1
|
Sivamaruthi BS, Kesika P, Sisubalan N, Chaiyasut C. The Role of Essential Oils on Sleep Quality and Other Sleep-related Issues: Evidence from Clinical Trials. Mini Rev Med Chem 2025; 25:234-258. [PMID: 39225207 DOI: 10.2174/0113895575315700240821054716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 05/27/2024] [Accepted: 06/07/2024] [Indexed: 09/04/2024]
Abstract
Essential oils (EOs) are a volatile mixture of bioactive compounds extracted from aromatic plants. The composition of EOs varies, which majorly depends on the extraction methods and plant parts. Aromatherapy using EOs has been reported for its several beneficial effects in humans. Aromatherapy is considered a complementary and/ or adjuvant therapeutic approach for treating several illnesses, especially to improve mental health and well-being. The incidence of sleep disorders, specifically insomnia, is nowadays increased, possibly due to urbanization and lifestyle. The studies showed that EOs-based treatments using lavender EO, bergamot EO, cinnamon EO, and rosemary EO (alone or in combinations) could improve sleep quality, duration, and deprivation in healthy subjects and patients, those who suffer from sleep-related issues. The current manuscript details the outcomes of EO-based treatments on the sleep quality of humans and the possible mechanisms associated with the health-promoting properties of EOs. Also, the toxicity and adverse effects of EOs have been discussed. The study indicated that EOs are potent adjuvant therapeutic candidates to manage mood-associated complications in humans. Moreover, the aromatherapeutic field requires detailed studies on toxicity and dose determination, which could provide safe and effective therapeutic results.
Collapse
Affiliation(s)
- Bhagavathi Sundaram Sivamaruthi
- Office of Research Administration, Chiang Mai University, Chiang Mai, 50200, Thailand
- Faculty of Pharmacy, Innovation Center for Holistic Health, Nutraceuticals and Cosmeceuticals, , Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Periyanaina Kesika
- Office of Research Administration, Chiang Mai University, Chiang Mai, 50200, Thailand
- Faculty of Pharmacy, Innovation Center for Holistic Health, Nutraceuticals and Cosmeceuticals, , Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Natarajan Sisubalan
- Office of Research Administration, Chiang Mai University, Chiang Mai, 50200, Thailand
- Faculty of Pharmacy, Innovation Center for Holistic Health, Nutraceuticals and Cosmeceuticals, , Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Chaiyavat Chaiyasut
- Faculty of Pharmacy, Innovation Center for Holistic Health, Nutraceuticals and Cosmeceuticals, , Chiang Mai University, Chiang Mai, 50200, Thailand
| |
Collapse
|
2
|
Botello-Ojeda AG, Juárez ZN, Tepale N, Rivera-Márquez JA, Conde-Hernández LA. Chemical composition, antioxidant activity and toxicity of the essential oil from Clinopodium mexicanum. Nat Prod Res 2024; 38:3528-3534. [PMID: 37675601 DOI: 10.1080/14786419.2023.2253969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 07/24/2023] [Accepted: 08/28/2023] [Indexed: 09/08/2023]
Abstract
Clinopodium mexicanum (CM) has been used by the population as a home remedy for inducing sleep, and as a sedative and analgesic. This study presents the first evaluation of the antioxidant activity of the essential oil (EO) obtained through hydrodistillation of the aerial parts of CM. NaCl, CaCl2, and Tween 20 were used as additives and the yield, chemical composition, and toxicity of the EO were evaluated. The findings revealed that the highest yield of EO was obtained through hydrodistillation without additives, and the additives significantly influenced the antioxidant activity of the EO. The main components of the EO were found to be pulegone and menthone. The toxicity of the EO was determined using the brine shrimp assay, with an LD50 of 32 mg/L. Based on these results, the authors suggest that the Clinopodium mexicanum EO has the potential to serve as a natural antioxidant.
Collapse
Affiliation(s)
| | - Zaida Nelly Juárez
- Área de química, Decanato de Ciencias Biológicas, Universidad Popular Autónoma del Estado de Puebla, Puebla, México
| | - Nancy Tepale
- Facultad de Ingeniería Química, Benemérita Universidad Autónoma de Puebla, Puebla, México
| | | | | |
Collapse
|
3
|
Elsherief MF, Devecioglu D, Saleh MN, Karbancioglu-Guler F, Capanoglu E. Chitosan/alginate/pectin biopolymer-based Nanoemulsions for improving the shelf life of refrigerated chicken breast. Int J Biol Macromol 2024; 264:130213. [PMID: 38365158 DOI: 10.1016/j.ijbiomac.2024.130213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 02/05/2024] [Accepted: 02/13/2024] [Indexed: 02/18/2024]
Abstract
This study investigated the use of nanoemulsions and various polymer coatings to enhance the quality and shelf life of chicken breast. This comprehensive study explored the antibacterial activity of essential oils (EOs) against Escherichia coli and Staphylococcus aureus, as well as the characterization of nanoemulsions (Nes) and nanoemulsion-based coatings. The antimicrobial potential of EOs, such as cinnamon, tea tree, jojoba, thyme, and black cumin seed oil, was evaluated against microorganisms, and thyme oil exhibited the highest inhibitory effect, followed by cinnamon and tea tree oil by disk diffusion analysis. The MIC and MBC values of EOs were found between 0.16-2.5 mg/mL and 0.16-5 mg/mL, respectively, while thyme EO resulted in the lowest values showing its antimicrobial potential. Then, the essential oil nanoemulsions (EONe) and their coatings, formulated with thyme oil, alginate, chitosan, and pectin, were successfully characterized. Optical microscope observations confirmed the uniform distribution of droplets in all (EONe), while particle size analysis demonstrated multimodal droplet size distributions. The EONe-chitosan coating showed the highest efficacy in reducing cooking loss, while the EONe-chitosan, EONe-alginate, and EONe-pectin coatings displayed promising outcomes in preserving color stability. Microbial analysis revealed the significant inhibitory effects of the EONe-chitosan coating against mesophilic bacteria, psychrophilic bacteria, and yeasts, leading to an extended shelf life of chicken breast. These results suggest the potential application of thyme oil and NE-based coatings in various industries for antimicrobial activity and quality preservation.
