1
|
Heldens A, Dupont E, Devisscher L, Buytaert M, Verhelst X, Raevens S, Van Vlierberghe H, Geerts A, De Bruyne R, Lefere S. Adipose Tissue Insulin Resistance Correlates with Disease Severity in Pediatric Metabolic Dysfunction-Associated Steatotic Liver Disease: A Prospective Cohort Study. J Pediatr 2024; 274:114171. [PMID: 38944185 DOI: 10.1016/j.jpeds.2024.114171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 06/03/2024] [Accepted: 06/24/2024] [Indexed: 07/01/2024]
Abstract
OBJECTIVES To assess the role of adipose tissue insulin resistance (Adipo-IR) in the pathogenesis of pediatric metabolic dysfunction-associated steatotic liver disease (MASLD) and to determine Adipo-IR evolution during a lifestyle intervention program. STUDY DESIGN In this prospective cohort study, children and adolescents with severe obesity were recruited between July 2020 and December 2022 at an inpatient pediatric rehabilitation center. Treatment consisted of dietary intervention and physical activity. Liver steatosis and fibrosis were evaluated using ultrasound examination and transient elastography with controlled attenuation parameter and liver stiffness measurement. Every 4-6 months, anthropometric measurements, serum biochemical analysis, ultrasound examination, and elastography were repeated. Adipo-IR was estimated by the product of the fasting serum insulin times the fasting free fatty acid concentration, and hepatic IR by the Homeostatic Model Assessment for Insulin Resistance (HOMA-IR), respectively. RESULTS Of 200 patients with obesity, 56% had evidence of steatosis on ultrasound examination and 26% were diagnosed with fibrosis (≥F2). Adipo-IR increased progressively from lean controls to patients with obesity to patients with MASLD and MASLD with fibrosis. Adipo-IR was already increased in patients with only mild steatosis (P = .0403). Patients with more insulin-sensitive adipose tissue exhibited a lower liver fat content (P < .05) and serum alanine transaminase levels (P = .001). Adipo-IR correlated positively with visceral adipose tissue weight, waist circumference, and the visceral adipose tissue/gynoid adipose tissue ratio (P < .001), but not with total body fat percentage (P = .263). After 4-6 months of lifestyle management, both MASLD and Adipo-IR improved. CONCLUSIONS Our data suggest that Adipo-IR is associated with the presence of pediatric MASLD, particularly steatosis.
Collapse
Affiliation(s)
- Anneleen Heldens
- Hepatology Research Unit, Department of Internal Medicine and Pediatrics, Liver Research Center Ghent, Ghent University, Ghent, Belgium
| | | | - Lindsey Devisscher
- Gut-Liver Immunopharmacology Unit, Department of Basic and Applied Medical Sciences, Liver Research Center Ghent, Ghent University, Ghent, Belgium
| | - Maarten Buytaert
- Hepatology Research Unit, Department of Internal Medicine and Pediatrics, Liver Research Center Ghent, Ghent University, Ghent, Belgium
| | - Xavier Verhelst
- Hepatology Research Unit, Department of Internal Medicine and Pediatrics, Liver Research Center Ghent, Ghent University, Ghent, Belgium
| | - Sarah Raevens
- Hepatology Research Unit, Department of Internal Medicine and Pediatrics, Liver Research Center Ghent, Ghent University, Ghent, Belgium
| | - Hans Van Vlierberghe
- Hepatology Research Unit, Department of Internal Medicine and Pediatrics, Liver Research Center Ghent, Ghent University, Ghent, Belgium
| | - Anja Geerts
- Hepatology Research Unit, Department of Internal Medicine and Pediatrics, Liver Research Center Ghent, Ghent University, Ghent, Belgium
| | - Ruth De Bruyne
- Pediatric Gastroenterology, Hepatology and Nutrition, Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium
| | - Sander Lefere
- Hepatology Research Unit, Department of Internal Medicine and Pediatrics, Liver Research Center Ghent, Ghent University, Ghent, Belgium.
| |
Collapse
|
2
|
Abu-Nejem R, Hannon TS. Insulin Dynamics and Pathophysiology in Youth-Onset Type 2 Diabetes. J Clin Endocrinol Metab 2024; 109:2411-2421. [PMID: 38963882 DOI: 10.1210/clinem/dgae463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Revised: 06/28/2024] [Accepted: 07/03/2024] [Indexed: 07/06/2024]
Abstract
Youth-onset type 2 diabetes (T2D) is increasing around the globe. The mounting disease burden of youth-onset T2D portends substantial consequences for the health outcomes of young people and for health care systems. The pathophysiology of this condition is characterized by insulin resistance and initial insulin hypersecretion ± an inherent insulin secretory defect, with progressive loss of stimulated insulin secretion leading to pancreatic β-cell failure. Research studies focusing on youth-onset T2D have illuminated key differences for youth- vs adult-onset T2D, with youth having more profound insulin resistance and quicker progression to loss of sufficient insulin secretion to maintain euglycemia. There is a need for therapies that are targeted to improve both insulin resistance and, importantly, maintain sufficient insulin secretory function over the lifespan in youth-onset T2D.
