthesis. World J Microbiol Biotechnol 2025; 41:38. [PMID: 39815146 DOI: 10.1007/s11274-024-04245-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 12/29/2024] [Indexed: 01/18/2025]
Abstract
Understanding the change in plant-associated microbial diversity and secondary metabolite biosynthesis in medicinal plants due to their cultivation in non-natural habitat (NNH) is important to maintain their therapeutic importance. Here, the bacterial endomicrobiome of Podophyllum hexandrum plants of natural habitat (NH; Kardang and Triloknath locations) and NNH (Palampur location) was identified and its association with the biosynthesis of podophyllotoxin (PTOX) was revealed. Rhizomes (source of PTOX) of plants of NH had highest endophytic bacterial diversity compared to NNH-plants. Presence of plant-location and tissue-specific distinct and common taxa were also identified. Acinetobacter, Ralstonia and Pseudomonas were identified as core taxa, present in plants of both NH and NNH. Predictive functional analysis of endophytic communities revealed abundant presence of genes encoding initial enzymes of PTOX biosynthesis and plant growth promotion in the rhizomes and roots of Kardang locations. Higher accumulations of secondary metabolites such as PTOX (2.78 and 2.11 folds in Kardang and Triloknath rhizomes, respectively; 1.48 and 1.71 fold in Kardang and Triloknath roots, respectively), Picropodophyllotoxin (3.08 fold in Kardang rhizomes), Quercetin (1.65 fold in Kardang and 1.32 fold in Triloknath rhizomes; 3.07-fold in Kardang and 1.60 fold in Triloknath roots) and Kaempferol (1.66 and 1.24-fold in Kardang and Triloknath rhizomes, respectively; 2.91 and 1.94-fold in Kardang and Triloknath roots, respectively) were also found in NH compared to NNH. This study provides novel insight into the change in the endomicrobiome of NH and NNH-plants and their correlation to secondary metabolites biosynthesis, and that must be considered for cultivation practices.
Collapse
Affiliation(s)
- Manju Kumari
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology (IHBT), Palampur, HP, 176061, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Anish Tamang
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology (IHBT), Palampur, HP, 176061, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Mohit Swarnkar
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology (IHBT), Palampur, HP, 176061, India
| | - Pawan Kumar
- Chemical Technology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, HP, 176061, India
| | - Dinesh Kumar
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
- Chemical Technology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, HP, 176061, India
| | - Ashish Rambau Warghat
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology (IHBT), Palampur, HP, 176061, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Vipin Hallan
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology (IHBT), Palampur, HP, 176061, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Shiv Shanker Pandey
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology (IHBT), Palampur, HP, 176061, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
| |
Collapse
|
2
|
Xu Y, Li J, Qiao C, Yang J, Li J, Zheng X, Wang C, Cao P, Li Y, Chen Q. Rhizosphere bacterial community is mainly determined by soil environmental factors, but the active bacterial diversity is mainly shaped by plant selection. BMC Microbiol 2024; 24:450. [PMID: 39501158 PMCID: PMC11536854 DOI: 10.1186/s12866-024-03611-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Accepted: 10/25/2024] [Indexed: 11/09/2024] Open
Abstract
BACKGROUND The assembly of the rhizosphere community, even the diazotroph community, is mainly shaped by soil environmental factors (including soil climate and physiochemical characteristics) and plant selection. To better understand the driving forces on the active overall and nitrogen-fixing bacterial community compositions, we characterized the communities of tobacco rhizosphere soil collected from three sampling sites with a large geographic scale (> 600 km). RESULTS The results indicate that the diversity and community composition of the overall bacterial and diazotroph communities are obviously differed according to the sampling sites. Still, no significant difference is found between the communities in rootzone and rhizosphere samples. Climate variables including mean annual precipitation (MAP) and mean annual temperature (MAT), soil physiochemical characteristics including available nitrogen (AN), available potassium (AK) and pH are main factors that affect the bacterial and diazotroph community structures in the three sampling sites. Furthermore, MAP and MAT, AN and available phosphorus (AP), total nitrogen (TN) and organic carbon (OC), AK and electrical conductivity (EC) showed similar effects, but pH showed independent effect on the composition of the overall bacteria and diazotroph communities. However, the alpha diversity indices of active overall and nitrogen-fixing bacteria in the rhizosphere are obviously higher than in the rootzone samples, and no significant differences are observed among different sampling sites. Proteobacteria is the predominant active phylum of all samples for overall and nitrogen-fixing bacteria. Escherichia-Shigella, Achromobacter, Streptomyces and Sphingomonas are the dominant active bacterial genera, and Bradyrhizobium, Skermanella and Extensimonas are dominant active nitrogen-fixing bacteria genera in rhizosphere. Furthermore, the high active abundance of Escherichia-Shigella but low abundance of Ralstonia in all three sampling sites indicate high root-knot nematode infection and low wilt disease endemic risk. CONCLUSION These results indicate that soil environmental factors contribute more to the tobacco rhizosphere bacterial community assemblage, but the rhizosphere contributes more to the diversity of active overall bacteria and nitrogen-fixing bacteria in the community. Our study provides novel knowledge for the assemble of rhizosphere bacterial and active bacteria communities across a large geographical scale.
Collapse
Affiliation(s)
- Yalong Xu
- China Tobacco Gene Research Center, Zhengzhou Tobacco Research Institute of CNTC, Zhengzhou, 450001, China
- Beijing Life Science Academy, Beijing, 102200, China
| | - Jingjing Li
- Technology Center, China , Tobacco Fujian Industrial Co., Ltd, Xiamen, 361021, China
| | - Chan Qiao
- Institute of Tobacco Science, Heilongjiang Provincial Tobacco Corporation, National Tobacco Corporation, Harbin, 150076, China
| | - Jinchu Yang
- Technology Center, China , Tobacco Henan Industrial Co., Ltd, Zhengzhou, 450000, China
| | - Juan Li
- Yantai Key Laboratory of Characteristic Agricultural Biological Resources Conservation and Germplasm Innovation Utilization, School of Life Sciences, Yantai University, Yantai, 264005, China
| | - Xueao Zheng
- China Tobacco Gene Research Center, Zhengzhou Tobacco Research Institute of CNTC, Zhengzhou, 450001, China
- Beijing Life Science Academy, Beijing, 102200, China
| | - Chen Wang
- China Tobacco Gene Research Center, Zhengzhou Tobacco Research Institute of CNTC, Zhengzhou, 450001, China
- Beijing Life Science Academy, Beijing, 102200, China
| | - Peijian Cao
- China Tobacco Gene Research Center, Zhengzhou Tobacco Research Institute of CNTC, Zhengzhou, 450001, China
- Beijing Life Science Academy, Beijing, 102200, China
| | - Yan Li
- Yantai Key Laboratory of Characteristic Agricultural Biological Resources Conservation and Germplasm Innovation Utilization, School of Life Sciences, Yantai University, Yantai, 264005, China.
| | - Qiansi Chen
- China Tobacco Gene Research Center, Zhengzhou Tobacco Research Institute of CNTC, Zhengzhou, 450001, China.
- Beijing Life Science Academy, Beijing, 102200, China.
| |
Collapse
|
3
|
Correr FH, Hosaka GK, Barreto FZ, Valadão IB, Balsalobre TWA, Furtado A, Henry RJ, Carneiro MS, Margarido GRA. Differential expression in leaves of Saccharum genotypes contrasting in biomass production provides evidence of genes involved in carbon partitioning. BMC Genomics 2020; 21:673. [PMID: 32993494 PMCID: PMC7526157 DOI: 10.1186/s12864-020-07091-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Accepted: 09/22/2020] [Indexed: 01/23/2023] Open
Abstract
BACKGROUND The development of biomass crops aims to meet industrial yield demands, in order to optimize profitability and sustainability. Achieving these goals in an energy crop like sugarcane relies on breeding for sucrose accumulation, fiber content and stalk number. To expand the understanding of the biological pathways related to these traits, we evaluated gene expression of two groups of genotypes contrasting in biomass composition. RESULTS First visible dewlap leaves were collected from 12 genotypes, six per group, to perform RNA-Seq. We found a high number of differentially expressed genes, showing how hybridization in a complex polyploid system caused extensive modifications in genome functioning. We found evidence that differences in transposition and defense related genes may arise due to the complex nature of the polyploid Saccharum genomes. Genotypes within both biomass groups showed substantial variability in genes involved in photosynthesis. However, most genes coding for photosystem components or those coding for phosphoenolpyruvate carboxylases (PEPCs) were upregulated in the high biomass group. Sucrose synthase (SuSy) coding genes were upregulated in the low biomass group, showing that this enzyme class can be involved with sucrose synthesis in leaves, similarly to sucrose phosphate synthase (SPS) and sucrose phosphate phosphatase (SPP). Genes in pathways related to biosynthesis of cell wall components and expansins coding genes showed low average expression levels and were mostly upregulated in the high biomass group. CONCLUSIONS Together, these results show differences in carbohydrate synthesis and carbon partitioning in the source tissue of distinct phenotypic groups. Our data from sugarcane leaves revealed how hybridization in a complex polyploid system resulted in noticeably different transcriptomic profiles between contrasting genotypes.