Collapse
Affiliation(s)
- Mai F Elsherief
- Animal Health Research Institute, Agricultural Research Center, Giza, Egypt; Department of Food Engineering, Faculty of Chemical and Metallurgical Engineering, Istanbul Technical University, 34469, Maslak, Istanbul, Türkiye
| | - Dilara Devecioglu
- Department of Food Engineering, Faculty of Chemical and Metallurgical Engineering, Istanbul Technical University, 34469, Maslak, Istanbul, Türkiye
| | - Mohamed N Saleh
- Department of Food Engineering, Faculty of Chemical and Metallurgical Engineering, Istanbul Technical University, 34469, Maslak, Istanbul, Türkiye; Food Technology Research Institute, Agricultural Research Center, Giza, Egypt
| | - Funda Karbancioglu-Guler
- Department of Food Engineering, Faculty of Chemical and Metallurgical Engineering, Istanbul Technical University, 34469, Maslak, Istanbul, Türkiye
| | - Esra Capanoglu
- Department of Food Engineering, Faculty of Chemical and Metallurgical Engineering, Istanbul Technical University, 34469, Maslak, Istanbul, Türkiye.
| |
Collapse
|
4
|
Moraru A, Dima ȘO, Tritean N, Oprița EI, Prelipcean AM, Trică B, Oancea A, Moraru I, Constantinescu-Aruxandei D, Oancea F. Bioactive-Loaded Hydrogels Based on Bacterial Nanocellulose, Chitosan, and Poloxamer for Rebalancing Vaginal Microbiota. Pharmaceuticals (Basel) 2023; 16:1671. [PMID: 38139798 PMCID: PMC10748236 DOI: 10.3390/ph16121671] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 11/23/2023] [Accepted: 11/24/2023] [Indexed: 12/24/2023] Open
Abstract
Biocompatible drug-delivery systems for soft tissue applications are of high interest for the medical and pharmaceutical fields. The subject of this research is the development of hydrogels loaded with bioactive compounds (inulin, thyme essential oil, hydro-glycero-alcoholic extract of Vitis vinifera, Opuntia ficus-indica powder, lactic acid, citric acid) in order to support the vaginal microbiota homeostasis. The nanofibrillar phyto-hydrogel systems developed using the biocompatible polymers chitosan (CS), never-dried bacterial nanocellulose (NDBNC), and Poloxamer 407 (PX) incorporated the water-soluble bioactive components in the NDBNC hydrophilic fraction and the hydrophobic components in the hydrophobic core of the PX fraction. Two NDBNC-PX hydrogels and one NDBNC-PX-CS hydrogel were structurally and physical-chemically characterized using Fourier-transform infrared (FTIR) spectroscopy, X-ray diffraction (XRD), transmission electron microscopy (TEM), and rheology. The hydrogels were also evaluated in terms of thermo-responsive properties, mucoadhesion, biocompatibility, and prebiotic and antimicrobial effects. The mucin binding efficiency of hydrogel base systems was determined by the periodic acid/Schiff base (PAS) assay. Biocompatibility of hydrogel systems was determined by the MTT test using mouse fibroblasts. The prebiotic activity was determined using the probiotic strains Limosilactobacillus reuteri and Lactiplantibacillus plantarum subsp. plantarum. Antimicrobial activity was also assessed using relevant microbial strains, respectively, E. coli and C. albicans. TEM evidenced PX micelles of around 20 nm on NDBNC nanofibrils. The FTIR and XRD analyses revealed that the binary hydrogels are dominated by PX signals, and that the ternary hydrogel is dominated by CS, with additional particular fingerprints for the biocompounds and the hydrogel interaction with mucin. Rheology evidenced the gel transition temperatures of 18-22 °C for the binary hydrogels with thixotropic behavior and, respectively, no gel transition, with rheopectic behavior for the ternary hydrogel. The adhesion energies of the binary and ternary hydrogels were evaluated to be around 1.2 J/m2 and 9.1 J/m2, respectively. The hydrogels exhibited a high degree of biocompatibility, with the potential to support cell proliferation and also to promote the growth of lactobacilli. The hydrogel systems also presented significant antimicrobial and antibiofilm activity.
Collapse
Affiliation(s)
- Angela Moraru
- Faculty of Biotechnologies, University of Agronomic Sciences and Veterinary Medicine Bucharest, Bd. Mărăști Nr. 59, Sector 1, 011464 Bucharest, Romania;
- S.C. Laboratoarele Medica Srl, Strada Frasinului Nr. 11, 075100 Otopeni, Romania;
| | - Ștefan-Ovidiu Dima
- Polymers and Bioresources Departments, National Institute for Research and Development in Chemistry and Petrochemistry—ICECHIM, Splaiul Independentei Nr. 202, Sector 6, 060021 Bucharest, Romania; (Ș.-O.D.); (N.T.); (B.T.)
| | - Naomi Tritean
- Polymers and Bioresources Departments, National Institute for Research and Development in Chemistry and Petrochemistry—ICECHIM, Splaiul Independentei Nr. 202, Sector 6, 060021 Bucharest, Romania; (Ș.-O.D.); (N.T.); (B.T.)
- Faculty of Biology, University of Bucharest, Splaiul Independentei Nr. 91-95, Sector 5, 050095 Bucharest, Romania
| | - Elena-Iulia Oprița
- Department of Cellular and Molecular Biology, National Institute of Research and Development for Biological Sciences, Splaiul Independentei Nr. 296, Sector 6, 060031 Bucharest, Romania; (E.-I.O.); (A.-M.P.); (A.O.)
| | - Ana-Maria Prelipcean
- Department of Cellular and Molecular Biology, National Institute of Research and Development for Biological Sciences, Splaiul Independentei Nr. 296, Sector 6, 060031 Bucharest, Romania; (E.-I.O.); (A.-M.P.); (A.O.)
| | - Bogdan Trică
- Polymers and Bioresources Departments, National Institute for Research and Development in Chemistry and Petrochemistry—ICECHIM, Splaiul Independentei Nr. 202, Sector 6, 060021 Bucharest, Romania; (Ș.-O.D.); (N.T.); (B.T.)
| | - Anca Oancea
- Department of Cellular and Molecular Biology, National Institute of Research and Development for Biological Sciences, Splaiul Independentei Nr. 296, Sector 6, 060031 Bucharest, Romania; (E.-I.O.); (A.-M.P.); (A.O.)
| | - Ionuț Moraru
- S.C. Laboratoarele Medica Srl, Strada Frasinului Nr. 11, 075100 Otopeni, Romania;
| | - Diana Constantinescu-Aruxandei
- Polymers and Bioresources Departments, National Institute for Research and Development in Chemistry and Petrochemistry—ICECHIM, Splaiul Independentei Nr. 202, Sector 6, 060021 Bucharest, Romania; (Ș.-O.D.); (N.T.); (B.T.)