Collapse
Affiliation(s)
- Rozan Abu-Nejem
- Department of Pediatrics, Divisions of Pediatric Endocrinology and Diabetology and Pediatric Health Services Research, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Tamara S Hannon
- Department of Pediatrics, Divisions of Pediatric Endocrinology and Diabetology and Pediatric Health Services Research, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| |
Collapse
|
3
|
Alfawaz S, Burzangi A, Esmat A. Mechanisms of Non-alcoholic Fatty Liver Disease and Beneficial Effects of Semaglutide: A Review. Cureus 2024; 16:e67080. [PMID: 39286709 PMCID: PMC11404706 DOI: 10.7759/cureus.67080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/17/2024] [Indexed: 09/19/2024] Open
Abstract
Non-alcoholic fatty liver disease stands as the predominant cause of chronic liver disease, with its prevalence and morbidity expected to escalate significantly, leading to substantial healthcare costs and diminished health-related quality of life. It comprises a range of disease manifestations that commence with basic steatosis, involving the accumulation of lipids in hepatocytes, a distinctive histological feature. If left untreated, it often advances to non-alcoholic steatohepatitis, marked by inflammatory and/or fibrotic hepatic changes, leading to the eventual development of non-alcoholic fatty liver disease-related cirrhosis and hepatocellular carcinoma. Because of the liver's vital role in body metabolism, non-alcoholic fatty liver disease is considered both a consequence and a contributor to the metabolic abnormalities observed in the metabolic syndrome. As of date, there are no authorized pharmacological agents for non-alcoholic fatty liver disease or non-alcoholic steatohepatitis. Semaglutide, with its glycemic and weight loss advantages, could potentially offer benefits for individuals with non-alcoholic fatty liver disease. This review aims to investigate the impact of semaglutide on non-alcoholic fatty liver disease.
Collapse
Affiliation(s)
- Sultan Alfawaz
- Department of Clinical Pharmacology, King Abdulaziz University, Faculty of Medicine, Jeddah, SAU
| | - Abdulhadi Burzangi
- Department of Clinical Pharmacology, King Abdulaziz University, Faculty of Medicine, Jeddah, SAU
| | - Ahmed Esmat
- Department of Clinical Pharmacology, King Abdulaziz University, Faculty of Medicine, Jeddah, SAU
| |
Collapse
|
4
|
Zhang K, Pan H, Wang L, Yang H, Zhu H, Gong F. Adipose Tissue Insulin Resistance is Closely Associated with Metabolic Syndrome in Northern Chinese Populations. Diabetes Metab Syndr Obes 2021; 14:1117-1128. [PMID: 33737823 PMCID: PMC7965693 DOI: 10.2147/dmso.s291350] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Accepted: 02/23/2021] [Indexed: 12/25/2022] Open
Abstract
OBJECTIVE Adipose tissue insulin resistance is a common feature of obesity-related metabolic diseases. However, the relationship between adipose tissue insulin resistance and metabolic syndrome (MS) has not been fully elucidated. Here, we explored the relationship between the adipose tissue insulin resistance index (Adipo-IR) (fasting insulin × free fatty acids) and MS and the predictive power of Adipo-IR for MS in northern Chinese populations. METHODS A total of 312 subjects, 186 subjects with MS, 80 nonmetabolic syndrome (NMS) subjects with central obesity, and 46 normal controls were recruited. The general clinical information, biochemical measurements, and oral glucose tolerance tests were evaluated. Serum adiponectin levels were determined using enzyme linked immunosorbent assay (ELISA). RESULTS Adipo-IR was 2.32-fold higher in NMS subjects and 2.62-fold higher in MS subjects than in normal controls in male subjects; in female subjects, it was 1.75-fold and 3.58-fold higher, respectively (P < 0.05). Female subjects with MS had higher Adipo-IR than male subjects (P < 0.001). Adipo-IR was independently positively correlated with waist circumference, triglyceride, aspartate aminotransferase, and fasting blood glucose and negatively correlated with adiponectin (P < 0.05). Subjects with the highest Adipo-IR tertile had a 2.758-fold higher risk of MS than subjects with the lowest tertile after adjusting for potential confounders (95% confidence interval: 1.552-9.096; P = 0.003). Receiver operating characteristic curve analysis showed that the predictive power of Adipo-IR for MS was 73.1% and 79.2% in male and female subjects, respectively, with optimal cutoff values of 3.84 and 5.92 mU/L×mmol/L. CONCLUSION Adipo-IR provides a simple method to study adipose tissue insulin sensitivity. Adipo-IR is associated with MS and is an important predictor of MS.
Collapse
Affiliation(s)
- Kun Zhang
- Key Laboratory of Endocrinology of National Health Commission, Department of Endocrinology, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, People’s Republic of China
- Department of Endocrinology, Shijiazhuang People’s Hospital, The People Affiliated Hospital of Hebei Medical University, Shijiazhuang, Hebei, People’s Republic of China
| | - Hui Pan
- Key Laboratory of Endocrinology of National Health Commission, Department of Endocrinology, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, People’s Republic of China
| | - Linjie Wang
- Key Laboratory of Endocrinology of National Health Commission, Department of Endocrinology, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, People’s Republic of China
| | - Hongbo Yang
- Key Laboratory of Endocrinology of National Health Commission, Department of Endocrinology, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, People’s Republic of China
| | - Huijuan Zhu
- Key Laboratory of Endocrinology of National Health Commission, Department of Endocrinology, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, People’s Republic of China
- Correspondence: Huijuan Zhu; Fengying Gong Key Laboratory of Endocrinology of National Health Commission, Department of Endocrinology, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, 1# Shuai Fu Yuan Hu Tong, Dong Dan, Beijing, 100730, People’s Republic of ChinaTel +86-10-69155100Fax +86-10-69155073 Email ;
| | - Fengying Gong
- Key Laboratory of Endocrinology of National Health Commission, Department of Endocrinology, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, People’s Republic of China
| |
Collapse
|
5
|
Ezeh U, Chen IYD, Chen YH, Azziz R. Adipocyte Insulin Resistance in PCOS: Relationship With GLUT-4 Expression and Whole-Body Glucose Disposal and β-Cell Function. J Clin Endocrinol Metab 2020; 105:5834379. [PMID: 32382742 PMCID: PMC7274487 DOI: 10.1210/clinem/dgaa235] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Accepted: 04/29/2020] [Indexed: 01/16/2023]
Abstract
CONTEXT Impaired sensitivity to the antilipolytic action of insulin in adipose tissue (AT) may play a role in determining metabolic dysfunction in polycystic ovary syndrome (PCOS). OBJECTIVES To test the hypothesis that insulin resistance (IR) in AT is associated with whole-body insulin sensitivity and β-cell function in PCOS. RESEARCH DESIGN AND SETTING Prospective cross-sectional study. METHODS Eighteen participants with PCOS and 18-matched control participants underwent a modified frequently sampled intravenous glucose tolerance test (mFSIVGTT); subgroups underwent single-slice computed tomography scans determining AT distribution and adipocyte glucose transporter type 4 (GLUT-4) expression. MAIN OUTCOME MEASURES IR in AT in basal (by the adipose insulin resistance index [Adipo-IR]) and dynamic (mFSIVGTT-derived indices of insulin-mediated nonesterified fatty acids [NEFA] suppression [NEFAnadir, TIMEnadir, and %NEFAsupp]) states; whole-body insulin-mediated glucose uptake and insulin secretion in basal (by homeostatic model assessment [HOMA]-IR and HOMA-β%) and dynamic (mFSIVGTT-derived insulin sensitivity index [Si], acute insulin response to glucose [AIRg], and disposition index [Di]) states. RESULTS Participants with PCOS had higher HOMA-IR and HOMA-β%, lower Si and Di, higher longer TIMEnadir, higher Adipo-IR and NEFAnadir, and a trend toward lower GLUT-4, than the control group participants. Adipo-IR was associated with dynamic state IR in AT (NEFAnadir TIMEnadir, and %NEFAsupp), but only in PCOS, and with HOMA-IR and HOMA-β% in both groups. NEFAnadir and TIMEnadir were negatively and %NEFAsupp positively associated with Si only in PCOS, but not with AIRg and Di, or GLUT-4 expression. CONCLUSION Women with PCOS demonstrated increased IR in AT, which is closely associated with whole-body IR but not with dynamic state β-cell function or adipocyte GLUT-4 gene expression.
