1
|
Chapman M, Barnes AN. A scoping review of waterborne and water-related disease in the Florida environment from 1999 to 2022. REVIEWS ON ENVIRONMENTAL HEALTH 2024; 39:585-601. [PMID: 37148256 DOI: 10.1515/reveh-2022-0249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 04/17/2023] [Indexed: 05/08/2023]
Abstract
Florida's environments are suitable reservoirs for many disease-causing agents. Pathogens and toxins in Florida waterways have the potential to infect mosquito vectors, animals, and human hosts. Through a scoping review of the scientific literature published between 1999 and 2022, we examined the presence of water-related pathogens, toxins, and toxin-producers in the Florida environment and the potential risk factors for human exposure. Nineteen databases were searched using keywords relating to the waterborne, water-based toxins, and water-related vector-borne diseases which are reportable to the Florida Department of Health. Of the 10,439 results, 84 titles were included in the final qualitative analysis. The resulting titles included environmental samples of water, mosquitoes, algae, sand, soil/sediment, air, food, biofilm, and other media. Many of the waterborne, water-related vector-borne, and water-based toxins and toxin-producers of public health and veterinary importance from our search were found to be present in Florida environments. Interactions with Florida waterways can expose humans and animals to disease and toxins due to nearby human and/or animal activity, proximal animal or human waste, failing or inadequate water and/or sanitation, weather patterns, environmental events, and seasonality, contaminated food items, preference of agent for environmental media, high-risk populations, urban development and population movement, and unregulated and unsafe environmental activities. A One Health approach will be imperative to maintaining healthy waterways and shared environments throughout the state to protect the health of humans, animals, and our ecosystems.
Collapse
Affiliation(s)
- McKinley Chapman
- Department of Public Health, University of North Florida, Jacksonville, FL, USA
| | - Amber N Barnes
- Department of Public Health, University of North Florida, Jacksonville, FL, USA
| |
Collapse
|
2
|
Mao L, Kim C, Mustapha A, Zheng G. The host specificity of pilus gene traA in Escherichia coli and its use in tracking human fecal pollution. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 906:167543. [PMID: 37804980 DOI: 10.1016/j.scitotenv.2023.167543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 09/26/2023] [Accepted: 09/30/2023] [Indexed: 10/09/2023]
Abstract
A reliable and accurate fecal source tracking (FST) approach is important in water quality management and preventing foodborne and waterborne diseases. In this study, a genetic marker of Escherichia coli (E. coli) was identified and utilized to differentiate between human and animal sources of fecal contamination. Nucleotide polymorphisms of 14 genes coding for cellular surface proteins, mainly fimbriae, were analyzed using the 22 draft genomes of E. coli strains from human and three domestic animal sources in Japan. A signature sequence, traAh, within the pilin gene traA, was found to be highly associated with E. coli of human origin. Subsequently, an end-point polymerase chain reaction (PCR) assay, namely PCR-Htra, was developed, specifically targeting traAh. The high association between traAh and E. coli of human origin was validated through the PCR-Htra amplification. This encompassed 1045 E. coli strains isolated from surface water, human feces or sewages, and feces from 12 animal species, including domestic and wild animals in the states of Missouri and Virginia in the United States of America (USA). The data suggested that the sensitivity and specificity of PCR-Htra assay were 49.0 % and 99.5 % respectively in distinguishing human-origin E. coli from nonhuman-source ones. Furthermore, the result of our in silico analysis of GenBank® data suggests that traAh may have a global distribution as the sequence was found in human-origin E. coli isolated from at least 14 countries around the world. Thus, the PCR-Htra may provide a new FST tool for rapid and accurate detection of human-origin E. coli, serving as a means to identify human fecal contamination in water.
Collapse
Affiliation(s)
- Liang Mao
- Department of Agriculture and Environmental Sciences, Cooperative Research Program, Lincoln University in Missouri, Jefferson City, MO 65101, USA; Food Science Program, University of Missouri, Columbia, MO 65211, USA
| | - Chyer Kim
- Agricultural Research Station, Virginia State University, 1 Hayden Dr, Petersburg, VA 23806, USA
| | - Azlin Mustapha
- Food Science Program, University of Missouri, Columbia, MO 65211, USA
| | - Guolu Zheng
- Department of Agriculture and Environmental Sciences, Cooperative Research Program, Lincoln University in Missouri, Jefferson City, MO 65101, USA.
| |
Collapse
|
3
|
Robalo A, Brandão J, Shibata T, Solo-Gabriele H, Santos R, Monteiro S. Detection of enteric viruses and SARS-CoV-2 in beach sand. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 901:165836. [PMID: 37517729 DOI: 10.1016/j.scitotenv.2023.165836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 07/24/2023] [Accepted: 07/25/2023] [Indexed: 08/01/2023]
Abstract
Beach sand harbors a diverse group of microbial organisms that may be of public health concern. Nonetheless, little is known about the presence and distribution of viruses in beach sand. In this study, the first objective was to evaluate the presence of seven viruses (Aichi virus, enterovirus, hepatitis A virus, human adenovirus, norovirus, rotavirus, and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)) in sands collected at public beaches. The second objective was to assess the spatial distribution of enteric viruses in beach sand. To that end, 27 beach sand samples from different beaches in Portugal were collected between November 2018 and August 2020 and analyzed for the presence of viruses. At seven beaches, samples were collected in the supratidal and intertidal zones. Results show that viruses were detected in 89 % (24/27) of the sand samples. Aichi virus was the most prevalent (74 %). Noroviruses were present in 19 % of the samples (norovirus GI - 15 %, norovirus GII - 4 %). Human adenovirus and enterovirus were detected in 48 % and 22 % of the samples, respectively. Hepatitis A virus and rotavirus were not detected. Similarly, SARS-CoV-2 in beach sand collected during the initial stages of the pandemic was also not detected. The detection of three or more viruses occurred in 15 % of the samples. Concentrations of viruses were as high as 7.2 log copies (cp)/g of sand. Enteric viruses were found in higher prevalence in sand collected from the supratidal zone compared to the intertidal zone. Human adenovirus was detected in 43 % of the supratidal and 14 % in the intertidal samples and Aichi virus in 57 % and 86 % of the intertidal and supratidal areas, respectively. Our findings suggest that beach sand can be a reservoir of enteric viruses, suggesting that it might be a vehicle for disease transmission, particularly for children, the elderly, and immunocompromised users.
Collapse
Affiliation(s)
- A Robalo
- Laboratorio Analises, Técnico Lisboa, Universidade Lisboa, Portugal
| | - J Brandão
- Department of Environmental Health, National Institute of Health Dr. Ricardo Jorge, Lisboa, Portugal
| | - T Shibata
- Institute for the Study of the Environment, Sustainability, and Energy, Northern Illinois University, DeKalb, IL, USA; Center for Southeast Asian Studies, Northern Illinois University, DeKalb, IL, USA
| | - H Solo-Gabriele
- Department of Chemical, Environmental, and Materials Engineering, University of Miami, Coral Gables, FL, USA
| | - R Santos
- Laboratorio Analises, Técnico Lisboa, Universidade Lisboa, Portugal; Departamento de Engenharia e Ciências Nucleares, Técnico Lisboa, Universidade de Lisboa, Portugal
| | - S Monteiro
- Laboratorio Analises, Técnico Lisboa, Universidade Lisboa, Portugal; Departamento de Engenharia e Ciências Nucleares, Técnico Lisboa, Universidade de Lisboa, Portugal.