| | - Florin Oancea
- Faculty of Biotechnologies, University of Agronomic Sciences and Veterinary Medicine Bucharest, Bd. Mărăști Nr. 59, Sector 1, 011464 Bucharest, Romania;
- Polymers and Bioresources Departments, National Institute for Research and Development in Chemistry and Petrochemistry—ICECHIM, Splaiul Independentei Nr. 202, Sector 6, 060021 Bucharest, Romania; (Ș.-O.D.); (N.T.); (B.T.)
| |
Collapse
|
5
|
Yan L, Rui C, Zhuang B, Liu X, Luan T, Jiang L, Dong Z, Wang Q, Wu A, Li P, Wang X, Zeng X. 17β-Estradiol Mediates Staphylococcus aureus Adhesion in Vaginal Epithelial Cells via Estrogen Receptor α-Associated Signaling Pathway. Curr Microbiol 2023; 80:391. [PMID: 37884702 DOI: 10.1007/s00284-023-03488-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2023]
Abstract
Staphylococcus aureus, a major opportunistic pathogen in aerobic vaginitis (AV), can potentially invade the host and occasionally cause infections. Estrogen is associated with an altered immune response of vaginal epithelial cells and prevention of certain vaginal infectious diseases. However, the molecular mechanisms involving estrogen and S. aureus adhesion to vaginal epithelial cells remain unclear. Thus, here, VK2/E6E7 vaginal epithelial cells were infected with S. aureus, and the role of the estrogen receptor α-associated signaling pathway (ERα/FAK/Src/iNOS axis) in S. aureus adhesion was evaluated. The estrogen-associated phosphorylation status of ERα, FAK, and Src and the protein level of iNOS were assessed by western blotting. We used a specific ERα inhibitor to validate the involvement of the ERα-associated signaling pathway. The results showed that with exposure to 1 nM estrogen for 24 h, transient ERα-associated pathway activation was observed, and the protein expression upregulation was accompanied by a dose-dependent increase in 17-β-estradiol (E2) content and increased S. aureus adherence to vaginal epithelial cells. Estrogen-induced activation of the ERα/FAK/Src/iNOS axis was notably inhibited by the specific ERα inhibitor (ICI 182780). Simultaneously, a significant decrease in the number of adherent S. aureus was observed. However, this inhibitory effect diminished after inhibitor treatment for 24 h. Our findings suggested that the ERα-associated signaling pathway might be involved in S. aureus adherence to vaginal epithelial cells, which appeared to be linked to enhanced cell adhesion leading to AV.
Collapse
Affiliation(s)
- Lina Yan
- Department of Obstetrics and Gynecology, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, 210004, People's Republic of China.
- Department of Obstetrics and Gynecology, Changzhou Maternity and Child Health Care Hospital Affiliated to Nanjing Medical University, Changzhou, 213003, People's Republic of China.
| | - Can Rui
- Department of Obstetrics and Gynecology, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, 210004, People's Republic of China
| | - Bin Zhuang
- Department of Pediatrics, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, 210004, People's Republic of China
| | - Xia Liu
- Department of Obstetrics and Gynecology, Jiangsu Taizhou People's Hospital, Taizhou, 225300, People's Republic of China
| | - Ting Luan
- Department of Obstetrics and Gynecology, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, 210004, People's Republic of China
| | - Lisha Jiang
- Department of Obstetrics and Gynecology, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, 210004, People's Republic of China
| | - Zhiyong Dong
- Department of Obstetrics and Gynecology, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, 210004, People's Republic of China
| | - Qing Wang
- Department of Obstetrics and Gynecology, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, 210004, People's Republic of China
| | - Aiwen Wu
- Department of Obstetrics and Gynecology, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, 210004, People's Republic of China
| | - Ping Li
- Department of Obstetrics and Gynecology, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, 210004, People's Republic of China
| | - Xinyan Wang
- Department of Obstetrics and Gynecology, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, 210004, People's Republic of China
| | - Xin Zeng
- Department of Obstetrics and Gynecology, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, 210004, People's Republic of China
| |
Collapse
|
6
|
Burenjargal M, Narangerel T, Batmunkh T, Dong A, Idesh S. A review of the bioactive properties of Mongolian plants, with a focus on their potential as natural food preservatives. Food Sci Nutr 2023; 11:5736-5752. [PMID: 37823130 PMCID: PMC10563759 DOI: 10.1002/fsn3.3529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 06/12/2023] [Accepted: 06/15/2023] [Indexed: 10/13/2023] Open
Abstract
Consumers have recently preferred food that is easy to make and of excellent quality, as well as food that is safe, natural, and minimally processed, but has a longer shelf life. Food deteriorates over time as a result of microbiological, chemical, or physical changes. Phytochemicals derived from medicinal and food plants have long been recognized for their biological activity to protect plants. These bioactivities are designed to increase the shelf life of food while inhibiting the growth of microorganisms. The use of natural plant food preservatives containing bioactive compounds as health-promoting agents is particularly intriguing. Furthermore, due to their effectiveness against food spoilage and foodborne pathogens, natural plant-origin antimicrobial compounds have been investigated as alternatives to synthetic antimicrobial compounds for preserving food quality. This review focused on the plant composition and properties that can be utilized as a natural food preservative, as well as the possibilities of using Mongolian medicinal plants.
