1
|
Zwicklbauer K, Bergmann M, Alberer M, von Both U, Hartmann K. [Feline infectious peritonitis - a current overview]. TIERARZTLICHE PRAXIS. AUSGABE K, KLEINTIERE/HEIMTIERE 2025; 53:96-102. [PMID: 40233794 DOI: 10.1055/a-2524-3760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/17/2025]
Abstract
Coronaviruses (CoVs) are positive, single-stranded RNA viruses that can infect various animal species as well as humans. Particularly relevant for cats is the feline coronavirus (FCoV), which is widespread in cat populations worldwide. Infection with FCoV is usually asymptomatic. However, in multi-cat households, approximately 5-12% of FCoV-infected cats develop feline infectious peritonitis (FIP) due to mutations in the spike gene. FIP is an immune-mediated disease that previously was always fatal. These mutations result in a tropism shift from enterocytes to monocytes and macrophages. The associated change in the virulence of FCoV leads to the characteristic granulomatous vasculitis and perivasculitis observed in FIP. Recently, significant advancements have been made in understanding FIP. Studies show that antiviral drugs used in human medicine, such as the nucleoside analog GS-441524, are effective against FIP and can provide affected cats with a survival chance of up to 100%. Additionally, a novel FCoV variant, FCoV-23, has been identified in cats from Cyprus. According to newest research, this virus arose through a recombination between FCoV and the highly virulent pantropic canine coronavirus; it can be directly transmitted from cat to cat and lead to FIP. Furthermore, increasing evidence suggests that FIP is frequently associated with myocarditis. This article provides an overview of the current knowledge on FIP, including its pathology, clinical signs, effective treatment options, and preventive measures.
Collapse
Affiliation(s)
| | | | - Martin Alberer
- Abteilung für Pädiatrische Infektionskrankheiten, Dr. von Haunersches Kinderspital, LMU München
| | - Ulrich von Both
- Abteilung für Pädiatrische Infektionskrankheiten, Dr. von Haunersches Kinderspital, LMU München
- Deutsches Zentrum für Infektionsforschung (DZIF), Partnerstandort München
| | | |
Collapse
|
2
|
Solikhah TI, Agustin QAD, Damaratri RA, Siwi DAF, Rafi’uttaqi GN, Hartadi VA, Solikhah GP. A review of feline infectious peritonitis virus infection. Vet World 2024; 17:2417-2432. [PMID: 39829669 PMCID: PMC11736369 DOI: 10.14202/vetworld.2024.2417-2432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Accepted: 09/20/2024] [Indexed: 01/22/2025] Open
Abstract
Feline infectious peritonitis (FIP) is an infectious disease characterized by non-specific laboratory changes and clinical signs. Clinical symptoms include anorexia, jaundice, fever, and weight loss. Moreover, some lesions are found in the digestive and respiratory systems. FIP, whose virulence varies, cannot be distinguished using several diagnostic methods. Moreover, feline coronaviruses (FCoVs) can be classified into two serotypes based on differences in their amino acid sequences, spike (S) protein sequences, and antibody (Ab) neutralization. There are two pathotypes, namely those caused by FCoV, which are often referred to as feline enteric coronavirus and FIP virus (FIPV). Furthermore, FIPV infection can be caused by sub-neutralizing levels of anti-FIPV S Abs. Therefore, a supporting diagnosis is needed to confirm FIP because there are no specific symptoms. This review aimed to provide updated information on FIP, including epizootiology, clinical and pathological characteristics, pathogenesis, hematology, clinicopathological and imaging features, pathological features, experimental infection, treatment and prevention, infection and immunity, animal and public health considerations.
Collapse
Affiliation(s)
- Tridiganita Intan Solikhah
- Division of Veterinary Clinic, Department of Health and Life Sciences, Faculty of Health, Medicine, and Life Sciences, Universitas Airlangga, Banyuwangi, Indonesia
| | - Qurrotul Aini Dwi Agustin
- Division of Veterinary Clinic, Department of Health and Life Sciences, Faculty of Health, Medicine, and Life Sciences, Universitas Airlangga, Banyuwangi, Indonesia
| | - Ratmasari Alifina Damaratri
- Division of Veterinary Clinic, Department of Health and Life Sciences, Faculty of Health, Medicine, and Life Sciences, Universitas Airlangga, Banyuwangi, Indonesia
| | - Della Ayuke Fika Siwi
- Division of Veterinary Clinic, Department of Health and Life Sciences, Faculty of Health, Medicine, and Life Sciences, Universitas Airlangga, Banyuwangi, Indonesia
| | - Ghulam Naufal Rafi’uttaqi
- Division of Veterinary Clinic, Department of Health and Life Sciences, Faculty of Health, Medicine, and Life Sciences, Universitas Airlangga, Banyuwangi, Indonesia
| | - Vincent Angelino Hartadi
- Division of Veterinary Clinic, Department of Health and Life Sciences, Faculty of Health, Medicine, and Life Sciences, Universitas Airlangga, Banyuwangi, Indonesia
| | | |
Collapse
|
3
|
Helfer-Hungerbuehler AK, Spiri AM, Meili T, Riond B, Krentz D, Zwicklbauer K, Buchta K, Zuzzi-Krebitz AM, Hartmann K, Hofmann-Lehmann R, Meli ML. Alpha-1-Acid Glycoprotein Quantification via Spatial Proximity Analyte Reagent Capture Luminescence Assay: Application as Diagnostic and Prognostic Marker in Serum and Effusions of Cats with Feline Infectious Peritonitis Undergoing GS-441524 Therapy. Viruses 2024; 16:791. [PMID: 38793672 PMCID: PMC11125897 DOI: 10.3390/v16050791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 05/08/2024] [Accepted: 05/09/2024] [Indexed: 05/26/2024] Open
Abstract
Until recently, the diagnosis of feline infectious peritonitis (FIP) in cats usually led to euthanasia, but recent research has revealed that antiviral drugs, including the nucleoside analog GS-441524, have the potential to effectively cure FIP. Alpha-1-acid glycoprotein (AGP) has been suggested as a diagnostic marker for FIP. However, AGP quantification methods are not easily accessible. This study aimed to establish a Spatial Proximity Analyte Reagent Capture Luminescence (SPARCLTM) assay on the VetBio-1 analyzer to determine the AGP concentrations in feline serum and effusion samples. Linearity was found in serial dilutions between 1:2000 and 1:32,000; the intra-run and inter-run precision was <5% and <15%, respectively; and AGP was stable in serum stored for at least 8 days at room temperature, at 4 °C and at -20 °C. Cats with confirmed FIP had significantly higher serum AGP concentrations (median: 2954 µg/mL (range: 200-5861 µg/mL)) than those with other inflammatory diseases (median: 1734 µg/mL (305-3449 µg/mL)) and clinically healthy cats (median 235 µg/mL (range: 78-616 µg/mL); pKW < 0.0001). The AGP concentrations were significantly higher in the effusions from cats with FIP than in those from diseased cats without FIP (pMWU < 0.0001). The AGP concentrations in the serum of cats with FIP undergoing GS-441524 treatment showed a significant drop within the first seven days of treatment and reached normal levels after ~14 days. In conclusion, the VetBio-1 SPARCLTM assay offers a precise, fast and cost-effective method to measure the AGP concentrations in serum and effusion samples of feline patients. The monitoring of the AGP concentration throughout FIP treatment provides a valuable marker to evaluate the treatment's effectiveness and identify potential relapses at an early stage.
Collapse
Affiliation(s)
- A. Katrin Helfer-Hungerbuehler
- Clinical Laboratory, Department of Clinical Diagnostics and Services, Center for Clinical Studies, Vetsuisse Faculty, University of Zurich, CH-8057 Zurich, Switzerland; (A.M.S.); (T.M.); (B.R.); (R.H.-L.); (M.L.M.)
| | - Andrea M. Spiri
- Clinical Laboratory, Department of Clinical Diagnostics and Services, Center for Clinical Studies, Vetsuisse Faculty, University of Zurich, CH-8057 Zurich, Switzerland; (A.M.S.); (T.M.); (B.R.); (R.H.-L.); (M.L.M.)
| | - Theres Meili
- Clinical Laboratory, Department of Clinical Diagnostics and Services, Center for Clinical Studies, Vetsuisse Faculty, University of Zurich, CH-8057 Zurich, Switzerland; (A.M.S.); (T.M.); (B.R.); (R.H.-L.); (M.L.M.)
| | - Barbara Riond
- Clinical Laboratory, Department of Clinical Diagnostics and Services, Center for Clinical Studies, Vetsuisse Faculty, University of Zurich, CH-8057 Zurich, Switzerland; (A.M.S.); (T.M.); (B.R.); (R.H.-L.); (M.L.M.)
| | - Daniela Krentz
- LMU Small Animal Clinic, Centre for Clinical Veterinary Medicine, LMU Munich, D-80539 Munich, Germany; (D.K.); (K.Z.); (K.B.); (A.-M.Z.-K.); (K.H.)
| | - Katharina Zwicklbauer
- LMU Small Animal Clinic, Centre for Clinical Veterinary Medicine, LMU Munich, D-80539 Munich, Germany; (D.K.); (K.Z.); (K.B.); (A.-M.Z.-K.); (K.H.)
| | - Katharina Buchta
- LMU Small Animal Clinic, Centre for Clinical Veterinary Medicine, LMU Munich, D-80539 Munich, Germany; (D.K.); (K.Z.); (K.B.); (A.-M.Z.-K.); (K.H.)
| | - Anna-Maria Zuzzi-Krebitz
- LMU Small Animal Clinic, Centre for Clinical Veterinary Medicine, LMU Munich, D-80539 Munich, Germany; (D.K.); (K.Z.); (K.B.); (A.-M.Z.-K.); (K.H.)
| | - Katrin Hartmann
- LMU Small Animal Clinic, Centre for Clinical Veterinary Medicine, LMU Munich, D-80539 Munich, Germany; (D.K.); (K.Z.); (K.B.); (A.-M.Z.-K.); (K.H.)
| | - Regina Hofmann-Lehmann
- Clinical Laboratory, Department of Clinical Diagnostics and Services, Center for Clinical Studies, Vetsuisse Faculty, University of Zurich, CH-8057 Zurich, Switzerland; (A.M.S.); (T.M.); (B.R.); (R.H.-L.); (M.L.M.)
| | - Marina L. Meli
- Clinical Laboratory, Department of Clinical Diagnostics and Services, Center for Clinical Studies, Vetsuisse Faculty, University of Zurich, CH-8057 Zurich, Switzerland; (A.M.S.); (T.M.); (B.R.); (R.H.-L.); (M.L.M.)
| |
Collapse
|
4
|
Moyadee W, Sunpongsri S, Choowongkomon K, Roytrakul S, Rattanasrisomporn A, Tansakul N, Rattanasrisomporn J. Feline infectious peritonitis: A comprehensive evaluation of clinical manifestations, laboratory diagnosis, and therapeutic approaches. J Adv Vet Anim Res 2024; 11:19-26. [PMID: 38680809 PMCID: PMC11055576 DOI: 10.5455/javar.2024.k742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 12/27/2023] [Accepted: 01/03/2024] [Indexed: 05/01/2024] Open
Abstract
Objective This study aimed to investigate the clinical and laboratory characteristics of naturally occurring feline infectious peritonitis (FIP) and estimate the median survival time of FIP cats treated with prednisolone to guide further therapeutic planning. Materials and Methods In this retrospective study, data from a total of 116 cats with effusion were fully recorded. Forty-five FIP-diagnosed cats were enrolled for analysis. Results The study findings indicate that FIP was a disease affecting cats aged 1-2 years and was highly prevalent among male cats. Clinical manifestations of FIP affected the digestive (60%), hematological (53.3%), respiratory (33.3%), neurological (6.7%), and ocular (4.4%) systems. Blood profiles revealed mild anemia, lymphopenia, thrombocytopenia, hypoalbuminemia, hyperglobulinemia, and an albumin to globulin ratio of 0.4. Fluid analysis and cytology of FIP cats demonstrated a transparent yellow fluid with a protein content of 6 gm/dl and a total nucleated cell count of approximately 5,000-10,000 cells. During the observation period, FIP cats treated with prednisolone exhibited a median survival time of 31 days. Conclusion Confirming FIP cases can be challenging; therefore, a tentative diagnosis of FIP must be made with care. This study provided practical diagnostic tools to diagnose FIP based on clinical signs and multiple abnormalities, which allowed for more efficient and rapid detection.
