1
|
Meyerholz DK, Burrough ER, Kirchhof N, Anderson DJ, Helke KL. Swine models in translational research and medicine. Vet Pathol 2024; 61:512-523. [PMID: 38197394 DOI: 10.1177/03009858231222235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2024]
Abstract
Swine are increasingly studied as animal models of human disease. The anatomy, size, longevity, physiology, immune system, and metabolism of swine are more like humans than traditional rodent models. In addition, the size of swine is preferred for surgical placement and testing of medical devices destined for humans. These features make swine useful for biomedical, pharmacological, and toxicological research. With recent advances in gene-editing technologies, genetic modifications can readily and efficiently be made in swine to study genetic disorders. In addition, gene-edited swine tissues are necessary for studies testing and validating xenotransplantation into humans to meet the critical shortfall of viable organs versus need. Underlying all of these biomedical applications, the knowledge of husbandry, background diseases and lesions, and biosecurity needs are important for productive, efficient, and reproducible research when using swine as a human disease model for basic research, preclinical testing, and translational studies.
Collapse
|
2
|
Menegatt JCO, Perosa FF, Gris AH, Piva MM, Serena GC, Bordignon DL, Reck C, Menin Á, Watanabe TTN, Driemeier D. Main Causes of Death in Piglets from Different Brazilian Nursery Farms Based on Clinical, Microbiological, and Pathological Aspects. Animals (Basel) 2023; 13:3819. [PMID: 38136857 PMCID: PMC10740839 DOI: 10.3390/ani13243819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Revised: 12/05/2023] [Accepted: 12/09/2023] [Indexed: 12/24/2023] Open
Abstract
Necropsies can reveal herd problems or comorbidities that can lead to management corrections, improvements in animal performance, and better decision making. Furthermore, the pattern and causes of mortality might differ when different systems are evaluated. The present study was conducted to establish the main causes of death in nursery pigs from different systems in Brazil, as well as the clinical, microbiological, and pathological aspects of these mortalities. Eighteen nurseries were analyzed (a total of 120,243 housed piglets), and 557 necropsies were performed. Streptococcus suis infection was the most prevalent cause of death (21.2%), followed by bacterial polyserositis (16.7%), chronic atrophic enteritis (13.5%), salmonellosis (8.8%), pneumonia (8.6%), and colibacillosis (6.1%). The increase in mortality rate in individual nurseries and, consequently, in the diagnoses was commonly associated with disease outbreaks. Infectious diseases constituted the largest portion of the diagnoses, making a great opportunity for improving production rates in herds. Moreover, the extensive range of observed diagnoses highlights the importance of conducting preliminary diagnostic investigations based on necropsy to determine the causes of death. This approach allows for the direction of complementary tests, which can diagnose agents with greater specificity. As a result, this allows for the implementation of more effective prevention and control strategies.
Collapse
Affiliation(s)
- Jean Carlo Olivo Menegatt
- Setor de Patologia Veterinária, Faculdade de Medicina Veterinária, Universidade Federal do Rio Grande do Sul, Av. Bento Gonçalves, 9090, Porto Alegre 91540-000, RS, Brazil; (F.F.P.); (A.H.G.); (M.M.P.); (G.C.S.); (D.D.)
| | - Fernanda Felicetti Perosa
- Setor de Patologia Veterinária, Faculdade de Medicina Veterinária, Universidade Federal do Rio Grande do Sul, Av. Bento Gonçalves, 9090, Porto Alegre 91540-000, RS, Brazil; (F.F.P.); (A.H.G.); (M.M.P.); (G.C.S.); (D.D.)
| | - Anderson Hentz Gris
- Setor de Patologia Veterinária, Faculdade de Medicina Veterinária, Universidade Federal do Rio Grande do Sul, Av. Bento Gonçalves, 9090, Porto Alegre 91540-000, RS, Brazil; (F.F.P.); (A.H.G.); (M.M.P.); (G.C.S.); (D.D.)
| | - Manoela Marchezan Piva
- Setor de Patologia Veterinária, Faculdade de Medicina Veterinária, Universidade Federal do Rio Grande do Sul, Av. Bento Gonçalves, 9090, Porto Alegre 91540-000, RS, Brazil; (F.F.P.); (A.H.G.); (M.M.P.); (G.C.S.); (D.D.)
| | - Guilherme Carvalho Serena
- Setor de Patologia Veterinária, Faculdade de Medicina Veterinária, Universidade Federal do Rio Grande do Sul, Av. Bento Gonçalves, 9090, Porto Alegre 91540-000, RS, Brazil; (F.F.P.); (A.H.G.); (M.M.P.); (G.C.S.); (D.D.)
| | - Diego Luiz Bordignon
- Cargill Alimentos Ltd.a., Av. José Bonifácio Coutinho Nogueira, 150, Campinas 13091-611, SP, Brazil;
| | - Carolina Reck
- VERTÀ Laboratórios, Instituto de Pesquisa e Diagnóstico Veterinário, Av. Lions, 1380—Nossa Senhora Aparecida, Curitibanos 89520-000, SC, Brazil; (C.R.); (Á.M.)
| | - Álvaro Menin
- VERTÀ Laboratórios, Instituto de Pesquisa e Diagnóstico Veterinário, Av. Lions, 1380—Nossa Senhora Aparecida, Curitibanos 89520-000, SC, Brazil; (C.R.); (Á.M.)