| |
Collapse
|
4
|
Ahmed W, Fisher P, Veal C, Sturm K, Sidhu J, Toze S. Decay of Cryptosporidium parvfum DNA in cowpats in subtropical environments determined using qPCR. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 899:165481. [PMID: 37442482 DOI: 10.1016/j.scitotenv.2023.165481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Revised: 06/23/2023] [Accepted: 07/10/2023] [Indexed: 07/15/2023]
Abstract
Cryptosporidium oocysts pose a significant threat to public health due to its ability to contaminate environmental waters, leading to outbreaks of waterborne diseases and emphasizing the crucial need for effective water treatment and monitoring systems. This study aimed to investigate the decay of Cryptosporidium oocyst DNA in cow fecal matter under different environmental conditions prevalent in sub-tropical Southeast Queensland (SEQ) during summer and winter seasons. The effects of ambient sunlight and shaded conditions on the decay rates of C. parvum DNA in cow fecal samples were evaluated. The results showed that measurable levels of C. parvum DNA were observed for up to 60 days during the summer experiments, with a slower decay rate on the surface (k = -0.029) and sub-surface (k = -0.043) of the cowpat under shaded conditions than those on the surface (k = -0.064) and sub-surface (k = -0.079) under sunlight conditions. The decay rates of C. parvum DNA on the surface and sub-surface of the cowpat under shaded conditions were significantly slower (p = 0.004; p = 0.004) than those on the surface and sub-surface under sunlight conditions during summer experiments. During the winter treatments, measurable levels of C. parvum DNA were observed for up to 90 days, and the decay rates were slower on the surface (k = -0.036) and sub-surface (k = -0.034) of the cowpat under shaded conditions than those under sunlight conditions (k = -0.067 for surface and k = -0.057 for sub-surface). The decay rates of C. parvum DNA on the surface and sub-surface of the cowpat under shaded conditions were significantly slower than those on the surface (p = 0.009) and sub-surface (p = 0.041) under sunlight conditions during winter experiments. Moreover, the decay rate in the summer sunlight surface treatment (k = -0.064) was significantly faster from those in the winter shaded surface (k = -0.036; p = 0.018) and sub-surface (k = -0.034; p = 0.011) treatments. Similar results were also observed for summer sunlight sub-surface (k = -0.079), which was significantly faster than winter shaded surface (k = -0.036; p = 0.0008) and sub-surface (k = -0.034; p = 0.0005) treatments. Overall, these findings are important to enhance our understanding on the degradation of C. parvum DNA in cow fecal matter in SEQ, particularly in relation to seasonal variations and environmental conditions.
Collapse
Affiliation(s)
- Warish Ahmed
- CSIRO Environment, Ecosciences Precinct, 41 Boggo Road, Dutton Park, QLD 4102, Australia.
| | - Paul Fisher
- Seqwater, 117 Brisbane Street, Ipswich, QLD 4305, Australia
| | - Cameron Veal
- Seqwater, 117 Brisbane Street, Ipswich, QLD 4305, Australia
| | - Katrin Sturm
- Seqwater, 117 Brisbane Street, Ipswich, QLD 4305, Australia
| | - Jatinder Sidhu
- CSIRO Environment, Ecosciences Precinct, 41 Boggo Road, Dutton Park, QLD 4102, Australia
| | - Simon Toze
- Urban Water Futures, 93 Kays Road, The Gap, QLD 4061, Australia; Australian Centre for Water and Environmental Biotechnology, The University of Queensland, Hawken Drive, St Lucia, QLD 4072, Australia
| |
Collapse
|
5
|
Zhang Z, Qi J, Yu Q, Wang S, Wang H. Fecal-related anthropogenic sources are key determinants of lake microbiomes through microbial source tracking. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 336:122507. [PMID: 37673318 DOI: 10.1016/j.envpol.2023.122507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 08/29/2023] [Accepted: 09/02/2023] [Indexed: 09/08/2023]
Abstract
Lake microbiomes are essential indicators of lake health and are strongly influenced by allochthonous microbial communities from various sources within the watershed. However, quantifying the contributions of multiple inputs to lake microbiomes is challenging because of the complex nature of river‒lake systems and the presence of many untraceable sources. Here, Jianhu Lake‒‒a geographically simple and closed plateau lake in southwestern China, was surveyed to disentangle the contributions of five distinct sources (three input rivers that receive town sewage, stormwater runoff, and creek spring water, as well as two nonpoint sources, duck ponds and dry farmland) to the overall lake microbiomes. We found that feces-loading sources, namely town sewage and duck aquaculture, accounted for 48.7% of the total variations in lake microbiomes. In contrast, the combined contribution of the remaining three sources amounted to 13.21%, despite these less-influential sources (e.g., stormwater runoff) may introduce an even larger volume of allochthonous materials into the lake. In addition, approximately 38.1% of the variations in the lake microbiomes were attributed to unknown sources. Sewage effluents also caused a significant loss of lake microbial diversity, and there was a tendency for large-scale microbial homogeneity in lake sediments that resembled those from duck ponds. We then used a targeted approach to track host-specific fecal pollution, and found that human feces were the primary source, followed by ruminant and chicken/duck feces, all of which can be successfully traced back to the feces-loading sources. In our further modelling of sediment transport from three rivers into the whole lake, we observed a significant relationship between sediment accumulation and adsorbed microorganisms only for the sewage-receiving river. Together, lines of evidence indicate that both point and nonpoint fecal-related anthropogenic sources possess discriminatory power for shaping microbial geographic patterns of the lake, posing threats to the survival of local indigenous lake microbiomes.
Collapse
Affiliation(s)
- Zhongfu Zhang
- Yunnan Key Laboratory of Plateau Wetland Conservation, Restoration and Ecological Services, Southwest Forestry University, Kunming, 650224, People's Republic of China; Yunnan Key Laboratory for Integrative Conservation of Plant Species with Extremely Small Populations, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, People's Republic of China
| | - Jinfeng Qi
- Department of Economic Plants and Biotechnology, Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, People's Republic of China
| | - Qingguo Yu
- Yunnan Key Laboratory of Plateau Wetland Conservation, Restoration and Ecological Services, Southwest Forestry University, Kunming, 650224, People's Republic of China
| | - Shenglong Wang
- Yunnan Key Laboratory of Plateau Wetland Conservation, Restoration and Ecological Services, Southwest Forestry University, Kunming, 650224, People's Republic of China
| | - Hang Wang
- Yunnan Key Laboratory of Plateau Wetland Conservation, Restoration and Ecological Services, Southwest Forestry University, Kunming, 650224, People's Republic of China; Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, People's Republic of China.
| |
Collapse
|
6
|
González-Fernández A, Symonds EM, Gallard-Gongora JF, Mull B, Lukasik JO, Rivera Navarro P, Badilla Aguilar A, Peraud J, Mora Alvarado D, Cantor A, Breitbart M, Cairns MR, Harwood VJ. Risk of Gastroenteritis from Swimming at a Wastewater-Impacted Tropical Beach Varies across Localized Scales. Appl Environ Microbiol 2023; 89:e0103322. [PMID: 36847564 PMCID: PMC10057883 DOI: 10.1128/aem.01033-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 01/21/2023] [Indexed: 03/01/2023] Open
Abstract
Population growth and changing climate are expected to increase human exposure to pathogens in tropical coastal waters. We examined microbiological water quality in three rivers within 2.3 km of each other that impact a Costa Rican beach and in the ocean outside their plumes during the rainy and dry seasons. We performed quantitative microbial risk assessment (QMRA) to predict the risk of gastroenteritis associated with swimming and the amount of pathogen reduction needed to achieve safe conditions. Recreational water quality criteria based on enterococci were exceeded in >90% of river samples but in only 13% of ocean samples. Multivariate analysis grouped microbial observations by subwatershed and season in river samples but only by subwatershed in the ocean. The modeled median risk from all pathogens in river samples was between 0.345 and 0.577, 10-fold above the U.S. Environmental Protection Agency (U.S. EPA) benchmark of 0.036 (36 illnesses/1,000 swimmers). Norovirus genogroup I (NoVGI) contributed most to risk, but adenoviruses raised risk above the threshold in the two most urban subwatersheds. The risk was greater in the dry compared to the rainy season, due largely to the greater frequency of NoVGI detection (100% versus 41%). Viral log10 reduction needed to ensure safe swimming conditions varied by subwatershed and season and was greatest in the dry season (3.8 to 4.1 dry; 2.7 to 3.2 rainy). QMRA that accounts for seasonal and local variability of water quality contributes to understanding the complex influences of hydrology, land use, and environment on human health risk in tropical coastal areas and can contribute to improved beach management. IMPORTANCE This holistic investigation of sanitary water quality at a Costa Rican beach assessed microbial source tracking (MST) marker genes, pathogens, and indicators of sewage. Such studies are still rare in tropical climates. Quantitative microbial risk assessment (QMRA) found that rivers impacting the beach consistently exceeded the U.S. EPA risk threshold for gastroenteritis of 36/1,000 swimmers. The study improves upon many QMRA studies by measuring specific pathogens, rather than relying on surrogates (indicator organisms or MST markers) or estimating pathogen concentrations from the literature. By analyzing microbial levels and estimating the risk of gastrointestinal illness in each river, we were able to discern differences in pathogen levels and human health risks even though all rivers were highly polluted by wastewater and were located less than 2.5 km from one another. This variability on a localized scale has not, to our knowledge, previously been demonstrated.