Collapse
Affiliation(s)
| | - Tuya Narangerel
- Department of ChemistryNational University of MongoliaUlaanbaatarMongolia
| | - Tuyagerel Batmunkh
- Department of Chemical and Biological EngineeringNational University of MongoliaUlaanbaatarMongolia
| | - Alideertu Dong
- College of Chemistry and Chemical Engineering, Engineering Research Center of Dairy Quality and Safety Control Technology, Ministry of EducationInner Mongolia UniversityHohhotChina
| | - Saruul Idesh
- Department of ChemistryNational University of MongoliaUlaanbaatarMongolia
| |
Collapse
|
7
|
Fernandes L, Costa R, Silva S, Henriques M, Costa-de-Oliveira S, Rodrigues ME. Effect of Vapor-Phase Oregano Essential Oil on Resistant Candida Species Biofilms: Mechanisms of Action. Microbiol Spectr 2023; 11:e0512422. [PMID: 36971589 PMCID: PMC10100680 DOI: 10.1128/spectrum.05124-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 03/06/2023] [Indexed: 03/29/2023] Open
Abstract
Vulvovaginal candidiasis (VVC) is one of the most prevalent vaginal infectious diseases. The increasing incidence of drug-resistant Candida strains and the limited therapeutic options make the discovery of effective alternative therapies fundamental. Essential oils (EOs) have been suggested as a promising alternative, and interestingly, vapor-phase essential oils (VP-EOs) present more advantages than their direct application. Thus, this study aims to evaluate the effect of oregano VP-EO (VP-OEO) on biofilms of antifungal-resistant vaginal isolates of Candida species (Candida albicans and Candida glabrata) and determine its mode of action. CFU, membrane integrity, and metabolic activity were evaluated. Furthermore, a reconstituted vaginal epithelium was used to mimic vaginal conditions and evaluate the effect of VP-OEO on Candida species infection, analyzed by DNA quantification, microscopy, and lactate dehydrogenase activity. The results revealed high VP-OEO antifungal activity. There was a significant reduction (>4 log CFU) in Candida species biofilms. Furthermore, the results show that the mechanisms of action of VP-OEO are related to membrane integrity and metabolic activity. The epithelium model confirms the effectiveness of VP-OEO. This study suggests that VP-EO can be considered a first approach for the development of an alternative form of VVC treatment. IMPORTANCE This work presents a new approach to the application of essential oils, exposure to the vapor phase, which can be considered a first approach for the development of a complementary or alternative form of vulvovaginal candidiasis (VVC) treatment. VVC is a significant infection caused by Candida species and remains a common disease that affects millions of women every year. The great difficulty in treating VVC and the extremely limited effective therapeutic options make the development of alternative treatments crucial. In this scope, this study aims to contribute to the development of effective, inexpensive, and nontoxic strategies for the prevention and treatment of this infectious disease, based on natural products. Moreover, this new approach has several advantages for women, such as lower costs, easy access, an easier mode of application, avoidance of skin contact, and, therefore, fewer negative impacts on women's health.
Collapse
Affiliation(s)
- Liliana Fernandes
- Centre of Biological Engineering, LMaS—Laboratório de Microbiologia Aplicada à Saúde, University of Minho, Campus de Gualtar, Braga, Portugal
- LABBELS—Associate Laboratory, Braga/Guimarães, Portugal
| | - Raquel Costa
- Aromas Aqua Spa—Clínica Saúde, Vila Verde, Braga, Portugal
| | - Sónia Silva
- Centre of Biological Engineering, LMaS—Laboratório de Microbiologia Aplicada à Saúde, University of Minho, Campus de Gualtar, Braga, Portugal
- LABBELS—Associate Laboratory, Braga/Guimarães, Portugal
- National Institute for Agrarian and Veterinary Research, Vairão, Vila do Conde, Portugal
| | - Mariana Henriques
- Centre of Biological Engineering, LMaS—Laboratório de Microbiologia Aplicada à Saúde, University of Minho, Campus de Gualtar, Braga, Portugal
- LABBELS—Associate Laboratory, Braga/Guimarães, Portugal
| | - Sofia Costa-de-Oliveira
- Division of Microbiology, Department of Pathology, Faculty of Medicine, University of Porto, Porto, Portugal
- Center for Health Technology and Services Research—CINTESIS@RISE, Faculty of Medicine, University of Porto, Porto, Portugal
| | - Maria E. Rodrigues
- Centre of Biological Engineering, LMaS—Laboratório de Microbiologia Aplicada à Saúde, University of Minho, Campus de Gualtar, Braga, Portugal
- LABBELS—Associate Laboratory, Braga/Guimarães, Portugal
| |
Collapse
|
8
|
Bogavac MA, Perić TM, Mišković J, Karaman M. Antimicrobial and Toxic Effects of Boswellia serrata Roxb. and Mentha piperita Linn. Essential Oils on Vaginal Inhabitants. MEDICINES (BASEL, SWITZERLAND) 2022; 9:62. [PMID: 36547995 PMCID: PMC9784983 DOI: 10.3390/medicines9120062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 12/06/2022] [Accepted: 12/07/2022] [Indexed: 12/14/2022]
Abstract
Commercial essential oils (EOs) of incense, Boswellia serrata Roxb, and mint, Mentha piperita L., were investigated against vaginal bacterial and Candida albicans isolates for antimicrobial potential and safety use. The antimicrobial activity of EOs was investigated through a double-dilution micro-plate assay. A brine shrimp assay was used for the determination of toxicity, while the determination of the chemical composition of EOs was carried out using GS-MS. Obtained minimal inhibitory (MIC) and minimal bactericidal concentration (MBC) point to the activity of mint essential oil (EO) against the multi-resistant P. aeruginosa isolate (MIC/MBC at 6.25 µL/mL), while MIC and MBC values for other isolates were reached at higher concentrations (25-50 µL/mL). According to the toxicity assay, the incense EO reached the LC50 value at 3.07 µL/mL, while mint EO showed higher toxicity at lower concentrations (0.5 µL/mL) and the LC50 could not be determined. The highest antimicrobial potential was obtained for incense against P. aeruginosa. Although the toxicity assay showed high toxicity of mint EO to the eggs of aquatic crustaceans Artemia salina, further testing of EO toxicity is proposed, for example on healthy cell-lines. According to the GC/MS spectrometry, the most represented components of mint EO were the oxygenated hydrocarbons L-menthone (20.86%) and menthol (31.86%), and they could be proposed for further antimicrobial and toxicity investigation.
Collapse
Affiliation(s)
- Mirjana A. Bogavac
- Department of Obstetrics and Gynecology, Clinical Centre of Vojvodina, Faculty of Medicine, University of Novi Sad, Hajduk Veljkova 3, 21000 Novi Sad, Serbia
| | - Tamara M. Perić
- PHI Hospital “Sveti Vračevi“, Srpske Vojske 53, 76300 Bijeljina, Bosnia and Herzegovina
- Faculty of Medicine, University of Novi Sad, Hajduk Veljkova 3, 21000 Novi Sad, Serbia
| | - Jovana Mišković
- Department of Biology and Ecology, Faculty of Sciences, University of Novi Sad, Trg Dositeja Obradovića 3, 21000 Novi Sad, Serbia
| | - Maja Karaman
- Department of Biology and Ecology, Faculty of Sciences, University of Novi Sad, Trg Dositeja Obradovića 3, 21000 Novi Sad, Serbia
| |
Collapse
|
9
|
Physiological responses and antioxidant properties of coriander plants (Coriandrum sativum L.) under different light intensities of red and blue lights. Sci Rep 2022; 12:21139. [PMID: 36477410 PMCID: PMC9729621 DOI: 10.1038/s41598-022-25749-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 12/05/2022] [Indexed: 12/12/2022] Open
Abstract
Coriander (Coriandrum sativum L.) contains abundant antioxidants and essential oils which can provide antibacterial, antifungal, and antioxidant activities in the pharmaceutical, health and food production industry. To improve the economic values of coriander, the relationships between optimal light treatments for maximizing both plant growth and the antioxidant and essential oil content of coriander leaves need to be determined. Plants were exposed to five light-emitting diodes spectral color mixtures, high blue light (BL) intensity induced the levels of reducing power response. The light treatments were then adjusted for the analysis of secondary metabolite compounds of coriander leaves. Among 30 identified compounds, the amounts of decamethyl-cyclopentasiloxane and dodecane were significantly reduced in the R80 + G50 + B50 condition, whereas dodecamethyl-cyclohexasiloxane level was significantly reduced in R50 + G50 + B80 condition. Various light quality and intensity combinations influenced the accumulations of chlorophyll and phytochemical contents, mediated antioxidative properties, and secondary metabolites of coriander leaves, which may be useful in developing a new LED lighting apparatus optimized for coriander production in plant factories.