Collapse
Affiliation(s)
- Fernando Henrique Correr
- Department of Genetics, University of São Paulo, "Luiz de Queiroz" College of Agriculture, Av Pádua Dias, 11, Piracicaba, 13400-970, Brazil
| | - Guilherme Kenichi Hosaka
- Department of Genetics, University of São Paulo, "Luiz de Queiroz" College of Agriculture, Av Pádua Dias, 11, Piracicaba, 13400-970, Brazil
| | - Fernanda Zatti Barreto
- Department of Biotechnology, Vegetal and Animal Production, Federal University of São Carlos, Center of Agricultural Sciences, Rodovia Anhanguera, km 174, Araras, 13600-970, Brazil
| | - Isabella Barros Valadão
- Department of Biotechnology, Vegetal and Animal Production, Federal University of São Carlos, Center of Agricultural Sciences, Rodovia Anhanguera, km 174, Araras, 13600-970, Brazil
| | - Thiago Willian Almeida Balsalobre
- Department of Biotechnology, Vegetal and Animal Production, Federal University of São Carlos, Center of Agricultural Sciences, Rodovia Anhanguera, km 174, Araras, 13600-970, Brazil
| | - Agnelo Furtado
- Queensland Alliance for Agriculture and Food Innovation, University of Queensland, Brisbane, 4072, Australia
| | - Robert James Henry
- Queensland Alliance for Agriculture and Food Innovation, University of Queensland, Brisbane, 4072, Australia
| | - Monalisa Sampaio Carneiro
- Department of Biotechnology, Vegetal and Animal Production, Federal University of São Carlos, Center of Agricultural Sciences, Rodovia Anhanguera, km 174, Araras, 13600-970, Brazil
| | - Gabriel Rodrigues Alves Margarido
- Department of Genetics, University of São Paulo, "Luiz de Queiroz" College of Agriculture, Av Pádua Dias, 11, Piracicaba, 13400-970, Brazil.
| |
Collapse
|
4
|
Effect of soil chemical fertilization on the diversity and composition of the tomato endophytic diazotrophic community at different stages of growth. Braz J Microbiol 2020; 51:1965-1975. [PMID: 32895888 DOI: 10.1007/s42770-020-00373-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Accepted: 09/02/2020] [Indexed: 10/23/2022] Open
Abstract
The aim of this work was to gain a more comprehensive and perspicacious view of the endophytic diazotrophic community (EDC) of tomato plant bacteria and assess the effects of chemical fertilization and the plant phenologic stage on the status of those microbes. When the EDC of stem and roots from tomato plants grown in a greenhouse with and without exogenous chemical fertilization was examined by pyrosequencing the nifH gene during the growth cycle, a high taxonomic and phylogenetic diversity was observed. The abundant taxa were related to ubiquitous endophytes such as Rhizobium or Burkholderia but also involved anaerobic members usually restricted to flooded plant tissues, such as Clostridium, Geobacter, and Desulfovibrio. The EDC composition appeared to be dynamic during the growth phase of the tomato, with the structure of the community at the early stages of growth displaying major differences from the late stages. Inorganic fertilization negatively affected the diversity and modified the profile of the predominant components of the EDC in the different growth stages. Populations such as Burkholderia and Geobacter plus the Cyanobacteria appeared particularly affected by fertilization.Our work demonstrates an extensive endophytic diazotrophic diversity, suggesting a high potential for nitrogen fixation. The effect of the phenologic stage and inorganic-chemical soil fertilization on the community structure indicated a dynamic community that responded to environmental changes. These findings contribute to a better understanding of endophytic associations that could be helpful in assisting to shape the endomicrobiome that provides essential benefits to crops.
Collapse
|
5
|
Pankievicz VCS, Irving TB, Maia LGS, Ané JM. Are we there yet? The long walk towards the development of efficient symbiotic associations between nitrogen-fixing bacteria and non-leguminous crops. BMC Biol 2019; 17:99. [PMID: 31796086 PMCID: PMC6889567 DOI: 10.1186/s12915-019-0710-0] [Citation(s) in RCA: 86] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Accepted: 10/18/2019] [Indexed: 01/09/2023] Open
Abstract
Nitrogen is an essential element of life, and nitrogen availability often limits crop yields. Since the Green Revolution, massive amounts of synthetic nitrogen fertilizers have been produced from atmospheric nitrogen and natural gas, threatening the sustainability of global food production and degrading the environment. There is a need for alternative means of bringing nitrogen to crops, and taking greater advantage of biological nitrogen fixation seems a logical option. Legumes are used in most cropping systems around the world because of the nitrogen-fixing symbiosis with rhizobia. However, the world's three major cereal crops-rice, wheat, and maize-do not associate with rhizobia. In this review, we will survey how genetic approaches in rhizobia and their legume hosts allowed tremendous progress in understanding the molecular mechanisms controlling root nodule symbioses, and how this knowledge paves the way for engineering such associations in non-legume crops. We will also discuss challenges in bringing these systems into the field and how they can be surmounted by interdisciplinary collaborations between synthetic biologists, microbiologists, plant biologists, breeders, agronomists, and policymakers.
Collapse
Affiliation(s)
| | - Thomas B Irving
- Department of Bacteriology, University of Wisconsin, Madison, WI, USA
| | - Lucas G S Maia
- Department of Bacteriology, University of Wisconsin, Madison, WI, USA
| | - Jean-Michel Ané
- Department of Agronomy, University of Wisconsin, Madison, WI, USA.
- Department of Bacteriology, University of Wisconsin, Madison, WI, USA.
| |
Collapse
|
6
|
Gupta VVSR, Zhang B, Penton CR, Yu J, Tiedje JM. Diazotroph Diversity and Nitrogen Fixation in Summer Active Perennial Grasses in a Mediterranean Region Agricultural Soil. Front Mol Biosci 2019; 6:115. [PMID: 31750314 PMCID: PMC6848460 DOI: 10.3389/fmolb.2019.00115] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Accepted: 10/11/2019] [Indexed: 12/16/2022] Open
Abstract
Summer-growing perennial grasses such as Panicum coloratum L. cv. Bambatsi (Bambatsi panic), Chloris gayana Kunth cv. Katambora (Rhodes grass) and Digitaria eriantha Steud. cv. Premier (Premier digit grass) growing in the poor fertility sandy soils in the Mediterranean regions of southern Australia and western Australia mainly depend upon soil N and biological N inputs through diazotrophic (free living or associative) N fixation. We investigated the community composition and diversity (nifH-amplicon sequencing), abundance (qPCR) and functional capacity (15N incubation assay) of the endophytic diazotrophic community in the below and above ground plant parts of field grown and unfertilized grasses. Results showed a diverse and abundant diazotrophic community inside plant both above and below-ground and there was a distinct diazotrophic assemblage in the different plant parts in all the three grasses. There was a limited difference in the diversity between leaves, stems and roots except that Panicum grass roots harbored greater species richness. Nitrogen fixation potentials ranged between 0.24 and 5.9 mg N kg-1 day-1 and N fixation capacity was found in both the above and below ground plant parts. Results confirmed previous reports of plant species-based variation and that Alpha-Proteobacteria were the dominant group of nifH-harboring taxa both in the belowground and aboveground parts of the three grass species. Results also showed a well-structured nifH-harboring community in all plant parts, an example for a functional endophytic community. Overall, the variation in the number and identity of module hubs and connectors among the different plant parts suggests that co-occurrence patterns within the nifH-harboring community specific to individual compartments and local environments of the niches within each plant part may dictate the overall composition of diazotrophs within a plant.
Collapse
Affiliation(s)
| | - Bangzhou Zhang
- Institute for Microbial Ecology, School of Medicine, Xiamen University, Xiamen, China
- Center for Microbial Ecology, Michigan State University, East Lansing, MI, United States
| | - Christopher Ryan Penton
- College of Integrative Sciences and Arts, Arizona State University, Mesa, AZ, United States
- Center for Fundamental and Applied Microbiomics, Biodesign Institute, Arizona State University, Tempe, AZ, United States
| | - Julian Yu
- College of Integrative Sciences and Arts, Arizona State University, Mesa, AZ, United States
- Center for Fundamental and Applied Microbiomics, Biodesign Institute, Arizona State University, Tempe, AZ, United States
| | - James M. Tiedje
- Center for Microbial Ecology, Michigan State University, East Lansing, MI, United States
| |
Collapse
|
7
|
Occurrence of diverse Bradyrhizobium spp. in roots and rhizospheres of two commercial Brazilian sugarcane cultivars. Braz J Microbiol 2019; 50:759-767. [PMID: 31144269 DOI: 10.1007/s42770-019-00090-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Accepted: 05/02/2019] [Indexed: 10/26/2022] Open
Abstract
The genus Bradyrhizobium harbors many endosymbionts of legumes, but recent research has shown their widespread presence in soils and in non-legumes, notably in roots of sugarcane. This study aimed to investigate the Bradyrhizobium sp. community density in the endosphere and the rhizosphere of two commercial sugarcane cultivars. Samples of the rhizosphere and root endosphere of two Brazilian sugarcane cultivars (RB867515 and IACSP95-5000) were collected, serially diluted, and inoculated on axenic cowpea (Vigna unguiculata) and the induction of nodules was evaluated. Based on the results, a density was estimated of at least 1.6 × 104 rhizobia g root-1 in rhizosphere samples and up to 105 rhizobia g root -1 in endosphere. BOX-PCR profiling of 93 Bradyrhizobium isolates revealed genetic variability, with some dominant (up to 18 representants) and less dominant genotypes. 16S rRNA and ITS sequence analyses confirmed nine phylotypes, six of which pertained to the B. elkanii clade and three to the B. japonicum clade. Five isolates were genetically similar to the recently described species B. sacchari. There was no effect of the factors "plant cultivar" and "root compartment" on Bradyrhizobium sp. community composition and the most abundant genotypes occurred both in rhizosphere and endosphere of both cultivars. Therefore, this study confirms the natural presence of diverse Bradyrhizobium spp. in sugarcane root systems (mainly the rhizosphere) and indicates that certain Bradyrhizobium phylotypes have a special affinity for sugarcane root colonization.