Collapse
Affiliation(s)
| | - Erin M. Symonds
- College of Marine Science, University of South Florida, Saint Petersburg, Florida, USA
- Department of Anthropology, Southern Methodist University, Dallas, Texas, USA
| | | | - Bonnie Mull
- BCS Laboratories, Inc., Gainesville, Florida, USA
| | | | - Pablo Rivera Navarro
- Laboratorio Nacional de Aguas, Instituto Costarricense de Acueductos y Alcantarillados, Tres Ríos, Cartago, Costa Rica
| | - Andrei Badilla Aguilar
- Laboratorio Nacional de Aguas, Instituto Costarricense de Acueductos y Alcantarillados, Tres Ríos, Cartago, Costa Rica
| | - Jayme Peraud
- Department of Integrative Biology, University of South Florida, Tampa, Florida, USA
| | - Darner Mora Alvarado
- Laboratorio Nacional de Aguas, Instituto Costarricense de Acueductos y Alcantarillados, Tres Ríos, Cartago, Costa Rica
| | - Allison Cantor
- Department of Anthropology, Southern Methodist University, Dallas, Texas, USA
| | - Mya Breitbart
- College of Marine Science, University of South Florida, Saint Petersburg, Florida, USA
| | - Maryann R. Cairns
- Department of Anthropology, Southern Methodist University, Dallas, Texas, USA
| | - Valerie J. Harwood
- Department of Integrative Biology, University of South Florida, Tampa, Florida, USA
| |
Collapse
|
7
|
Wild pig removal reduces pathogenic bacteria in low-order streams. Biol Invasions 2022. [DOI: 10.1007/s10530-022-02731-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
8
|
Gallard-Gongora J, Lobos A, Conrad JW, Peraud J, Harwood VJ. An assessment of three methods for extracting bacterial DNA from beach sand. J Appl Microbiol 2021; 132:2990-3000. [PMID: 34932856 DOI: 10.1111/jam.15423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Revised: 12/16/2021] [Accepted: 12/17/2021] [Indexed: 11/28/2022]
Abstract
AIMS Beach water quality is regulated by faecal indicator bacteria levels, sand is not, despite known human health risk from exposure to beach sand. We compared the performance of three methods to extract bacterial DNA from beach sand as a step toward a standard method. METHODS AND RESULTS The analytical sensitivity of quantitative polymerase chain reaction (qPCR) for Enterococcus was compared for the slurry (suspension, agitation, membrane filtration of supernatant), versus direct extraction using PowerSoil™ or PowerMax Soil™ kits. The slurry method had the lowest limit of detection at 20-80 gene copies g-1 , recovered significantly more DNA, and the only method that detected Enterococcus by qPCR in all samples; therefore, the only method used in subsequent experiments. The slurry method reflected the spatial variability of Enterococcus in individual transect samples. Mean recovery efficiency of the microbial source tracking marker HF183 from wastewater spiked marine and freshwater beach sand was 100.8% and 64.1%, respectively, but varied, indicating that the mixing protocol needs improvement. CONCLUSIONS Among the three methods, the slurry method had the best analytical sensitivity and produced extracts that were useful for culture or molecular analysis. SIGNIFICANCE AND IMPACT OF STUDY Standardization of methods for extraction of bacterial DNA from sand facilitates comparisons among studies, and ultimately contributes to the safety of recreational beaches.
Collapse
Affiliation(s)
| | - Aldo Lobos
- Department of Integrative Biology, University of South Florida, Tampa, Florida, USA
| | - James W Conrad
- Department of Integrative Biology, University of South Florida, Tampa, Florida, USA
| | - Jayme Peraud
- Department of Integrative Biology, University of South Florida, Tampa, Florida, USA
| | - Valerie J Harwood
- Department of Integrative Biology, University of South Florida, Tampa, Florida, USA
| |
Collapse
|
9
|
Goshu G, Koelmans AA, de Klein JJM. Performance of faecal indicator bacteria, microbial source tracking, and pollution risk mapping in tropical water. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 276:116693. [PMID: 33631685 DOI: 10.1016/j.envpol.2021.116693] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 01/25/2021] [Accepted: 02/04/2021] [Indexed: 06/12/2023]
Abstract
Faecal indicator bacteria (FIB) are used for the assessment of faecal pollution and possible water quality deterioration. There is growing evidence that FIB used in temperate regions are not adequate and reliable to detect faecal pollution in tropical regions. Hence, this study evaluated the adequacy of FIB, including total coliforms (TC), Escherichia coli (EC), Enterococci (IEC), and Clostridium perfringens (CP) in the high-altitude, tropical country of Ethiopia. In addition to FIB, for microbial source tracking (MST), a ruminant-associated molecular marker was applied at different water types and altitudes, and faecal pollution risk mapping was conducted based on consensus FIB. The performances of the indicators were evaluated at 22 sites from different water types. The results indicate that EC cell enumeration and CP spore determination perform well for faecal contamination monitoring. Most of the sub-basins of Lake Tana were found to be moderately to highly polluted, and the levels of pollution were demonstrated to be higher in the rainy season than in the post-rainy season. Markers associated with ruminants (BacR) were identified in more than three quarters of the sites. A bacterial pollution risk map was developed for sub-basins of Lake Tana, including the un-gauged sub-basins. We demonstrate how bacterial pollution risk mapping can aid in improvements to water quality testing and reduce risk to the general population from stream bacteria.
Collapse
Affiliation(s)
- Goraw Goshu
- Aquatic Ecology and Water Quality Management Group, Department of Environmental Sciences, Wageningen University &Research, P.O. Box, 47,6700AA, Wageningen, the Netherlands; College of Agriculture and Environmental Sciences and Blue Nile Water Institute, Bahir Dar University, P.O. Box 1701, Bahir Dar, Ethiopia.
| | - A A Koelmans
- Aquatic Ecology and Water Quality Management Group, Department of Environmental Sciences, Wageningen University &Research, P.O. Box, 47,6700AA, Wageningen, the Netherlands
| | - J J M de Klein
- Aquatic Ecology and Water Quality Management Group, Department of Environmental Sciences, Wageningen University &Research, P.O. Box, 47,6700AA, Wageningen, the Netherlands
| |
Collapse
|
10
|
González-Fernández A, Symonds EM, Gallard-Gongora JF, Mull B, Lukasik JO, Rivera Navarro P, Badilla Aguilar A, Peraud J, Brown ML, Mora Alvarado D, Breitbart M, Cairns MR, Harwood VJ. Relationships among microbial indicators of fecal pollution, microbial source tracking markers, and pathogens in Costa Rican coastal waters. WATER RESEARCH 2021; 188:116507. [PMID: 33126000 DOI: 10.1016/j.watres.2020.116507] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 10/06/2020] [Accepted: 10/08/2020] [Indexed: 06/11/2023]
Abstract
Tropical coastal waters are understudied, despite their ecological and economic importance. They also reflect projected climate change scenarios for other climate zones, e.g., increased rainfall and water temperatures. We conducted an exploratory microbial water quality study at a tropical beach influenced by sewage-contaminated rivers, and tested the hypothesis that fecal microorganisms (fecal coliforms, enterococci, Clostridium perfringens, somatic and male-specific coliphages, pepper mild mottle virus (PMMoV), Bacteroides HF183, norovirus genogroup I (NoVGI), Salmonella, Cryptosporidium and Giardia) would vary by season and tidal stage. Most microorganisms' concentrations were greater in the rainy season; however, NoVGI was only detected in the dry season and Cryptosporidium was the only pathogen most frequently detected in rainy season. Fecal indicator bacteria (FIB) levels exceeded recreational water quality criteria standards in >85% of river samples and in <50% of ocean samples, regardless of the FIB or regulatory criterion. Chronic sewage contamination was demonstrated by detection of HF183 and PMMoV in 100% of river samples, and in >89% of ocean samples. Giardia, Cryptosporidium, Salmonella, and NoVGI were frequently detected in rivers (39%, 39%, 26%, and 39% of samples, respectively), but infrequently in ocean water, particularly during the dry season. Multivariate analysis showed that C. perfringens, somatic coliphage, male-specific coliphage, and PMMoV were the subset of indicators that maximized the correlation with pathogens in the rivers. In the ocean, the best subset of indicators was enterococci, male-specific coliphage, and PMMoV. We also executed redudancy analyses on environmental parameters and microorganim concentrations, and found that rainfall best predicted microbial concentrations. The seasonal interplay of rainfall and pathogen prevalence undoubtedly influences beach users' health risks. Relationships are likely to be complex, with some risk factors increasing and others decreasing each season. Future use of multivariate approaches to better understand linkages among environmental conditions, microbial predictors (fecal indicators and MST markers), and pathogens will improve prediction of high-risk scenarios at recreational beaches.