Collapse
Affiliation(s)
- Wassamon Moyadee
- Graduate Program in Animal Health and Biomedical Sciences, Faculty of Veterinary Medicine, Kasetsart University, Bangkok, Thailand
- Department of Companion Animal Clinical Sciences, Faculty of Veterinary Medicine, Kasetsart University, Bangkok, Thailand
| | - Supita Sunpongsri
- Department of Companion Animal Clinical Sciences, Faculty of Veterinary Medicine, Kasetsart University, Bangkok, Thailand
- Kasetsart University Veterinary Teaching Hospital, Faculty of Veterinary Medicine, Kasetsart University, Bangkok, Thailand
| | | | - Sittiruk Roytrakul
- Functional Proteomics Technology Laboratory, Functional Ingredients and Food Innovation Research Group, National Center for Genetic Engineering and Biotechnology, National Science and Technology for Development Agency, Pathum Thani, Thailand
| | - Amonpun Rattanasrisomporn
- Interdisciplinary of Genetic Engineering and Bioinformatics, Graduate School, Kasetsart University, Bangkok, Thailand
| | - Natthasit Tansakul
- Department of Pharmacology, Faculty of Veterinary Medicine, Kasetsart University, Bangkok, Thailand
| | - Jatuporn Rattanasrisomporn
- Graduate Program in Animal Health and Biomedical Sciences, Faculty of Veterinary Medicine, Kasetsart University, Bangkok, Thailand
- Department of Companion Animal Clinical Sciences, Faculty of Veterinary Medicine, Kasetsart University, Bangkok, Thailand
| |
Collapse
|
5
|
Krentz D, Bergmann M, Felten S, Hartmann K. [Options for treatment of feline infectious peritonitis - previously and today]. TIERARZTLICHE PRAXIS. AUSGABE K, KLEINTIERE/HEIMTIERE 2023; 51:351-360.. [PMID: 37956666 DOI: 10.1055/a-2147-3999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
Feline infectious peritonitis (FIP) is one of the most common infectious diseases in cats that is fatal when untreated. So far, there is no legally available effective treatment in Germany. Treatment options include only symptomatic treatment (e. g. glucocorticoids, propentofylline), immunomodulatory approaches (e. g. interferons, polyprenyl immunostimulant), and antiviral chemotherapy with protease inhibitors (e. g. GC376) or nucleoside analogues (e. g. GS-441524, remdesivir). Symptomatic treatment does not cure FIP but may lead to a short-term improvement of clinical signs in a subset of cats. Immunomodulatory treatment has also not shown to be very promising. In contrary, the antiviral compounds GS-441524 and GC376 exhibited significant efficacy in several studies and their use saved the lives of many cats suffering from FIP. However, both agents are currently not licensed and thus cannot be legally administered by veterinarians in Germany. Legally, cats may only be legally treated with GS-441524 in a few countries (e.g. Great Britain and Australia). In other countries, GS-441524 is imported by cat owners via the black market and administered on their own. This article provides an overview of the available treatment options and an outlook on the legal use of effective antiviral drugs.
Collapse
Affiliation(s)
- Daniela Krentz
- Medizinische Kleintierklinik der Ludwig-Maximilians-Universität München
| | - Michèle Bergmann
- Medizinische Kleintierklinik der Ludwig-Maximilians-Universität München
| | - Sandra Felten
- Medizinische Kleintierklinik der Ludwig-Maximilians-Universität München
| | - Katrin Hartmann
- Medizinische Kleintierklinik der Ludwig-Maximilians-Universität München
| |
Collapse
|
6
|
Ratti G, Stranieri A, Scavone D, Cafiso A, Meazzi S, Luzzago C, Dall'Ara P, Tagliasacchi F, Cavicchioli L, Ferrari F, Giordano A, Paltrinieri S, Lauzi S. Detection and genetic characterization of domestic cat hepadnavirus in cats with cavitary effusions. Vet Microbiol 2023; 284:109828. [PMID: 37406408 DOI: 10.1016/j.vetmic.2023.109828] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 06/26/2023] [Accepted: 06/28/2023] [Indexed: 07/07/2023]
Abstract
After the identification of the novel domestic cat hepadnavirus (DCH) in 2018, its potential pathogenetic role in feline hepatic diseases has been suggested. Following the detection of DCH in a cat's serum and peritoneal effusion, the aim of this study was to retrospectively investigate the presence of DCH in cats with and without cavitary effusions along with DCH presence in effusions. Stored serum and effusion samples from cats with and without effusions admitted to the Veterinary Teaching Hospital of Lodi (Italy) in 2020-2022 were included based on results of hematobiochemical parameters. Effusions were classified based on cytological and physicochemical findings. The likelihood of liver damage was estimated based on clinical and laboratory findings. Samples were tested for DCH presence by quantitative PCR (qPCR). Positive samples were subjected to whole genome sequencing and phylogenetic analysis. DCH was detected in both serum and peritoneal effusion samples of 2/72 (2.8%) enrolled cats, included in the group with effusions (2/33; 6.1%), with one cat showing inflammatory and the other non-inflammatory effusion. Both DCH-positive cats belonged to the group with a likelihood of liver damage (2/22, 9.1%). Phylogeny showed that the DCH sequences from this study clustered with the prototypic Australian strain but were not included in the clade with other Italian DCH sequences. Results suggest the circulation of different DCH variants in Italy and show the presence of DCH in effusion samples from DCH-positive cats, mirroring the presence of HBV in body fluids from HBV-infected humans. Further studies are still recommended to define the pathogenic role of DCH in cats.
Collapse
Affiliation(s)
- Gabriele Ratti
- Department of Veterinary Medicine and Animal Sciences, University of Milan, Via dell'Università 6, 26900 Lodi, Italy
| | - Angelica Stranieri
- Department of Veterinary Medicine and Animal Sciences, University of Milan, Via dell'Università 6, 26900 Lodi, Italy
| | - Donatella Scavone
- Department of Veterinary Medicine and Animal Sciences, University of Milan, Via dell'Università 6, 26900 Lodi, Italy
| | - Alessandra Cafiso
- Department of Veterinary Medicine and Animal Sciences, University of Milan, Via dell'Università 6, 26900 Lodi, Italy
| | - Sara Meazzi
- Department of Veterinary Medicine and Animal Sciences, University of Milan, Via dell'Università 6, 26900 Lodi, Italy
| | - Camilla Luzzago
- Department of Veterinary Medicine and Animal Sciences, University of Milan, Via dell'Università 6, 26900 Lodi, Italy.
| | - Paola Dall'Ara
- Department of Veterinary Medicine and Animal Sciences, University of Milan, Via dell'Università 6, 26900 Lodi, Italy
| | - Filippo Tagliasacchi
- Department of Veterinary Medicine and Animal Sciences, University of Milan, Via dell'Università 6, 26900 Lodi, Italy
| | - Laura Cavicchioli
- Department of Comparative Biomedicine and Food Science, University of Padua, Agripolis, Viale dell'Università 16, 35020 Legnaro, PD, Italy
| | - Francesco Ferrari
- Department of Veterinary Medicine and Animal Sciences, University of Milan, Via dell'Università 6, 26900 Lodi, Italy
| | - Alessia Giordano
- Department of Veterinary Medicine and Animal Sciences, University of Milan, Via dell'Università 6, 26900 Lodi, Italy
| | - Saverio Paltrinieri
- Department of Veterinary Medicine and Animal Sciences, University of Milan, Via dell'Università 6, 26900 Lodi, Italy
| | - Stefania Lauzi
- Department of Veterinary Medicine and Animal Sciences, University of Milan, Via dell'Università 6, 26900 Lodi, Italy
| |
Collapse
|
7
|
Salih A, Giannikaki S, Escanilla N, Ioannides-Hoey CSFK, Best M. Etiologies of nontraumatic feline uveitis in the UK: A retrospective observational study of 72 cats. Open Vet J 2023; 13:1195-1204. [PMID: 37842107 PMCID: PMC10576583 DOI: 10.5455/ovj.2023.v13.i9.15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 08/30/2023] [Indexed: 10/17/2023] Open
Abstract
Background Uveitis is a common ophthalmic diagnosis in cats, that can lead to discomfort and loss of vision. Identification of nonidiopathic cases facilitates treatment and could reduce morbidity associated with this condition. Aim To evaluate etiologies of nontraumatic uveitis in the UK, to compare diagnostic features between idiopathic cases and those with an established underlying etiology, and to investigate the association of clinical signs and abnormal diagnostic findings with a confirmed etiology. Methods Records of cats diagnosed with uveitis at a UK referral center between August 2009 and April 2018 were retrospectively reviewed, excluding traumatic (and reflex) cases. Cases were categorized based on whether an underlying etiology had been established in cases with confirmed etiology, idiopathic, and inconclusive cases. All cases had a minimum of 12-month follow-up unless an underlying etiology had been established. Population characteristics, clinical signs, diagnostic investigation features, and results were reported. Results 72 cases of uveitis were included, of which male cats and domestic breeds were overrepresented. An underlying etiology was determined in 23.6% of cases: 9.7% had infectious diseases, 5.6% had systemic neoplasia, 4.2% had primary ocular neoplasia, and 4.2% had metabolic disease. Idiopathic uveitis comprised 37.5% of cases, and the remaining 38.9% were inconclusive, of which 35.7% died or were euthanased within the follow-up period. Among the study population, no significant age difference was found between cats with idiopathic disease or confirmed etiology. The unilateral disease was reported in 56.9% of cases and was not different across the idiopathic cases and confirmed etiology groups. The most common ophthalmic clinical sign was an aqueous flare, followed by keratic precipitates and hypotony. Iris color change (p = 0.015) and the presence of an intraocular mass (p = 0.025) were associated with an underlying etiology. Conclusion Idiopathic uveitis was found to be the most common diagnosis in this study population. However, a similar proportion of cases had possible underlying etiologies as a high proportion manifested systemic disease within the follow-up time. An underlying etiology could be established only in a quarter of cases. Further studies are required to standardize the investigations required when assessing cats with uveitis to minimize patient morbidity.