Collapse
|
8
|
Rodrigues AA, Araújo MVF, Soares RS, Oliveira BFRDE, Ribeiro IDA, Sibov ST, Vieira JDG. Isolation and prospection of diazotrophic rhizobacteria associated with sugarcane under organic management. AN ACAD BRAS CIENC 2018; 90:3813-3829. [PMID: 30379271 DOI: 10.1590/0001-3765201820180319] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Accepted: 06/27/2018] [Indexed: 11/22/2022] Open
Abstract
Microorganisms associated with organic management are essential in nutrient transformation and release for plant use. The present study aimed to isolate, identify and characterize plant growth promoting diazotrophic rhizobacteria associated with sugarcane under organic management. Rhizospheres of organic sugarcane varieties IAC 911099 and CTC4 were sampled and inoculated onto nitrogen free NFb and Burk media. The isolated microorganisms were screened in vitro concerning their ability to produce plant growth promoting factors. Eighty-one bacteria were isolated; 45.6% were positive for the nifH gene and produced at least one of the evaluated plant growth promotion factors. The production of indole-3-acetic acid was observed in 46% of the isolates, while phosphate solubilization was observed in 86.5%. No isolates were hydrogen cyanide producers, while 81% were ammonia producers, 19% produced cellulases and 2.7%, chitinases. Microorganisms belonging to the Burkholderia genus were able to inhibit Fusarium moniliforme growth in vitro. Plant growth promoting microorganisms associated with organic sugarcane, especially belonging to Burkholderia, Sphingobium, Rhizobium and Enterobacter genera, can be environmentally friendly alternatives to improve sugarcane production.
Collapse
Affiliation(s)
- Ariana A Rodrigues
- Laboratório de Microbiologia Ambiental e Biotecnologia, Departamento de Biotecnologia, Instituto de Patologia Tropical e Saúde Pública, Universidade Federal de Goiás, Av. Universitária, s/n, 74605-050 Goiânia, GO, Brazil
| | - Marcus Vinícius F Araújo
- Laboratório de Microbiologia Ambiental e Biotecnologia, Departamento de Biotecnologia, Instituto de Patologia Tropical e Saúde Pública, Universidade Federal de Goiás, Av. Universitária, s/n, 74605-050 Goiânia, GO, Brazil
| | - Renan S Soares
- Laboratório de Microbiologia Ambiental e Biotecnologia, Departamento de Biotecnologia, Instituto de Patologia Tropical e Saúde Pública, Universidade Federal de Goiás, Av. Universitária, s/n, 74605-050 Goiânia, GO, Brazil
| | - Bruno F R DE Oliveira
- Laboratório de Bacteriologia Molecular e Marinha, Departamento de Microbiologia Médica, Instituto de Microbiologia Paulo de Goés, Universidade Federal do Rio de Janeiro, Rua Professor Rodolpho Paulo Rocco, 373, 21941-590 Rio de Janeiro, RJ, Brazil
| | - Igor D A Ribeiro
- Centro de Microbiologia Agrícola, Departamento de Genética, Universidade Federal do Rio Grande do Sul, Av. Bento Gonçalves, 9500, 91540-000 Porto Alegre, RS, Brazil
| | - Sergio T Sibov
- Laboratório de Cultura de Tecidos, Departamento de Genética e Melhoramento de Plantas, Escola de Agronomia, Universidade Federal de Goiás, Av. Esperança, s/n, 74690-900 Goiânia, GO, Brazil
| | - José Daniel G Vieira
- Laboratório de Microbiologia Ambiental e Biotecnologia, Departamento de Biotecnologia, Instituto de Patologia Tropical e Saúde Pública, Universidade Federal de Goiás, Av. Universitária, s/n, 74605-050 Goiânia, GO, Brazil
| |
Collapse
|
9
|
Gaby JC, Rishishwar L, Valderrama-Aguirre LC, Green SJ, Valderrama-Aguirre A, Jordan IK, Kostka JE. Diazotroph Community Characterization via a High-Throughput nifH Amplicon Sequencing and Analysis Pipeline. Appl Environ Microbiol 2018; 84:e01512-17. [PMID: 29180374 PMCID: PMC5795091 DOI: 10.1128/aem.01512-17] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Accepted: 11/21/2017] [Indexed: 11/20/2022] Open
Abstract
The dinitrogenase reductase gene (nifH) is the most widely established molecular marker for the study of nitrogen-fixing prokaryotes in nature. A large number of PCR primer sets have been developed for nifH amplification, and the effective deployment of these approaches should be guided by a rapid, easy-to-use analysis protocol. Bioinformatic analysis of marker gene sequences also requires considerable expertise. In this study, we advance the state of the art for nifH analysis by evaluating nifH primer set performance, developing an improved amplicon sequencing workflow, and implementing a user-friendly bioinformatics pipeline. The developed amplicon sequencing workflow is a three-stage PCR-based approach that uses established technologies for incorporating sample-specific barcode sequences and sequencing adapters. Based on our primer evaluation, we recommend the Ando primer set be used with a modified annealing temperature of 58°C, as this approach captured the largest diversity of nifH templates, including paralog cluster IV/V sequences. To improve nifH sequence analysis, we developed a computational pipeline which infers taxonomy and optionally filters out paralog sequences. In addition, we employed an empirical model to derive optimal operational taxonomic unit (OTU) cutoffs for the nifH gene at the species, genus, and family levels. A comprehensive workflow script named TaxADivA (TAXonomy Assignment and DIVersity Assessment) is provided to ease processing and analysis of nifH amplicons. Our approach is then validated through characterization of diazotroph communities across environmental gradients in beach sands impacted by the Deepwater Horizon oil spill in the Gulf of Mexico, in a peat moss-dominated wetland, and in various plant compartments of a sugarcane field.IMPORTANCE Nitrogen availability often limits ecosystem productivity, and nitrogen fixation, exclusive to prokaryotes, comprises a major source of nitrogen input that sustains food webs. The nifH gene, which codes for the iron protein of the nitrogenase enzyme, is the most widely established molecular marker for the study of nitrogen-fixing microorganisms (diazotrophs) in nature. In this study, a flexible sequencing/analysis pipeline, named TaxADivA, was developed for nifH amplicons produced by Illumina paired-end sequencing, and it enables an inference of taxonomy, performs clustering, and produces output in formats that may be used by programs that facilitate data exploration and analysis. Diazotroph diversity and community composition are linked to ecosystem functioning, and our results advance the phylogenetic characterization of diazotroph communities by providing empirically derived nifH similarity cutoffs for species, genus, and family levels. The utility of our pipeline is validated for diazotroph communities in a variety of ecosystems, including contaminated beach sands, peatland ecosystems, living plant tissues, and rhizosphere soil.
Collapse
Affiliation(s)
- John Christian Gaby
- School of Biology, The Georgia Institute of Technology, Atlanta, Georgia, USA
| | - Lavanya Rishishwar
- School of Biology, The Georgia Institute of Technology, Atlanta, Georgia, USA
- Applied Bioinformatics Laboratory, Atlanta, Georgia, USA
- PanAmerican Bioinformatics Institute, Cali, Valle del Cauca, Colombia
| | - Lina C Valderrama-Aguirre
- Laboratory of Microorganismal Production (Bioinoculums), Department of Field Research in Sugarcane, Incauca S.A.S, Cali, Valle del Cauca, Colombia
- School of Natural Resources and Environmental Engineering, PhD Program in Sanitary and Environmental Engineering, Universidad del Valle, Cali, Valle del Cauca, Colombia
| | - Stefan J Green
- DNA Services Facility, Research Resources Center, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Augusto Valderrama-Aguirre
- PanAmerican Bioinformatics Institute, Cali, Valle del Cauca, Colombia
- Biomedical Research Institute, Universidad Libre, Cali, Valle del Cauca, Colombia
- Regenerar, Center of Excellence for Regenerative and Personalized Medicine, Valle del Cauca, Colombia
| | - I King Jordan
- School of Biology, The Georgia Institute of Technology, Atlanta, Georgia, USA
- Applied Bioinformatics Laboratory, Atlanta, Georgia, USA
- PanAmerican Bioinformatics Institute, Cali, Valle del Cauca, Colombia
| | - Joel E Kostka
- School of Biology, The Georgia Institute of Technology, Atlanta, Georgia, USA
- PanAmerican Bioinformatics Institute, Cali, Valle del Cauca, Colombia
| |
Collapse
|
10
|
Dos-Santos CM, de Souza DG, Balsanelli E, Cruz LM, de Souza EM, Baldani JI, Schwab S. A Culture-Independent Approach to Enrich Endophytic Bacterial Cells from Sugarcane Stems for Community Characterization. MICROBIAL ECOLOGY 2017; 74:453-465. [PMID: 28160057 DOI: 10.1007/s00248-017-0941-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2016] [Accepted: 01/19/2017] [Indexed: 05/16/2023]
Abstract
Bacterial endophytes constitute a very diverse community and they confer important benefits which help to improve agricultural yield. Some of these benefits remain underexplored or little understood, mainly due to the bottlenecks associated with the plant feature, a low number of endophytic bacterial cells in relation to the plant, and difficulties in accessing these bacteria using cultivation-independent methods. Enriching endophytic bacterial cells from plant tissues, based on a non-biased, cultivation-independent physical enrichment method, may help to circumvent those problems, especially in the case of sugarcane stems, which have a high degree of interfering factors, such as polysaccharides, phenolic compounds, nucleases, and fibers. In the present study, an enrichment approach for endophytic bacterial cells from sugarcane lower stems is described. The results demonstrate that the enriched bacterial cells are suitable for endophytic community characterization. A community analysis revealed the presence of previously well-described but also novel endophytic bacteria in sugarcane tissues which may exert functions such as plant growth promotion and biological control, with a predominance of the Proteobacterial phylum, but also Actinobacteria, Bacteroidetes, and Firmicutes, among others. In addition, by comparing the present and literature data, it was possible to list the most frequently detected bacterial endophyte genera in sugarcane tissues. The presented enrichment approach paves the way for improved future research toward the assessment of endophytic bacterial community in sugarcane and other biofuel crops.