Collapse
Affiliation(s)
| | - Erin M Symonds
- College of Marine Science, University of South Florida, Saint Petersburg, FL 33701, USA
| | | | - Bonnie Mull
- Biological Consulting Services of North Central Floida, Inc., Gainesville, FL 32609, USA
| | - Jerzy O Lukasik
- Biological Consulting Services of North Central Floida, Inc., Gainesville, FL 32609, USA
| | - Pablo Rivera Navarro
- Laboratorio Nacional de Aguas, Instituto Costarricense de Acueductos y Alcantarillados, Tres Ríos, Cartago, Costa Rica
| | - Andrei Badilla Aguilar
- Laboratorio Nacional de Aguas, Instituto Costarricense de Acueductos y Alcantarillados, Tres Ríos, Cartago, Costa Rica
| | - Jayme Peraud
- Department of Integrative Biology, University of South Florida, Tampa, FL 33620, USA
| | - Megan L Brown
- Department of Anthropology, Southern Methodist University, Dallas, TX 75205, USA
| | - Darner Mora Alvarado
- Laboratorio Nacional de Aguas, Instituto Costarricense de Acueductos y Alcantarillados, Tres Ríos, Cartago, Costa Rica
| | - Mya Breitbart
- College of Marine Science, University of South Florida, Saint Petersburg, FL 33701, USA
| | - Maryann R Cairns
- Department of Anthropology, Southern Methodist University, Dallas, TX 75205, USA
| | - Valerie J Harwood
- Department of Integrative Biology, University of South Florida, Tampa, FL 33620, USA.
| |
Collapse
|
11
|
Bunce JT, Robson A, Graham DW. Seasonal influences on the use of genetic markers as performance indicators for small wastewater treatment plants. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 739:139928. [PMID: 32540662 DOI: 10.1016/j.scitotenv.2020.139928] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2020] [Revised: 05/31/2020] [Accepted: 06/01/2020] [Indexed: 06/11/2023]
Abstract
The development of microbial source tracking methods has resulted in an array of genetic faecal markers for assessing human health risks posed from surface water pollution. However, their use as performance metrics at wastewater treatment plants (WWTPs) has not been explored extensively. Here we compared three Bacteroides (HF183, HumM2, AllBac) and two E. coli (H8, RodA) genetic markers for summer and winter performance monitoring at twelve small rural (<250 PE) and three larger WWTPs in NE England. Small WWTPs are of interest because they are poorly understood and their impact on surface water quality may be underestimated. Overall, genetic marker data showed significant differences in treatment performance at smaller versus larger WWTPs. For example, effluent abundances of HF183 and HumM2 were significantly higher in smaller systems (p = 0.003 for HumM2; p = 0.02 for HF183). Genetic markers also showed significant differences in performance between seasons (p < 0.01, n = 120), with human-specific markers (i.e., HF183, HumM2, H8) being generally better for summer WWTP monitoring. In contrast, Bacteroides markers were much more suitable for winter monitoring, possibly because the E. coli markers are less sensitive to differences in temperature and sunlight conditions. Overall, Bacteroides markers best described WWTP treatment performance across all samples, although seasonal differences suggest caution is needed when markers are used for performance monitoring. Genetic markers definitely provide rapid and new information about WWTP performance, but more spatially diverse studies are needed to refine their use for routine WWTP monitoring.
Collapse
Affiliation(s)
- Joshua T Bunce
- School of Engineering, Newcastle University, Newcastle upon Tyne, UK
| | - Aidan Robson
- School of Engineering, Newcastle University, Newcastle upon Tyne, UK
| | - David W Graham
- School of Engineering, Newcastle University, Newcastle upon Tyne, UK.
| |
Collapse
|
12
|
Stubbington R, Acreman M, Acuña V, Boon PJ, Boulton AJ, England J, Gilvear D, Sykes T, Wood PJ. Ecosystem services of temporary streams differ between wet and dry phases in regions with contrasting climates and economies. PEOPLE AND NATURE 2020. [DOI: 10.1002/pan3.10113] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Affiliation(s)
- Rachel Stubbington
- School of Science and Technology Nottingham Trent University Nottingham UK
| | | | - Vicenç Acuña
- Catalan Institute for Water Research (ICRA) Girona Spain
- University of Girona Girona Spain
| | | | - Andrew J. Boulton
- School of Environmental and Rural Science University of New England Armidale NSW Australia
| | - Judy England
- Research, Analysis and Evaluation Environment Agency Wallingford UK
| | - David Gilvear
- School of Geography, Earth and Environmental Sciences University of Plymouth Plymouth UK
| | - Tim Sykes
- Romsey District Office Environment Agency Romsey UK
| | - Paul J. Wood
- Geography and Environment Loughborough University Loughborough UK
| |
Collapse
|
13
|
Sánchez-Alfonso AC, Venegas C, Díez H, Méndez J, Blanch AR, Jofre J, Campos C. Microbial indicators and molecular markers used to differentiate the source of faecal pollution in the Bogotá River (Colombia). Int J Hyg Environ Health 2020; 225:113450. [PMID: 31962274 DOI: 10.1016/j.ijheh.2020.113450] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Revised: 12/27/2019] [Accepted: 01/02/2020] [Indexed: 10/25/2022]
Abstract
Intestinal pathogenic microorganisms are introduced into the water by means of faecal contamination, thus creating a threat to public health and to the environment. Detecting these contaminants has been difficult due to such an analysis being costly and time-intensive; as an alternative, microbiological indicators have been used for this purpose, although they cannot differentiate between human or animal sources of contamination because these indicators are part of the digestive tracts of both. To identify the sources of faecal pollution, the use of chemical, microbiological and molecular markers has been proposed. Currently available markers present some geographical specificity. The aim of this study was to select microbial and molecular markers that could be used to differentiate the sources of faecal pollution in the Bogotá River and to use them as tools for the evaluation and identification of the origin of discharges and for quality control of the water. In addition to existing microbial source markers, a phage host strain (PZ8) that differentiates porcine contamination was isolated from porcine intestinal content. The strain was identified biochemically and genotypically as Bacteroides. The use of this strain as a microbial source tracking indicator was evaluated in bovine and porcine slaughterhouse wastewaters, raw municipal wastewaters and the Bogotá River. The results obtained indicate that the selected microbial and molecular markers enable the determination of the source of faecal contamination in the Bogotá River by using different algorithms to develop prediction models.