Collapse
Affiliation(s)
- Uche Ezeh
- Department of Obstetrics and Gynecology, Stanford Healthcare-ValleyCare Hospital, Pleasanton, California
- Department of Obstetrics & Gynecology and Center for Androgen-Related Disorders, Cedars-Sinai Medical Center, Los Angeles, California
- Department of Obstetrics & Gynecology, Medical College of Georgia, Augusta University, Augusta, Georgia
| | - Ida Y-D Chen
- Department of Obstetrics & Gynecology and Center for Androgen-Related Disorders, Cedars-Sinai Medical Center, Los Angeles, California
- Department of Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California
- Institute for Translational Genomics and Population Sciences, Los Angeles Biomedical Research Institute at Harbor-UCLA Medical Center, Torrance, California
| | - Yen-Hao Chen
- Department of Obstetrics & Gynecology and Center for Androgen-Related Disorders, Cedars-Sinai Medical Center, Los Angeles, California
- Department of Obstetrics & Gynecology, Medical College of Georgia, Augusta University, Augusta, Georgia
| | - Ricardo Azziz
- Department of Obstetrics & Gynecology and Center for Androgen-Related Disorders, Cedars-Sinai Medical Center, Los Angeles, California
- Department of Obstetrics & Gynecology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California
- Department of Health Policy, Management and Behavior, School of Public Health, University at Albany, SUNY, Albany, New York
- Department of Obstetrics & Gynecology, School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama
- Correspondence and Reprint Requests: Ricardo Azziz, American Society for Reproductive Medicine, 1209 Montgomery Hwy, Birmingham, AL. E-mail:
| |
Collapse
|
6
|
Jiang J, Cai X, Pan Y, Du X, Zhu H, Yang X, Zheng D, Gaisano H, Wei T, He Y. Relationship of obesity to adipose tissue insulin resistance. BMJ Open Diabetes Res Care 2020; 8:8/1/e000741. [PMID: 32245824 PMCID: PMC7254100 DOI: 10.1136/bmjdrc-2019-000741] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Revised: 01/05/2020] [Accepted: 01/19/2020] [Indexed: 02/07/2023] Open
Abstract
AIMS This study aimed to examine the association of different anatomical forms of obesity with adipose tissue insulin resistance and to assess the diagnostic value and contribution of obesity to adipose tissue insulin resistance. METHODS This cross-sectional study included a total of 499 subjects aged 50 years or over. Multivariate regression analysis was conducted to clarify the association of different forms of obesity with adipose tissue insulin resistance (calculated as fasting insulin level×fasting free fatty acids level). Receiver operating characteristic cure analyses were used to assess the diagnostic value of each anthropometric indicator for adipose tissue insulin resistance. Attributable risk per cent and population attributable risk per cent were calculated to assess the contribution of obesity to adipose tissue insulin resistance. RESULTS After adjustment for potential confounders, we showed that anthropometric indicators were all positively associated with adipose tissue insulin resistance. In males, waist circumference (WC) was the strongest associated factor (OR, 3.43 (95% CI 2.03 to 5.82)) and indicator (area under the curve (AUC): 0.79) of adipose tissue insulin resistance among those indicators. Here, abdominal obesity (WC≥90 cm) accounted for 64.9% of adipose tissue insulin resistance in the abdominal obese males. Accordingly, body mass index (BMI) was the strongest associated factor (OR,3.08 (95% CI 2.04 to 4.66)) and indicator (AUC: 0.78) of adipose tissue insulin resistance in females. Here, general obesity of BMI≥25 kg/m2 accounted for 66.2% of the adipose tissue insulin resistance in the general obese females. We further demonstrated that adipose tissue insulin resistance was associated or trended to be associated with the metabolic diseases of cardiovascular disease, type 2 diabetes and fatty liver in subjects with normal BMI and WC. CONCLUSIONS Maintaining WC in males and BMI in females to a normal range could be an important strategy to significantly reduce the occurrence of adipose tissue insulin resistance and the subsequent metabolic diseases.