- Departamento de Biociências e Saúde Única, Universidade Federal de Santa Catarina, R. Germano A. Souza, Curitibanos 89520-000, SC, Brazil
| | - Tatiane Terumi Negrão Watanabe
- Department of Population Health and Pathobiology, College of Veterinary Medicine, North Carolina State University, Raleigh, NC 27606, USA;
- Antech Diagnostics, West Olympic Blvd, Los Angeles, CA 90064, USA
| | - David Driemeier
- Setor de Patologia Veterinária, Faculdade de Medicina Veterinária, Universidade Federal do Rio Grande do Sul, Av. Bento Gonçalves, 9090, Porto Alegre 91540-000, RS, Brazil; (F.F.P.); (A.H.G.); (M.M.P.); (G.C.S.); (D.D.)
| |
Collapse
|
3
|
Reinoso-Maset E, Falk M, Bernhoft A, Ersdal C, Framstad T, Fuhrmann H, Salbu B, Oropeza-Moe M. Selenium Speciation Analysis Reveals Improved Antioxidant Status in Finisher Pigs Fed L-Selenomethionine, Alone or Combined with Sodium Selenite, and Vitamin E. Biol Trace Elem Res 2022:10.1007/s12011-022-03516-9. [PMID: 36577830 PMCID: PMC10350441 DOI: 10.1007/s12011-022-03516-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 12/02/2022] [Indexed: 12/30/2022]
Abstract
Conditions associated with selenium (Se) and/or vitamin E (VitE) deficiency are still being reported in high-yielding pigs fed the recommended amounts. Here, the dietary effects of Se source (sodium selenite, NaSe, 0.40 or 0.65 mg Se/kg; L-selenomethionine, SeMet, 0.19 or 0.44 mg Se/kg; a NaSe-SeMet mixture, SeMix, 0.44-0.46 mg Se/kg) and VitE concentration (27, 50-53 or 101 mg/kg) on the antioxidant status of finisher pigs were compared with those in pigs fed non-Se-supplemented diets (0.08-0.09 mg Se/kg). Compared to NaSe-enriched diets, SeMet-supplemented diets resulted in significantly (p < 0.0018) higher plasma concentrations of total Se (14-27%) and selenospecies (GPx3, SelP, SeAlb; 7-83%), significantly increased the total Se accumulation in skeletal muscles, myocardium, liver and brain (10-650%), and enhanced the VitE levels in plasma (15-74%) and tissues (8-33%) by the end of the 80-day trial, proving better Se distribution and retention in pigs fed organic Se. Injecting lipopolysaccharide (LPS) intravenously half-way into the trial provoked a pyrogenic response in the pigs followed by a rapid increase of inorganic Se after 5-12 h, a drastic drop of SeMet levels between 12 and 24 h that recovered by 48 h, and a small increase of SeCys by 24-48 h, together with a gradual rise of GPx3, SelP and SeAlb in plasma up to 48 h. These changes in Se speciation in plasma were particularly significant (0.0024 > p > 0.00007) in pigs receiving SeMet- (0.44 mg Se/kg, above EU-legislated limits) or SeMix-supplemented (SeMet and NaSe both at 0.2 mg Se/kg, within EU-legislated limits) diets, which demonstrates Se metabolism upregulation to counteract the LPS-induced oxidative stress and a strengthened antioxidant capacity in these pigs. Overall, a Se source combination (without exceeding EU-legislated limits) and sufficient VitE supplementation (≥ 50 mg/kg) improved the pigs' antioxidant status, while doubling the allowed dietary organic Se increased the Se in tissues up to sixfold without compromising the animal's health due to toxicity. This study renders valuable results for revising the current dietary SeMet limits in swine rations.
Collapse
Affiliation(s)
- Estela Reinoso-Maset
- Centre for Environmental Radioactivity CoE, Faculty of Environmental Sciences and Natural Resource Management, Norwegian University of Life Sciences, Elizabeth Stephansens vei 31, 1433, Aas, Norway.