Collapse
Affiliation(s)
- Carlos M Dos-Santos
- Pró-Reitoria de Pesquisa e Pós-Graduação, Universidade Federal Rural do Rio de Janeiro, Rodovia BR 465, Km 7, Seropédica, RJ, CEP 23897-000, Brazil
- Embrapa Agrobiologia, Rodovia BR 465, Km 7, Seropédica, RJ, CEP 23891-000, Brazil
| | - Daniel G de Souza
- Embrapa Agrobiologia, Rodovia BR 465, Km 7, Seropédica, RJ, CEP 23891-000, Brazil
- Instituto de Agronomia, Universidade Federal Rural do Rio de Janeiro, Rodovia BR 465, Km 7, Seropédica, RJ, CEP 23891-000, Brazil
| | - Eduardo Balsanelli
- Departamento de Bioquímica e Biologia Molecular, Setor de Ciências Biológicas, Universidade Federal do Paraná, Centro Politécnico, Jardim das Américas, Curitiba, PR, CEP 81531-980, Brazil
| | - Leonardo Magalhães Cruz
- Departamento de Bioquímica e Biologia Molecular, Setor de Ciências Biológicas, Universidade Federal do Paraná, Centro Politécnico, Jardim das Américas, Curitiba, PR, CEP 81531-980, Brazil
| | - Emanuel M de Souza
- Departamento de Bioquímica e Biologia Molecular, Setor de Ciências Biológicas, Universidade Federal do Paraná, Centro Politécnico, Jardim das Américas, Curitiba, PR, CEP 81531-980, Brazil
| | - José I Baldani
- Embrapa Agrobiologia, Rodovia BR 465, Km 7, Seropédica, RJ, CEP 23891-000, Brazil
| | - Stefan Schwab
- Embrapa Agrobiologia, Rodovia BR 465, Km 7, Seropédica, RJ, CEP 23891-000, Brazil.
| |
Collapse
|
11
|
Calderoli PA, Collavino MM, Behrends Kraemer F, Morrás HJM, Aguilar OM. Analysis of nifH-RNA reveals phylotypes related to Geobacter and Cyanobacteria as important functional components of the N 2 -fixing community depending on depth and agricultural use of soil. Microbiologyopen 2017; 6. [PMID: 28766873 PMCID: PMC5635172 DOI: 10.1002/mbo3.502] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2016] [Revised: 04/20/2017] [Accepted: 05/03/2017] [Indexed: 11/10/2022] Open
Abstract
In this survey, a total of 80 787 reads and 28 171 unique NifH protein sequences were retrieved from soil RNA. This dataset extends our knowledge about the structure and diversity of the functional diazotrophic communities in agricultural soils from Argentinean Pampas. Operational taxonomic unit (OTU)‐based analyses showed that nifH phylotypes related to Geobacter and Anaeromyxobacter (44.8%), Rhizobiales (29%), Cyanobacteria (16.7%), and Verrucomicrobiales (8%) are key microbial components of N2 fixation in soils associated with no‐till management and soil depth. In addition, quantification of nifH gene copies related to Geobacter and Cyanobacteria revealed that these groups are abundant in soils under maize–soybean rotation and soybean monoculture, respectively. The correlation of physicochemical soil parameters with the diazotrophic diversity and composition showed that soil stability and organic carbon might contribute to the functional signatures of particular nifH phylotypes in fields under no‐till management. Because crop production relies on soil‐borne microorganism's activities, such as free N2 fixation, the information provided by our study on the diazotrophic population dynamics, associated with the edaphic properties and land‐use practices, represents a major contribution to gain insight into soil biology, in which functionally active components are identified.
Collapse
Affiliation(s)
- Priscila A Calderoli
- Instituto de Biotecnología y Biología Molecular (IBBM), Universidad Nacional de La Plata-CONICET, La Plata, Argentina
| | - Mónica M Collavino
- Instituto de Botánica del Nordeste (IBONE), Facultad de Ciencias Agrarias, Universidad Nacional del Nordeste-CONICET, Corrientes, Argentina
| | - Filipe Behrends Kraemer
- Cátedra de Manejo y Conservación de Suelos, Facultad de Agronomía, Universidad de Buenos Aires, Buenos Aires, Argentina.,INTA-CIRN, Instituto de Suelos, Hurlingham, Provincia de Buenos Aires, Argentina
| | - Héctor J M Morrás
- INTA-CIRN, Instituto de Suelos, Hurlingham, Provincia de Buenos Aires, Argentina
| | - O Mario Aguilar
- Instituto de Biotecnología y Biología Molecular (IBBM), Universidad Nacional de La Plata-CONICET, La Plata, Argentina
| |
Collapse
|
12
|
Faoro H, Rene Menegazzo R, Battistoni F, Gyaneshwar P, do Amaral FP, Taulé C, Rausch S, Gonçalves Galvão P, de Los Santos C, Mitra S, Heijo G, Sheu SY, Chen WM, Mareque C, Zibetti Tadra-Sfeir M, Ivo Baldani J, Maluk M, Paula Guimarães A, Stacey G, de Souza EM, Pedrosa FO, Magalhães Cruz L, James EK. The oil-contaminated soil diazotroph Azoarcus olearius DQS-4 T is genetically and phenotypically similar to the model grass endophyte Azoarcus sp. BH72. ENVIRONMENTAL MICROBIOLOGY REPORTS 2017; 9:223-238. [PMID: 27893193 DOI: 10.1111/1758-2229.12502] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2016] [Revised: 08/24/2016] [Accepted: 11/16/2016] [Indexed: 06/06/2023]
Abstract
The genome of Azoarcus olearius DQS-4T , a N2 -fixing Betaproteobacterium isolated from oil-contaminated soil in Taiwan, was sequenced and compared with other Azoarcus strains. The genome sequence showed high synteny with Azoarcus sp. BH72, a model endophytic diazotroph, but low synteny with five non-plant-associated strains (Azoarcus CIB, Azoarcus EBN1, Azoarcus KH32C, A. toluclasticus MF63T and Azoarcus PA01). Average Nucleotide Identity (ANI) revealed that DQS-4T shares 98.98% identity with Azoarcus BH72, which should now be included in the species A. olearius. The genome of DQS-4T contained several genes related to plant colonization and plant growth promotion, such as nitrogen fixation, plant adhesion and root surface colonization. In accordance with the presence of these genes, DQS-4T colonized rice (Oryza sativa) and Setaria viridis, where it was observed within the intercellular spaces and aerenchyma mainly of the roots. Although they promote the growth of grasses, the mechanism(s) of plant growth promotion by A. olearius strains is unknown, as the genomes of DQS-4T and BH72 do not contain genes for indole acetic acid (IAA) synthesis nor phosphate solubilization. In spite of its original source, both the genome and behaviour of DQS-4T suggest that it has the capacity to be an endophytic, nitrogen-fixing plant growth-promoting bacterium.