Collapse
Affiliation(s)
- Jiajia Jiang
- Department of Epidemiology and Biostatistics, School of Public Health, Capital Medical University, Beijing, China
- Department of Endocrinology, Jining No. 1 People's Hospital, Jining, Shandong, China
| | - Xueli Cai
- Department of Neurology, Lishui Central Hospital and Fifth Affiliated Hospital of Wenzhou Medical College, Lishui, Zhejiang, China
| | - Yuesong Pan
- Department of Neurology, Beijing Tiantan Hospital, Beijing, China
- Department of Statistics, China National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Xiaoyan Du
- Department of Laboratory Animal, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Huiping Zhu
- Department of Epidemiology and Biostatistics, School of Public Health, Capital Medical University, Beijing, China
| | - Xinghua Yang
- Department of Epidemiology and Biostatistics, School of Public Health, Capital Medical University, Beijing, China
| | - Deqiang Zheng
- Department of Epidemiology and Biostatistics, School of Public Health, Capital Medical University, Beijing, China
| | - Herbert Gaisano
- Departments of Medicine and Physiology, University of Toronto, Toronto, Ontario, Canada
| | - Tiemin Wei
- Department of Neurology, Lishui Central Hospital and Fifth Affiliated Hospital of Wenzhou Medical College, Lishui, Zhejiang, China
| | - Yan He
- Department of Epidemiology and Biostatistics, School of Public Health, Capital Medical University, Beijing, China
- Municipal Key Laboratory of Clinical Epidemiology, Beijing, China
| |
Collapse
|
7
|
Bódis K, Jelenik T, Lundbom J, Markgraf DF, Strom A, Zaharia OP, Karusheva Y, Burkart V, Müssig K, Kupriyanova Y, Ouni M, Wolkersdorfer M, Hwang JH, Ziegler D, Schürmann A, Roden M, Szendroedi J. Expansion and Impaired Mitochondrial Efficiency of Deep Subcutaneous Adipose Tissue in Recent-Onset Type 2 Diabetes. J Clin Endocrinol Metab 2020; 105:5678088. [PMID: 31838512 PMCID: PMC7060761 DOI: 10.1210/clinem/dgz267] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2019] [Accepted: 12/13/2019] [Indexed: 01/21/2023]
Abstract
CONTEXT/OBJECTIVE Impaired adipose tissue (AT) function might induce recent-onset type 2 diabetes (T2D). Understanding AT energy metabolism could yield novel targets for the treatment of T2D. DESIGN/PATIENTS Male patients with recently-diagnosed T2D and healthy male controls (CON) of similar abdominal subcutaneous AT (SAT)-thickness, fat mass, and age (n = 14 each), underwent hyperinsulinemic-euglycemic clamps with [6,6-2H2]glucose and indirect calorimetry. We assessed mitochondrial efficiency (coupling: state 3/4o; proton leak: state 4o/u) via high-resolution respirometry in superficial (SSAT) and deep (DSAT) SAT-biopsies, hepatocellular lipids (HCL) and fat mass by proton-magnetic-resonance-spectroscopy and -imaging. RESULTS T2D patients (known diabetes duration: 2.5 [0.1; 5.0] years) had 43%, 44%, and 63% lower muscle insulin sensitivity (IS), metabolic flexibility (P < 0.01) and AT IS (P < 0.05), 73% and 31% higher HCL (P < 0.05), and DSAT-thickness (P < 0.001), but similar hepatic IS compared with CON. Mitochondrial efficiency was ~22% lower in SSAT and DSAT of T2D patients (P < 0.001) and ~8% lower in SSAT vs DSAT (P < 0.05). In both fat depots, mitochondrial coupling correlated positively with muscle IS and metabolic flexibility (r ≥ 0.40; P < 0.05), proton leak correlated positively (r ≥ 0.51; P < 0.01) and oxidative capacity negatively (r ≤ -0.47; P < 0.05) with fasting free fatty acids (FFA). Metabolic flexibility correlated positively with SAT-oxidative capacity (r ≥ 0.48; P < 0.05) and negatively with DSAT-thickness (r = -0.48; P < 0.05). DSAT-thickness correlated negatively with mitochondrial coupling in both depots (r ≤ -0.50; P < 0.01) and muscle IS (r = -0.59; P < 0.01), positively with FFA during clamp (r = 0.63; P < 0.001) and HCL (r = 0.49; P < 0.01). CONCLUSIONS Impaired mitochondrial function, insulin resistance, and DSAT expansion are AT abnormalities in recent-onset T2D that might promote whole-body insulin resistance and increased substrate flux to the liver.