| | - Michaela Falk
- Norwegian Veterinary Institute, Svebastadveien 112, 4325, Sandnes, Norway
- Department of Production Animal Clinical Sciences (PRODMED), Faculty of Veterinary Medicine, Norwegian University of Life Sciences, Svebastadveien 112, 4325, Sandnes, Norway
| | - Aksel Bernhoft
- Norwegian Veterinary Institute, Elizabeth Stephansens vei 1, 1433, Aas, Norway
| | - Cecilie Ersdal
- Department of Production Animal Clinical Sciences (PRODMED), Faculty of Veterinary Medicine, Norwegian University of Life Sciences, Svebastadveien 112, 4325, Sandnes, Norway
| | - Tore Framstad
- Department of Production Animal Clinical Sciences (PRODMED), Faculty of Veterinary Medicine, Norwegian University of Life Sciences, Elizabeth Stephansens vei 15, 1433, Aas, Norway
| | - Herbert Fuhrmann
- Institute of Physiological Chemistry, Faculty of Veterinary Medicine, University of Leipzig, 04103, Leipzig, Germany
| | - Brit Salbu
- Centre for Environmental Radioactivity CoE, Faculty of Environmental Sciences and Natural Resource Management, Norwegian University of Life Sciences, Elizabeth Stephansens vei 31, 1433, Aas, Norway
| | - Marianne Oropeza-Moe
- Department of Production Animal Clinical Sciences (PRODMED), Faculty of Veterinary Medicine, Norwegian University of Life Sciences, Svebastadveien 112, 4325, Sandnes, Norway
| |
Collapse
|
4
|
Weisskopf M, Glaus L, Trimmel NE, Hierweger MM, Leuthardt AS, Kukucka M, Stolte T, Stoeck CT, Falk V, Emmert MY, Kofler M, Cesarovic N. Dos and don'ts in large animal models of aortic insufficiency. Front Vet Sci 2022; 9:949410. [PMID: 36118338 PMCID: PMC9478759 DOI: 10.3389/fvets.2022.949410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Accepted: 07/22/2022] [Indexed: 11/14/2022] Open
Abstract
Aortic insufficiency caused by paravalvular leakage (PVL) is one of the most feared complications following transcatheter aortic valve replacement (TAVI) in patients. Domestic pigs (Sus scrofa domestica) are a popular large animal model to study such conditions and develop novel diagnostic and therapeutic techniques. However, the models based on prosthetic valve implantation are time intensive, costly, and often hamper further hemodynamic measurements such as PV loop and 4D MRI flow by causing implantation-related wall motion abnormalities and degradation of MR image quality. This study describes in detail, the establishment of a minimally invasive porcine model suitable to study the effects of mild-to-moderate “paravalvular“ aortic regurgitation on left ventricular (LV) performance and blood flow patterns, particularly under the influence of altered afterload, preload, inotropic state, and heart rate. Six domestic pigs (Swiss large white, female, 60–70 kg of body weight) were used to establish this model. The defects on the hinge point of aortic leaflets and annulus were created percutaneously by the pierce-and-dilate technique either in the right coronary cusp (RCC) or in the non-coronary cusp (NCC). The hemodynamic changes as well as LV performance were recorded by PV loop measurements, while blood flow patterns were assessed by 4D MRI. LV performance was additionally challenged by pharmaceutically altering cardiac inotropy, chronotropy, and afterload. The presented work aims to elaborate the dos and don'ts in porcine models of aortic insufficiency and intends to steepen the learning curve for researchers planning to use this or similar models by giving valuable insights ranging from animal selection to vascular access choices, placement of PV Loop catheter, improvement of PV loop data acquisition and post-processing and finally the induction of paravalvular regurgitation of the aortic valve by a standardized and reproducible balloon induced defect in a precisely targeted region of the aortic valve.
Collapse
Affiliation(s)
- Miriam Weisskopf
- Center for Surgical Research, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Lukas Glaus
- Department of Health Sciences and Technology, Swiss Federal Institute of Technology, Zurich, Switzerland
| | - Nina E. Trimmel
- Center for Surgical Research, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Melanie M. Hierweger
- Center for Surgical Research, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Andrea S. Leuthardt
- Center for Surgical Research, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Marian Kukucka
- Department of Cardiothoracic and Vascular Surgery, German Heart Center Berlin, Berlin, Germany
| | - Thorald Stolte
- Department of Health Sciences and Technology, Swiss Federal Institute of Technology, Zurich, Switzerland
| | - Christian T. Stoeck
- Center for Surgical Research, University Hospital Zurich, University of Zurich, Zurich, Switzerland
- Institute for Biomedical Engineering, University and ETH Zurich, Zurich, Switzerland
| | - Volkmar Falk
- Department of Health Sciences and Technology, Swiss Federal Institute of Technology, Zurich, Switzerland
- Department of Cardiothoracic and Vascular Surgery, German Heart Center Berlin, Berlin, Germany
- Department of Cardiovascular Surgery, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Maximilian Y. Emmert
- Department of Cardiothoracic and Vascular Surgery, German Heart Center Berlin, Berlin, Germany
- Department of Cardiovascular Surgery, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Markus Kofler