Collapse
Affiliation(s)
- Andrea C Sánchez-Alfonso
- Department of Microbiology, Pontifical Xavierian University, Carrera 7 No. 43 - 82, Bogotá, Colombia
| | - Camilo Venegas
- Department of Microbiology, Pontifical Xavierian University, Carrera 7 No. 43 - 82, Bogotá, Colombia
| | - Hugo Díez
- Department of Microbiology, Pontifical Xavierian University, Carrera 7 No. 43 - 82, Bogotá, Colombia
| | - Javier Méndez
- Department of Microbiology, University of Barcelona, Diagonal 643, 08028, Barcelona, Spain.
| | - Anicet R Blanch
- Department of Microbiology, University of Barcelona, Diagonal 643, 08028, Barcelona, Spain
| | - Joan Jofre
- Department of Microbiology, University of Barcelona, Diagonal 643, 08028, Barcelona, Spain
| | - Claudia Campos
- Department of Microbiology, Pontifical Xavierian University, Carrera 7 No. 43 - 82, Bogotá, Colombia
| |
Collapse
|
14
|
Aburto-Medina A, Shahsavari E, Salzman SA, Kramer A, Ball AS, Allinson G. Elucidation of the microbial diversity in rivers in south-west Victoria, Australia impacted by rural agricultural contamination (dairy farming). ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2019; 172:356-363. [PMID: 30731266 DOI: 10.1016/j.ecoenv.2019.01.112] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Revised: 01/24/2019] [Accepted: 01/31/2019] [Indexed: 06/09/2023]
Abstract
We assessed the water quality of south-west Victorian rivers impacted by the dairy industry using traditional water quality assessment together with culture-dependent (colilert/enterolert) and also culture-independent (next generation sequencing) microbial methods. The aim of the study was to identify relationships/associations between dairy farming intensity and water contamination. Water samples with high total and faecal coliforms (>1000 MPN cfu/100 ml), and with high nitrogen levels (TN) were observed in zones with a high proportion of dairy farming. Members of the genus Nitrospira, Rhodobacter and Rhodoplanes were predominant in such high cattle density zones. Samples from sites in zones with lower dairy farming activities registered faecal coliform numbers within the permissible limits (<1000 MPN cfu/100 ml) and showed the presence of a wide variety of microorganisms. However, no bacterial pathogens were found in the river waters regardless of the proportion of cattle. The data suggests that using the spatially weighted proportion of land used for dairy farming is a useful way to target at-risk sub-catchments across south west Victoria; further work is required to confirm that this approach is applicable in other regions.
Collapse
Affiliation(s)
- Arturo Aburto-Medina
- Centre for Environmental Sustainability and Remediation, School of Science, RMIT University, Bundoora, Victoria 3083, Australia.
| | - Esmaeil Shahsavari
- Centre for Environmental Sustainability and Remediation, School of Science, RMIT University, Bundoora, Victoria 3083, Australia
| | - Scott A Salzman
- Department of Information Systems and Business Analytics, Deakin University, Warrnambool, Victoria 3280 Australia
| | - Andrew Kramer
- Environment Protection Authority Victoria, Centre for Applied Sciences, Ernest Jones Drive, Macleod, Victoria 3085 Australia; Waikato Regional Council, Private Bag 3038, Waikato Mail Centre, Hamilton 3240, New Zealand
| | - Andrew S Ball
- Centre for Environmental Sustainability and Remediation, School of Science, RMIT University, Bundoora, Victoria 3083, Australia
| | - Graeme Allinson
- Centre for Environmental Sustainability and Remediation, School of Science, RMIT University, Melbourne, Victoria 3001, Australia
| |
Collapse
|
15
|
Etheridge JR, Randolph M, Humphrey C. Real-Time Estimates of Escherichia coli Concentrations Using Ultraviolet-Visible Spectrometers. JOURNAL OF ENVIRONMENTAL QUALITY 2019; 48:531-536. [PMID: 30951126 DOI: 10.2134/jeq2018.08.0294] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Substantial effort has been invested in the development and testing of methods to rapidly measure the concentration of indicator bacteria in recreational waters. These efforts are driven by the need to quickly determine whether waters are contaminated and may pose excessive public health risks. In situ ultraviolet-visible (UV-vis) spectrometers have been used to monitor levels of multiple contaminants in surface waters by relating the absorption spectra to the measured concentrations using regression models. In this study, three different regression models were tested to see if spectroscopy could be used to rapidly predict concentrations in a freshwater stream. The regression models did not produce acceptable results when tested for all of the samples collected during an 11-mo period ( < 0.2). When divided into multiple subsets based on temperature, concentration, or rainfall, models produced adequate results for subsets of samples collected in the cooler months ( = 0.72) or on days when rainfall occurred ( = 0.58). Pairing a UV-vis spectrometer with regression models did not result in a model that could be used to estimate levels throughout the year, but the results promote further testing of this method when flow data is available in freshwaters, on beaches where rainfall causes elevated bacteria levels, and in shellfish growing waters.
Collapse
|
16
|
Nguyen KH, Senay C, Young S, Nayak B, Lobos A, Conrad J, Harwood VJ. Determination of wild animal sources of fecal indicator bacteria by microbial source tracking (MST) influences regulatory decisions. WATER RESEARCH 2018; 144:424-434. [PMID: 30059905 DOI: 10.1016/j.watres.2018.07.034] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Revised: 07/05/2018] [Accepted: 07/14/2018] [Indexed: 05/13/2023]
Abstract
Fecal indicator bacteria (FIB) are used to assess fecal pollution levels in surface water and are among the criteria used by regulatory agencies to determine water body impairment status. While FIB provide no information about pollution source, microbial source tracking (MST) does, which contributes to more direct and cost effective remediation efforts. We studied a watershed in Florida managed for wildlife conservation that historically exceeded the state regulatory guideline for fecal coliforms. We measured fecal coliforms, enterococci, a marker gene for avian feces (GFD), and a marker gene for human-associated Bacteroides (HF183) in sediment, vegetation, and water samples collected monthly from six sites over two years to: 1) assess the influence of site, temporal factors, and habitat (sediment, vegetation, and water) on FIB and MST marker concentrations, 2) test for correlations among FIB and MST markers, and 3) determine if avian feces and/or human sewage contributed to FIB levels. Sediment and vegetation had significantly higher concentrations of FIB and GFD compared to water and thus may serve as microbial reservoirs, providing unreliable indications of recent contamination. HF183 concentrations were greatest in water samples but were generally near the assay limit of detection. HF183-positive results were attributed to white-tailed deer (Odocoileus virginianus) feces, which provided a false indication of human sewage in this water body. FIB and GFD were positively correlated while FIB and HF183 were negatively correlated. We demonstrated that birds, not sewage, were the main source of FIB, thus avoiding implementation of a total maximum daily load program (TMDL). Our results demonstrate that the concomitant use of FIB and MST can improve decision-making and provide direction when water bodies are impaired, and provides a strategy for natural source exclusion in water bodies impacted by wild animal feces.
Collapse
Affiliation(s)
- K H Nguyen
- Department of Integrative Biology, University of South Florida, 4202 East Fowler Avenue, SCA 110, Tampa, FL 33620, USA
| | - C Senay
- Department of Integrative Biology, University of South Florida, 4202 East Fowler Avenue, SCA 110, Tampa, FL 33620, USA
| | - S Young
- Department of Integrative Biology, University of South Florida, 4202 East Fowler Avenue, SCA 110, Tampa, FL 33620, USA
| | - B Nayak
- Department of Integrative Biology, University of South Florida, 4202 East Fowler Avenue, SCA 110, Tampa, FL 33620, USA
| | - A Lobos
- Department of Integrative Biology, University of South Florida, 4202 East Fowler Avenue, SCA 110, Tampa, FL 33620, USA
| | - J Conrad
- Department of Integrative Biology, University of South Florida, 4202 East Fowler Avenue, SCA 110, Tampa, FL 33620, USA
| | - V J Harwood
- Department of Integrative Biology, University of South Florida, 4202 East Fowler Avenue, SCA 110, Tampa, FL 33620, USA.
| |
Collapse
|
17
|
Hamilton KA, Waso M, Reyneke B, Saeidi N, Levine A, Lalancette C, Besner MC, Khan W, Ahmed W. Cryptosporidium and Giardia in Wastewater and Surface Water Environments. JOURNAL OF ENVIRONMENTAL QUALITY 2018; 47:1006-1023. [PMID: 30272766 DOI: 10.2134/jeq2018.04.0132] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
and spp. are significant contributors to the global waterborne disease burden. Waterways used as sources of drinking water and for recreational activity can become contaminated through the introduction of fecal materials derived from humans and animals. Multiple studies have reported the occurence or concentrations of these pathogens in the environment. However, this information has not been comprehensively reviewed. Quantitative microbial risk assessment (QMRA) for and can be beneficial, but it often relies on the concentrations in environmental sources reported from the literature. A thorough literature review was conducted to develop an inventory of reported and concentrations in wastewater and surface water available in the literature. This information can be used to develop QMRA inputs. and (oo)cyst concentrations in untreated wastewater were up to 60,000 oocysts L and 100,000 cysts L, respectively. The maximum reported concentrations for and in surface water were 8400 oocysts L and 1000 cysts L, respectively. A summary of the factors for interpretation of concentration information including common quantification methods, survival and persistence, biofilm interactions, genotyping, and treatment removal is provided in this review. This information can help in identifying assumptions implicit in various QMRA parameters, thus providing the context and rationale to guide model formulation and application. Additionally, it can provide valuable information for water quality practitioners striving to meet the recreational water quality or treatment criteria. The goal is for the information provided in the current review to aid in developing source water protection and monitoring strategies that will minimize public health risks.