Collapse
Affiliation(s)
- Kálmán Bódis
- Division of Endocrinology and Diabetology, Medical Faculty, Heinrich Heine University, Düsseldorf, Germany
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University, Düsseldorf, Germany
- German Center for Diabetes Research (DZD), München-Neuherberg, Germany
| | - Tomas Jelenik
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University, Düsseldorf, Germany
- German Center for Diabetes Research (DZD), München-Neuherberg, Germany
| | - Jesper Lundbom
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University, Düsseldorf, Germany
- German Center for Diabetes Research (DZD), München-Neuherberg, Germany
| | - Daniel F Markgraf
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University, Düsseldorf, Germany
- German Center for Diabetes Research (DZD), München-Neuherberg, Germany
| | - Alexander Strom
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University, Düsseldorf, Germany
- German Center for Diabetes Research (DZD), München-Neuherberg, Germany
| | - Oana-Patricia Zaharia
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University, Düsseldorf, Germany
- German Center for Diabetes Research (DZD), München-Neuherberg, Germany
| | - Yanislava Karusheva
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University, Düsseldorf, Germany
- German Center for Diabetes Research (DZD), München-Neuherberg, Germany
| | - Volker Burkart
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University, Düsseldorf, Germany
- German Center for Diabetes Research (DZD), München-Neuherberg, Germany
| | - Karsten Müssig
- Division of Endocrinology and Diabetology, Medical Faculty, Heinrich Heine University, Düsseldorf, Germany
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University, Düsseldorf, Germany
- German Center for Diabetes Research (DZD), München-Neuherberg, Germany
| | - Yuliya Kupriyanova
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University, Düsseldorf, Germany
- German Center for Diabetes Research (DZD), München-Neuherberg, Germany
| | - Meriem Ouni
- German Center for Diabetes Research (DZD), München-Neuherberg, Germany
- Department of Experimental Diabetology, German Institute of Human Nutrition Potsdam-Rehbrücke, Nuthetal, Germany
| | | | - Jong-Hee Hwang
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University, Düsseldorf, Germany
- German Center for Diabetes Research (DZD), München-Neuherberg, Germany
| | - Dan Ziegler
- Division of Endocrinology and Diabetology, Medical Faculty, Heinrich Heine University, Düsseldorf, Germany
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University, Düsseldorf, Germany
- German Center for Diabetes Research (DZD), München-Neuherberg, Germany
| | - Annette Schürmann
- German Center for Diabetes Research (DZD), München-Neuherberg, Germany
- Department of Experimental Diabetology, German Institute of Human Nutrition Potsdam-Rehbrücke, Nuthetal, Germany
| | - Michael Roden
- Division of Endocrinology and Diabetology, Medical Faculty, Heinrich Heine University, Düsseldorf, Germany
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University, Düsseldorf, Germany
- German Center for Diabetes Research (DZD), München-Neuherberg, Germany
| | - Julia Szendroedi
- Division of Endocrinology and Diabetology, Medical Faculty, Heinrich Heine University, Düsseldorf, Germany
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University, Düsseldorf, Germany
- German Center for Diabetes Research (DZD), München-Neuherberg, Germany
- Correspondence: Dr. Julia Szendroedi, PhD, Division of Endocrinology and Diabetology, Medical Faculty, Heinrich Heine University, 40225 Düsseldorf, Germany, c/o Auf’m Hennekamp 65, 40225 Düsseldorf, Germany. E-mail:
| | | |
Collapse
|
8
|
Hu TX, Zhang NN, Ruan Y, Tan QY, Wang J. Hydrogen sulfide modulates high glucose-induced NLRP3 inflammasome activation in 3T3-L1 adipocytes. Exp Ther Med 2019; 19:771-776. [PMID: 31885713 DOI: 10.3892/etm.2019.8242] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Accepted: 08/23/2019] [Indexed: 02/06/2023] Open
Abstract
Activation of the NACHT leucine rich repeat and pyd domains-containing 3 (NLRP3) inflammasome plays an important role in the initiation of inflammation in adipose tissue in diabetic patients. However, the mechanisms underlying this are not fully understood. Hydrogen sulfide (H2S) has been shown to have anti-inflammatory properties in various cell types. The present study aimed to investigate the effect of H2S on high glucose (HG)-induced NLRP3 inflammasome activation in adipocytes. Adipocytes were differentiated from 3T3-L1 cells and treated with low glucose (LG), HG, H2S donor sodium hydrosulfide (NaHS) or N-acetyl-tyrosyl-valyl- alanyl-aspartyl chloromethyl ketone, an inhibitor of the cysteine protease caspase-1. The expression levels of NLRP3, apoptosis-associated speck-like protein containing A CARD (ASC) and caspase-1, and the release of interleukin (IL)-1β and IL-18 were measured. The results of the present study indicated that HG increased the expression levels of NLRP3, ASC and cleaved caspase-1, and the release of IL-1β and IL-18 in adipocytes. Caspase-1 inhibition abolished HG-induced production of IL-1β and IL-18 in adipocytes. Furthermore, NaHS inhibited the expression of NLRP3, ASC and cleaved caspase-1, and the production of IL-1β and IL-18 in adipocytes treated with HG. In conclusion, HG may increase and exogenous H2S may inhibit HG-induced NLRP3 inflammasome activation in adipocytes.
Collapse
Affiliation(s)
- Tian-Xiao Hu
- Department of Endocrinology, Chinese People's Liberation Army 903 Hospital, Hangzhou, Zhejiang 310013, P.R. China
| | - Ning-Ning Zhang
- Department of Physiology, Naval Medical University, Shanghai 200433, P.R. China
| | - Yun Ruan
- Department of Endocrinology, Chinese People's Liberation Army 903 Hospital, Hangzhou, Zhejiang 310013, P.R. China
| | - Qing-Ying Tan
- Department of Endocrinology, Chinese People's Liberation Army 903 Hospital, Hangzhou, Zhejiang 310013, P.R. China
| | - Jing Wang
- Department of Endocrinology, Chinese People's Liberation Army 903 Hospital, Hangzhou, Zhejiang 310013, P.R. China
| |
Collapse
|
9
|
Gastaldelli A, Cusi K. From NASH to diabetes and from diabetes to NASH: Mechanisms and treatment options. JHEP Rep 2019; 1:312-328. [PMID: 32039382 PMCID: PMC7001557 DOI: 10.1016/j.jhepr.2019.07.002] [Citation(s) in RCA: 280] [Impact Index Per Article: 46.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Revised: 06/14/2019] [Accepted: 07/11/2019] [Indexed: 02/06/2023] Open
Abstract
The worldwide prevalence of non-alcoholic fatty liver disease (NAFLD) is estimated to have reached 25% or more in adults. NAFLD is prevalent in obese individuals, but may also affect non-obese insulin-resistant individuals. NAFLD is associated with a 2- to 3-fold increased risk of developing type 2 diabetes (T2D), which may be higher in patients with more severe liver disease - fibrosis increases this risk. In NAFLD, not only the close association with obesity, but also the impairment of many metabolic pathways, including decreased hepatic insulin sensitivity and insulin secretion, increase the risk of developing T2D and related comorbidities. Conversely, patients with diabetes have a higher prevalence of steatohepatitis, liver fibrosis and end-stage liver disease. Genetics and mechanisms involving dysfunctional adipose tissue, lipotoxicity and glucotoxicity appear to play a role. In this review, we discuss the altered pathophysiological mechanisms that underlie the development of T2D in NAFLD and vice versa. Although there is no approved therapy for the treatment of NASH, we discuss pharmacological agents currently available to treat T2D that could potentially be useful for the management of NASH.