- Department of Cardiothoracic and Vascular Surgery, German Heart Center Berlin, Berlin, Germany
| | - Nikola Cesarovic
- Department of Health Sciences and Technology, Swiss Federal Institute of Technology, Zurich, Switzerland
- Department of Cardiothoracic and Vascular Surgery, German Heart Center Berlin, Berlin, Germany
- *Correspondence: Nikola Cesarovic
| |
Collapse
|
5
|
Opriessnig T, Xiao CT, Halbur PG. Porcine Astrovirus Type 5-Associated Enteritis in Pigs. J Comp Pathol 2020; 181:38-46. [PMID: 33288149 DOI: 10.1016/j.jcpa.2020.09.014] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 07/30/2020] [Accepted: 09/25/2020] [Indexed: 11/19/2022]
Abstract
Astroviruses (AstVs) are emerging, potentially zoonotic pathogens, associated with enteric and neurological signs in various animal species. In pigs, five lineages have been identified, porcine AstVs (PoAstVs) 1-5. We now report PoAstV5-associated atrophic enteritis in a colostrum-deprived (CD) pig and a similar disease in field cases of enteritis. Four newborn CD piglets were housed under biosafety level 2 conditions and monitored for the presence of PoAstV RNA in rectal swabs and tissues. PoAstV4 RNA was detected in low numbers (0.9-5.3 log10 genomic copies/rectal swab) in rectal swabs from all of these pigs while all animals were negative for PoAstV1, PoAstV2, PoAstV3 and PoAstV5. At 19 and 20 days of age, high levels of PoAstV5 RNA (7.4-7.5 log10 genomic copies/rectal swab) were detected in one pig, which had developed enteritis. At necropsy 1 day after the first evidence of PoAstV5 shedding, this pig was strongly positive for PoAstV5 RNA in most tissues with strong immunolabelling of PoAstV5 in enterocytes. Gene sequencing confirmed PoAstV5 infection. A retrospective investigation of PoAstVs 3, 4 and 5 in archival tissues from field cases of post-weaning enteritis identified high PoAstV4 or PoAstV5 antigen levels in intestinal tissues. These pigs were often concurrently infected with porcine rotavirus. Our findings suggest that PoAstV5 may contribute to the pathogenesis of enteritis in young pigs.
Collapse
Affiliation(s)
- Tanja Opriessnig
- The Roslin Institute and The Royal (Dick) School of Veterinary Studies, University of Edinburgh, Midlothian, UK; Department of Veterinary Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Iowa State University, Ames, Iowa, USA.
| | - Chao-Ting Xiao
- Institute of Pathogen Biology and Immunology, College of Biology, Hunan University, Changsha, China
| | - Patrick G Halbur
- Department of Veterinary Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Iowa State University, Ames, Iowa, USA
| |
Collapse
|
6
|
Gebhardt JT, Tokach MD, Dritz SS, DeRouchey JM, Woodworth JC, Goodband RD, Henry SC. Postweaning mortality in commercial swine production. I: review of non-infectious contributing factors. Transl Anim Sci 2020; 4:txaa068. [PMID: 32705063 PMCID: PMC7277695 DOI: 10.1093/tas/txaa068] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Accepted: 05/15/2020] [Indexed: 12/26/2022] Open
Abstract
Postweaning mortality is a complex causal matrix involving animal, environment, and infectious etiologic factors. Despite advances in swine productivity such as total pigs born, growth rate, feed intake, and efficiency, there have been modest to no improvements in postweaning mortality rates over the last several years. Industry averages for postweaning mortality range from four to eight percent for each the nursery, grow-finish, or wean-finish stages. Retrospective mortality causal analyses of individual databases have been performed. However, little information derived from meta-analysis, systematic review, or comprehensive literature reviews are available. In order to develop and evaluate strategies to comprehensively manage and reduce postweaning mortality, addressing the complexity and range of impact that factors have on mortality is necessary to identify and prioritize such contributing factors. Our objective is to describe the current state of knowledge regarding non-infectious causes of postweaning mortality, focusing on estimates of frequency and magnitude of effect where available. Postweaning mortality can be generalized into non-infectious and infectious causes, with non-infectious factors further classified into anatomic abnormalities, toxicity, animal factors, facility factors, nutritional inadequacies, season, and management factors. Important non-infectious factors that have been identified through review of literature include birth weight, pre-weaning management, weaning age and weight, and season. Additionally, reasons for mortality with a low incidence but a high magnitude include abdominal organ torsion/volvulus, sodium ion or ionophore toxicosis, or dietary imbalance due to feed formulation or manufacture error. Many interactive effects are present between and among infectious and non-infectious factors, but an important trend is the impact that non-infectious factors have on the incidence, severity, and resolution of infectious disease. Strategies to reduce postweaning mortality must consider the dynamic, complex state that forms the causal web. Control of postweaning mortality through understanding of the complexity, evaluation of mortality reduction strategies through rigorous scientific evaluation, and implementation remains an area of opportunity for continued growth and development in the global swine industry.