Collapse
|
8
|
Tasker S, Addie DD, Egberink H, Hofmann-Lehmann R, Hosie MJ, Truyen U, Belák S, Boucraut-Baralon C, Frymus T, Lloret A, Marsilio F, Pennisi MG, Thiry E, Möstl K, Hartmann K. Feline Infectious Peritonitis: European Advisory Board on Cat Diseases Guidelines. Viruses 2023; 15:1847. [PMID: 37766254 PMCID: PMC10535984 DOI: 10.3390/v15091847] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 08/19/2023] [Accepted: 08/23/2023] [Indexed: 09/29/2023] Open
Abstract
Feline coronavirus (FCoV) is a ubiquitous RNA virus of cats, which is transmitted faeco-orally. In these guidelines, the European Advisory Board on Cat Diseases (ABCD) presents a comprehensive review of feline infectious peritonitis (FIP). FCoV is primarily an enteric virus and most infections do not cause clinical signs, or result in only enteritis, but a small proportion of FCoV-infected cats develop FIP. The pathology in FIP comprises a perivascular phlebitis that can affect any organ. Cats under two years old are most frequently affected by FIP. Most cats present with fever, anorexia, and weight loss; many have effusions, and some have ocular and/or neurological signs. Making a diagnosis is complex and ABCD FIP Diagnostic Approach Tools are available to aid veterinarians. Sampling an effusion, when present, for cytology, biochemistry, and FCoV RNA or FCoV antigen detection is very useful diagnostically. In the absence of an effusion, fine-needle aspirates from affected organs for cytology and FCoV RNA or FCoV antigen detection are helpful. Definitive diagnosis usually requires histopathology with FCoV antigen detection. Antiviral treatments now enable recovery in many cases from this previously fatal disease; nucleoside analogues (e.g., oral GS-441524) are very effective, although they are not available in all countries.
Collapse
Affiliation(s)
- Séverine Tasker
- Bristol Veterinary School, University of Bristol, Bristol BS40 5DU, UK
- Linnaeus Veterinary Limited, Shirley, Solihull B90 4BN, UK
| | - Diane D. Addie
- Independent Researcher, 64000 Pyrénées Aquitaine, France;
| | - Herman Egberink
- Department of Biomolecular Health Sciences, Faculty of Veterinary Medicine, University of Utrecht, 3584 CL Utrecht, The Netherlands;
| | - Regina Hofmann-Lehmann
- Clinical Laboratory, Department of Clinical Diagnostics and Services, Vetsuisse Faculty, University of Zurich, 8057 Zurich, Switzerland;
| | - Margaret J. Hosie
- MRC-University of Glasgow Centre for Virus Research, Garscube Estate, Glasgow G61 1QH, UK;
| | - Uwe Truyen
- Institute of Animal Hygiene and Veterinary Public Health, University of Leipzig, 04103 Leipzig, Germany;
| | - Sándor Belák
- Department of Biomedical Sciences and Veterinary Public Health (BVF), Swedish University of Agricultural Sciences (SLU), P.O. Box 7036, 750 07 Uppsala, Sweden;
| | | | - Tadeusz Frymus
- Department of Small Animal Diseases with Clinic, Institute of Veterinary Medicine, Warsaw University of Life Sciences-SGGW, 02-787 Warsaw, Poland;
| | - Albert Lloret
- Fundació Hospital Clínic Veterinari, Universitat Autònoma de Barcelona, Bellaterra, 08193 Barcelona, Spain;
| | - Fulvio Marsilio
- Faculty of Veterinary Medicine, Università Degli Studi di Teramo, 64100 Teramo, Italy;
| | - Maria Grazia Pennisi
- Dipartimento di Scienze Veterinarie, Università di Messina, 98168 Messina, Italy;
| | - Etienne Thiry
- Veterinary Virology and Animal Viral Diseases, Department of Infectious and Parasitic Diseases, FARAH Research Centre, Faculty of Veterinary Medicine, Liège University, B-4000 Liège, Belgium;
| | - Karin Möstl
- Institute of Virology, Department for Pathobiology, University of Veterinary Medicine, 1210 Vienna, Austria;
| | - Katrin Hartmann
- LMU Small Animal Clinic, Centre for Clinical Veterinary Medicine, LMU Munich, 80539 Munich, Germany;
| |
Collapse
|
9
|
Zwicklbauer K, Krentz D, Bergmann M, Felten S, Dorsch R, Fischer A, Hofmann-Lehmann R, Meli ML, Spiri AM, Alberer M, Kolberg L, Matiasek K, Zablotski Y, von Both U, Hartmann K. Long-term follow-up of cats in complete remission after treatment of feline infectious peritonitis with oral GS-441524. J Feline Med Surg 2023; 25:1098612X231183250. [PMID: 37548535 PMCID: PMC10811998 DOI: 10.1177/1098612x231183250] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/08/2023]
Abstract
OBJECTIVES Feline infectious peritonitis (FIP), a common disease in cats caused by feline coronavirus (FCoV), is usually fatal once clinical signs appear. Successful treatment of FIP with oral GS-441524 for 84 days was demonstrated recently by this research group. The aim of this study was to evaluate the long-term outcome in these cats. METHODS A total of 18 successfully treated cats were followed for up to 1 year after treatment initiation (9 months after completion of the antiviral treatment). Follow-up examinations were performed at 12-week intervals, including physical examination, haematology, serum biochemistry, abdominal and thoracic ultrasound, FCoV ribonucleic acid (RNA) loads in blood and faeces by reverse transciptase-quantitative PCR and anti-FCoV antibody titres by indirect immunofluorescence assay. RESULTS Follow-up data were available from 18 cats in week 24, from 15 cats in week 36 and from 14 cats in week 48 (after the start of treatment), respectively. Laboratory parameters remained stable after the end of the treatment, with undetectable blood viral loads (in all but one cat on one occasion). Recurrence of faecal FCoV shedding was detected in five cats. In four cats, an intermediate short-term rise in anti-FCoV antibody titres was detected. In total, 12 cats showed abdominal lymphadenomegaly during the follow-up period; four of them continuously during the treatment and follow-up period. Two cats developed mild neurological signs, compatible with feline hyperaesthesia syndrome, in weeks 36 and 48, respectively; however, FCoV RNA remained undetectable in blood and faeces, and no increase in anti-FCoV antibody titres was observed in these two cats, and the signs resolved. CONCLUSIONS AND RELEVANCE Treatment with GS-441524 proved to be effective against FIP in both the short term as well as the long term, with no confirmed relapse during the 1-year follow-up period. Whether delayed neurological signs could be a long-term adverse effect of the treatment or associated with a 'long FIP syndrome' needs to be further evaluated.
Collapse
Affiliation(s)
- Katharina Zwicklbauer
- Clinic of Small Animal Medicine, Centre for Clinical Veterinary Medicine, LMU Munich, Munich, Germany
| | - Daniela Krentz
- Clinic of Small Animal Medicine, Centre for Clinical Veterinary Medicine, LMU Munich, Munich, Germany
| | - Michèle Bergmann
- Clinic of Small Animal Medicine, Centre for Clinical Veterinary Medicine, LMU Munich, Munich, Germany
| | - Sandra Felten
- Clinic of Small Animal Medicine, Centre for Clinical Veterinary Medicine, LMU Munich, Munich, Germany
| | - Roswitha Dorsch
- Clinic of Small Animal Medicine, Centre for Clinical Veterinary Medicine, LMU Munich, Munich, Germany
| | - Andrea Fischer
- Clinic of Small Animal Medicine, Centre for Clinical Veterinary Medicine, LMU Munich, Munich, Germany
| | - Regina Hofmann-Lehmann
- Clinical Laboratory, Department of Clinical Diagnostics and Services, Center for Clinical Studies, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
| | - Marina L Meli
- Clinical Laboratory, Department of Clinical Diagnostics and Services, Center for Clinical Studies, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
| | - Andrea M Spiri
- Clinical Laboratory, Department of Clinical Diagnostics and Services, Center for Clinical Studies, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
| | - Martin Alberer
- Division of Paediatric Infectious Diseases, Dr. von Hauner Children’s Hospital, University Hospital, LMU Munich, Munich, Germany
| | - Laura Kolberg
- Division of Paediatric Infectious Diseases, Dr. von Hauner Children’s Hospital, University Hospital, LMU Munich, Munich, Germany
| | - Kaspar Matiasek
- Section of Clinical and Comparative Neuropathology, Institute of Veterinary Pathology, Centre for Clinical Veterinary Medicine, LMU Munich, Munich, Germany
| | - Yury Zablotski
- Clinic of Small Animal Medicine, Centre for Clinical Veterinary Medicine, LMU Munich, Munich, Germany
| | - Ulrich von Both
- Division of Paediatric Infectious Diseases, Dr. von Hauner Children’s Hospital, University Hospital, LMU Munich, Munich, Germany
- German Center for Infection Research (DZIF), partner site Munich, Munich, Germany
| | - Katrin Hartmann
- Clinic of Small Animal Medicine, Centre for Clinical Veterinary Medicine, LMU Munich, Munich, Germany
| |
Collapse
|
10
|
Meli ML, Spiri AM, Zwicklbauer K, Krentz D, Felten S, Bergmann M, Dorsch R, Matiasek K, Alberer M, Kolberg L, von Both U, Hartmann K, Hofmann-Lehmann R. Fecal Feline Coronavirus RNA Shedding and Spike Gene Mutations in Cats with Feline Infectious Peritonitis Treated with GS-441524. Viruses 2022; 14:1069. [PMID: 35632813 PMCID: PMC9147249 DOI: 10.3390/v14051069] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 05/08/2022] [Accepted: 05/13/2022] [Indexed: 02/04/2023] Open
Abstract
As previously demonstrated by our research group, the oral multicomponent drug Xraphconn® containing GS-441524 was effective at curing otherwise fatal feline infectious peritonitis (FIP) in 18 feline coronavirus (FCoV)-infected cats. The aims of the current study were to investigate, using samples from the same animals as in the previous study, (1) the effect of treatment on fecal viral RNA shedding; (2) the presence of spike gene mutations in different body compartments of these cats; and (3) viral RNA shedding, presence of spike gene mutations, and anti-FCoV antibody titers in samples of 12 companion cats cohabitating with the treated cats. Eleven of the eighteen treated FIP cats (61%) were shedding FCoV RNA in feces within the first three days after treatment initiation, but all of them tested negative by day 6. In one of these cats, fecal shedding reoccurred on day 83. Two cats initially negative in feces were transiently positive 1-4 weeks into the study. The remaining five cats never shed FCoV. Viral RNA loads in feces decreased with time comparable with those in blood and effusion. Specific spike gene mutations linked to systemic FCoV spread were consistently found in blood and effusion from treated FIP cats, but not in feces from treated or companion cats. A new mutation that led to a not yet described amino acid change was identified, indicating that further mutations may be involved in the development of FIP. Eight of the twelve companion cats shed FCoV in feces. All but one of the twelve companion cats had anti-FCoV antibodies. Oral treatment with GS-441524 effectively decreased viral RNA loads in feces, blood, and effusion in cats with FIP. Nonetheless, re-shedding can most likely occur if cats are re-exposed to FCoV by their companion cats.