Collapse
|
10
|
Myrtle-Functionalized Nanofibers Modulate Vaginal Cell Population Behavior While Counteracting Microbial Proliferation. PLANTS 2022; 11:plants11121577. [PMID: 35736728 PMCID: PMC9227804 DOI: 10.3390/plants11121577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 06/01/2022] [Accepted: 06/07/2022] [Indexed: 11/17/2022]
Abstract
Vaginal infections affect millions of women annually worldwide. Therapeutic options are limited, moreover drug-resistance increases the need to find novel antimicrobials for health promotion. Recently phytochemicals were re-discovered for medical treatment. Myrtle (Myrtus communis L.) plant extracts showed in vitro antioxidant, antiseptic and anti-inflammatory properties thanks to their bioactive compounds. The aim of the present study was to create novel nanodevices to deliver three natural extracts from leaves, seeds and fruit of myrtle, in vaginal milieu. We explored their effect on human cells (HeLa, Human Foreskin Fibroblast-1 line, and stem cells isolated from skin), resident microflora (Lactobacillus acidophilus) and on several vaginal pathogens (Trichomonas vaginalis, Escherichia coli, Staphylococcus aureus, Candida albicans, Candida kefyr, Candida glabrata, Candida parapsilosis, Candida krusei). Polycaprolactone-Gelatin nanofibers encapsulated with leaves extract and soaked with seed extracts exhibited a different capability in regard to counteracting microbial proliferation. Moreover, these nanodevices do not affect human cells and resident microflora viability. Results reveal that some of the tested nanofibers are interesting candidates for future vaginal infection treatments.
Collapse
|
11
|
Villar Rodríguez J, Pérez Pico AM, Mingorance Álvarez E, Mayordomo Acevedo R. Meta-analysis of the antifungal activities of three essential oils as alternative therapies in dermatophytosis infections. J Appl Microbiol 2022; 133:241-253. [PMID: 35332625 PMCID: PMC9545424 DOI: 10.1111/jam.15539] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 03/17/2022] [Accepted: 03/22/2022] [Indexed: 11/29/2022]
Abstract
Aims This work examines the available scientific evidence about the efficiency of essential oils (EO) as an alternative therapy to traditional treatment of fungal infections, including onychomycosis, assessing the effect of the three EO most frequently studied for their antifungal activity (thyme, cinnamon and tea tree EO) against three causative agents of fungal diseases in humans: Trichophyton rubrum, Trichophyton mentagrophytes complex and Candida albicans. Methods and Results The PRISMA statement protocol was followed to conduct a bibliographical search and 54 articles that met all the inclusion criteria were retrieved. Differences were observed in the MIC and MFC values depending on the micro‐organism strain and the EO used. The lowest MIC were observed with Cinnamomum zeylanicum EO (0.013–1120 μl ml−1) against the three micro‐organisms. For MFC, the lowest value was found for Thymus vulgaris EO (4.2 μl ml−1) against Trichophyton rubrum. Conclusions The antifungal effects of EO could be a very promising solution to overcome the therapeutic shortcomings of antimycotic medication. More experiments are needed to examine the properties of these oils to devise effective and nonaggressive therapies for treatment of dermatophytosis. Significance and Impact of Study The results indicate that EO remain good candidates for future treatments and could provide a solution for failed medications and/or adverse reactions to current pharmacological treatments.
Collapse
Affiliation(s)
- Julia Villar Rodríguez
- Department of Anatomy, Cellular Biology and Zoology, University Centre of Plasencia, University of Extremadura, Spain
| | - Ana María Pérez Pico
- Department of Nursing, University Centre of Plasencia, University of Extremadura, Spain
| | - Esther Mingorance Álvarez
- Department of Anatomy, Cellular Biology and Zoology, University Centre of Plasencia, University of Extremadura, Spain
| | - Raquel Mayordomo Acevedo
- Department of Anatomy, Cellular Biology and Zoology, University Centre of Plasencia, University of Extremadura, Spain
| |
Collapse
|
12
|
Rashidipour M, Shakib P, Goudarzi G, Pournia Y, Karimi M, Sarlak M. Native Iranian Medicinal Plants with Anti-Vaginal Infection Properties: A Systematic Review. Infect Disord Drug Targets 2022; 22:41-47. [PMID: 35490427 DOI: 10.2174/1871526522666220501171551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2021] [Revised: 11/01/2021] [Accepted: 11/06/2021] [Indexed: 06/14/2023]
Abstract
BACKGROUND The use of herbs has recently been considered an effective method in the treatment of infections. The purpose of this study was to introduce Iranian medicinal plants with an effect on vaginal infections. METHODS In our systematic review study, keywords including 'medicinal plants', 'Iranian medicinal plants', 'vaginal infection', 'essential oils', and 'extracts' were searched in PubMed, Web of Science Direct, Scopus, Scientific Information Database, and Google Scholar. This study focused on the articles published from 2000 to 2019. RESULTS AND DISCUSSION According to our investigation, Stachys lavandulifolia, Thymus vulgaris L., Origanum vulgare L., Allium jesdianum, Cichorium intybus, Trigonella foenum-graecum, Azadirachta Indica, Stachys lavandulifolia, Coriandrum sativum L., Rosmarinus officinalis, Ferula gummosa L., Origanum syriacum, Eucalyptus globulus, Myrtus communis, Zingiber officinale, Punica granatum, Vitex agnus-castus, Mentha suaveolens, Quercus Brantii Lindl, Zataria multiflora, Berberis vulgaris, Thymus vulgaris L., Echinophora platyloba, Stachys lavandulifolia, Viola odorata, Menthe piperita, Eucalyptus camaldulensis, Ziziphus mauritiana, Quercus infectoria, Hypericum perforatum, Glycyrrhiza glabra L., Calendula officinalis, Origanum vulgare, Ziziphus nummularia, Satureja Bachtiarica, Foeniculum vulgare, Nigella sativa, Anethum graveolens, Salvia officinalis, and Calendula officinalis are used to treat vaginal infections. CONCLUSION Therefore, native plants of Iran have been reported to have antimicrobial properties for the treatment of vaginal infections and can be used as a suitable and effective alternative to antibiotics in future research.