Collapse
Affiliation(s)
- Helisson Faoro
- Department of Biochemistry and Molecular Biology, Universidade Federal do Parana, Curitiba, Parana, 81531-980, Brazil
- Laboratory of Gene Expression Regulation, Instituto Carlos Chagas, Fiocruz-PR, Curitiba, Paraná, 81350-010, Brazil
| | - Rodrigo Rene Menegazzo
- Department of Biochemistry and Molecular Biology, Universidade Federal do Parana, Curitiba, Parana, 81531-980, Brazil
| | - Federico Battistoni
- Department of Microbial Biochemistry and Genomics, Instituto de Investigaciones Biológicas Clemente Estable (IIBCE), Montevideo, 11600, Uruguay
| | - Prasad Gyaneshwar
- Department of Biological Sciences, University of Wisconsin - Milwaukee, WI, 53211, USA
| | - Fernanda P do Amaral
- Division of Plant Science and Biochemistry, C. S. Bond Life Science Center, University of Missouri, Columbia, MO, 65211, USA
| | - Cecilia Taulé
- Department of Microbial Biochemistry and Genomics, Instituto de Investigaciones Biológicas Clemente Estable (IIBCE), Montevideo, 11600, Uruguay
| | - Sydnee Rausch
- Department of Biological Sciences, University of Wisconsin - Milwaukee, WI, 53211, USA
| | | | - Cecilia de Los Santos
- Department of Microbial Biochemistry and Genomics, Instituto de Investigaciones Biológicas Clemente Estable (IIBCE), Montevideo, 11600, Uruguay
| | - Shubhajit Mitra
- Department of Biological Sciences, University of Wisconsin - Milwaukee, WI, 53211, USA
| | - Gabriela Heijo
- Department of Microbial Biochemistry and Genomics, Instituto de Investigaciones Biológicas Clemente Estable (IIBCE), Montevideo, 11600, Uruguay
| | - Shih-Yi Sheu
- Laboratory of Microbiology, Department of Seafood Science, National Kaohsiung Marine University, Kaohsiung City, 811, Taiwan
| | - Wen-Ming Chen
- Laboratory of Microbiology, Department of Seafood Science, National Kaohsiung Marine University, Kaohsiung City, 811, Taiwan
| | - Cintia Mareque
- Department of Microbial Biochemistry and Genomics, Instituto de Investigaciones Biológicas Clemente Estable (IIBCE), Montevideo, 11600, Uruguay
| | - Michelle Zibetti Tadra-Sfeir
- Department of Biochemistry and Molecular Biology, Universidade Federal do Parana, Curitiba, Parana, 81531-980, Brazil
| | - J Ivo Baldani
- Embrapa Agrobiologia, Seropédica, Rio de Janeiro, 23891-000, Brazil
| | - Marta Maluk
- The James Hutton Institute, Invergowrie, Dundee, DD2 5DA, UK
| | | | - Gary Stacey
- Division of Plant Science and Biochemistry, C. S. Bond Life Science Center, University of Missouri, Columbia, MO, 65211, USA
| | - Emanuel M de Souza
- Department of Biochemistry and Molecular Biology, Universidade Federal do Parana, Curitiba, Parana, 81531-980, Brazil
| | - Fabio O Pedrosa
- Department of Biochemistry and Molecular Biology, Universidade Federal do Parana, Curitiba, Parana, 81531-980, Brazil
| | - Leonardo Magalhães Cruz
- Department of Biochemistry and Molecular Biology, Universidade Federal do Parana, Curitiba, Parana, 81531-980, Brazil
| | - Euan K James
- The James Hutton Institute, Invergowrie, Dundee, DD2 5DA, UK
| |
Collapse
|
13
|
Doty SL, Sher AW, Fleck ND, Khorasani M, Bumgarner RE, Khan Z, Ko AWK, Kim SH, DeLuca TH. Variable Nitrogen Fixation in Wild Populus. PLoS One 2016; 11:e0155979. [PMID: 27196608 PMCID: PMC4873266 DOI: 10.1371/journal.pone.0155979] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2015] [Accepted: 05/06/2016] [Indexed: 11/18/2022] Open
Abstract
The microbiome of plants is diverse, and like that of animals, is important for overall health and nutrient acquisition. In legumes and actinorhizal plants, a portion of essential nitrogen (N) is obtained through symbiosis with nodule-inhabiting, N2-fixing microorganisms. However, a variety of non-nodulating plant species can also thrive in natural, low-N settings. Some of these species may rely on endophytes, microorganisms that live within plants, to fix N2 gas into usable forms. Here we report the first direct evidence of N2 fixation in the early successional wild tree, Populus trichocarpa, a non-leguminous tree, from its native riparian habitat. In order to measure N2 fixation, surface-sterilized cuttings of wild poplar were assayed using both 15N2 incorporation and the commonly used acetylene reduction assay. The 15N label was incorporated at high levels in a subset of cuttings, suggesting a high level of N-fixation. Similarly, acetylene was reduced to ethylene in some samples. The microbiota of the cuttings was highly variable, both in numbers of cultured bacteria and in genetic diversity. Our results indicated that associative N2-fixation occurred within wild poplar and that a non-uniformity in the distribution of endophytic bacteria may explain the variability in N-fixation activity. These results point to the need for molecular studies to decipher the required microbial consortia and conditions for effective endophytic N2-fixation in trees.
Collapse
Affiliation(s)
- Sharon L. Doty
- School of Environmental and Forest Sciences, College of the Environment, University of Washington, Seattle, Washington, United States of America
- * E-mail:
| | - Andrew W. Sher
- School of Environmental and Forest Sciences, College of the Environment, University of Washington, Seattle, Washington, United States of America
| | - Neil D. Fleck
- School of Environmental and Forest Sciences, College of the Environment, University of Washington, Seattle, Washington, United States of America
| | - Mahsa Khorasani
- School of Environmental and Forest Sciences, College of the Environment, University of Washington, Seattle, Washington, United States of America
| | - Roger E. Bumgarner
- Department of Microbiology, University of Washington, Seattle, Washington, United States of America
| | - Zareen Khan
- School of Environmental and Forest Sciences, College of the Environment, University of Washington, Seattle, Washington, United States of America
| | - Andrew W. K. Ko
- School of Environmental and Forest Sciences, College of the Environment, University of Washington, Seattle, Washington, United States of America
| | - Soo-Hyung Kim
- School of Environmental and Forest Sciences, College of the Environment, University of Washington, Seattle, Washington, United States of America
| | - Thomas H. DeLuca
- School of Environmental and Forest Sciences, College of the Environment, University of Washington, Seattle, Washington, United States of America
| |
Collapse
|
14
|
Li ZL, Nan J, Huang C, Liang B, Liu WZ, Cheng HY, Zhang C, Zhang D, Kong D, Kanamaru K, Kobayashi T, Wang AJ, Katayama A. Spatial Abundance and Distribution of Potential Microbes and Functional Genes Associated with Anaerobic Mineralization of Pentachlorophenol in a Cylindrical Reactor. Sci Rep 2016; 6:19015. [PMID: 26750760 PMCID: PMC4707460 DOI: 10.1038/srep19015] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2015] [Accepted: 12/02/2015] [Indexed: 01/19/2023] Open
Abstract
Functional interplays of microbial activity, genetic diversity and contaminant transformation are poorly understood in reactors for mineralizing halogenated aromatics anaerobically. Here, we investigated abundance and distribution of potential microbes and functional genes associated with pentachlorophenol (PCP) anaerobic mineralization in a continuous-flow cylindrical reactor (15 cm in length). PCP dechlorination and the metabolite (phenol) were observed at segments 0–8 cm from inlet, where key microbes, including potential reductive dechlorinators (Dehalobacter, Sulfurospirillum, Desulfitobacterium and Desulfovibrio spp.) and phenol degraders (Cryptanaerobacter and Syntrophus spp.), as well as putative functional genes, including putative chlorophenol reductive dehalogenase (cprA) and benzoyl-CoA reductase (bamB), were highly enriched simultaneously. Five types of putative cprAs, three types of putative bamBs and seven types of putative nitrogenase reductase (nifHs) were determined, with their copy numbers decreased gradually from inlet to outlet. Distribution of chemicals, bacteria and putative genes confirmed PCP dechlorination and phenol degradation accomplished in segments 0–5 cm and 0–8 cm, respectively, contributing to a high PCP mineralization rate of 3.86 μM d−1. Through long-term incubation, dechlorination, phenol degradation and nitrogen fixation bacteria coexisted and functioned simultaneously near inlet (0–8 cm), verified the feasibility of anaerobic mineralization of halogenated aromatics in the compact reactor containing multiple functional microbes.