Collapse
Affiliation(s)
- Marina L. Meli
- Clinical Laboratory, Department of Clinical Diagnostics and Services, Center for Clinical Studies, Vetsuisse Faculty, University of Zurich, CH-8057 Zurich, Switzerland; (A.M.S.); (R.H.-L.)
| | - Andrea M. Spiri
- Clinical Laboratory, Department of Clinical Diagnostics and Services, Center for Clinical Studies, Vetsuisse Faculty, University of Zurich, CH-8057 Zurich, Switzerland; (A.M.S.); (R.H.-L.)
| | - Katharina Zwicklbauer
- Clinic of Small Animal Medicine, Centre for Clinical Veterinary Medicine, LMU Munich, D-80539 Munich, Germany; (K.Z.); (D.K.); (S.F.); (M.B.); (R.D.); (K.H.)
| | - Daniela Krentz
- Clinic of Small Animal Medicine, Centre for Clinical Veterinary Medicine, LMU Munich, D-80539 Munich, Germany; (K.Z.); (D.K.); (S.F.); (M.B.); (R.D.); (K.H.)
| | - Sandra Felten
- Clinic of Small Animal Medicine, Centre for Clinical Veterinary Medicine, LMU Munich, D-80539 Munich, Germany; (K.Z.); (D.K.); (S.F.); (M.B.); (R.D.); (K.H.)
| | - Michèle Bergmann
- Clinic of Small Animal Medicine, Centre for Clinical Veterinary Medicine, LMU Munich, D-80539 Munich, Germany; (K.Z.); (D.K.); (S.F.); (M.B.); (R.D.); (K.H.)
| | - Roswitha Dorsch
- Clinic of Small Animal Medicine, Centre for Clinical Veterinary Medicine, LMU Munich, D-80539 Munich, Germany; (K.Z.); (D.K.); (S.F.); (M.B.); (R.D.); (K.H.)
| | - Kaspar Matiasek
- Section of Clinical & Comparative Neuropathology, Institute of Veterinary Pathology, Centre for Clinical Veterinary Medicine, LMU Munich, D-80539 Munich, Germany;
| | - Martin Alberer
- Division of Paediatric Infectious Diseases, Dr. von Hauner Children’s Hospital, University Hospital, LMU-Munich, D-80337 Munich, Germany; (M.A.); (L.K.); (U.v.B.)
| | - Laura Kolberg
- Division of Paediatric Infectious Diseases, Dr. von Hauner Children’s Hospital, University Hospital, LMU-Munich, D-80337 Munich, Germany; (M.A.); (L.K.); (U.v.B.)
| | - Ulrich von Both
- Division of Paediatric Infectious Diseases, Dr. von Hauner Children’s Hospital, University Hospital, LMU-Munich, D-80337 Munich, Germany; (M.A.); (L.K.); (U.v.B.)
- German Center for Infection Research (DZIF), Partner Site Munich, D-80337 Munich, Germany
| | - Katrin Hartmann
- Clinic of Small Animal Medicine, Centre for Clinical Veterinary Medicine, LMU Munich, D-80539 Munich, Germany; (K.Z.); (D.K.); (S.F.); (M.B.); (R.D.); (K.H.)
| | - Regina Hofmann-Lehmann
- Clinical Laboratory, Department of Clinical Diagnostics and Services, Center for Clinical Studies, Vetsuisse Faculty, University of Zurich, CH-8057 Zurich, Switzerland; (A.M.S.); (R.H.-L.)
| |
Collapse
|
11
|
Hobi S, Beatty JA, Sandy JR, Barrs VR. Successful management of feline pemphigus foliaceus with pentoxifylline and topical hydrocortisone aceponate. Vet Med Sci 2022; 8:937-944. [PMID: 35212177 PMCID: PMC9122467 DOI: 10.1002/vms3.768] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
The treatment regimen for feline pemphigus foliaceus (PF), an autoimmune disease caused by auto-antibodies against proteins of the desmosome junction, usually includes high doses of oral or parenteral immunosuppressive drugs, typically glucocorticoids. This case adds to a growing body of evidence that topical hydrocortisone aceponate is effective for the treatment of feline PF, and demonstrates the practical use of a non-invasive diagnostic method for histopathology when owners refuse a biopsy to support a clinical diagnosis of PF. Finally, this case highlights an international trend of owner-initiated treatment of feline infectious peritonitis (FIP) using unlicensed, unregistered drugs.
Collapse
Affiliation(s)
- Stefan Hobi
- Department of Veterinary Clinical Sciences, Jockey Club College of Veterinary Medicine and Life Sciences, City University, Kowloon, Hong Kong, China
| | - Julia A Beatty
- Department of Veterinary Clinical Sciences, Jockey Club College of Veterinary Medicine and Life Sciences, City University, Kowloon, Hong Kong, China
| | - Jeanine R Sandy
- Department of Veterinary Clinical Sciences, Jockey Club College of Veterinary Medicine and Life Sciences, City University, Kowloon, Hong Kong, China
| | - Vanessa R Barrs
- Department of Veterinary Clinical Sciences, Jockey Club College of Veterinary Medicine and Life Sciences, City University, Kowloon, Hong Kong, China
| |
Collapse
|
12
|
Therapeutic Effects of Mutian ® Xraphconn on 141 Client-Owned Cats with Feline Infectious Peritonitis Predicted by Total Bilirubin Levels. Vet Sci 2021; 8:vetsci8120328. [PMID: 34941855 PMCID: PMC8705141 DOI: 10.3390/vetsci8120328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 12/07/2021] [Accepted: 12/10/2021] [Indexed: 11/21/2022] Open
Abstract
Feline infectious peritonitis (FIP) is a fatal disease caused by feline coronavirus or its variant, referred to as the FIP virus. Recently, favorable treatment outcomes of the anti-viral drug Mutian® Xraphconn (Mutian X) were noted in cats with FIP. Thus, the therapeutic efficacy of Mutian X in cats with FIP must be explored, although the predictors of therapeutic success remain unknown. In the present study, we administered Mutian X to 141 pet cats with effusive FIP following initial veterinarian examinations. Of these, 116 cats survived but the remaining 25 died during treatment. Pre-treatment signalment, viral gene expression, and representative laboratory parameters for routine FIP diagnosis (i.e., hematocrit, albumin-to-globulin ratio, total bilirubin, serum amyloid-A, and α1-acid glycoprotein) were statistically compared between the survivor and non-survivor groups. The majority of these parameters, including hematocrit, albumin-to-globulin ratio, serum amyloid-A, α1-acid glycoprotein, and viral gene expression, were comparable between the two groups. Interestingly, however, total bilirubin levels in the survivor group were significantly lower than those in the non-survivor group (p < 0.0001). Furthermore, in almost all surviving cats with effusive FIP (96.6%, 28/29), the pre-treatment total bilirubin levels were below 0.5 mg/dL; however, the survival rate decreased drastically (14.3%, 1/7) when the pre-treatment total bilirubin levels exceeded 4.0 mg/dL. Thus, circulating total bilirubin levels may act as a prognostic risk factor for severe FIP and may serve as the predictor of the therapeutic efficacy of Mutian X against this fatal disease.
Collapse
|
13
|
Krentz D, Zenger K, Alberer M, Felten S, Bergmann M, Dorsch R, Matiasek K, Kolberg L, Hofmann-Lehmann R, Meli ML, Spiri AM, Horak J, Weber S, Holicki CM, Groschup MH, Zablotski Y, Lescrinier E, Koletzko B, von Both U, Hartmann K. Curing Cats with Feline Infectious Peritonitis with an Oral Multi-Component Drug Containing GS-441524. Viruses 2021; 13:v13112228. [PMID: 34835034 PMCID: PMC8621566 DOI: 10.3390/v13112228] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 10/28/2021] [Accepted: 11/01/2021] [Indexed: 12/26/2022] Open
Abstract
Feline infectious peritonitis (FIP) caused by feline coronavirus (FCoV) is a common dis-ease in cats, fatal if untreated, and no effective treatment is currently legally available. The aim of this study was to evaluate efficacy and toxicity of the multi-component drug Xraphconn® in vitro and as oral treatment in cats with spontaneous FIP by examining survival rate, development of clinical and laboratory parameters, viral loads, anti-FCoV antibodies, and adverse effects. Mass spectrometry and nuclear magnetic resonance identified GS-441524 as an active component of Xraphconn®. Eighteen cats with FIP were prospectively followed up while being treated orally for 84 days. Values of key parameters on each examination day were compared to values before treatment initiation using linear mixed-effect models. Xraphconn® displayed high virucidal activity in cell culture. All cats recovered with dramatic improvement of clinical and laboratory parameters and massive reduction in viral loads within the first few days of treatment without serious adverse effects. Oral treatment with Xraphconn® containing GS-441524 was highly effective for FIP without causing serious adverse effects. This drug is an excellent option for the oral treatment of FIP and should be trialed as potential effective treatment option for other severe coronavirus-associated diseases across species.
Collapse
Affiliation(s)
- Daniela Krentz
- Clinic of Small Animal Medicine, Centre for Clinical Veterinary Medicine, LMU Munich, 80539 Munich, Germany; (K.Z.); (S.F.); (M.B.); (R.D.); (Y.Z.); (K.H.)
- Correspondence:
| | - Katharina Zenger
- Clinic of Small Animal Medicine, Centre for Clinical Veterinary Medicine, LMU Munich, 80539 Munich, Germany; (K.Z.); (S.F.); (M.B.); (R.D.); (Y.Z.); (K.H.)
| | - Martin Alberer
- Division of Paediatric Infectious Diseases, Dr. von Hauner Children’s Hospital, University Hospital, LMU Munich, 80337 Munich, Germany; (M.A.); (L.K.); (U.v.B.)
| | - Sandra Felten
- Clinic of Small Animal Medicine, Centre for Clinical Veterinary Medicine, LMU Munich, 80539 Munich, Germany; (K.Z.); (S.F.); (M.B.); (R.D.); (Y.Z.); (K.H.)
| | - Michèle Bergmann
- Clinic of Small Animal Medicine, Centre for Clinical Veterinary Medicine, LMU Munich, 80539 Munich, Germany; (K.Z.); (S.F.); (M.B.); (R.D.); (Y.Z.); (K.H.)
| | - Roswitha Dorsch
- Clinic of Small Animal Medicine, Centre for Clinical Veterinary Medicine, LMU Munich, 80539 Munich, Germany; (K.Z.); (S.F.); (M.B.); (R.D.); (Y.Z.); (K.H.)
| | - Kaspar Matiasek
- Section of Clinical and Comparative Neuropathology, Institute of Veterinary Pathology, Centre for Clinical Veterinary Medicine, LMU Munich, 80539 Munich, Germany;
| | - Laura Kolberg
- Division of Paediatric Infectious Diseases, Dr. von Hauner Children’s Hospital, University Hospital, LMU Munich, 80337 Munich, Germany; (M.A.); (L.K.); (U.v.B.)
| | - Regina Hofmann-Lehmann
- Clinical Laboratory, Department of Clinical Diagnostics and Services, and Center for Clinical Studies, Vetsuisse Faculty, University of Zurich, CH-8057 Zurich, Switzerland; (R.H.-L.); (M.L.M.); (A.M.S.)
| | - Marina L. Meli
- Clinical Laboratory, Department of Clinical Diagnostics and Services, and Center for Clinical Studies, Vetsuisse Faculty, University of Zurich, CH-8057 Zurich, Switzerland; (R.H.-L.); (M.L.M.); (A.M.S.)
| | - Andrea M. Spiri
- Clinical Laboratory, Department of Clinical Diagnostics and Services, and Center for Clinical Studies, Vetsuisse Faculty, University of Zurich, CH-8057 Zurich, Switzerland; (R.H.-L.); (M.L.M.); (A.M.S.)
| | - Jeannie Horak
- Department Paediatrics, Division Metabolic and Nutritional Medicine, Dr. von Hauner Children’s Hospital, University Hospital, LMU Munich, 80337 Munich, Germany; (J.H.); (B.K.)
| | - Saskia Weber
- Institute of Novel and Emerging Infectious Diseases, Friedrich-Loeffler-Institut, Greifswald-Insel Riems, 17493 Greifswald, Germany; (S.W.); (C.M.H.); (M.H.G.)
| | - Cora M. Holicki
- Institute of Novel and Emerging Infectious Diseases, Friedrich-Loeffler-Institut, Greifswald-Insel Riems, 17493 Greifswald, Germany; (S.W.); (C.M.H.); (M.H.G.)
| | - Martin H. Groschup
- Institute of Novel and Emerging Infectious Diseases, Friedrich-Loeffler-Institut, Greifswald-Insel Riems, 17493 Greifswald, Germany; (S.W.); (C.M.H.); (M.H.G.)