Collapse
Affiliation(s)
- Marzieh Rashidipour
- Nutritional Health Research Center, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Pegah Shakib
- Razi Herbal Medicines Research Center, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Gholamreza Goudarzi
- Razi Herbal Medicines Research Center, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Yadollah Pournia
- Department of English Language, Faculty of Medicine, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Maryam Karimi
- Razi Herbal Medicines Research Center, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Maryam Sarlak
- Nutritional Health Research Center, Lorestan University of Medical Sciences, Khorramabad, Iran
| |
Collapse
|
13
|
Niksic H, Becic F, Koric E, Gusic I, Omeragic E, Muratovic S, Miladinovic B, Duric K. Cytotoxicity screening of Thymus vulgaris L. essential oil in brine shrimp nauplii and cancer cell lines. Sci Rep 2021; 11:13178. [PMID: 34162964 PMCID: PMC8222331 DOI: 10.1038/s41598-021-92679-x] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Accepted: 06/09/2021] [Indexed: 12/09/2022] Open
Abstract
Among natural products, essential oils from aromatic plants have been reported to possess potent anticancer properties. In this work, we aimed to perform the cytotoxic concentration range screening and antiproliferative activity screening of chemically characterized Thymus vulgaris L. essential oil. In vivo bioassay was conducted using the brine shrimp lethality test (BSLT). In vitro evaluation of antiproliferative activity was carried out on three human tumor cell lines: breast adenocarcinoma MCF-7, lung carcinoma H460 and acute lymphoblastic leukemia MOLT-4 using MTT assay. Essential oil components thymol (36.7%), p-cymene (30.0%), γ-terpinene (9.0%) and carvacrol (3.6%) were identified by gas chromatography/mass spectrometry. Analyzed essential oil should be considered as toxic/highly toxic with LC50 60.38 µg/mL in BSLT and moderate/weakly cytotoxic with IC50 range 52.65-228.78 µg/mL in vitro, according to evaluated cytotoxic criteria. Essential oil induced a dose-dependent inhibition of cell proliferation in all tested tumor cell lines and showed different sensitivity. Dose dependent toxicity observed in bioassay as well as the in vitro assay confirmed that brine shrimp lethality test is an adequate method for preliminary toxicity testing of Thymus vulgaris L. essential oil in tumor cell lines.
Collapse
Affiliation(s)
- Haris Niksic
- Faculty of Pharmacy, University of Sarajevo, Zmaja od Bosne 8, 71000, Sarajevo, Bosnia and Herzegovina
| | - Fahir Becic
- Faculty of Pharmacy, University of Sarajevo, Zmaja od Bosne 8, 71000, Sarajevo, Bosnia and Herzegovina
| | - Emina Koric
- Faculty of Pharmacy, University of Sarajevo, Zmaja od Bosne 8, 71000, Sarajevo, Bosnia and Herzegovina.
| | - Irma Gusic
- Faculty of Pharmacy, University of Sarajevo, Zmaja od Bosne 8, 71000, Sarajevo, Bosnia and Herzegovina
| | - Elma Omeragic
- Faculty of Pharmacy, University of Sarajevo, Zmaja od Bosne 8, 71000, Sarajevo, Bosnia and Herzegovina
| | - Samija Muratovic
- Faculty of Pharmacy, University of Sarajevo, Zmaja od Bosne 8, 71000, Sarajevo, Bosnia and Herzegovina
| | - Bojana Miladinovic
- Faculty of Medicine, University of Nis, Dr Zoran Djindjic Boulevard 81, 18000, Niš, Serbia
| | - Kemal Duric
- Faculty of Pharmacy, University of Sarajevo, Zmaja od Bosne 8, 71000, Sarajevo, Bosnia and Herzegovina
| |
Collapse
|
14
|
Natural Agents against Bovine Mastitis Pathogens. Antibiotics (Basel) 2021; 10:antibiotics10020205. [PMID: 33669638 PMCID: PMC7922792 DOI: 10.3390/antibiotics10020205] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2021] [Revised: 02/09/2021] [Accepted: 02/13/2021] [Indexed: 12/11/2022] Open
Abstract
Bovine mastitis is the most widespread and economically important disease worldwide. The present study aimed to determine bioactive compounds in two essential oils (EOs) from wild (Thymus serpyllum) and common thyme (Thymus vulgaris) and to assess the antioxidant potential as well as antibacterial efficacy of the EOs against mastitis-associated bacteria. The study also included antibiotic susceptibility tests. The strains were previously isolated from lactating animals with clinical and subclinical mastitis. The antioxidant potential of the commercial EOs of wild and common thyme was evaluated by five in vitro assays. The antibacterial activity was performed using the microdilution technique, while antibiotic susceptibility testing was performed by the Kirby-Bauer disc diffusion method. The dominant compound in wild thyme was thymol (45.22%), followed by p-cymene (23.83%) and γ-terpinene (3.12%), while in common thyme, it was thymol (54.17%), followed by γ-terpinene (22.18%) and p-cymene (16.66%). Among the fourteen mastitis-associated bacteria, strain IX Streptococcus spp. (β-hemolytic) was the most sensitive to the tested EOs (minimum inhibitory concentration (MIC)/minimal bactericidal concentration (MBC) were 0.78/1.56 and 0.39/0.78 mg/mL for T. serpyllum (TS) and T. vulgaris (TV), respectively). Regarding Streptococcus spp. β heamoliticus, MICs for TS ranged from 0.78 to 1.56 mg/mL, while for the same oil, MBCs ranged from 1.56 to 12.5 mg/mL. In the case of T. vulgaris, MICs ranged from 0.39 to 3.125 mg/ mL, while MBCs ranged from 3.125 to 6.25 mg/mL. TV is more active against E. coli, E. sakazakii, and Streptococcus spp., while it is less effective against Staphylococcus spp. than TS. The study revealed that the tested EOs possess remarkable antioxidative and antibacterial activities and could be used in the development of pharmaceutical formulation as an alternative to conventional mastitis therapy.