Collapse
Affiliation(s)
- Jordan T Gebhardt
- Department of Animal Sciences and Industry, College of Agriculture, Kansas State University, Manhattan, KS
| | - Mike D Tokach
- Department of Animal Sciences and Industry, College of Agriculture, Kansas State University, Manhattan, KS
| | - Steve S Dritz
- Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS
| | - Joel M DeRouchey
- Department of Animal Sciences and Industry, College of Agriculture, Kansas State University, Manhattan, KS
| | - Jason C Woodworth
- Department of Animal Sciences and Industry, College of Agriculture, Kansas State University, Manhattan, KS
| | - Robert D Goodband
- Department of Animal Sciences and Industry, College of Agriculture, Kansas State University, Manhattan, KS
| | | |
Collapse
|
7
|
A descriptive report of the selenium distribution in tissues from pigs with mulberry heart disease (MHD). Porcine Health Manag 2019; 5:17. [PMID: 31497310 PMCID: PMC6717635 DOI: 10.1186/s40813-019-0124-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Accepted: 06/14/2019] [Indexed: 11/10/2022] Open
Abstract
Background Mulberry Heart Disease (MHD) is a condition affecting mainly young pigs in excellent body condition. Feed efficient pigs showing high average daily gains are more likely to be affected. MHD has been described as a challenge in Norwegian pig production over the last decade despite abundant supplies of vitamin E, and selenium (Se) close to the upper limits set by the EU. From 2015 to 2017, samples from documented MHD field cases were collected and compared with controls regarding post mortem findings and Se concentrations in numerous internal and external organs were determined in order to characterize the Se distribution, and to identify any differences between MHD cases and controls. Case presentation Eight MHD cases from commercial farms and a pet pig producer located in the South West and East of Norway, and three control animals originating from these farms were included in this study. MHD cases and controls were weaned pigs with an average bodyweight (BW) of 17 kg (range 9 to 46 kg BW), with the exception of one pet piglet (Mangalica, 6 kg BW) that had only received sow milk. Selenium was determined in samples from the cardiovascular, digestive, immune, endocrine, integumentary, muscular, respiratory and urinary systems using inductively coupled plasma mass spectrometry (QQQ ICP-MS). All pigs with MHD suffered sudden deaths. Control animals were euthanized without being bled prior to necropsy and sampling. Significantly different mean Se concentrations between MHD cases and controls were found in cardiac samples as well as almost all skeletal muscles (P < 0.05). Based on the samples from ten different muscles (except the cardiac samples), mean Se concentrations in MHD cases were 0.34 (0.01) mg/ kg DM compared with 0.65 (0.02) mg/ kg DM in control pigs (P < 0.0001). In cardiac samples, mean Se concentrations from MHD cases were 0.87 (0.02) mg/ kg DM vs. 1.12 (0.04) mg/ kg DM (P < 0.0001). Additionally, significantly lower Se concentrations compared with controls were found in the liver as well as the caecum, duodenum, gastric ventricle, jejunum, kidney, skin and thymus samples. Conclusions Based on the present work, the current common practice regarding tissue analyses in MHD cases could be refined to include other organs than liver and heart. The evident differences in mean Se concentrations in 9 out of 10 samples from the muscular system, could make such samples relevant for complementary measurements of Se concentrations to help confirm the MHD diagnosis. We find it interesting that although our limited number of sampled pigs are different in terms of genetics, size and feeding regimes, the variation of Se concentrations in a given organ was low between MHD cases. Since this report includes a limited number of MHD cases and controls, our results should be corroborated by a controlled, larger study.
Collapse
|
8
|
Cruz RA, Bassuino DM, Reis MO, Laisse CJ, Pavarin SP, Sonne L, Kessler AM, Driemeier D. Outbreaks of nutritional cardiomyopathy in pigs in Brazil. PESQUISA VETERINÁRIA BRASILEIRA 2019. [DOI: 10.1590/1678-5150-pvb-6248] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
ABSTRACT: Dilated cardiomyopathy (DCM) is a condition that affects the myocardium, seldom reported in pigs. The DCM is characterized by ventricular dilation, which results in systolic and secondary diastolic dysfunction and can lead to arrhythmia and fatal congestive heart failure. This study described the clinical, pathological, chemical and toxicological findings of nutritional dilated cardiomyopathy (DCM) in nursery pigs through natural and experimental studies. Naturally occurring cases of DCM in three swine farms were investigated through necropsy (fourteen pigs), microscopic, virological, chemical and toxicological exams for the detection of the etiology. The experimental study was conducted with nine 40 days-old piglets, which were divided into three groups of three piglets each. Group 1 was fed with the suspected diet of the naturally occurring cases, Group 2 with half of the suspected diet and half of a control diet, and Group 3 received only the control diet. Clinical signs were recorded. All pigs were submitted of euthanized, necropsie and collection sample for laboratories exams, after 15 days of experiment onset. At the necropsy, all naturally occurring cases had bilateral cardiac dilatation associated to hepatic enhanced lobular pattern (nutmeg liver) and lungs edema. Microscopically, the heart revealed severe hypertrophy and vacuolization of cardiomyocytes, as well as myofiber disarray. Feed analysis revealed low-quality standard soybean meal. After the suspected feed was replaced, clinically ill pigs recovered, and mortality ceased. At the experimental study, two piglets from Group 1 had cough, dyspnea and diarrhea. At the necropsy, these animals had similar gross and microscopic lesions to the natural cases. The nutritional DCM in pigs may be associated to the diet with low-quality soybean meal, as it was further confirmed through an experimental study.