- German Center for Infection Research (DZIF), Partner Site Hamburg-Luebeck-Borstel-Riems, Greifswald-Insel Riems, 17493 Greifswald, Germany
| | - Yury Zablotski
- Clinic of Small Animal Medicine, Centre for Clinical Veterinary Medicine, LMU Munich, 80539 Munich, Germany; (K.Z.); (S.F.); (M.B.); (R.D.); (Y.Z.); (K.H.)
| | - Eveline Lescrinier
- Medicinal Chemistry, KU Leuven, Rega Institute for Medical Research, 3000 Leuven, Belgium;
| | - Berthold Koletzko
- Department Paediatrics, Division Metabolic and Nutritional Medicine, Dr. von Hauner Children’s Hospital, University Hospital, LMU Munich, 80337 Munich, Germany; (J.H.); (B.K.)
| | - Ulrich von Both
- Division of Paediatric Infectious Diseases, Dr. von Hauner Children’s Hospital, University Hospital, LMU Munich, 80337 Munich, Germany; (M.A.); (L.K.); (U.v.B.)
- German Center for Infection Research (DZIF), Partner Site Munich, 80337 Munich, Germany
| | - Katrin Hartmann
- Clinic of Small Animal Medicine, Centre for Clinical Veterinary Medicine, LMU Munich, 80539 Munich, Germany; (K.Z.); (S.F.); (M.B.); (R.D.); (Y.Z.); (K.H.)
| |
Collapse
|
14
|
A systematic review of the quality of life assessment tools for cats in the published literature. Vet J 2021; 272:105658. [PMID: 33941335 DOI: 10.1016/j.tvjl.2021.105658] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Revised: 03/12/2021] [Accepted: 03/17/2021] [Indexed: 11/22/2022]
Abstract
Quality of life (QoL) is an important parameter to assess in cats, as it can be pivotal to important decision-making. Research reports that owners of cats with heart disease would trade longevity for QoL, and treatment associated improvement in QoL is very important for cats with chronic kidney disease. This systematic review aimed to explore the published literature to identify the number and range of QoL assessment tools available to researchers and veterinary professionals, by discovering tools which have already been used in published studies. Medline and CAB Abstracts were searched in March 2018, using terms relevant to cats and QoL or well-being. Inclusion and exclusion criteria were applied and information on uniqueness, validation and a short description of each tool extracted. A total of 1138 manuscripts were identified, of which 96 met all criteria. Forty of 96 manuscripts contained an assessment of QoL, using one of 32 unique tools identified. Sixteen of the tools identified were structured, making detailed patient assessments. Only eight of the structured tools were validated, and of these, three could be applied to healthy cats; the remainder being specific to a disease or being hospitalised. Some validated tools appeared in more than one manuscript. Overall, 12 manuscripts used a validated tool. In the 16 unstructured tools, five tools assessed QoL by assigning a single word (e.g. 'poor'). Eight tools assessed QoL on a single Likert scale (e.g. a number between 1 and 5). This work identifies the tools that are currently available for the assessment of QoL by researchers and veterinary professionals. Additionally, it demonstrates that many are not validated or lack detailed animal assessment, highlighting that further work in this important area is needed.
Collapse
|
15
|
In Vitro Effects of Doxycycline on Replication of Feline Coronavirus. Pathogens 2021; 10:pathogens10030312. [PMID: 33799985 PMCID: PMC8001410 DOI: 10.3390/pathogens10030312] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2020] [Revised: 03/01/2021] [Accepted: 03/02/2021] [Indexed: 12/14/2022] Open
Abstract
Feline infectious peritonitis (FIP) is a sporadic fatal disease of cats caused by a virulent variant of feline coronavirus (FCoV), referred to as FIP virus (FIPV). Treatment options are limited, and most of the affected cats die or are euthanized. Anecdotally, doxycycline has been used to treat FIP-affected cats, but there are currently no data to support or discourage such treatment. The aim of this study was to establish whether doxycycline inhibits replication of FIPV in vitro. The virus was cultured in Crandell-Rees feline kidney cells with various concentrations of doxycycline (0 to 50 µg/mL). The level of FIPV in cultures was determined by virus titration and FCoV-specific reverse-transcription quantitative PCR. Cell viability was also monitored. There was no difference in the level of infectious virus or viral RNA between doxycycline-treated and untreated cultures at 3, 12- and 18-hours post-infection. However, at 24 h, the growth of FIPV was inhibited by approximately two logs in cultures with >10 µg/mL doxycycline. This inhibition was dose-dependent, with inhibitory concentration 50% (IC50) 4.1 µg/mL and IC90 5.4 µg/mL. Our data suggest that doxycycline has some inhibitory effect on FIPV replication in vitro, which supports future clinical trials of its use for the treatment of FIP-affected cats.
Collapse
|
16
|
Izes AM, Yu J, Norris JM, Govendir M. Current status on treatment options for feline infectious peritonitis and SARS-CoV-2 positive cats. Vet Q 2020; 40:322-330. [PMID: 33138721 PMCID: PMC7671703 DOI: 10.1080/01652176.2020.1845917] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Feline infectious peritonitis (FIP) is a viral-induced, immune-mediated disease of cats caused by virulent biotypes of feline coronaviruses (FCoV), known as the feline infectious peritonitis virus (FIPV). Historically, three major pharmacological approaches have been employed to treat FIP: (1) immunomodulators to stimulate the patient’s immune system non-specifically to reduce the clinical effects of the virus through a robust immune response, (2) immunosuppressive agents to dampen clinical signs temporarily, and (3) re-purposed human antiviral drugs, all of which have been unsuccessful to date in providing reliable efficacious treatment options for FIPV. Recently, antiviral studies investigating the broad-spectrum coronavirus protease inhibitor, GC376, and the adenosine nucleoside analogue GS-441524, have resulted in increased survival rates and clinical cure in many patients. However, prescriber access to these antiviral therapies is currently problematic as they have not yet obtained registration for veterinary use. Consequently, FIP remains challenging to treat. The purpose of this review is to provide an update on the current status of therapeutics for FIP. Additionally, due to interest in coronaviruses resulting from the current human pandemic, this review provides information on domesticated cats identified as SARS-CoV-2 positive.
Collapse
Affiliation(s)
- Aaron M Izes
- Sydney School of Veterinary Science, The University of Sydney, Sydney, NSW, Australia
| | - Jane Yu
- Sydney School of Veterinary Science, The University of Sydney, Sydney, NSW, Australia
| | - Jacqueline M Norris
- Sydney School of Veterinary Science, The University of Sydney, Sydney, NSW, Australia
| | - Merran Govendir
- Sydney School of Veterinary Science, The University of Sydney, Sydney, NSW, Australia
| |
Collapse
|
17
|
Rapid Resolution of Non-Effusive Feline Infectious Peritonitis Uveitis with an Oral Adenosine Nucleoside Analogue and Feline Interferon Omega. Viruses 2020; 12:v12111216. [PMID: 33121021 PMCID: PMC7693373 DOI: 10.3390/v12111216] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Revised: 10/03/2020] [Accepted: 10/05/2020] [Indexed: 02/02/2023] Open
Abstract
This is the first report of a successful treatment of a non-effusive feline infectious peritonitis (FIP) uveitis case using an oral adenosine nucleoside analogue drug and feline interferon omega, and alpha-1 acid glycoprotein (AGP) as an indicator of recovery. A 2-year-old male neutered Norwegian Forest Cat presented with uveitis, keratic precipitates, mesenteric lymphadenopathy and weight loss. The cat was hypergammaglobulinaemic and had a non-regenerative anaemia. Feline coronavirus (FCoV) RNA was detected in a mesenteric lymph node fine-needle aspirate by a reverse-transcriptase polymerase chain reaction—non-effusive FIP was diagnosed. Prednisolone acetate eye drops were administered three times daily for 2 weeks. Oral adenosine nucleoside analogue (Mutian) treatment started. Within 50 days of Mutian treatment, the cat had gained over one kilogram in weight, his globulin level reduced from 77 to 51 g/L and his haematocrit increased from 22 to 35%; his uveitis resolved and his sight improved. Serum AGP level reduced from 3100 to 400 μg/mL (within normal limits). Symmetric dimethylarginine (SDMA) was above normal at 28 μg/dL, reducing to 14 μg/dL on the cessation of treatment; whether the SDMA increase was due to FIP lesions in the kidney or Mutian is unknown. Mutian treatment stopped and low-dose oral recombinant feline interferon omega begun—the cat’s recovery continued.
Collapse
|
18
|
Dickinson PJ. Coronavirus Infection of the Central Nervous System: Animal Models in the Time of COVID-19. Front Vet Sci 2020; 7:584673. [PMID: 33195610 PMCID: PMC7644464 DOI: 10.3389/fvets.2020.584673] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Accepted: 09/21/2020] [Indexed: 12/15/2022] Open
Abstract
Naturally occurring coronaviral infections have been studied for several decades in the context of companion and production animals, and central nervous system involvement is a common finding, particularly in cats with feline infectious peritonitis (FIP). These companion and production animal coronaviruses have many similarities to recent human pandemic-associated coronaviruses such as SARS-CoV, MERS-CoV, and SARS-CoV2 (COVID-19). Neurological involvement is being increasingly recognized as an important clinical presentation in human COVID-19 patients, often associated with para-infectious processes, and potentially with direct infection within the CNS. Recent breakthroughs in the treatment of coronaviral infections in cats, including neurological FIP, have utilized antiviral drugs similar to those currently in human COVID-19 clinical trials. Differences in specific coronavirus and host factors are reflected in major variations in incidence and mechanisms of CNS coronaviral infection and pathology between species; however, broad lessons relating to treatment of coronavirus infection present within the CNS may be informative across species.