Collapse
|
18
|
Jiang YS, Riedel TE, Popoola JA, Morrow BR, Cai S, Ellington AD, Bhadra S. Portable platform for rapid in-field identification of human fecal pollution in water. WATER RESEARCH 2018; 131:186-195. [PMID: 29278789 PMCID: PMC5999531 DOI: 10.1016/j.watres.2017.12.023] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2017] [Revised: 12/06/2017] [Accepted: 12/12/2017] [Indexed: 05/02/2023]
Abstract
Human fecal contamination of water is a public health risk. However, inadequate testing solutions frustrate timely, actionable monitoring. Bacterial culture-based methods are simple but typically cannot distinguish fecal host source. PCR assays can identify host sources but require expertise and infrastructure. To bridge this gap we have developed a field-ready nucleic acid diagnostic platform and rapid sample preparation methods that enable on-site identification of human fecal contamination within 80 min of sampling. Our platform relies on loop-mediated isothermal amplification (LAMP) of human-associated Bacteroides HF183 genetic markers from crude samples. Oligonucleotide strand exchange (OSD) probes reduce false positives by sequence specifically transducing LAMP amplicons into visible fluorescence that can be photographed by unmodified smartphones. Our assay can detect as few as 17 copies/ml of human-associated HF183 targets in sewage-contaminated water without cross-reaction with canine or feline feces. It performs robustly with a variety of environmental water sources and with raw sewage. We have also developed lyophilized assays and inexpensive 3D-printed devices to minimize cost and facilitate field application.
Collapse
Affiliation(s)
- Yu Sherry Jiang
- Department of Molecular Biosciences, College of Natural Sciences, The University of Texas at Austin, Austin, TX 78712, USA
| | - Timothy E Riedel
- Freshman Research Initiative, College of Natural Sciences, The University of Texas at Austin, Austin, TX 78712, USA
| | - Jessica A Popoola
- Freshman Research Initiative, College of Natural Sciences, The University of Texas at Austin, Austin, TX 78712, USA
| | - Barrett R Morrow
- Freshman Research Initiative, College of Natural Sciences, The University of Texas at Austin, Austin, TX 78712, USA
| | - Sheng Cai
- Department of Molecular Biosciences, College of Natural Sciences, The University of Texas at Austin, Austin, TX 78712, USA
| | - Andrew D Ellington
- Department of Molecular Biosciences, College of Natural Sciences, The University of Texas at Austin, Austin, TX 78712, USA
| | - Sanchita Bhadra
- Department of Molecular Biosciences, College of Natural Sciences, The University of Texas at Austin, Austin, TX 78712, USA.
| |
Collapse
|
19
|
Cross-Comparison of Human Wastewater-Associated Molecular Markers in Relation to Fecal Indicator Bacteria and Enteric Viruses in Recreational Beach Waters. Appl Environ Microbiol 2017; 83:AEM.00028-17. [PMID: 28159789 DOI: 10.1128/aem.00028-17] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2017] [Accepted: 01/25/2017] [Indexed: 11/20/2022] Open
Abstract
Detection of human wastewater contamination in recreational waters is of critical importance to regulators due to the risks posed to public health. To identify such risks, human wastewater-associated microbial source tracking (MST) markers have been developed. At present, however, a greater understanding of the suitability of these markers for the detection of diluted human wastewater in environmental waters is necessary to predict risk. Here, we compared the process limit of detection (PLOD) and process limit of quantification (PLOQ) of six human wastewater-associated MST markers (Bacteroides HF183 [HF183], Escherichia coli H8 [EC H8], Methanobrevibacter smithiinifH, human adenovirus [HAdV], human polyomavirus [HPyV], and pepper mild mottle virus [PMMoV]) in relation to a fecal indicator bacterium (FIB), Enterococcus sp. 23S rRNA (ENT 23S), and three enteric viruses (human adenovirus serotypes 40/41 [HAdV 40/41], human norovirus [HNoV], and human enterovirus [EV]) in beach water samples seeded with raw and secondary-treated wastewater. Among the six MST markers tested, HF183 was the most sensitive measure of human fecal pollution and was quantifiable up to dilutions of 10-6 and 10-4 for beach water samples seeded with raw and secondary-treated wastewater, respectively. Other markers and enteric viruses were detected at various dilutions (10-1 to 10-5). These MST markers, FIB, and enteric viruses were then quantified in beach water (n = 12) and sand samples (n = 12) from South East Queensland (SEQ), Australia, to estimate the levels of human fecal pollution. Of the 12 sites examined, beach water and sand samples from several sites had quantifiable concentrations of HF183 and PMMoV markers. Overall, our results indicate that while HF183 is the most sensitive measure of human fecal pollution, it should be used in conjunction with a conferring viral marker to avoid overestimating the risk of gastrointestinal illness.IMPORTANCE MST is an effective tool to help utilities and regulators improve recreational water quality around the globe. Human fecal pollution poses significant public health risks compared to animal fecal pollution. Several human wastewater-associated markers have been developed and used for MST field studies. However, a head-to-head comparison in terms of their performance to detect diluted human fecal pollution in recreational water is lacking. In this study, we cross-compared the performance of six human wastewater-associated markers in relation to FIB and enteric viruses in beach water samples seeded with raw and secondary-treated wastewater. The results of this study will provide guidance to regulators and utilities on the appropriate application of MST markers for tracking the sources of human fecal pollution in environmental waters and confer human health risks.
Collapse
|
20
|
Current Status of Marker Genes of Bacteroides and Related Taxa for Identifying Sewage Pollution in Environmental Waters. WATER 2016. [DOI: 10.3390/w8060231] [Citation(s) in RCA: 91] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
21
|
Shanks OC, Kelty CA, Oshiro R, Haugland RA, Madi T, Brooks L, Field KG, Sivaganesan M. Data Acceptance Criteria for Standardized Human-Associated Fecal Source Identification Quantitative Real-Time PCR Methods. Appl Environ Microbiol 2016; 82:2773-2782. [PMID: 26921430 PMCID: PMC4836407 DOI: 10.1128/aem.03661-15] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2015] [Accepted: 02/23/2016] [Indexed: 11/20/2022] Open
Abstract
There is growing interest in the application of human-associated fecal source identification quantitative real-time PCR (qPCR) technologies for water quality management. The transition from a research tool to a standardized protocol requires a high degree of confidence in data quality across laboratories. Data quality is typically determined through a series of specifications that ensure good experimental practice and the absence of bias in the results due to DNA isolation and amplification interferences. However, there is currently a lack of consensus on how best to evaluate and interpret human fecal source identification qPCR experiments. This is, in part, due to the lack of standardized protocols and information on interlaboratory variability under conditions for data acceptance. The aim of this study is to provide users and reviewers with a complete series of conditions for data acceptance derived from a multiple laboratory data set using standardized procedures. To establish these benchmarks, data from HF183/BacR287 and HumM2 human-associated qPCR methods were generated across 14 laboratories. Each laboratory followed a standardized protocol utilizing the same lot of reference DNA materials, DNA isolation kits, amplification reagents, and test samples to generate comparable data. After removal of outliers, a nested analysis of variance (ANOVA) was used to establish proficiency metrics that include lab-to-lab, replicate testing within a lab, and random error for amplification inhibition and sample processing controls. Other data acceptance measurements included extraneous DNA contamination assessments (no-template and extraction blank controls) and calibration model performance (correlation coefficient, amplification efficiency, and lower limit of quantification). To demonstrate the implementation of the proposed standardized protocols and data acceptance criteria, comparable data from two additional laboratories were reviewed. The data acceptance criteria proposed in this study should help scientists, managers, reviewers, and the public evaluate the technical quality of future findings against an established benchmark.