Collapse
|
9
|
Falk M, Lebed P, Bernhoft A, Framstad T, Kristoffersen AB, Salbu B, Oropeza-Moe M. Effects of sodium selenite and L-selenomethionine on feed intake, clinically relevant blood parameters and selenium species in plasma, colostrum and milk from high-yielding sows. J Trace Elem Med Biol 2019; 52:176-185. [PMID: 30732879 DOI: 10.1016/j.jtemb.2018.12.009] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Revised: 11/29/2018] [Accepted: 12/14/2018] [Indexed: 12/18/2022]
Abstract
A field study in periparturient sows fed different dietary concentrations of either sodium selenite or L-selenomethionine (SeMet) was conducted to evaluate feed intake, haematological and biochemical parameters as well as to describe some key selenium (Se) species, namely selenoprotein P (SelP), selenoalbumin (SeAlb) and selenomethionine (SeMet) as well as total Se in plasma, colostrum and milk. Thirty-two sows were allotted to four treatments from 30 days (d) prepartum throughout on average a 32 d lactation period. Sodium selenite supplemented diets contained 0.40 and 0.60 mg Se/kg feed, while SeMet supplemented feed contained 0.26 and 0.43 mg Se/kg feed. Concentrations of sodium selenite and SeMet in complete feed exceeded the upper limits for total dietary Se and added organic Se, respectively, according to the European Union legislation. Blood samples were collected at initiation of the study, at farrowing and at weaning. Colostrum samples were collected at farrowing and milk samples at weaning. Se species were subjected to liquid chromatography, and total Se and Se species were determined using inductively coupled plasma mass spectrometry. The SeMet supplemented diets resulted in higher feed intake and in higher levels of total Se, SelP, SeAlb and SeMet in colostrum compared with sows fed sodium selenite. Similar results were obtained for levels of total Se and SeMet in milk at weaning. The higher dietary sodium selenite concentration in sows' feed did not increase the Se transfer into colostrum or milk when compared with those receiving the lower level of sodium selenite. However, the increase in serum-Zn from initiation until farrowing, observed in sows fed SeMet as well as the higher glutamate dehydrogenase activity in sodium selenite supplemented sows in this period might indicate a higher requirement of antioxidant defence in sodium selenite-supplemented sows. To our knowledge, the present data on Se species in plasma, colostrum and milk of sows represent the most complete investigation of Se in sows conducted to date. A higher amount of the above-mentioned Se species in the colostrum of sows supplemented with SeMet might strengthen the piglets' antioxidative system and passive immunity as well as improve their average daily weight gain. The higher feed intake in sows fed diets supplemented with SeMet is an interesting finding that warrants further investigation.
Collapse
Affiliation(s)
- Michaela Falk
- Norwegian Veterinary Institute, Kyrkjevegen 332/334, NO-4325, Sandnes, Norway; Department of Production Animal Clinical Sciences, Faculty of Veterinary Medicine, NMBU, Kyrkjevegen 332/334, NO-4325, Sandnes, Norway.
| | - Pablo Lebed
- Faculty of Environmental Sciences and Nature Resource Management (MINA)/Centre for Environmental Radioactivity (CERAD) CoE, Ås, Norwegian University of Life Sciences (NMBU), P.O. Box 5003, NO-1432, Ås, Norway.
| | - Aksel Bernhoft
- Norwegian Veterinary Institute, P.O. Box 750, Sentrum, NO-0106, Oslo, Norway.
| | - Tore Framstad
- Department of Production Animal Clinical Sciences, Faculty of Veterinary Medicine, Campus Adamstuen, NMBU, P.O. Box 8146 Dep., NO-0033, Oslo, Norway.
| | | | - Brit Salbu
- Faculty of Environmental Sciences and Nature Resource Management (MINA)/Centre for Environmental Radioactivity (CERAD) CoE, Ås, Norwegian University of Life Sciences (NMBU), P.O. Box 5003, NO-1432, Ås, Norway.
| | - Marianne Oropeza-Moe
- Department of Production Animal Clinical Sciences, Faculty of Veterinary Medicine, NMBU, Kyrkjevegen 332/334, NO-4325, Sandnes, Norway.