Collapse
Affiliation(s)
- Peter J. Dickinson
- Department of Surgical and Radiological Sciences, School of Veterinary Medicine, University of California, Davis, Davis, CA, United States
| |
Collapse
|
19
|
|
20
|
Chen S, Tian J, Li Z, Kang H, Zhang J, Huang J, Yin H, Hu X, Qu L. Feline Infectious Peritonitis Virus Nsp5 Inhibits Type I Interferon Production by Cleaving NEMO at Multiple Sites. Viruses 2019; 12:v12010043. [PMID: 31905881 PMCID: PMC7019732 DOI: 10.3390/v12010043] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 12/24/2019] [Accepted: 12/26/2019] [Indexed: 12/20/2022] Open
Abstract
Feline infectious peritonitis (FIP), caused by virulent feline coronavirus, is the leading infectious cause of death in cats. The type I interferon (type I IFN)-mediated immune responses provide host protection from infectious diseases. Several coronaviruses have been reported to evolve diverse strategies to evade host IFN response. However, whether feline infectious peritonitis virus (FIPV) antagonizes the type I IFN signaling remains unclear. In this study, we demonstrated that FIPV strain DF2 infection not only failed to induce interferon-β (IFN-β) and interferon-stimulated gene (ISG) production, but also inhibited Sendai virus (SEV) or polyinosinic-polycytidylic acid (poly(I:C))-induced IFN-β production. Subsequently, we found that one of the non-structural proteins encoded by the FIPV genome, nsp5, interrupted type I IFN signaling in a protease-dependent manner by cleaving the nuclear factor κB (NF-κB) essential modulator (NEMO) at three sites—glutamine132 (Q132), Q205, and Q231. Further investigation revealed that the cleavage products of NEMO lost the ability to activate the IFN-β promoter. Mechanistically, the nsp5-mediated NEMO cleavage disrupted the recruitment of the TRAF family member-associated NF-κB activator (TANK) to NEMO, which reduced the phosphorylation of interferon regulatory factor 3 (IRF3), leading to the inhibition of type I IFN production. Our research provides new insights into the mechanism for FIPV to counteract host innate immune response.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Xiaoliang Hu
- Correspondence: (X.H.); (L.Q.); Tel.: +86-451-5105-1785 (X.H.); +86-451-5105-1788 (L.Q.)
| | - Liandong Qu
- Correspondence: (X.H.); (L.Q.); Tel.: +86-451-5105-1785 (X.H.); +86-451-5105-1788 (L.Q.)
| |
Collapse
|
21
|
Establishment of a Virulent Full-Length cDNA Clone for Type I Feline Coronavirus Strain C3663. J Virol 2019; 93:JVI.01208-19. [PMID: 31375588 PMCID: PMC6803248 DOI: 10.1128/jvi.01208-19] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Accepted: 07/26/2019] [Indexed: 02/07/2023] Open
Abstract
Feline infectious peritonitis (FIP) is one of the most important infectious diseases in cats and is caused by feline coronavirus (FCoV). Tissue culture-adapted type I FCoV shows reduced FIP induction in experimental infections, which complicates the understanding of FIP pathogenesis caused by type I FCoV. We previously found that the type I FCoV strain C3663 efficiently induces FIP in specific-pathogen-free cats through the naturally infectious route. In this study, we employed a bacterial artificial chromosome-based reverse genetics system to gain more insights into FIP caused by the C3633 strain. We successfully generated recombinant virus (rC3663) from Fcwf-4 cells transfected with infectious cDNA that showed growth kinetics similar to those shown by the parental virus. Next, we constructed a reporter C3663 virus carrying the nanoluciferase (Nluc) gene to measure viral replication with high sensitivity. The inhibitory effects of different compounds against rC3663-Nluc could be measured within 24 h postinfection. Furthermore, we found that A72 cells derived from canine fibroblasts permitted FCoV replication without apparent cytopathic effects. Thus, our reporter virus is useful for uncovering the infectivity of type I FCoV in different cell lines, including canine-derived cells. Surprisingly, we uncovered aberrant viral RNA transcription of rC3663 in A72 cells. Overall, we succeeded in obtaining infectious cDNA clones derived from type I FCoV that retained its virulence. Our recombinant FCoVs are powerful tools for increasing our understanding of the viral life cycle and pathogenesis of FIP-inducing type I FCoV.IMPORTANCE Feline coronavirus (FCoV) is one of the most significant coronaviruses, because this virus induces feline infectious peritonitis (FIP), which is a lethal disease in cats. Tissue culture-adapted type I FCoV often loses pathogenicity, which complicates research on type I FCoV-induced feline infectious peritonitis (FIP). Since we previously found that type I FCoV strain C3663 efficiently induces FIP in specific-pathogen-free cats, we established a reverse genetics system for the C3663 strain to obtain recombinant viruses in the present study. By using a reporter C3663 virus, we were able to examine the inhibitory effect of 68 compounds on C3663 replication in Fcwf-4 cells and infectivity in a canine-derived cell line. Interestingly, one canine cell line, A72, permitted FCoV replication but with low efficiency and aberrant viral gene expression.
Collapse
|
22
|
Felten S, Hartmann K, Doerfelt S, Sangl L, Hirschberger J, Matiasek K. Immunocytochemistry of mesenteric lymph node fine-needle aspirates in the diagnosis of feline infectious peritonitis. J Vet Diagn Invest 2019; 31:210-216. [PMID: 30694113 DOI: 10.1177/1040638718825280] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Immunohistochemistry (IHC) of tissue samples is considered the gold standard for diagnosing feline infectious peritonitis (FIP), and, in cats without body cavity effusion, IHC is the only method available to establish definitive antemortem diagnosis. However, IHC requires invasive tissue sample collection. We evaluated sensitivity and specificity of an immunocytochemical assay of fine-needle aspirates (FNAs) of mesenteric lymph nodes that can be obtained noninvasively by ultrasound-guided aspiration to diagnose FIP. FNAs of mesenteric lymph nodes were obtained postmortem from 41 cats suspected of having FIP based on clinical and/or laboratory findings. FIP was confirmed immunohistochemically in 30 cats. In the other 11 cats, a disease other than FIP, which explained the clinical signs, was diagnosed histopathologically. Immunocytochemistry (ICC) was performed as an avidin-biotin complex method using a monoclonal anti-FCoV IgG 2A. Sensitivity, specificity, negative and positive predictive values (NPV, PPV, respectively) including 95% confidence intervals (95% CIs) were determined. ICC was positive in 17 of 30 cats with FIP, but also in 1 of 11 control cats that was diagnosed with lymphoma. Sensitivity of ICC was 53% (95% CI: 34-72); specificity 91% (95% CI: 59-100); NPV 42% (95% CI: 22-63); and PPV 94% (95% CI: 71-100). In a lethal disease such as FIP, specificity is most important in order to avoid euthanasia of unaffected cats. Given that a false-positive result occurred and FIP was correctly detected in only approximately half of the cases of FIP, ICC of mesenteric lymph node FNA alone cannot reliably confirm or exclude FIP, but can be a helpful test in conjunction with other diagnostic measures.
Collapse
Affiliation(s)
- Sandra Felten
- Clinic of Small Animal Medicine (Felten, Hartmann, Doerfelt, Sangl, Hirschberger), Centre for Clinical Veterinary Medicine, Ludwig-Maximilians-Universitaet Munich, Germany.,Section of Clinical and Comparative Neuropathology, Institute of Veterinary Pathology (Matiasek), Centre for Clinical Veterinary Medicine, Ludwig-Maximilians-Universitaet Munich, Germany
| | - Katrin Hartmann
- Clinic of Small Animal Medicine (Felten, Hartmann, Doerfelt, Sangl, Hirschberger), Centre for Clinical Veterinary Medicine, Ludwig-Maximilians-Universitaet Munich, Germany.,Section of Clinical and Comparative Neuropathology, Institute of Veterinary Pathology (Matiasek), Centre for Clinical Veterinary Medicine, Ludwig-Maximilians-Universitaet Munich, Germany
| | - Stefanie Doerfelt
- Clinic of Small Animal Medicine (Felten, Hartmann, Doerfelt, Sangl, Hirschberger), Centre for Clinical Veterinary Medicine, Ludwig-Maximilians-Universitaet Munich, Germany.,Section of Clinical and Comparative Neuropathology, Institute of Veterinary Pathology (Matiasek), Centre for Clinical Veterinary Medicine, Ludwig-Maximilians-Universitaet Munich, Germany
| | - Laura Sangl
- Clinic of Small Animal Medicine (Felten, Hartmann, Doerfelt, Sangl, Hirschberger), Centre for Clinical Veterinary Medicine, Ludwig-Maximilians-Universitaet Munich, Germany.,Section of Clinical and Comparative Neuropathology, Institute of Veterinary Pathology (Matiasek), Centre for Clinical Veterinary Medicine, Ludwig-Maximilians-Universitaet Munich, Germany
| | - Johannes Hirschberger
- Clinic of Small Animal Medicine (Felten, Hartmann, Doerfelt, Sangl, Hirschberger), Centre for Clinical Veterinary Medicine, Ludwig-Maximilians-Universitaet Munich, Germany.,Section of Clinical and Comparative Neuropathology, Institute of Veterinary Pathology (Matiasek), Centre for Clinical Veterinary Medicine, Ludwig-Maximilians-Universitaet Munich, Germany
| | - Kaspar Matiasek
- Clinic of Small Animal Medicine (Felten, Hartmann, Doerfelt, Sangl, Hirschberger), Centre for Clinical Veterinary Medicine, Ludwig-Maximilians-Universitaet Munich, Germany.,Section of Clinical and Comparative Neuropathology, Institute of Veterinary Pathology (Matiasek), Centre for Clinical Veterinary Medicine, Ludwig-Maximilians-Universitaet Munich, Germany
| |
Collapse
|
23
|
Noli C. Assessing Quality of Life for Pets with Dermatologic Disease and Their Owners. Vet Clin North Am Small Anim Pract 2019; 49:83-93. [DOI: 10.1016/j.cvsm.2018.08.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
24
|
Murphy BG, Perron M, Murakami E, Bauer K, Park Y, Eckstrand C, Liepnieks M, Pedersen NC. The nucleoside analog GS-441524 strongly inhibits feline infectious peritonitis (FIP) virus in tissue culture and experimental cat infection studies. Vet Microbiol 2018; 219:226-233. [PMID: 29778200 PMCID: PMC7117434 DOI: 10.1016/j.vetmic.2018.04.026] [Citation(s) in RCA: 121] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Revised: 04/12/2018] [Accepted: 04/14/2018] [Indexed: 12/12/2022]
Abstract
GS-441524 inhibited replication of serotype II FIP virus (FIPV) in CRFK cell cultures at an EC50 of approximately 1 uM and no toxicity at 100 uM. GS-441524 inhibited wildtype FIPV replication in macrophage cultures from ascitic fluid of two cats with naturally occurring FIP. GS-441525 is triphosphorylated by CRFK cells in vitro and PBMC in vivo. Pharmacokinetic studies in laboratory cats demonstrated effective blood levels over 24 h after a single dose of 5 mg/kg SC or IV. Severe experimental effusive FIP was successfully treated with 2 or 5 mg/kg GS-441524 SC q24 h for two weeks.
Feline infectious peritonitis (FIP) is a common and highly lethal coronavirus disease of domestic cats. Recent studies of diseases caused by several RNA viruses in people and other species indicate that antiviral therapy may be effective against FIP in cats. The small molecule nucleoside analog GS-441524 is a molecular precursor to a pharmacologically active nucleoside triphosphate molecule. These analogs act as an alternative substrate and RNA-chain terminator of viral RNA dependent RNA polymerase. We determined that GS-441524 was non-toxic in feline cells at concentrations as high as 100 uM and effectively inhibited FIPV replication in cultured CRFK cells and in naturally infected feline peritoneal macrophages at concentrations as low as 1 uM. We determined the pharmacokinetics of GS-441524 in cats in vivo and established a dosage that would sustain effective blood levels for 24 h. In an experimental FIPV infection of cats, GS-441524 treatment caused a rapid reversal of disease signs and return to normality with as little as two weeks of treatment in 10/10 cats and with no apparent toxicity.