Collapse
Affiliation(s)
- Orin C Shanks
- U.S. Environmental Protection Agency, Office of Research and Development, Cincinnati, Ohio, USA
| | - Catherine A Kelty
- U.S. Environmental Protection Agency, Office of Research and Development, Cincinnati, Ohio, USA
| | - Robin Oshiro
- U.S. Environmental Protection Agency, Office of Water, Washington DC, USA
| | - Richard A Haugland
- U.S. Environmental Protection Agency, Office of Research and Development, Cincinnati, Ohio, USA
| | - Tania Madi
- Source Molecular Corporation, Miami, Florida, USA
| | - Lauren Brooks
- Department of Microbiology, Oregon State University, Corvallis, Oregon, USA
| | - Katharine G Field
- Department of Microbiology, Oregon State University, Corvallis, Oregon, USA
| | - Mano Sivaganesan
- U.S. Environmental Protection Agency, Office of Research and Development, Cincinnati, Ohio, USA
| |
Collapse
|
22
|
Abia ALK, Ubomba-Jaswa E, Momba MNB. Impact of seasonal variation on Escherichia coli concentrations in the riverbed sediments in the Apies River, South Africa. THE SCIENCE OF THE TOTAL ENVIRONMENT 2015; 537:462-469. [PMID: 26318680 DOI: 10.1016/j.scitotenv.2015.07.132] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2015] [Revised: 07/27/2015] [Accepted: 07/27/2015] [Indexed: 06/04/2023]
Abstract
Many South Africans living in resource-poor settings with little or no access to pipe-borne water still rely on rivers as alternative water sources for drinking and other purposes. The poor microbial quality of such water bodies calls for appropriate monitoring. However, routine monitoring only takes into consideration the microbial quality of the water column, and does not include monitoring of the riverbed sediments for microbial pollution. This study sought to investigate the microbial quality of riverbed sediments in the Apies River, Gauteng Province, South Africa, using Escherichia coli as a faecal indicator organism and to investigate the impact of seasonal variation on its abundance. Weekly samples were collected at 10 sampling sites on the Apies River between May and August 2013 (dry season) and between January and February 2014 (wet season). E. coli was enumerated using the Colilert®-18 Quanti-Tray® 2000 system. All sites tested positive for E. coli. Wastewater treatment work effluents had the highest negative impact on the river water quality. Seasonal variations had an impact on the concentration of E. coli both in water and sediments with concentrations increasing during the wet season. A strong positive correlation was observed between temperature and the E. coli concentrations. We therefore conclude that the sediments of the Apies River are heavily polluted with faecal indicator bacteria and could also harbour other microorganisms including pathogens. The release of such pathogens into the water column as a result of the resuspension of sediments due to extreme events like floods or human activities could increase the health risk of the populations using the untreated river water for recreation and other household purposes. There is therefore an urgent need to reconsider and review the current South African guidelines for water quality monitoring to include sediments, so as to protect human health and other aquatic lives.
Collapse
Affiliation(s)
- Akebe Luther King Abia
- Department of Environmental, Water and Earth Science, Tshwane University of Technology, Arcadia Campus, 175 Nelson Mandela Drive, Pretoria 0001, South Africa.
| | - Eunice Ubomba-Jaswa
- Natural Resources and the Environment, CSIR, PO Box 395, Pretoria 0001, South Africa
| | - Maggy Ndombo Benteke Momba
- Department of Environmental, Water and Earth Science, Tshwane University of Technology, Arcadia Campus, 175 Nelson Mandela Drive, Pretoria 0001, South Africa.
| |
Collapse
|
23
|
He X, Chen H, Shi W, Cui Y, Zhang XX. Persistence of mitochondrial DNA markers as fecal indicators in water environments. THE SCIENCE OF THE TOTAL ENVIRONMENT 2015; 533:383-390. [PMID: 26172605 DOI: 10.1016/j.scitotenv.2015.06.119] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2015] [Revised: 06/08/2015] [Accepted: 06/26/2015] [Indexed: 06/04/2023]
Abstract
Mitochondrial DNA (mtDNA) polymerase chain reaction (PCR) technology has recently been developed to identify sources of fecal contamination, but information regarding environmental fate of mtDNA is limited. In this study, quantitative real-time PCR was used to determine the persistence of three species-specific mtDNA markers (human, pig and chicken) in river microcosms under different laboratory conditions and in dialysis tubes incubated in river environments during different seasons. Human feces had a higher abundance of mtDNA marker than pig and chicken feces. A biphasic decay pattern was observed for the mtDNA markers in microcosms incubated in darkness, and T90 (time needed for 90% reduction) ranged from 2.03 to 13.83 d. Each species-specific mtDNA marker persisted for relatively longer time at lower temperatures, and light exposure and predation increased the decay rates. Field experiments showed that the mtDNA markers could survive for longer time in winter (T90: 1.79-4.37 d) than in summer (T90: 0.60-0.75 d). Field application of mtDNA technology indicated that the markers were mainly distributed on the sites near animal breeding plants and had lower abundance in downstream water of the receiving river. This study expands our knowledge of the environmental fate of mtDNA markers and the results may be useful for practical application of the technology in fecal source tracking.
Collapse
Affiliation(s)
- Xiwei He
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, China
| | - Huimei Chen
- Jiangsu Key Laboratory of Molecular Medicine, School of Medicine, Nanjing University, China.
| | - Wei Shi
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, China
| | - Yibin Cui
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, China
| | - Xu-Xiang Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, China.
| |
Collapse
|
24
|
Microbial Source Tracking in Adjacent Karst Springs. Appl Environ Microbiol 2015; 81:5037-47. [PMID: 26002893 DOI: 10.1128/aem.00855-15] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2015] [Accepted: 04/26/2015] [Indexed: 02/07/2023] Open
Abstract
Modern man-made environments, including urban, agricultural, and industrial environments, have complex ecological interactions among themselves and with the natural surroundings. Microbial source tracking (MST) offers advanced tools to resolve the host source of fecal contamination beyond indicator monitoring. This study was intended to assess karst spring susceptibilities to different fecal sources using MST quantitative PCR (qPCR) assays targeting human, bovine, and swine markers. It involved a dual-time monitoring frame: (i) monthly throughout the calendar year and (ii) daily during a rainfall event. Data integration was taken from both monthly and daily MST profile monitoring and improved identification of spring susceptibility to host fecal contamination; three springs located in close geographic proximity revealed different MST profiles. The Giach spring showed moderate fluctuations of MST marker quantities amid wet and dry samplings, while the Zuf spring had the highest rise of the GenBac3 marker during the wet event, which was mirrored in other markers as well. The revelation of human fecal contamination during the dry season not connected to incidents of raining leachates suggests a continuous and direct exposure to septic systems. Pigpens were identified in the watersheds of Zuf, Shefa, and Giach springs and on the border of the Gaaton spring watershed. Their impact was correlated with partial detection of the Pig-2-Bac marker in Gaaton spring, which was lower than detection levels in all three of the other springs. Ruminant and swine markers were detected intermittently, and their contamination potential during the wet samplings was exposed. These results emphasized the importance of sampling design to utilize the MST approach to delineate subtleties of fecal contamination in the environment.