Collapse
|
15
|
Investigating natural antibiofilm components: a new therapeutic perspective against candidal vulvovaginitis. Med Hypotheses 2021; 148:110515. [PMID: 33549963 DOI: 10.1016/j.mehy.2021.110515] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 01/12/2021] [Accepted: 01/22/2021] [Indexed: 11/23/2022]
Abstract
The rampant emergence of Candida albicans in the vagina and its ability to thrive as a biofilm has outstood the prevalence of candidal vulvovaginitis (CVV), a gender-based fungal infection approximately affecting 75% of the global female population. The biofilm represents a multidimensional microbial population, which often dictates prominent caveats of CVV such as increased fungal virulence, drug resistance and infection relapse/recurrence. Additionally, the conjugated issues of the ineffectiveness of conventional antifungals (azoles), prolonged treatment durations, compromised patient compliance, economic and social burden, exacerbates CVV complications as well. Henceforth, the current hypothesis narrates an investigational proposal for exploration and combination of naturally derived antibiofilm components with luliconazole (imidazole antifungal agent) as a new therapeutic paradigm against CVV. The purported hypothesis unravels a synergistic approach for fabricating Nanostructured Lipid Carriers, NLCs loaded transvaginal gel with dual APIs of natural (antibiofilm) as well as the synthetic (antifungal) origin to target high therapeutic efficacy, delivery, retention, controlled release and bioadhesion in a vaginal milieu. The multipronged effect of antibiofilm and antifungal agents will expectably enhance drug susceptibility thus, maintaining Minimum Inhibitory Concentration (MIC) against cells of C. albicans and targeting its biofilm in planktonic, adherent, and sessile phases. The effective disruption of a biofilm could further lower infection resistance and recurrence as well. In conclusion, the purported hypothesis could speed up the emergence of novel drug combinations and accelerates new product development with solid, synergistic, and complementary activities against C. albicans and its biofilm, making it amenable for generating pre-clinical and clinical results therebycreating a suitableroadmap for commercialization.
Collapse
|
16
|
Chassagne F, Samarakoon T, Porras G, Lyles JT, Dettweiler M, Marquez L, Salam AM, Shabih S, Farrokhi DR, Quave CL. A Systematic Review of Plants With Antibacterial Activities: A Taxonomic and Phylogenetic Perspective. Front Pharmacol 2021; 11:586548. [PMID: 33488385 PMCID: PMC7821031 DOI: 10.3389/fphar.2020.586548] [Citation(s) in RCA: 77] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Accepted: 11/12/2020] [Indexed: 12/17/2022] Open
Abstract
Background: Antimicrobial resistance represents a serious threat to human health across the globe. The cost of bringing a new antibiotic from discovery to market is high and return on investment is low. Furthermore, the development of new antibiotics has slowed dramatically since the 1950s' golden age of discovery. Plants produce a variety of bioactive secondary metabolites that could be used to fuel the future discovery pipeline. While many studies have focused on specific aspects of plants and plant natural products with antibacterial properties, a comprehensive review of the antibacterial potential of plants has never before been attempted. Objectives: This systematic review aims to evaluate reports on plants with significant antibacterial activities. Methods: Following the PRISMA model, we searched three electronic databases: Web of Science, PubMed and SciFinder by using specific keywords: "plant," "antibacterial," "inhibitory concentration." Results: We identified a total of 6,083 articles published between 1946 and 2019 and then reviewed 66% of these (4,024) focusing on articles published between 2012 and 2019. A rigorous selection process was implemented using clear inclusion and exclusion criteria, yielding data on 958 plant species derived from 483 scientific articles. Antibacterial activity is found in 51 of 79 vascular plant orders throughout the phylogenetic tree. Most are reported within eudicots, with the bulk of species being asterids. Antibacterial activity is not prominent in monocotyledons. Phylogenetic distribution strongly supports the concept of chemical evolution across plant clades, especially in more derived eudicot families. The Lamiaceae, Fabaceae and Asteraceae were the most represented plant families, while Cinnamomum verum, Rosmarinus vulgaris and Thymus vulgaris were the most studied species. South Africa was the most represented site of plant collection. Crude extraction in methanol was the most represented type of extraction and leaves were the main plant tissue investigated. Finally, Staphylococcus aureus was the most targeted pathogenic bacteria in these studies. We closely examine 70 prominent medicinal plant species from the 15 families most studied in the literature. Conclusion: This review depicts the current state of knowledge regarding antibacterials from plants and provides powerful recommendations for future research directions.
Collapse
Affiliation(s)
- François Chassagne
- Center for the Study of Human Health, Emory University, Atlanta, GA, United States
| | | | - Gina Porras
- Center for the Study of Human Health, Emory University, Atlanta, GA, United States
| | - James T. Lyles
- Center for the Study of Human Health, Emory University, Atlanta, GA, United States
| | - Micah Dettweiler
- Department of Dermatology, Emory University, Atlanta, GA, United States
| | - Lewis Marquez
- Molecular and Systems Pharmacology Program, Laney Graduate School, Emory University, Atlanta, GA, United States
| | - Akram M. Salam
- Molecular and Systems Pharmacology Program, Laney Graduate School, Emory University, Atlanta, GA, United States
| | - Sarah Shabih
- Center for the Study of Human Health, Emory University, Atlanta, GA, United States
| | | | - Cassandra L. Quave
- Center for the Study of Human Health, Emory University, Atlanta, GA, United States
- Emory University Herbarium, Emory University, Atlanta, GA, United States
- Department of Dermatology, Emory University, Atlanta, GA, United States
- Molecular and Systems Pharmacology Program, Laney Graduate School, Emory University, Atlanta, GA, United States
| |
Collapse
|
17
|
Iseppi R, Tardugno R, Brighenti V, Benvenuti S, Sabia C, Pellati F, Messi P. Phytochemical Composition and In Vitro Antimicrobial Activity of Essential Oils from the Lamiaceae Family against Streptococcus agalactiae and Candida albicans Biofilms. Antibiotics (Basel) 2020; 9:antibiotics9090592. [PMID: 32927692 PMCID: PMC7558348 DOI: 10.3390/antibiotics9090592] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 09/04/2020] [Accepted: 09/07/2020] [Indexed: 02/07/2023] Open
Abstract
The antimicrobial activity of different essential oils (EOs) from the Lamiaceae family was evaluated on Streptococcus agalactiae, Candida albicans, and lactobacilli. S. agalactiae is the main cause of severe neonatal infections, such as sepsis, meningitis, and pneumonia. C. albicans is a primary causative agent of vulvovaginal candidiasis, a multifactorial infectious disease of the lower female reproductive tract. Lactobacilli represent the dominant bacterial species of the vaginal flora and constitute the natural defense against pathogens. On the basis of the preliminary results, the attention was focused on the EOs from Lavandula x intermedia Emeric ex Loisel. and Mentha arvensis L. By using gas ghromatography (GS) retention data and mass spectra, it was possible to identify more than 90% of the total composition of the EO samples. The minimal inhibitory concentration (MIC) and anti-biofilm activity of the two EOs were determined against all isolated strains, using the EOs by themselves or in combination with each other and with drugs (erythromycin and fluconazole). The results showed a good antimicrobial and anti-biofilm activity of both EOs and a synergistic effect, leading to the best results against all the strains, resulted using the combinations EOs/EOs and antimicrobials/EOs.