Collapse
Affiliation(s)
- Zhi-Ling Li
- State Key Laboratory of Urban Water Resources and Environment, Harbin Institute of Technology, Harbin 150090 China.,Institute of Materials and Systems for Sustainability, Nagoya University, Chikusa, Nagoya 464-8603 Japan
| | - Jun Nan
- State Key Laboratory of Urban Water Resources and Environment, Harbin Institute of Technology, Harbin 150090 China
| | - Cong Huang
- State Key Laboratory of Urban Water Resources and Environment, Harbin Institute of Technology, Harbin 150090 China
| | - Bin Liang
- Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, P.R. China
| | - Wen-Zong Liu
- Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, P.R. China
| | - Hao-Yi Cheng
- Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, P.R. China
| | - Chunfang Zhang
- Institute of Materials and Systems for Sustainability, Nagoya University, Chikusa, Nagoya 464-8603 Japan
| | - Dongdong Zhang
- Institute of Materials and Systems for Sustainability, Nagoya University, Chikusa, Nagoya 464-8603 Japan
| | - Deyong Kong
- State Key Laboratory of Urban Water Resources and Environment, Harbin Institute of Technology, Harbin 150090 China
| | - Kyoko Kanamaru
- Department of Biological Mechanisms and Functions, Graduate School of Bioagricultural Sciences, Nagoya University, Chikusa, Nagoya 464-8601 Japan
| | - Tetsuo Kobayashi
- Department of Biological Mechanisms and Functions, Graduate School of Bioagricultural Sciences, Nagoya University, Chikusa, Nagoya 464-8601 Japan
| | - Ai-Jie Wang
- State Key Laboratory of Urban Water Resources and Environment, Harbin Institute of Technology, Harbin 150090 China.,Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, P.R. China
| | - Arata Katayama
- Institute of Materials and Systems for Sustainability, Nagoya University, Chikusa, Nagoya 464-8603 Japan.,Department of Civil Engineering, Graduate School of Engineering, Nagoya University, Chikusa, Nagoya 464-8603 Japan
| |
Collapse
|
15
|
Grönemeyer JL, Hurek T, Bünger W, Reinhold-Hurek B. Bradyrhizobium vignae sp. nov., a nitrogen-fixing symbiont isolated from effective nodules of Vigna and Arachis. Int J Syst Evol Microbiol 2016; 66:62-69. [DOI: 10.1099/ijsem.0.000674] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Affiliation(s)
- Jann Lasse Grönemeyer
- Department of Microbe-Plant Interactions, Center of Molecular Interactions Bremen (CBIB), Faculty of Biology and Chemistry, University of Bremen, Postfach 33 04 40, D-28334, Bremen, Germany
| | - Thomas Hurek
- Department of Microbe-Plant Interactions, Center of Molecular Interactions Bremen (CBIB), Faculty of Biology and Chemistry, University of Bremen, Postfach 33 04 40, D-28334, Bremen, Germany
| | - Wiebke Bünger
- Department of Microbe-Plant Interactions, Center of Molecular Interactions Bremen (CBIB), Faculty of Biology and Chemistry, University of Bremen, Postfach 33 04 40, D-28334, Bremen, Germany
| | - Barbara Reinhold-Hurek
- Department of Microbe-Plant Interactions, Center of Molecular Interactions Bremen (CBIB), Faculty of Biology and Chemistry, University of Bremen, Postfach 33 04 40, D-28334, Bremen, Germany
| |
Collapse
|
16
|
Madhaiyan M, Alex THH, Ngoh ST, Prithiviraj B, Ji L. Leaf-residing Methylobacterium species fix nitrogen and promote biomass and seed production in Jatropha curcas. BIOTECHNOLOGY FOR BIOFUELS 2015; 8:222. [PMID: 26697111 PMCID: PMC4687150 DOI: 10.1186/s13068-015-0404-y] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2015] [Accepted: 11/30/2015] [Indexed: 05/06/2023]
Abstract
BACKGROUND Jatropha curcas L. (Jatropha) is a potential biodiesel crop that can be cultivated on marginal land because of its strong tolerance to drought and low soil nutrient content. However, seed yield remains low. To enhance the commercial viability and green index of Jatropha biofuel, a systemic and coordinated approach must be adopted to improve seed oil and biomass productivity. Here, we present our investigations on the Jatropha-associated nitrogen-fixing bacteria with an aim to understand and exploit the unique biology of this plant from the perspective of plant-microbe interactions. RESULTS An analysis of 1017 endophytic bacterial isolates derived from different parts of Jatropha revealed that diazotrophs were abundant and diversely distributed into five classes belonging to α, β, γ-Proteobacteria, Actinobacteria and Firmicutes. Methylobacterium species accounted for 69.1 % of endophytic bacterial isolates in leaves and surprisingly, 30.2 % which were able to fix nitrogen that inhabit in leaves. Among the Methylobacterium isolates, strain L2-4 was characterized in detail. Phylogenetically, strain L2-4 is closely related to M. radiotolerans and showed strong molybdenum-iron dependent acetylene reduction (AR) activity in vitro and in planta. Foliar spray of L2-4 led to successful colonization on both leaf surface and in internal tissues of systemic leaves and significantly improved plant height, leaf number, chlorophyll content and stem volume. Importantly, seed production was improved by 222.2 and 96.3 % in plants potted in sterilized and non-sterilized soil, respectively. Seed yield increase was associated with an increase in female-male flower ratio. CONCLUSION The ability of Methylobacterium to fix nitrogen and colonize leaf tissues serves as an important trait for Jatropha. This bacteria-plant interaction may significantly contribute to Jatropha's tolerance to low soil nutrient content. Strain L2-4 opens a new possibility to improve plant's nitrogen supply from the leaves and may be exploited to significantly improve the productivity and Green Index of Jatropha biofuel.
Collapse
Affiliation(s)
- Munusamy Madhaiyan
- />Biomaterials and Biocatalysts Group, Temasek Life Sciences Laboratory, 1 Research Link, National University of Singapore, Singapore, 117604 Singapore
| | - Tan Hian Hwee Alex
- />Biomaterials and Biocatalysts Group, Temasek Life Sciences Laboratory, 1 Research Link, National University of Singapore, Singapore, 117604 Singapore
| | - Si Te Ngoh
- />Biomaterials and Biocatalysts Group, Temasek Life Sciences Laboratory, 1 Research Link, National University of Singapore, Singapore, 117604 Singapore
| | - Bharath Prithiviraj
- />Plant Biology Division, The Samuel Roberts Noble Foundation, Ardmore, OK 73401 USA
| | - Lianghui Ji
- />Biomaterials and Biocatalysts Group, Temasek Life Sciences Laboratory, 1 Research Link, National University of Singapore, Singapore, 117604 Singapore
| |
Collapse
|
17
|
Lasse Grönemeyer J, Hurek T, Reinhold-Hurek B. Bradyrhizobium kavangense sp. nov., a symbiotic nitrogen-fixing bacterium from root nodules of traditional Namibian pulses. Int J Syst Evol Microbiol 2015; 65:4886-4894. [DOI: 10.1099/ijsem.0.000666] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Eight strains of symbiotic bacteria from root nodules of local races of cowpea (Vigna unguiculata) and Bambara groundnut (Vigna subterranea) grown on subsistence farmers’ fields in the Kavango region, Namibia, were previously characterized and identified as a novel group within the genus Bradyrhizobium. To clarify their taxonomic status, these strains were further characterized using a polyphasic approach. In phylogenetic analysis of the 16S rRNA gene sequence the novel group was most closely related to Bradyrhizobium iriomotense EK05T and Bradyrhizobium ingae BR 10250T, and to ‘Bradyrhizobium arachidis’ CCBAU 051107 in the ITS sequence analysis. Phylogenetic analysis of concatenated glnII-recA-rpoB-dnaK sequences placed the strains in a lineage distinct from named species of the genus Bradyrhizobium. The species status was validated by results of DNA–DNA hybridization. Phylogenetic analysis of nifH and nodC genes placed the novel strains in a group with ’B. arachidis’ CCBAU 051107. The combination of phenotypic characteristics from several tests including carbon source utilization and antibiotic resistance could be used to differentiate representative strains from recognized species of the genus Bradyrhizobium. Novel strain 14-3T induces effective nodules on Vigna subterranea, Vigna unguiculata, Arachis hypogaea and Lablab purpureus. Based on the data presented, it is concluded that the strains represent a novel species of the genus Bradyrhizobium, for which the name Bradyrhizobium kavangense sp. nov. is proposed. The type strain is 14-3T [ = DSM 100299T = LMG 28790T = NTCCM 0012T (Windhoek)]. The DNA G+C content of strain 14-3T is 63.8 mol% (T
m
).
Collapse
Affiliation(s)
- Jann Lasse Grönemeyer
- Department of Microbe-Plant Interactions, Center of Molecular Interactions Bremen (CBIB), Faculty of Biology and Chemistry, University of Bremen, Postfach 33 04 40, D-28334 Bremen, Germany
| | - T. Hurek
- Department of Microbe-Plant Interactions, Center of Molecular Interactions Bremen (CBIB), Faculty of Biology and Chemistry, University of Bremen, Postfach 33 04 40, D-28334 Bremen, Germany
| | - Barbara Reinhold-Hurek
- Department of Microbe-Plant Interactions, Center of Molecular Interactions Bremen (CBIB), Faculty of Biology and Chemistry, University of Bremen, Postfach 33 04 40, D-28334 Bremen, Germany
| |
Collapse
|
18
|
Grönemeyer JL, Chimwamurombe P, Reinhold-Hurek B. Bradyrhizobium subterraneum sp. nov., a symbiotic nitrogen-fixing bacterium from root nodules of groundnuts. Int J Syst Evol Microbiol 2015. [DOI: 10.1099/ijsem.0.000403] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Seven strains of symbiotic bacteria from root nodules of local races of Bambara groundnut (Vigna subterranea) and peanuts (Arachis hypogaea) grown on subsistence farmers' fields in the Kavango region, Namibia, were previously characterized and identified as a novel group within the genus Bradyrhizobium. To corroborate their taxonomic status, these strains were further characterized using a polyphasic approach. All strains possessed identical 16S rRNA gene sequences with Bradyrhizobium yuanmingense CCBAU 10071T being the most closely related type strain in the 16S rRNA gene phylogenetic analysis, and Bradyrhizobium daqingense CCBAU 15774T in the ITS sequence analysis. Phylogenetic analysis of concatenated glnII-recA-rpoB-dnaK placed the strains in a highly supported lineage distinct from named species of the genus Bradyrhizobium, most closely related to Bradyrhizobium yuanmingense CCBAU 10071T. The species status was validated by results of DNA–DNA hybridization. Phylogenetic analysis of nifH genes placed the novel strains in a group with nifH of ‘Bradyrhizobium arachidis’ CCBAU 051107 that also nodulates peanuts. The combination of phenotypic characteristics from several tests including carbon source utilization and antibiotic resistance could be used to differentiate representative strains from recognized species of the genus Bradyrhizobium. Novel strain 58 2-1T induced effective nodules on V. subterranea, Vigna unguiculata and A. hypogaea, and some strains on Lablab purpureus. Based on the data presented, we conclude that our strains represent a novel species for which the name Bradyrhizobium subterraneum sp. nov. is proposed, with 58 2-1T [ = DSM 100298T = LMG 28792T = NTCCM0016T (Windhoek)] as the type strain. The DNA G+C content of strain 58 2-1T was 64.7 mol% (T
m).