Collapse
Affiliation(s)
- Amalia Gastaldelli
- Cardiometabolic Risk Unit, Institute of Clinical Physiology, National Research Council, Pisa, Italy
| | - Kenneth Cusi
- Division of Endocrinology, Diabetes and Metabolism, The University of Florida, and Malcom Randall Veterans Administration Medical Center, Gainesville, Florida
| |
Collapse
|
10
|
Kim JY, Bacha F, Tfayli H, Michaliszyn SF, Yousuf S, Arslanian S. Adipose Tissue Insulin Resistance in Youth on the Spectrum From Normal Weight to Obese and From Normal Glucose Tolerance to Impaired Glucose Tolerance to Type 2 Diabetes. Diabetes Care 2019; 42:265-272. [PMID: 30455334 PMCID: PMC6341282 DOI: 10.2337/dc18-1178] [Citation(s) in RCA: 79] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Accepted: 10/25/2018] [Indexed: 02/03/2023]
Abstract
OBJECTIVE Adipose tissue insulin resistance is one of the pathophysiological components of type 2 diabetes. Herein we investigated: 1) adipose insulin resistance index (Adipose-IR) (calculated as fasting insulin × free fatty acids [FFAs]) in youth across the spectrum of adiposity from normal weight to obese and the spectrum from normal glucose tolerance (NGT) to impaired glucose tolerance (IGT) to type 2 diabetes, 2) the relationship of Adipose-IR with physical and metabolic characteristics, and 3) the predictive power of Adipose-IR for determining dysglycemia in youth. RESEARCH DESIGN AND METHODS A total of 205 youth had fasting glucose, insulin, FFA, Adipose-IR, body composition, visceral adipose tissue (VAT), leptin, and adiponectin evaluated. RESULTS Adipose-IR was 2.2-fold higher in obese NGT, 4.3-fold higher in IGT, and 4.6-fold higher in type 2 diabetes compared with that in normal-weight peers (all P < 0.05). Females with dysglycemia (IGT and type 2 diabetes) had higher Adipose-IR than their male counterparts (P < 0.001). Adipose-IR correlated positively with total body and visceral adiposity, fasting glucose, HOMA-IR, and leptin and negatively with adiponectin. Receiver operating characteristic curve analysis yielded an optimal cutoff for Adipose-IR of 9.3 μU/mL × mmol/L for determining dysglycemia with 80% predictive power. CONCLUSIONS Adipose-IR is a simple surrogate estimate that reflects pathophysiological alterations in adipose tissue insulin sensitivity in youth, with progressive deterioration from normal weight to obese and from NGT to IGT to type 2 diabetes. Adipose-IR can be applied in large-scale epidemiological/observational studies of the natural history of youth-onset type 2 diabetes and its progression or reversal with intervention strategies.
Collapse
Affiliation(s)
- Joon Young Kim
- Center for Pediatric Research in Obesity and Metabolism, Children's Hospital of Pittsburgh, University of Pittsburgh Medical Center, Pittsburgh, PA
- Division of Endocrinology and Metabolism, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA
| | - Fida Bacha
- Children's Nutrition Research Center, Baylor College of Medicine, Houston, TX
| | - Hala Tfayli
- Department of Pediatrics and Adolescent Medicine, American University of Beirut Medical Center, Beirut, Lebanon
| | - Sara F Michaliszyn
- Department of Kinesiology and Sport Science, Youngstown State University, Youngstown, OH
| | - Shahwar Yousuf
- Center for Pediatric Research in Obesity and Metabolism, Children's Hospital of Pittsburgh, University of Pittsburgh Medical Center, Pittsburgh, PA
| | - Silva Arslanian
- Center for Pediatric Research in Obesity and Metabolism, Children's Hospital of Pittsburgh, University of Pittsburgh Medical Center, Pittsburgh, PA
- Division of Pediatric Endocrinology, Diabetes, and Metabolism, Children's Hospital of Pittsburgh, University of Pittsburgh Medical Center, Pittsburgh, PA
| |
Collapse
|
11
|
Ehrmann DA, Temple KA, Rue A, Barengolts E, Mokhlesi B, Van Cauter E, Sam S, Miller MA, Kahn SE, Atkinson KM, Palmer JP, Utzschneider KM, Gebremedhin T, Kernan-Schloss A, Kozedub A, Montgomery BK, Morse EJ, Mather KJ, Garrett T, Hannon TS, Lteif A, Patel A, Chisholm R, Moore K, Pirics V, Pratt L, Nadeau KJ, Gross S, Zeitler PS, Williams J, Cree-Green M, Garcia Reyes Y, Vissat K, Arslanian SA, Brown K, Guerra N, Porter K, Caprio S, Savoye M, Pierpont B, Buchanan TA, Xiang AH, Trigo E, Beale E, Hendee FN, Katkhouda N, Nayak K, Martinez M, Montgomery C, Wang X, Edelstein SL, Lachin JM, Hogan AN, Marcovina S, Harting J, Albers J, Hill D, Savage PJ, Leschek EW. Metabolic Contrasts Between Youth and Adults With Impaired Glucose Tolerance or Recently Diagnosed Type 2 Diabetes: I. Observations Using the Hyperglycemic Clamp. Diabetes Care 2018; 41:1696-1706. [PMID: 29941497 PMCID: PMC6054493 DOI: 10.2337/dc18-0244] [Citation(s) in RCA: 127] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Accepted: 04/28/2018] [Indexed: 02/03/2023]
Abstract
OBJECTIVE To compare insulin sensitivity (M/I) and β-cell responses in youth versus adults with impaired glucose tolerance (IGT) or drug-naïve, recently diagnosed type 2 diabetes. RESEARCH DESIGN AND METHODS In 66 youth (80.3% with IGT) and 355 adults (70.7% IGT), hyperglycemic clamps were used to measure 1) M/I, 2) acute (0-10 min [first phase]) C-peptide (ACPRg) and insulin (AIRg) responses to glucose, 3) steady-state C-peptide and insulin concentrations at plasma glucose of 11.1 mmol/L, and 4) arginine-stimulated maximum C-peptide (ACPRmax) and insulin (AIRmax) responses at plasma glucose >25 mmol/L. The fasting C-peptide-to-insulin ratio was used as an estimate of insulin clearance. RESULTS Insulin sensitivity was 46% lower in youth compared with adults (P < 0.001), and youth had greater acute and steady-state C-peptide (2.3- and 1.3-fold, respectively; each P < 0.001) and insulin responses to glucose (AIRg 3.0-fold and steady state 2.2-fold; each P < 0.001). Arginine-stimulated C-peptide and insulin responses were also greater in youth (1.6- and 1.7-fold, respectively; each P < 0.001). After adjustment for insulin sensitivity, all β-cell responses remained significantly greater in youth. Insulin clearance was reduced in youth (P < 0.001). Participants with diabetes had greater insulin sensitivity (P = 0.026), with lesser C-peptide and insulin responses than those with IGT (all P < 0.001) but similar insulin clearance (P = 0.109). CONCLUSIONS In people with IGT or recently diagnosed diabetes, youth have lower insulin sensitivity, hyperresponsive β-cells, and reduced insulin clearance compared with adults. Whether these age-related differences contribute to declining β-cell function and/or impact responses to glucose-lowering interventions remains to be determined.