Collapse
Affiliation(s)
- B G Murphy
- Department of Pathology, Microbiology, and Immunology, School of Veterinary Medicine, University of California, Davis, CA, USA
| | - M Perron
- Gilead Sciences, Foster City, CA, USA
| | | | - K Bauer
- Department of Pathology, Microbiology, and Immunology, School of Veterinary Medicine, University of California, Davis, CA, USA
| | - Y Park
- Gilead Sciences, Foster City, CA, USA
| | - C Eckstrand
- Department of Pathology, Microbiology, and Immunology, School of Veterinary Medicine, University of California, Davis, CA, USA
| | - M Liepnieks
- Department of Pathology, Microbiology, and Immunology, School of Veterinary Medicine, University of California, Davis, CA, USA
| | - N C Pedersen
- Center for Companion Animal Health, School of Veterinary Medicine, University of California, One Shields Ave., Davis, CA, USA.
| |
Collapse
|
25
|
Doenges SJ, Weber K, Dorsch R, Fux R, Hartmann K. Comparison of real-time reverse transcriptase polymerase chain reaction of peripheral blood mononuclear cells, serum and cell-free body cavity effusion for the diagnosis of feline infectious peritonitis. J Feline Med Surg 2017; 19:344-350. [PMID: 26787293 PMCID: PMC11119647 DOI: 10.1177/1098612x15625354] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Objectives Diagnosis of feline infectious peritonitis (FIP) remains challenging, especially in cats without effusions. The objective of this study was to evaluate the sensitivity and specificity of a real-time reverse transcriptase polymerase chain reaction (RT-PCR) detecting feline coronavirus (FCoV) RNA in peripheral blood mononuclear cells (PBMCs) and serum in comparison with the same real-time RT-PCR in cell-free body cavity effusion. Methods This prospective case-control study included 92 cats. Forty-three cats had a definitive diagnosis of FIP, established either by histopathological examination (n = 28) or by positive immunofluorescence staining of FCoV antigen in macrophages of effusions (n = 11), or by both methods (n = 4). Forty-nine control cats had other diseases but similar clinical signs. Real-time RT-PCR was performed on PBMCs of 37 cats (21 cats with FIP, 16 controls), on serum of 51 cats (26 cats with FIP, 25 controls) and on cell-free body cavity effusion of 69 cats (36 cats with FIP, 33 controls). Sensitivity, specificity, positive and negative predictive value, including 95% confidence intervals (CI), were calculated. Results Real-time RT-PCR of PBMCs, serum and cell-free body cavity effusion showed a specificity of 100% (95% CI 79.4-100% in PBMCs, 86.3-100% in serum, 89.4-100% in cell-free body cavity effusion) and a sensitivity of 28.6% (95% CI 11.3-52.2%) in PBMCs, 15.4% (95% CI 4.4-34.9%) in serum and 88.9% (95% CI 73.9-96.9%) in cell-free body cavity effusion to diagnose FIP. Conclusions and relevance Although it is known that RT-PCR can often provide false-positive results in healthy cats, this real-time RT-PCR was shown to be a specific tool for the diagnosis of FIP when applied in a clinical setting. Sensitivity in cell-free body cavity effusion was high but low in PBMCs and serum. PBMC samples showed a higher sensitivity than serum samples, and are therefore a better choice if no effusion is present.
Collapse
Affiliation(s)
| | - Karin Weber
- Clinic of Small Animal Medicine, LMU University of Munich, Germany
| | - Roswitha Dorsch
- Clinic of Small Animal Medicine, LMU University of Munich, Germany
| | - Robert Fux
- Institute for Infectious Diseases and Zoonoses, LMU University of Munich, Germany
| | - Katrin Hartmann
- Clinic of Small Animal Medicine, LMU University of Munich, Germany
| |
Collapse
|
26
|
Felten S, Weider K, Doenges S, Gruendl S, Matiasek K, Hermanns W, Mueller E, Matiasek L, Fischer A, Weber K, Hirschberger J, Wess G, Hartmann K. Detection of feline coronavirus spike gene mutations as a tool to diagnose feline infectious peritonitis. J Feline Med Surg 2017; 19:321-335. [PMID: 26701958 PMCID: PMC11119656 DOI: 10.1177/1098612x15623824] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Objectives Feline infectious peritonitis (FIP) is an important cause of death in the cat population worldwide. The ante-mortem diagnosis of FIP in clinical cases is still challenging. In cats without effusion, a definitive diagnosis can only be achieved post mortem or with invasive methods. The aim of this study was to evaluate the use of a combined reverse transcriptase nested polymerase chain reaction (RT-nPCR) and sequencing approach in the diagnosis of FIP, detecting mutations at two different nucleotide positions within the spike (S) gene. Methods The study population consisted of 64 cats with confirmed FIP and 63 cats in which FIP was initially suspected due to similar clinical or laboratory signs, but that were definitively diagnosed with another disease. Serum/plasma and/or effusion samples of these cats were examined for feline coronavirus (FCoV) RNA by RT-nPCR and, if positive, PCR products were sequenced for nucleotide transitions within the S gene. Results Specificity of RT-nPCR was 100% in all materials (95% confidence interval [CI] in serum/plasma 83.9-100.0; 95% CI in effusion 93.0-100.0). The specificity of the sequencing step could not be determined as none of the cats of the control group tested positive for FCoV RNA. Sensitivity of the 'combined RT-nPCR and sequencing approach' was 6.5% (95% CI 0.8-21.4) in serum/plasma and 65.3% (95% CI 50.4-78.3) in effusion. Conclusions and relevance A positive result is highly indicative of the presence of FIP, but as none of the control cats tested positive by RT-nPCR, it was not possible to confirm that the FCoV mutant described can only be found in cats with FIP. Further studies are necessary to evaluate the usefulness of the sequencing step including FCoV-RNA-positive cats with and without FIP. A negative result cannot be used to exclude the disease, especially when only serum/plasma samples are available.
Collapse
Affiliation(s)
- Sandra Felten
- Clinic of Small Animal Medicine, Ludwig-Maximilians-University Munich, Munich, Germany
| | | | - Stephanie Doenges
- Clinic of Small Animal Medicine, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Stefanie Gruendl
- Clinic of Small Animal Medicine, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Kaspar Matiasek
- Institute of Veterinary Pathology, Centre for Clinical Veterinary Medicine, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Walter Hermanns
- Institute of Veterinary Pathology, Centre for Clinical Veterinary Medicine, Ludwig-Maximilians-University Munich, Munich, Germany
| | | | - Lara Matiasek
- Clinic of Small Animal Medicine, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Andrea Fischer
- Clinic of Small Animal Medicine, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Karin Weber
- Clinic of Small Animal Medicine, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Johannes Hirschberger
- Clinic of Small Animal Medicine, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Gerhard Wess
- Clinic of Small Animal Medicine, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Katrin Hartmann
- Clinic of Small Animal Medicine, Ludwig-Maximilians-University Munich, Munich, Germany
| |
Collapse
|
27
|
Kim Y, Liu H, Galasiti Kankanamalage AC, Weerasekara S, Hua DH, Groutas WC, Chang KO, Pedersen NC. Reversal of the Progression of Fatal Coronavirus Infection in Cats by a Broad-Spectrum Coronavirus Protease Inhibitor. PLoS Pathog 2016; 12:e1005531. [PMID: 27027316 PMCID: PMC4814111 DOI: 10.1371/journal.ppat.1005531] [Citation(s) in RCA: 158] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2016] [Accepted: 03/07/2016] [Indexed: 02/01/2023] Open
Abstract
Coronaviruses infect animals and humans causing a wide range of diseases. The diversity of coronaviruses in many mammalian species is contributed by relatively high mutation and recombination rates during replication. This dynamic nature of coronaviruses may facilitate cross-species transmission and shifts in tissue or cell tropism in a host, resulting in substantial change in virulence. Feline enteric coronavirus (FECV) causes inapparent or mild enteritis in cats, but a highly fatal disease, called feline infectious peritonitis (FIP), can arise through mutation of FECV to FIP virus (FIPV). The pathogenesis of FIP is intimately associated with immune responses and involves depletion of T cells, features shared by some other coronaviruses like Severe Acute Respiratory Syndrome Coronavirus. The increasing risks of highly virulent coronavirus infections in humans or animals call for effective antiviral drugs, but no such measures are yet available. Previously, we have reported the inhibitors that target 3C-like protease (3CLpro) with broad-spectrum activity against important human and animal coronaviruses. Here, we evaluated the therapeutic efficacy of our 3CLpro inhibitor in laboratory cats with FIP. Experimental FIP is 100% fatal once certain clinical and laboratory signs become apparent. We found that antiviral treatment led to full recovery of cats when treatment was started at a stage of disease that would be otherwise fatal if left untreated. Antiviral treatment was associated with a rapid improvement in fever, ascites, lymphopenia and gross signs of illness and cats returned to normal health within 20 days or less of treatment. Significant reduction in viral titers was also observed in cats. These results indicate that continuous virus replication is required for progression of immune-mediated inflammatory disease of FIP. These findings may provide important insights into devising therapeutic strategies and selection of antiviral compounds for further development for important coronaviruses in animals and humans. Coronaviruses are important pathogens in humans and animals. Although some coronaviruses can cause severe illness in humans and animals with considerable fatality, there is no antiviral drugs available for coronavirus infections. Feline infectious peritonitis (FIP), caused by virulent feline coronavirus, is the leading infectious cause of death in young cats, and also threatens endangered captive wild cats. We have previously reported series of small molecule protease inhibitors with broad-spectrum activity against important human and animal coronaviruses. In this report, we provide, for the first time, experimental evidence of efficacy and safety of one of the protease inhibitors in laboratory cats with experimentally induced FIP. These findings suggest that direct inhibition of virus replication by a protease inhibitor can be devised as a viable treatment option for coronavirus infection and our protease inhibitor has a potential to be developed into an effective therapeutic agent for FIP.