Collapse
Affiliation(s)
- Jann Lasse Grönemeyer
- Department of Microbe-Plant Interactions, Center of Molecular Interactions Bremen (CBIB), Faculty of Biology and Chemistry, University of Bremen, Postfach 33 04 40, D-28334 Bremen, Germany
| | - Percy Chimwamurombe
- Department of Biological Sciences, University of Namibia (UNAM), P. Bag 13301, Windhoek, Namibia
| | - Barbara Reinhold-Hurek
- Department of Microbe-Plant Interactions, Center of Molecular Interactions Bremen (CBIB), Faculty of Biology and Chemistry, University of Bremen, Postfach 33 04 40, D-28334 Bremen, Germany
| |
Collapse
|
19
|
Hardoim PR, van Overbeek LS, Berg G, Pirttilä AM, Compant S, Campisano A, Döring M, Sessitsch A. The Hidden World within Plants: Ecological and Evolutionary Considerations for Defining Functioning of Microbial Endophytes. Microbiol Mol Biol Rev 2015; 79:293-320. [PMID: 26136581 PMCID: PMC4488371 DOI: 10.1128/mmbr.00050-14] [Citation(s) in RCA: 1148] [Impact Index Per Article: 114.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
All plants are inhabited internally by diverse microbial communities comprising bacterial, archaeal, fungal, and protistic taxa. These microorganisms showing endophytic lifestyles play crucial roles in plant development, growth, fitness, and diversification. The increasing awareness of and information on endophytes provide insight into the complexity of the plant microbiome. The nature of plant-endophyte interactions ranges from mutualism to pathogenicity. This depends on a set of abiotic and biotic factors, including the genotypes of plants and microbes, environmental conditions, and the dynamic network of interactions within the plant biome. In this review, we address the concept of endophytism, considering the latest insights into evolution, plant ecosystem functioning, and multipartite interactions.
Collapse
Affiliation(s)
- Pablo R. Hardoim
- Centre of Marine Sciences, University of Algarve, Faro, Portugal
| | | | - Gabriele Berg
- Institute for Environmental Biotechnology, Graz University of Technology, Graz, Austria
| | | | - Stéphane Compant
- Department of Health and Environment, Bioresources Unit, Austrian Institute of Technology GmbH, Tulln, Austria
| | - Andrea Campisano
- Sustainable Agro-Ecosystems and Bioresources Department, Research and Innovation Centre, Fondazione Edmund Mach, San Michele all'Adige, TN, Italy
| | | | - Angela Sessitsch
- Department of Health and Environment, Bioresources Unit, Austrian Institute of Technology GmbH, Tulln, Austria
| |
Collapse
|
20
|
The Hidden World within Plants: Ecological and Evolutionary Considerations for Defining Functioning of Microbial Endophytes. Microbiol Mol Biol Rev 2015. [PMID: 26136581 DOI: 10.1128/mmbr.00050-14.] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
All plants are inhabited internally by diverse microbial communities comprising bacterial, archaeal, fungal, and protistic taxa. These microorganisms showing endophytic lifestyles play crucial roles in plant development, growth, fitness, and diversification. The increasing awareness of and information on endophytes provide insight into the complexity of the plant microbiome. The nature of plant-endophyte interactions ranges from mutualism to pathogenicity. This depends on a set of abiotic and biotic factors, including the genotypes of plants and microbes, environmental conditions, and the dynamic network of interactions within the plant biome. In this review, we address the concept of endophytism, considering the latest insights into evolution, plant ecosystem functioning, and multipartite interactions.
Collapse
|
21
|
Burbano CS, Grönemeyer JL, Hurek T, Reinhold-Hurek B. Microbial community structure and functional diversity of nitrogen-fixing bacteria associated with Colophospermum mopane. FEMS Microbiol Ecol 2015; 91:fiv030. [PMID: 25873605 DOI: 10.1093/femsec/fiv030] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/14/2015] [Indexed: 01/23/2023] Open
Abstract
Colophospermum mopane is an indigenous legume tree that grows in Southern Africa and is one of the predominant trees of the woodland vegetation. In order to increase knowledge about its ecology, especially how C. mopane thrives in the nitrogen-poor soils of the region, we analyzed the root-associated bacteria to assess the active diazotrophic diversity and total microbial diversity by culture-dependent and independent techniques. Root nodules were not detected but in some samples the lateral roots showed an outgrowth-like protuberance, that were not likely to have functions related to legume root nodules. The bacterial isolates recovered were related to Actinobacteria, Firmicutes and Proteobacteria. The total microbial diversity was dominated by Actinobacteria-related phylotypes, while the active diazotrophic diversity showed that the majority of the sequences were related to the order Rhizobiales but also to Spirochaetes, Firmicutes, Bacteroidetes and Deltaproteobacteria. Several isolates showed characteristics of plant growth-promoting bacteria. These findings increase the spectrum of possible phylotypes that can be found in legume trees that are typically nodulated by Alpha- and Betaproteobacteria, and reveal for the first time a surprising diversity of nitrogen-fixing bacteria active in legume tree roots.
Collapse
Affiliation(s)
- Claudia Sofía Burbano
- Department of Microbe-Plant Interactions, Center for Biomolecular Interactions Bremen (CBIB), Faculty of Biology and Chemistry, University of Bremen, PO. Box 330440, D-28334 Bremen, Germany
| | - Jann Lasse Grönemeyer
- Department of Microbe-Plant Interactions, Center for Biomolecular Interactions Bremen (CBIB), Faculty of Biology and Chemistry, University of Bremen, PO. Box 330440, D-28334 Bremen, Germany
| | - Thomas Hurek
- Department of Microbe-Plant Interactions, Center for Biomolecular Interactions Bremen (CBIB), Faculty of Biology and Chemistry, University of Bremen, PO. Box 330440, D-28334 Bremen, Germany
| | - Barbara Reinhold-Hurek
- Department of Microbe-Plant Interactions, Center for Biomolecular Interactions Bremen (CBIB), Faculty of Biology and Chemistry, University of Bremen, PO. Box 330440, D-28334 Bremen, Germany
| |
Collapse
|
22
|
Bahulikar RA, Torres-Jerez I, Worley E, Craven K, Udvardi MK. Diversity of nitrogen-fixing bacteria associated with switchgrass in the native tallgrass prairie of northern Oklahoma. Appl Environ Microbiol 2014; 80:5636-43. [PMID: 25002418 PMCID: PMC4178587 DOI: 10.1128/aem.02091-14] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2014] [Accepted: 06/27/2014] [Indexed: 11/20/2022] Open
Abstract
Switchgrass (Panicum virgatum L.) is a perennial C4 grass native to North America that is being developed as a feedstock for cellulosic ethanol production. Industrial nitrogen fertilizers enhance switchgrass biomass production but add to production and environmental costs. A potential sustainable alternative source of nitrogen is biological nitrogen fixation. As a step in this direction, we studied the diversity of nitrogen-fixing bacteria (NFB) associated with native switchgrass plants from the tallgrass prairie of northern Oklahoma (United States), using a culture-independent approach. DNA sequences from the nitrogenase structural gene, nifH, revealed over 20 putative diazotrophs from the alpha-, beta-, delta-, and gammaproteobacteria and the firmicutes associated with roots and shoots of switchgrass. Alphaproteobacteria, especially rhizobia, predominated. Sequences derived from nifH RNA indicated expression of this gene in several bacteria of the alpha-, beta-, delta-, and gammaproteobacterial groups associated with roots. Prominent among these were Rhizobium and Methylobacterium species of the alphaproteobacteria, Burkholderia and Azoarcus species of the betaproteobacteria, and Desulfuromonas and Geobacter species of the deltaproteobacteria.
Collapse
Affiliation(s)
- Rahul A Bahulikar
- Plant Biology Division, The Samuel Roberts Noble Foundation, Ardmore, Oklahoma, USA
| | - Ivone Torres-Jerez
- Plant Biology Division, The Samuel Roberts Noble Foundation, Ardmore, Oklahoma, USA
| | - Eric Worley
- Plant Biology Division, The Samuel Roberts Noble Foundation, Ardmore, Oklahoma, USA
| | - Kelly Craven
- Plant Biology Division, The Samuel Roberts Noble Foundation, Ardmore, Oklahoma, USA
| | - Michael K Udvardi
- Plant Biology Division, The Samuel Roberts Noble Foundation, Ardmore, Oklahoma, USA
| |
Collapse
|
23
|
Rouws LFM, Leite J, de Matos GF, Zilli JE, Coelho MRR, Xavier GR, Fischer D, Hartmann A, Reis VM, Baldani JI. Endophytic Bradyrhizobium spp. isolates from sugarcane obtained through different culture strategies. ENVIRONMENTAL MICROBIOLOGY REPORTS 2014; 6:354-63. [PMID: 24992534 DOI: 10.1111/1758-2229.12122] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2013] [Accepted: 10/27/2013] [Indexed: 05/12/2023]
Abstract
Brazilian sugarcane has been shown to obtain part of its nitrogen via biological nitrogen fixation (BNF). Recent reports, based on the culture independent sequencing of bacterial nifH complementary DNA (cDNA) from sugarcane tissues, have suggested that members of the Bradyrhizobium genus could play a role in sugarcane-associated BNF. Here we report on the isolation of Bradyrhizobium spp. isolates and a few other species from roots of sugarcane cultivar RB867515 by two cultivation strategies: direct isolation on culture media and capture of Bradyrhizobium spp. using the promiscuous legume Vigna unguiculata as trap-plant. Both strategies permitted the isolation of genetically diverse Bradyrhizobium spp. isolates, as concluded from enterobacterial repetitive intergenic consensus polymerase chain reaction (PCR) fingerprinting and 16S ribosomal RNA, nifH and nodC sequence analyses. Several isolates presented nifH phylotypes highly similar to nifH cDNA phylotypes detected in field-grown sugarcane by a culture-independent approach. Four isolates obtained by direct plate cultivation were unable to nodulate V. unguiculata and, based on PCR analysis, lacked a nodC gene homologue. Acetylene reduction assay showed in vitro nitrogenase activity for some Bradyrhizobium spp. isolates, suggesting that these bacteria do not require a nodule environment for BNF. Therefore, this study brings further evidence that Bradyrhizobium spp. may play a role in sugarcane-associated BNF under field conditions.