Collapse
Affiliation(s)
| | | | | | - Abby Rue
- RISE Coordinating Center, Rockville, MD
| | | | | | | | - Susan Sam
- RISE Coordinating Center, Rockville, MD
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - Dave Hill
- RISE Coordinating Center, Rockville, MD
| | | | | |
Collapse
|
12
|
Cree-Green M, Gupta A, Coe GV, Baumgartner AD, Pyle L, Reusch JEB, Brown MS, Newcomer BR, Nadeau KJ. Insulin resistance in type 2 diabetes youth relates to serum free fatty acids and muscle mitochondrial dysfunction. J Diabetes Complications 2017; 31:141-148. [PMID: 27839922 PMCID: PMC5395421 DOI: 10.1016/j.jdiacomp.2016.10.014] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Revised: 09/14/2016] [Accepted: 10/10/2016] [Indexed: 12/15/2022]
Abstract
AIMS Insulin resistance (IR) correlates with mitochondrial dysfunction, free fatty acids (FFAs), and intramyocellular lipid (IMCL) in adults with type 2 diabetes (T2D). We hypothesized that muscle IR would relate to similar factors in T2D youth. METHODS Participants included 17 youth with T2D, 23 normal weight controls (LCs), and 26 obese controls (OBs) of similar pubertal stage and activity level. RESULTS T2D and OB groups were of similar BMI. T2D youth were significantly more IR and had higher calf IMCL and serum FFA concentrations during hyperinsulinemia. ADP time constant (ADPTC), a blood-flow dependent mitochondrial function measure, was slowed and oxidative phosphorylation rates lower in T2D. In multiple linear regression of the entire cohort, lack of FFA suppression and longer ADPTC, but not IMCL or HbA1c, were independently associated with IR. CONCLUSION We found that elevated FFAs and mitochondrial dysfunction are early abnormalities in relatively well-controlled youth with T2D. Further, post-exercise oxidative metabolism appears affected by reduced blood flow, and is not solely an inherent mitochondrial defect. Thus, lowering FFAs and improving mitochondrial function and blood flow may be potential treatment targets in youth with T2D.
Collapse
Affiliation(s)
- Melanie Cree-Green
- Division of Pediatric Endocrinology, University of Colorado Anschutz Medical Campus and Children's Hospital Colorado, Aurora, CO, 80045; Center for Women's Health Research, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045.
| | - Abhinav Gupta
- Division of Pediatric Endocrinology, University of Colorado Anschutz Medical Campus and Children's Hospital Colorado, Aurora, CO, 80045
| | - Gregory V Coe
- Division of Pediatric Endocrinology, University of Colorado Anschutz Medical Campus and Children's Hospital Colorado, Aurora, CO, 80045
| | - Amy D Baumgartner
- Division of Pediatric Endocrinology, University of Colorado Anschutz Medical Campus and Children's Hospital Colorado, Aurora, CO, 80045
| | - Laura Pyle
- Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045; Department of Biostatistics and Informatics, Colorado School of Public Health, Aurora, CO, 80045
| | - Jane E B Reusch
- Center for Women's Health Research, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045; Division of Endocrinology, Metabolism and Diabetes, University to Colorado Anschutz Medical Campus, Aurora, CO, 80045; Veterans Affairs Medical Center, Aurora, CO, 80012
| | - Mark S Brown
- Department of Radiology, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045
| | | | - Kristen J Nadeau
- Division of Pediatric Endocrinology, University of Colorado Anschutz Medical Campus and Children's Hospital Colorado, Aurora, CO, 80045; Center for Women's Health Research, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045
| |
Collapse
|
13
|
Abstract
OBJECTIVES The aim of the present study was to assess whether objectively measured physical activity at mean ages 12 and 14 years are prospectively associated with ultrasound scan liver fat and stiffness (alanine aminotransferase, aspartate aminotransferase [AST], and γ-glutamyl transferase [GGT]) assessed at mean age 17.8 years. METHODS Participants were from the Avon Longitudinal Study of Parents and Children. Total physical activity (counts per minute) and minutes of moderate to vigorous physical activity (MVPA) were measured using ActiGraph accelerometers at mean ages 12 and 14 years. RESULTS Greater total physical activity and MVPA at ages 12 and 14 years were associated with lower odds of liver fat and lower GGT levels at mean age 17.8 years, such as per 15-minute increase in daily MVPA at age 12 years, the confounder adjusted odds ratio of liver fat was 0.47 (95% confidence interval [CI] 0.27-0.84). Associations attenuated after additional adjustment for fat mass as a potential confounder (eg, per 15-minute increase in daily MVPA at age 12 years, the odds ratio of liver fat attenuated to 0.65 [95% CI 0.35-1.21]) or a potential mediator (eg, per 15-minute increase in daily MVPA at age 12 years the odds ratio of liver fat attenuated to 0.59 [95% CI 0.32-1.09]). Results did not further attenuate after additional adjustment for insulin resistance. There was some evidence that greater total physical activity and MVPA at age 12 years were associated with the higher AST levels. CONCLUSIONS Adolescents who were more active in childhood have lower odds of fatty liver and lower GGT levels. These findings are likely to be, at least in part, explained by adiposity.