| |
Collapse
|
10
|
Cai J, Yang J, Liu Q, Gong Y, Zhang Y, Zheng Y, Yu D, Zhang Z. Mir-215-5p induces autophagy by targeting PI3K and activating ROS-mediated MAPK pathways in cardiomyocytes of chicken. J Inorg Biochem 2019; 193:60-69. [PMID: 30684759 DOI: 10.1016/j.jinorgbio.2019.01.010] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2018] [Revised: 01/07/2019] [Accepted: 01/13/2019] [Indexed: 02/01/2023]
Abstract
Our previous study revealed that selenium (Se) deficiency can cause myocardial injury through triggering autophagy. MicroRNAs (miRNAs) play crucial roles in autophagic cell death. However, the relationship between miRNAs and myocardial autophagy injury caused by Se deficiency remains unclear. We selected differential microRNA-215-5p (miR-215-5p) in Se-deficient myocardial tissue using high-throughput miRNA-sequencing. To further explore the role of miR-215-5p in myocardial injury, overexpression/knockdown of miR-215-5p in primary cardiomyocyte model was established by miRNAs interference technology. In this study, we report that miR-215-5p can promote myocardial autophagy by directly binding to the 3'untranslated region (3'UTR) of phosphatidylinositol-4, 5-bisphosphate 3-kinase (PI3K). Its target gene PI3K was confirmed by dual luciferase reporter assay, quantitative real-time polymerase chain reaction (qRT-PCR) and western blot in cardiomyocytes. Our results showed that overexpression of miR-215-5p could trigger myocardial autophagy through PI3K-threonine-protein kinase (AKT)-target of rapamycin (TOR) pathway. Further studies revealed that autophagic cell death was dependent on the activation of extracellular signal-regulated kinase1/2 (ERK1/2), c-Jun N-terminal kinase (JNK), p38 kinase (p38) and generation of reactive oxygen species (ROS) in overexpression of miR-215-5p in cardiomyocytes. On the contrary, miR-215-5p inhibitor can enhance cell survival capacity against autophagy by inhibiting ROS-mitogen-activated protein kinase (MAPK) pathways and activating the PI3K/AKT/TOR pathway in cardiomyocytes. Together, our findings support that miR-215-5p may modulate cell survival programs by regulating autophagy, and miR-215-5p acts as an autophagic regulator in the regulatory feedback loop that regulates cardiomyocyte survival by modulating the PI3K/AKT/TOR pathway and ROS-dependent MAPK pathways.
Collapse
Affiliation(s)
- Jingzeng Cai
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Jie Yang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Qi Liu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Yafan Gong
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Yuan Zhang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Yingying Zheng
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Dahai Yu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Ziwei Zhang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China; Key Laboratory of the Provincial Education, Department of Heilongjiang for Common Animal Disease Prevention and Treatment, PR China.
| |
Collapse
|
11
|
Falk M, Bernhoft A, Framstad T, Salbu B, Wisløff H, Kortner TM, Kristoffersen AB, Oropeza-Moe M. Effects of dietary sodium selenite and organic selenium sources on immune and inflammatory responses and selenium deposition in growing pigs. J Trace Elem Med Biol 2018; 50:527-536. [PMID: 29673733 DOI: 10.1016/j.jtemb.2018.03.003] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Revised: 02/21/2018] [Accepted: 03/05/2018] [Indexed: 01/31/2023]
Abstract
The study was conducted to compare effects of different dietary Se sources (sodium selenite [NaSe], Se-enriched yeast [Se yeast] or L-selenomethionine [SeMet]) and one Se-deficient control diet on the expression of selected genes, hematological and clinical biochemical parameters, and muscle morphology in two parallel trials with finisher pigs. Se concentrations in blood plasma and tissues were also monitored. From the pigs in one of the parallel groups, muscle samples obtained from Musculus longissimus dorsi (LD) before and during the trial were examined. The pigs in the other parallel group were challenged once with lipopolysaccharide (LPS) intravenously. Transcriptional analyses of LD showed that selenogenes SelenoW and H were higher expressed in pigs fed Se-supplemented diets compared with control. Furthermore, the expression of interferon gamma and cyclooxygenase 2 was lower in the Se-supplemented pigs versus control. In whole blood samples prior to LPS, SelenoN, SelenoS and thioredoxin reductase 1 were higher expressed in pigs fed NaSe supplemented feed compared with the other groups, possibly indicating a higher level of oxidative stress. After LPS exposure glutathione peroxidase 1 and SelenoN were more reduced in pigs fed NaSe compared with pigs fed organic Se. Products of most above-mentioned genes are intertwined with the oxidant-antioxidant system. No significant effects of Se-source were found on hematologic parameters or microscopic anatomy. The Se-concentrations in various skeletal muscles and heart muscle were significantly different between the groups, with highest concentrations in pigs fed SeMet, followed by those fed Se yeast, NaSe, and control diet. Consistent with previous reports our results indicate that dietary Se at adequate levels can support the body's antioxidant system. Our results indicate that muscle fibers of pigs fed organic Se are less vulnerable to oxidative stress compared with the other groups.
Collapse
Affiliation(s)
- Michaela Falk
- Department of Production Animal Clinical Sciences, Faculty of Veterinary Medicine, Norwegian University of Life Sciences (NMBU), Kyrkjevegen 332/334, 4325, Sandnes, Norway.
| | - Aksel Bernhoft
- Norwegian Veterinary Institute, P.O. Box 750, Sentrum, NO-0106, Oslo, Norway.
| | - Tore Framstad
- Faculty of Veterinary Medicine, Department of Production Animal Clinical Sciences, Campus Adamstuen, NMBU, P.O. Box 8146 Dep, NO-0033, Oslo, Norway.
| | - Brit Salbu
- Department of Environmental Sciences/CERAD CoE, Campus Ås, NMBU, P.O. Box 5003, NO-1432 Ås, Norway.
| | - Helene Wisløff
- Norwegian Veterinary Institute, P.O. Box 750, Sentrum, NO-0106, Oslo, Norway.
| | - Trond M Kortner
- Department of Basic Science and Aquatic Medicine, NMBU, P.O. Box 8146 Dep, NO-0033, Oslo, Norway.