Collapse
|
24
|
Esfahani MN, Sulieman S, Schulze J, Yamaguchi-Shinozaki K, Shinozaki K, Tran LS. Approaches for enhancement of N₂ fixation efficiency of chickpea (Cicer arietinum L.) under limiting nitrogen conditions. PLANT BIOTECHNOLOGY JOURNAL 2014; 12:387-97. [PMID: 24267445 DOI: 10.1111/pbi.12146] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2013] [Revised: 09/19/2013] [Accepted: 10/03/2013] [Indexed: 05/16/2023]
Abstract
Chickpea (Cicer arietinum) is an important pulse crop in many countries in the world. The symbioses between chickpea and Mesorhizobia, which fix N₂ inside the root nodules, are of particular importance for chickpea's productivity. With the aim of enhancing symbiotic efficiency in chickpea, we compared the symbiotic efficiency of C-15, Ch-191 and CP-36 strains of Mesorhizobium ciceri in association with the local elite chickpea cultivar 'Bivanij' as well as studied the mechanism underlying the improvement of N₂ fixation efficiency. Our data revealed that C-15 strain manifested the most efficient N₂ fixation in comparison with Ch-191 or CP-36. This finding was supported by higher plant productivity and expression levels of the nifHDK genes in C-15 nodules. Nodule specific activity was significantly higher in C-15 combination, partially as a result of higher electron allocation to N₂ versus H⁺. Interestingly, a striking difference in nodule carbon and nitrogen composition was observed. Sucrose cleavage enzymes displayed comparatively lower activity in nodules established by either Ch-191 or CP-36. Organic acid formation, particularly that of malate, was remarkably higher in nodules induced by C-15 strain. As a result, the best symbiotic efficiency observed with C-15-induced nodules was reflected in a higher concentration of the total and several major amino metabolites, namely asparagine, glutamine, glutamate and aspartate. Collectively, our findings demonstrated that the improved efficiency in chickpea symbiotic system, established with C-15, was associated with the enhanced capacity of organic acid formation and the activities of the key enzymes connected to the nodule carbon and nitrogen metabolism.
Collapse
Affiliation(s)
- Maryam Nasr Esfahani
- Department of Biology, Faculty of Sciences, Lorestan University, Khorramabad, Iran
| | | | | | | | | | | |
Collapse
|
25
|
Anand R, Grayston S, Chanway C. N2-fixation and seedling growth promotion of lodgepole pine by endophytic Paenibacillus polymyxa. MICROBIAL ECOLOGY 2013; 66:369-74. [PMID: 23420205 DOI: 10.1007/s00248-013-0196-1] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2012] [Accepted: 02/04/2013] [Indexed: 05/16/2023]
Abstract
We inoculated lodgepole pine (Pinus contorta var. latifolia (Dougl.) Engelm.) with Paenibacillus polymyxa P2b-2R, a diazotrophic bacterium previously isolated from internal stem tissue of a naturally regenerating pine seedling to evaluate biological nitrogen fixation and seedling growth promotion by this microorganism. Seedlings generated from pine seed inoculated with strain P2b-2R were grown for up to 13 months in a N-limited soil mix containing 0.7 mM available N labeled as Ca((15)NO3)2 to facilitate detection of N2-fixation. Strain P2b-2R developed a persistent endophytic population comprising 10(2)-10(6) cfu g(-1) plant tissue inside pine roots, stems, and needles during the experiment. At the end of the growth period, P2b-2R had reduced seedling mortality by 14 % and (15)N foliar N abundance 79 % and doubled foliar N concentration and seedling biomass compared to controls. Our results suggest that N2-fixation by P. polymyxa enhanced growth of pine seedlings and support the hypothesis that plant-associated diazotrophs capable of endophytic colonization can satisfy a significant proportion of the N required by tree seedlings growing under N-limited conditions.
Collapse
Affiliation(s)
- Richa Anand
- IL-7, BC Children's Hospital, 4480 Oak Street, Vancouver, BC, V6H 3V4, Canada.
| | | | | |
Collapse
|
26
|
Olivares J, Bedmar EJ, Sanjuán J. Biological nitrogen fixation in the context of global change. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2013; 26:486-494. [PMID: 23360457 DOI: 10.1094/mpmi-12-12-0293-cr] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
The intensive application of fertilizers during agricultural practices has led to an unprecedented perturbation of the nitrogen cycle, illustrated by the growing accumulation of nitrates in soils and waters and of nitrogen oxides in the atmosphere. Besides increasing use efficiency of current N fertilizers, priority should be given to value the process of biological nitrogen fixation (BNF) through more sustainable technologies that reduce the undesired effects of chemical N fertilization of agricultural crops. Wider legume adoption, supported by coordinated legume breeding and inoculation programs are approaches at hand. Also available are biofertilizers based on microbes that help to reduce the needs of N fertilization in important crops like cereals. Engineering the capacity to fix nitrogen in cereals, either by themselves or in symbiosis with nitrogen-fixing microbes, are attractive future options that, nevertheless, require more intensive and internationally coordinated research efforts. Although nitrogen-fixing plants may be less productive, at some point, agriculture must significantly reduce the use of warming (chemically synthesized) N and give priority to BNF if it is to sustain both food production and environmental health for a continuously growing human population.
Collapse
Affiliation(s)
- José Olivares
- Dpto. Microbiologia del Suelo y Sistemas Simbioticos, Estacion Experimental del Zaidin, Granada, Spain
| | | | | |
Collapse
|
27
|
Liu Y, Döring J, Hurek T. Bias in topoisomerase (TOPO)-cloning of multitemplate PCR products using locked nucleic acid (LNA)-substituted primers. J Microbiol Methods 2012; 91:483-6. [PMID: 23064262 DOI: 10.1016/j.mimet.2012.10.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2012] [Revised: 10/05/2012] [Accepted: 10/06/2012] [Indexed: 11/15/2022]
Abstract
Locked nucleic acid (LNA) modifications help to improve nucleic acid recognition in molecular biology applications. We report that LNA-substituted primers in PCR reactions may cause considerable cloning bias when the widely used topoisomerase-based ligation is used for cloning of multitemplate PCR products.
Collapse
Affiliation(s)
- Yuan Liu
- University of Bremen, Department of Microbe-Plant Interactions, CBIB (Center for Biomolecular Interactions Bremen), 28359 Bremen, Germany
| | | | | |
Collapse
|
28
|
Sessitsch A, Hardoim P, Döring J, Weilharter A, Krause A, Woyke T, Mitter B, Hauberg-Lotte L, Friedrich F, Rahalkar M, Hurek T, Sarkar A, Bodrossy L, van Overbeek L, Brar D, van Elsas JD, Reinhold-Hurek B. Functional characteristics of an endophyte community colonizing rice roots as revealed by metagenomic analysis. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2012; 25:28-36. [PMID: 21970692 DOI: 10.1094/mpmi-08-11-0204] [Citation(s) in RCA: 338] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Roots are the primary site of interaction between plants and microorganisms. To meet food demands in changing climates, improved yields and stress resistance are increasingly important, stimulating efforts to identify factors that affect plant productivity. The role of bacterial endophytes that reside inside plants remains largely unexplored, because analysis of their specific functions is impeded by difficulties in cultivating most prokaryotes. Here, we present the first metagenomic approach to analyze an endophytic bacterial community resident inside roots of rice, one of the most important staple foods. Metagenome sequences were obtained from endophyte cells extracted from roots of field-grown plants. Putative functions were deduced from protein domains or similarity analyses of protein-encoding gene fragments, and allowed insights into the capacities of endophyte cells. This allowed us to predict traits and metabolic processes important for the endophytic lifestyle, suggesting that the endorhizosphere is an exclusive microhabitat requiring numerous adaptations. Prominent features included flagella, plant-polymer-degrading enzymes, protein secretion systems, iron acquisition and storage, quorum sensing, and detoxification of reactive oxygen species. Surprisingly, endophytes might be involved in the entire nitrogen cycle, as protein domains involved in N(2)-fixation, denitrification, and nitrification were detected and selected genes expressed. Our data suggest a high potential of the endophyte community for plant-growth promotion, improvement of plant stress resistance, biocontrol against pathogens, and bioremediation, regardless of their culturability.
Collapse
Affiliation(s)
- A Sessitsch
- AIT Austrian Institute of Technology, Tulin, Austria
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Reinhold-Hurek B, Hurek T. Living inside plants: bacterial endophytes. CURRENT OPINION IN PLANT BIOLOGY 2011; 14:435-43. [PMID: 21536480 DOI: 10.1016/j.pbi.2011.04.004] [Citation(s) in RCA: 373] [Impact Index Per Article: 26.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2011] [Revised: 04/08/2011] [Accepted: 04/11/2011] [Indexed: 05/03/2023]
Abstract
As current research activities have focused on symbiotic or parasitic plant-microbe interactions, other types of associations between plants and microorganisms are often overlooked. Endophytic bacteria colonize inner host tissues, sometimes in high numbers, without damaging the host or eliciting strong defense responses. Unlike endosymbionts they are not residing in living plant cells or surrounded by a membrane compartment. The molecular basis of endophytic interactions is still not well understood. Several traits involved in the establishment of endophytes have been elucidated. Culture-independent methods for community analysis and functional genomic as well as comparative genomic analyses will provide a better understanding of community dynamics, signaling, and functions in endophyte-plant associations.
Collapse
Affiliation(s)
- Barbara Reinhold-Hurek
- University Bremen, Department of Molecular Plant Microbiology, Center for Biomolecular Interactions Bremen, 28334 Bremen, Germany.
| | | |
Collapse
|