Collapse
|
25
|
Villemur R, Imbeau M, Vuong MN, Masson L, Payment P. An environmental survey of surface waters using mitochondrial DNA from human, bovine and porcine origin as fecal source tracking markers. WATER RESEARCH 2015; 69:143-153. [PMID: 25463935 DOI: 10.1016/j.watres.2014.10.063] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2014] [Revised: 09/15/2014] [Accepted: 10/29/2014] [Indexed: 06/04/2023]
Abstract
Fecal contamination of surface waters is one the major sources of waterborne pathogens and consequently, is an important concern for public health. For reliable fecal source tracking (FST) monitoring, there is a need for a multi-marker toolbox as no single all-encompassing method currently exists. Mitochondrial DNA (mtDNA) as a source tracking marker has emerged as a promising animal-specific marker. However, very few comprehensive field studies were done on the occurrence of this marker in surface waters. In this report, water samples were obtained from 82 sites in different watersheds over a six year period. The samples were analyzed for the presence of human, bovine and porcine mtDNA by endpoint nested PCR, along with the human-specific Bacteroidales HF183 marker. These sites represented a mix of areas with different anthropogenic activities, natural, urban and agricultural. The occurrences of mitoHu (human), mitoBo (bovine), mitoPo (porcine) and HF183 specific PCR amplifications from the samples were 46%, 23%, 6% and 50%, respectively. The occurrence of mitoHu and HF183 was high in all environment types with higher occurrence in the natural and urban areas, whereas the occurrence of mitoBo was higher in agricultural areas. FST marker concentrations were measured by real-time PCR for samples positive for these markers. The concentration of the mitoHu markers was one order of magnitude lower than HF183. There was co-linearity between the concentrations of the mitoHu and HF183 markers. Co-linearity was also observed between HF183 concentration and fecal coliform levels. Such a relationship was not observed between the mitoHu concentration and fecal coliform levels. In summary, our results showed a high incidence of human fecal pollution throughout the environment while demonstrating the potential of mtDNA as suitable FST markers.
Collapse
Affiliation(s)
- Richard Villemur
- INRS-Institut Armand-Frappier, 531 Boulevard des Prairies, Laval, QC H7V 1B7, Canada.
| | - Marianne Imbeau
- INRS-Institut Armand-Frappier, 531 Boulevard des Prairies, Laval, QC H7V 1B7, Canada
| | - Minh N Vuong
- National Research Council of Canada, 6100 Royalmount Ave, Montreal, QC, Canada
| | - Luke Masson
- National Research Council of Canada, 6100 Royalmount Ave, Montreal, QC, Canada; Université de Montréal, Dépt. Microbiologie et Immunologie, Montréal, QC, Canada
| | - Pierre Payment
- INRS-Institut Armand-Frappier, 531 Boulevard des Prairies, Laval, QC H7V 1B7, Canada
| |
Collapse
|
26
|
Biotic interactions and sunlight affect persistence of fecal indicator bacteria and microbial source tracking genetic markers in the upper Mississippi river. Appl Environ Microbiol 2014; 80:3952-61. [PMID: 24747902 DOI: 10.1128/aem.00388-14] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The sanitary quality of recreational waters that may be impacted by sewage is assessed by enumerating fecal indicator bacteria (FIB) (Escherichia coli and enterococci); these organisms are found in the gastrointestinal tracts of humans and many other animals, and hence their presence provides no information about the pollution source. Microbial source tracking (MST) methods can discriminate between different pollution sources, providing critical information to water quality managers, but relatively little is known about factors influencing the decay of FIB and MST genetic markers following release into aquatic environments. An in situ mesocosm was deployed at a temperate recreational beach in the Mississippi River to evaluate the effects of ambient sunlight and biotic interactions (predation, competition, and viral lysis) on the decay of culture-based FIB, as well as molecularly based FIB (Entero1a and GenBac3) and human-associated MST genetic markers (HF183 and HumM2) measured by quantitative real-time PCR (qPCR). In general, culturable FIB decayed the fastest, while molecularly based FIB and human-associated genetic markers decayed more slowly. There was a strong correlation between the decay of molecularly based FIB and that of human-associated genetic markers (r(2), 0.96 to 0.98; P < 0.0001) but not between culturable FIB and any qPCR measurement. Overall, exposure to ambient sunlight may be an important factor in the early-stage decay dynamics but generally was not after continued exposure (i.e., after 120 h), when biotic interactions tended to be the only/major influential determinant of persistence.
Collapse
|
27
|
Staley ZR, Chase E, Mitraki C, Crisman TL, Harwood VJ. Microbial water quality in freshwater lakes with different land use. J Appl Microbiol 2013; 115:1240-50. [PMID: 23889752 DOI: 10.1111/jam.12312] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2013] [Revised: 07/18/2013] [Accepted: 07/23/2013] [Indexed: 11/30/2022]
Abstract
AIMS The relationship between land use (undeveloped, cattle grazing, urban), faecal indicator bacteria (FIB) levels and microbial source tracking (MST) marker detection was investigated in lakes created following phosphate mining. METHODS AND RESULTS Faecal coliforms and enterococci were cultured, and MST markers were detected by PCR [Methanobrevibacter smithii, human polyomaviruses (HPyVs), ruminant, human (HF183) and general Bacteroidales]. FIB levels varied significantly by sampling date and were correlated with antecedent rainfall. FIB levels varied with land use category only in the case of faecal coliform levels in sediments of urban lakes, which were significantly greater than those in undeveloped or cattle-impacted lakes. Ruminant Bacteroidales were detected consistently in cattle-impacted lakes (57%) and rarely in other lakes. HPyVs was the only human source marker detected. CONCLUSIONS Rainfall was more strongly associated with FIB levels than land use category. The detection frequency of only the ruminant MST marker was associated with land use. SIGNIFICANCE AND IMPACT OF STUDY Microbial source tracking (MST) can fine-tune the assessment of human health risk from recreational use of inland waters, particularly when similar FIB levels but different surrounding land use and probable impacts exist.
Collapse
Affiliation(s)
- Z R Staley
- Department of Integrative Biology, University of South Florida, Tampa, FL, USA
| | | | | | | | | |
Collapse
|
28
|
Indigenous microbiota and habitat influence Escherichia coli survival more than sunlight in simulated aquatic environments. Appl Environ Microbiol 2013; 79:5329-37. [PMID: 23811514 DOI: 10.1128/aem.01362-13] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The reported fate of Escherichia coli in the environment ranges from extended persistence to rapid decline. Incomplete understanding of factors that influence survival hinders risk assessment and modeling of the fate of fecal indicator bacteria (FIB) and pathogens. FIB persistence in subtropical aquatic environments was explored in outdoor mesocosms inoculated with five E. coli strains. The manipulated environmental factors were (i) presence or absence of indigenous microbiota (attained by natural, disinfected, and cycloheximide treatments), (ii) freshwater versus seawater, and (iii) water column versus sediment matrices. When indigenous microbes were removed (disinfected), E. coli concentrations decreased little despite exposure to sunlight. Conversely, under conditions that included the indigenous microbiota (natural), significantly greater declines in E. coli occurred regardless of the habitat. The presence of indigenous microbiota and matrix significantly influenced E. coli decline, but their relative importance differed in freshwater versus seawater. Cycloheximide, which inhibits protein synthesis in eukaryotes, significantly diminished the magnitude of E. coli decline in water but not in sediments. The inactivation of protozoa and bacterial competitors (disinfected) caused a greater decline in E. coli than cycloheximide alone in water and sediments. These results indicate that the autochthonous microbiota are an important contributor to the decline of E. coli in fresh and seawater subtropical systems, but their relative contribution is habitat dependent. This work advances our understanding of how interactions with autochthonous microbiota influence the fate of E. coli in aquatic environments and provides the framework for studies of the ecology of enteric pathogens and other allochthonous bacteria in similar environments.
Collapse
|
29
|
Quantification of human and animal viruses to differentiate the origin of the fecal contamination present in environmental samples. BIOMED RESEARCH INTERNATIONAL 2013; 2013:192089. [PMID: 23762826 PMCID: PMC3671278 DOI: 10.1155/2013/192089] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/01/2013] [Accepted: 04/17/2013] [Indexed: 12/28/2022]
Abstract
Many different viruses are excreted by humans and animals and are frequently detected in fecal contaminated waters causing public health concerns. Classical bacterial indicator such as E. coli and enterococci could fail to predict the risk for waterborne pathogens such as viruses. Moreover, the presence and levels of bacterial indicators do not always correlate with the presence and concentration of viruses, especially when these indicators are present in low concentrations. Our research group has proposed new viral indicators and methodologies for determining the presence of fecal pollution in environmental samples as well as for tracing the origin of this fecal contamination (microbial source tracking). In this paper, we examine to what extent have these indicators been applied by the scientific community. Recently, quantitative assays for quantification of poultry and ovine viruses have also been described. Overall, quantification by qPCR of human adenoviruses and human polyomavirus JC, porcine adenoviruses, bovine polyomaviruses, chicken/turkey parvoviruses, and ovine polyomaviruses is suggested as a toolbox for the identification of human, porcine, bovine, poultry, and ovine fecal pollution in environmental samples.
Collapse
|