Collapse
Affiliation(s)
- Yunjeong Kim
- Department of Diagnostic Medicine and Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, Kansas, United States of America
- * E-mail:
| | - Hongwei Liu
- Department of Medicine and Epidemiology, School of Veterinary Medicine, University of California at Davis, Davis, California, United States of America
| | | | - Sahani Weerasekara
- Department of Chemistry, Kansas State University, Manhattan, Kansas, United States of America
| | - Duy H. Hua
- Department of Chemistry, Kansas State University, Manhattan, Kansas, United States of America
| | - William C. Groutas
- Department of Chemistry, Wichita State University, Wichita, Kansas, United States of America
| | - Kyeong-Ok Chang
- Department of Diagnostic Medicine and Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, Kansas, United States of America
| | - Niels C. Pedersen
- Department of Medicine and Epidemiology, School of Veterinary Medicine, University of California at Davis, Davis, California, United States of America
| |
Collapse
|
28
|
Wilkes RP, Hartmann K. Update on Antiviral Therapies. AUGUST'S CONSULTATIONS IN FELINE INTERNAL MEDICINE, VOLUME 7 2016. [PMCID: PMC7152142 DOI: 10.1016/b978-0-323-22652-3.00007-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
29
|
Möstl K, Addie DD, Boucraut-Baralon C, Egberink H, Frymus T, Gruffydd-Jones T, Hartmann K, Hosie MJ, Lloret A, Lutz H, Marsilio F, Pennisi MG, Radford AD, Thiry E, Truyen U, Horzinek MC. Something old, something new: Update of the 2009 and 2013 ABCD guidelines on prevention and management of feline infectious diseases. J Feline Med Surg 2015; 17:570-82. [PMID: 26101308 PMCID: PMC11148927 DOI: 10.1177/1098612x15588448] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
OVERVIEW The ABCD has published 34 guidelines in two Special Issues of the Journal of Feline Medicine and Surgery (JFMS): the first in July 2009 (Volume 11, Issue 7, pages 527-620) and the second in July 2013 (Volume 15, Issue 7, pages 528-652). The present article contains updates and new information on 18 of these (17 disease guidelines and one special article 'Prevention of infectious diseases in cat shelters'). For detailed information, readers are referred to the guidelines published in the above-mentioned JFMS Special Issues.
Collapse
|
30
|
Hugo TB, Heading KL. Prolonged survival of a cat diagnosed with feline infectious peritonitis by immunohistochemistry. THE CANADIAN VETERINARY JOURNAL = LA REVUE VETERINAIRE CANADIENNE 2015; 56:53-58. [PMID: 25565715 PMCID: PMC4266056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
A 4-year-old, neutered male, British shorthair cat was presented with inappetence, vomiting, hyperproteinemia, and hyperglobulinemia. An exploratory celiotomy identified enlarged mesenteric lymph nodes. Immunohistochemistry of lymph node biopsies confirmed feline infectious peritonitis. This patient had a prolonged survival of 787 d after initial presentation.
Collapse
|
31
|
McDonagh P, Sheehy PA, Norris JM. Combination siRNA therapy against feline coronavirus can delay the emergence of antiviral resistance in vitro. Vet Microbiol 2014; 176:10-8. [PMID: 25596968 PMCID: PMC7117502 DOI: 10.1016/j.vetmic.2014.12.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2014] [Revised: 12/08/2014] [Accepted: 12/11/2014] [Indexed: 11/09/2022]
Abstract
Combination siRNA treatment highly effective at inhibiting replication of FCoV in vitro. Antiviral resistance rapidly emerges with single or dual combination siRNA treatment. Combination treatment with three siRNAs significantly delayed the emergence of resistance. Dicer substrate siRNAs provide equivalent or enhanced efficacy compared to canonical siRNAs.
Virulent biotypes of feline coronavirus (FCoV), commonly referred to as feline infectious peritonitis virus (FIPV), can result in the development of feline infectious peritonitis (FIP), a typically fatal immune mediated disease for which there is currently no effective antiviral treatment. We previously reported the successful in vitro inhibition of FIPV replication by synthetic siRNA mediated RNA interference (RNAi) in an immortalised cell line (McDonagh et al., 2011). A major challenge facing the development of any antiviral strategy is that of resistance, a problem which is particularly acute for RNAi based therapeutics due to the exquisite sequence specificity of the targeting mechanism. The development of resistance during treatment can be minimised using combination therapy to raise the genetic barrier or using highly potent compounds which result in a more rapid and pronounced reduction in the viral replication rate, thereby reducing the formation of mutant, and potentially resistant viruses. This study investigated the efficacy of combination siRNA therapy and its ability to delay or prevent viral escape. Virus serially passaged through cells treated with a single or dual siRNAs rapidly acquired resistance, with mutations identified in the siRNA target sites. Combination therapy with three siRNA prevented viral escape over the course of five passages. To identify more potent silencing molecules we also compared the efficacy, in terms of potency and duration of action, of canonical versus Dicer-substrate siRNAs for two previously identified effective viral motifs. Dicer-substrate siRNAs showed equivalent or better potency than canonical siRNAs for the target sites investigated, and may be a more appropriate molecule for in vivo use. Combined, these data inform the potential therapeutic application of antiviral RNAi against FIPV.
Collapse
Affiliation(s)
- Phillip McDonagh
- Faculty of Veterinary Science, Building B14, The University of Sydney, Sydney, NSW 2006, Australia
| | - Paul A Sheehy
- Faculty of Veterinary Science, Building B19, The University of Sydney, Sydney, NSW 2006, Australia
| | - Jacqueline M Norris
- Faculty of Veterinary Science, Building B14, The University of Sydney, Sydney, NSW 2006, Australia.
| |
Collapse
|
32
|
Identification and characterisation of small molecule inhibitors of feline coronavirus replication. Vet Microbiol 2014; 174:438-447. [PMID: 25465182 PMCID: PMC7117153 DOI: 10.1016/j.vetmic.2014.10.030] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2014] [Revised: 10/26/2014] [Accepted: 10/28/2014] [Indexed: 01/30/2023]
Abstract
Chloroquine, mefloquine, and hexamethylene amiloride demonstrated marked inhibition of FIPV viral replication. All three compounds acted at an early stage of viral replication. A cost effective resazurin-based cytopathic effect inhibition assay was developed for screening compounds. These antiviral compounds, warrant further investigation for clinical use in cats with FIP.
Feline infectious peritonitis (FIP), a feline coronavirus (FCoV) induced disease, is almost invariably fatal with median life expectancy measured in days. Current treatment options are, at best, palliative. The objectives of this study were to evaluate a panel of nineteen candidate compounds for antiviral activity against FCoV in vitro to determine viable candidates for therapy. A resazurin-based cytopathic effect inhibition assay, which detects viable cells through their reduction of the substrate resazurin to fluorescent resorufin, was developed for screening compounds for antiviral efficacy against FCoV. Plaque reduction and virus yield reduction assays were performed to confirm antiviral effects of candidate compounds identified during screening, and the possible antiviral mechanisms of action of these compounds were investigated using virucidal suspension assays and CPE inhibition and IFA-based time of addition assays. Three compounds, chloroquine, mefloquine, and hexamethylene amiloride demonstrated marked inhibition of virus induced CPE at low micromolar concentrations. Orthogonal assays confirmed inhibition of CPE was associated with significant reductions in viral replication. Selectivity indices calculated based on in vitro cytotoxicity screening and reductions in extracellular viral titre were 217, 24, and 20 for chloroquine, mefloquine, and hexamethylene amiloride respectively. Preliminary experiments performed to inform the antiviral mechanism of the compounds demonstrated all three acted at an early stage of viral replication. These results suggest that these direct acting antiviral compounds, or their derivatives, warrant further investigation for clinical use in cats with FIP.
Collapse
|
33
|
Pedersen NC. An update on feline infectious peritonitis: diagnostics and therapeutics. Vet J 2014; 201:133-41. [PMID: 24857253 PMCID: PMC7110619 DOI: 10.1016/j.tvjl.2014.04.016] [Citation(s) in RCA: 105] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2013] [Revised: 03/24/2014] [Accepted: 04/27/2014] [Indexed: 11/29/2022]
Abstract
This review is concerned with what has been learned about feline infectious peritonitis (FIP) diagnostics and therapeutics since the publication of an extensive overview of literature covering the period 1963-2009. Although progress has been made in both areas, obtaining a definitive diagnosis of FIP remains a problem for those veterinarians and/or cat owners who require absolute certainty. This review will cover both indirect and direct diagnostic tests for the disease and will emphasize their limitations, as well as their specificity and sensitivity. There is still no effective treatment for FIP, although there are both claims that such therapies exist and glimmers of hope coming from new therapies that are under research. FIP has also been identified in wild felids and FIP-like disease is now a growing problem among pet ferrets.
Collapse
Affiliation(s)
- Niels C Pedersen
- Center for Companion Animal Health, School of Veterinary Medicine, University of California, One Shields Avenue, Davis, CA 95616, USA.
| |
Collapse
|
34
|
Sykes JE, Papich MG. Antiviral and Immunomodulatory Drugs. CANINE AND FELINE INFECTIOUS DISEASES 2014. [PMCID: PMC7152038 DOI: 10.1016/b978-1-4377-0795-3.00007-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/25/2023]
|
35
|
Kim Y, Mandadapu SR, Groutas WC, Chang KO. Potent inhibition of feline coronaviruses with peptidyl compounds targeting coronavirus 3C-like protease. Antiviral Res 2013; 97:161-8. [PMID: 23219425 PMCID: PMC3563934 DOI: 10.1016/j.antiviral.2012.11.005] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2012] [Revised: 10/18/2012] [Accepted: 11/15/2012] [Indexed: 12/21/2022]
Abstract
Feline coronavirus infection is common among domestic and exotic felid species and usually associated with mild or asymptomatic enteritis; however, feline infectious peritonitis (FIP) is a fatal disease of cats that is caused by systemic infection with a feline infectious peritonitis virus (FIPV), a variant of feline enteric coronavirus (FECV). Currently, there is no specific treatment approved for FIP despite the importance of FIP as the leading infectious cause of death in young cats. During the replication process, coronavirus produces viral polyproteins that are processed into mature proteins by viral proteases, the main protease (3C-like [3CL] protease) and the papain-like protease. Since the cleavages of viral polyproteins are an essential step for virus replication, blockage of viral protease is an attractive target for therapeutic intervention. Previously, we reported the generation of broad-spectrum peptidyl inhibitors against viruses that possess a 3C or 3CL protease. In this study, we further evaluated the antiviral effects of the peptidyl inhibitors against feline coronaviruses, and investigated the interaction between our protease inhibitor and a cathepsin B inhibitor, an entry blocker, against a feline coronavirus in cell culture. Herein we report that our compounds behave as reversible, competitive inhibitors of 3CL protease, potently inhibited the replication of feline coronaviruses (EC(50) in a nanomolar range) and, furthermore, combination of cathepsin B and 3CL protease inhibitors led to a strong synergistic interaction against feline coronaviruses in a cell culture system.
Collapse
Affiliation(s)
- Yunjeong Kim
- Department of Diagnostic Medicine and Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, 66506, USA.
| | | | | | | |
Collapse
|
36
|
Jeffery U, Deitz K, Hostetter S. Positive predictive value of albumin: globulin ratio for feline infectious peritonitis in a mid-western referral hospital population. J Feline Med Surg 2012; 14:903-5. [PMID: 22811479 PMCID: PMC11108018 DOI: 10.1177/1098612x12454862] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
Low albumin to globulin ratio has been found previously to have a high positive predictive value for feline infectious peritonitis (FIP) in cats with clinical signs highly suggestive of the disease. However, FIP can have a more vague clinical presentation. This retrospective study found that the positive predictive value of an albumin:globulin (A:G) ratio of <0.8 and <0.6 was only 12.5% and 25%, respectively, in a group of 100 cats with one or more clinical signs consistent with FIP. The negative predictive value was 100% and 99% for an A:G ratio of <0.8 and A:G<0.6%, respectively. Therefore, when the prevalence of FIP is low, the A:G ratio is useful to rule out FIP but is not helpful in making a positive diagnosis of FIP.
Collapse
Affiliation(s)
- Unity Jeffery
- Department of Veterinary Pathology, Iowa State University, Ames, IA 50011, USA.
| | | | | |
Collapse
|