| | | | - Marianne Oropeza-Moe
- Department of Production Animal Clinical Sciences, Faculty of Veterinary Medicine, Norwegian University of Life Sciences (NMBU), Kyrkjevegen 332/334, 4325, Sandnes, Norway.
| |
Collapse
|
12
|
Peat TJ, Miller MA. Pathology in Practice. J Am Vet Med Assoc 2018; 253:719-721. [PMID: 30179087 DOI: 10.2460/javma.253.6.719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
13
|
Oropeza-Moe M, Wisløff H, Bernhoft A. Selenium deficiency associated porcine and human cardiomyopathies. J Trace Elem Med Biol 2015; 31:148-56. [PMID: 25456335 DOI: 10.1016/j.jtemb.2014.09.011] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2014] [Revised: 08/13/2014] [Accepted: 09/04/2014] [Indexed: 02/07/2023]
Abstract
Selenium (Se) is a trace element playing an important role in animal and human physiological homeostasis. It is a key component in selenoproteins (SeP) exerting multiple actions on endocrine, immune, inflammatory and reproductive processes. The SeP family of glutathione peroxidases (GSH-Px) inactivates peroxides and thereby maintains physiological muscle function in humans and animals. Animals with high feed conversion efficiency and substantial muscle mass have shown susceptibility to Se deficiency related diseases since nutritional requirements of the organism may not be covered. Mulberry Heart Disease (MHD) in pigs is an important manifestation of Se deficiency often implicating acute heart failure and sudden death without prior clinical signs. Post-mortem findings include hemorrhagic and pale myocardial areas accompanied by fluid accumulation in the pericardial sac and pleural cavity. Challenges in MHD are emerging in various parts of the world. Se is of fundamental importance also to human health. In the 1930s the Se deficiency associated cardiomyopathy named Keshan Disease (KD) was described for the first time in China. Various manifestations, such as cardiogenic shock, enlarged heart, congestive heart failure, and cardiac arrhythmias are common. Multifocal necrosis and fibrous replacement of myocardium are characteristic findings. Pathological findings in MD and KD show striking similarities.
Collapse
Affiliation(s)
- Marianne Oropeza-Moe
- Norwegian University of Life Sciences, Faculty of Veterinary Medicine and Biosciences, Department of Production Animal Clinical Sciences, Kyrkjevegen 332-334, 4325 Sandnes, Norway.
| | - Helene Wisløff
- Norwegian Veterinary Institute, Department of Laboratory Services, Postbox 750 Sentrum, NO-0106 Oslo, Norway
| | - Aksel Bernhoft
- Norwegian Veterinary Institute, Department of Health Surveillance, Postbox 750 Sentrum, NO-0106 Oslo, Norway
| |
Collapse
|
14
|
Shen HG, Halbur PG, Opriessnig T. Prevalence and phylogenetic analysis of the current porcine circovirus 2 genotypes after implementation of widespread vaccination programmes in the USA. J Gen Virol 2012; 93:1345-1355. [DOI: 10.1099/vir.0.039552-0] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
To determine the prevalence of porcine circovirus 2 (PCV2) genotypes in the USA during 2010–2011, 5 years after widespread PCV2 vaccination, serum samples from clinically normal pigs that were PCV2 vaccinated (n = 1177), non-vaccinated (n = 378) or of unknown vaccination status (n = 120), and 100 lung samples from pigs diagnosed with PCV-associated disease (PCVAD) were tested. The presence of PCV2, PCV1, PCV1-2a and porcine parvovirus (PPV) DNA was determined by PCR. Determination of the PCV2 genotype was done by differential PCR and sequencing. The prevalence of PCV2a and PCV2b in serum samples was 7.7 % (129/1675) and 8.4 % (141/1675), respectively. PCV2a DNA was only detected in non-vaccinated pigs. For the 100 PCVAD pigs, the prevalence of PCV2a and PCV2b in lung tissues was 13.0 and 65.0 %, respectively. Partial PCV2 ORF2 sequences (9–563 nt) were obtained from 85 PCV2 DNA-positive samples (24 normal pigs and 61 PCVAD cases). Phylogenetic analysis revealed that 12.9 % (11/85) of the sequences belonged to the 2E clade and the PCV2a genotype and 87.1 % (74/85) belonged to the 1B clade and the PCV2b genotype. The alignment of putative PCV2 capsid amino acid sequences revealed possible recombination or mutation between PCV2a and PCV2b genotypes. Chimeric PCV1-2a was not detected in any of the samples and the prevalence rates of PCV1 and PPV were low. Our results suggest PCV2b is more prevalent than PCV2a in PCVAD cases and in vaccinated herds PCV2b circulation is common. The data generated in this study provide novel information on the distribution of PCV2 genotypes in vaccinated pig populations.
Collapse
Affiliation(s)
- Hui-Gang Shen
- Department of Veterinary Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Iowa State University, Ames, Iowa, USA
| | - Patrick G. Halbur
- Department of Veterinary Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Iowa State University, Ames, Iowa, USA
| | - Tanja Opriessnig
- Department of Veterinary Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Iowa State University, Ames, Iowa, USA
| |
Collapse
|