Collapse
|
14
|
Saponaro C, Gaggini M, Gastaldelli A. Nonalcoholic fatty liver disease and type 2 diabetes: common pathophysiologic mechanisms. Curr Diab Rep 2015; 15:607. [PMID: 25894944 DOI: 10.1007/s11892-015-0607-4] [Citation(s) in RCA: 101] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Nonalcoholic fatty liver disease (NAFLD) is an independent risk factor for advanced liver disease, type 2 diabetes (T2DM), and cardiovascular diseases. The prevalence of NAFLD in the general population is around 30 %, but it is up to three times higher in those with T2DM. Among people with obesity and T2DM, the NAFLD epidemic also is worsening. Therefore, it is important to identify early metabolic alterations and to prevent these diseases and their progression. In this review, we analyze the pathophysiologic mechanisms leading to NAFLD, particularly, those common to T2DM, such as liver and muscle insulin resistance. However, it is mainly adipose tissue insulin resistance that results in increased hepatic de novo lipogenesis, inflammation, and lipotoxicity. Although genetics predispose to NAFLD, an unhealthy lifestyle, including high-fat/high-sugar diets and low physical activity, increases the risk. In addition, alterations in gut microbiota and environmental chemical agents, acting as endocrine disruptors, may play a role.
Collapse
Affiliation(s)
- Chiara Saponaro
- Cardiometabolic Risk Unit, Institute of Clinical Physiology, CNR, via Moruzzi 1, 56100, Pisa, Italy,
| | | | | |
Collapse
|
15
|
Miranda DN, Coletta DK, Mandarino LJ, Shaibi GQ. Increases in insulin sensitivity among obese youth are associated with gene expression changes in whole blood. Obesity (Silver Spring) 2014; 22:1337-44. [PMID: 24470352 PMCID: PMC4008712 DOI: 10.1002/oby.20711] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2013] [Accepted: 01/22/2014] [Indexed: 01/02/2023]
Abstract
OBJECTIVE Lifestyle intervention can improve insulin sensitivity in obese youth, yet few studies have examined the molecular signatures associated with these improvements. Therefore, the purpose of this study was to explore gene expression changes in whole blood that are associated with intervention-induced improvements in insulin sensitivity. METHODS Fifteen (7M/8F) overweight/obese (BMI percentile = 96.3 ± 1.1) Latino adolescents (15.0 ± 0.9 years) completed a 12-week lifestyle intervention that included weekly nutrition education and 180 minutes of moderate-vigorous exercise per week. Insulin sensitivity was estimated by an oral glucose tolerance test and the Matsuda Index. Global microarray analysis profiling from whole blood was performed to examine changes in gene expression and to explore biological pathways that were significantly changed in response to the intervention. RESULTS A total of 1,459 probes corresponding to mRNA transcripts (717 up, 742 down) were differentially expressed with a fold change ≥1.2. These genes were mapped within eight significant pathways identified, including insulin signaling, type 1 diabetes, and glycerophospholipid metabolism. Participants with increased insulin sensitivity exhibited five times the number of significant genes altered compared with nonresponders (1,144 vs. 230). CONCLUSIONS These findings suggest that molecular signatures from whole blood are associated with lifestyle-induced health improvements among high-risk Latino youth.
Collapse
Affiliation(s)
- Danielle N. Miranda
- Mayo Graduate School, Mayo Clinic, Rochester, MN
- Mayo/ASU Center for Metabolic and Vascular Biology, Arizona State University, Tempe, Arizona
| | - Dawn K. Coletta
- School of Life Science, Arizona State University, Tempe, AZ
- Mayo/ASU Center for Metabolic and Vascular Biology, Arizona State University, Tempe, Arizona
| | - Lawrence J. Mandarino
- School of Life Science, Arizona State University, Tempe, AZ
- Mayo/ASU Center for Metabolic and Vascular Biology, Arizona State University, Tempe, Arizona
| | - Gabriel Q. Shaibi
- Mayo/ASU Center for Metabolic and Vascular Biology, Arizona State University, Tempe, Arizona
- College of Nursing and Health Innovation, Arizona State University, Phoenix, AZ
- Southwest Interdisciplinary Research Center, Arizona State University, Phoenix, AZ
| |
Collapse
|
16
|
Abstract
The global pandemic of childhood obesity has led to increased risk for prediabetes and type 2 diabetes mellitus (T2DM). Studies have shown decreased insulin sensitivity and/or secretion with increasing adiposity and consistently observed greater risk for T2DM in obese, non-Caucasian youth. In the current review we describe recent advances in understanding how obesity and metabolic status in children and adolescents confers various risk profiles for T2DM among Latinos, African Americans, Caucasians, Asians, and Native Americans. These possible determinants include ectopic fat distribution, adipose tissue inflammation and fibrosis, and elevated plasma levels of nonesterified free fatty acids. Future work should aim to elucidate the ethnic-specific pathophysiology of T2DM in order to develop and implement appropriate prevention and treatment strategies based on different ethnic profiles of diabetes risk.
Collapse
Affiliation(s)
- Tanya L Alderete
- Department of Preventive Medicine, Keck School of Medicine, Childhood Obesity Research Center, University of Southern California, 2250 Alcazar Street CSC 210, Los Angeles, CA, 90089-9073, USA
| | | | | |
Collapse
|