Collapse
Affiliation(s)
- Ramona Iseppi
- Correspondence: (R.I.); (F.P.); Tel.: +39-059-205-5795 (R.I.); +39-059-205-8565 (F.P.)
| | | | | | | | | | - Federica Pellati
- Correspondence: (R.I.); (F.P.); Tel.: +39-059-205-5795 (R.I.); +39-059-205-8565 (F.P.)
| | | |
Collapse
|
18
|
Potente G, Bonvicini F, Gentilomi GA, Antognoni F. Anti- Candida Activity of Essential Oils from Lamiaceae Plants from the Mediterranean Area and the Middle East. Antibiotics (Basel) 2020; 9:antibiotics9070395. [PMID: 32660009 PMCID: PMC7400371 DOI: 10.3390/antibiotics9070395] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 06/30/2020] [Accepted: 07/07/2020] [Indexed: 11/16/2022] Open
Abstract
Extensive documentation is available on plant essential oils as a potential source of antimicrobials, including natural drugs against Candida spp. Yeasts of the genus Candida are responsible for various clinical manifestations, from mucocutaneous overgrowth to bloodstream infections, whose incidence and mortality rates are increasing because of the expanding population of immunocompromised patients. In the last decade, although C. albicans is still regarded as the most common species, epidemiological data reveal that the global distribution of Candida spp. has changed, and non-albicans species of Candida are being increasingly isolated worldwide. The present study aimed to review the anti-Candida activity of essential oils collected from 100 species of the Lamiaceae family growing in the Mediterranean area and the Middle East. An overview is given on the most promising essential oils and constituents inhibiting Candida spp. growth, with a particular focus for those natural products able to reduce the expression of virulence factors, such as yeast-hyphal transition and biofilm formation. Based on current knowledge on members of the Lamiaceae family, future recommendations to strengthen the value of these essential oils as antimicrobial agents include pathogen selection, with an extension towards the new emerging Candida spp. and toxicological screening, as it cannot be taken for granted that plant-derived products are void of potential toxic and/or carcinogenic properties.
Collapse
Affiliation(s)
- Giulia Potente
- Department for Life Quality Studies, University of Bologna, Corso d’Augusto 237, 47921 Rimini, Italy; (G.P.); (F.A.)
| | - Francesca Bonvicini
- Department of Pharmacy and Biotechnology, University of Bologna, Via Massarenti 9, 40138 Bologna, Italy;
- Correspondence: ; Tel.: +39-051-4290-930
| | - Giovanna Angela Gentilomi
- Department of Pharmacy and Biotechnology, University of Bologna, Via Massarenti 9, 40138 Bologna, Italy;
| | - Fabiana Antognoni
- Department for Life Quality Studies, University of Bologna, Corso d’Augusto 237, 47921 Rimini, Italy; (G.P.); (F.A.)
| |
Collapse
|
19
|
Effects of Pistacia lentiscus and Coriander Triphala on Adult Gastroesophageal Reflux Disease: A Randomized Double-Blinded Clinical Trial. IRANIAN RED CRESCENT MEDICAL JOURNAL 2020. [DOI: 10.5812/ircmj.102260] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Background: The cardinal symptoms of gastroesophageal reflux disease include heartburn (pyrosis) and regurgitation. Conventional treatment is done by proton pump inhibitors. In Persian traditional medicine, several herbs (single or combined) have been used to treat gastrointestinal disorders. Objectives: This study aimed to assess the effects of Pistacia lentiscus (mastic) and Coriander Triphala on reflux symptoms compared to omeprazole in a double-blinded randomized clinical trial. Methods: In a double-blinded, multicenter, randomized clinical trial, we assessed the effects of Pistacia lentiscus L., Coriander Triphala, and omeprazole on the symptoms of GERD in Tabriz, Iran, in 2018 - 2019. Thus, 105 patients with GERD symptoms were assigned randomly to three groups as group A (Pistacia lentiscus L., 1000 mg/TDS), group B (Coriander Triphala, 1000 mg/TDS), and group C (omeprazole, 20 mg/day plus five placebo capsules per day). The assessments were done at the beginning and the end of the study using FSSG, VAS, RS, and GERD-HRQL questionnaires. Results: In the beginning, no significant differences were observed between the groups in the background characteristics. There was no statistically significant difference between Pistacia lentiscus, Coriander Triphala, and omeprazole in the improvement of FSSG, VAS, GERD-HRQL, and reflux scores. In all groups, the FFSG, VAS, reflux, and GERD-HRQL scores significantly decreased and improved after four weeks of intervention compared to the respective baselines. The FSSG score improvements after four weeks of intervention were 73.68%, 83.33%, and 68.62%, in groups A, B, and C, respectively. The VAS score improvements were 66.66%, 75.00%, and 62.50% in groups A, B, and C, respectively. Improvements in GERD-HRQL were 90.00%, 91.28%, and 82.00%, in groups A, B, and C, respectively. Reflux improvements were 66.66%, 80.00%, and 66.66% in groups A, B, and C, respectively. Conclusions: The results showed that Pistacia lentiscus and Coriander Triphala are as effective as omeprazole in the treatment of GERD.
Collapse
|
20
|
Rodrigues KE, de Oliveira FR, Barbosa BRC, Paraense RSO, Bannwart CM, Pinheiro BG, Botelho ADS, Muto NA, do Amarante CB, Hamoy M, Macchi BDM, Maia CDSF, do Prado AF, do Nascimento JLM. Aqueous Coriandrum sativum L. extract promotes neuroprotection against motor changes and oxidative damage in rat progeny after maternal exposure to methylmercury. Food Chem Toxicol 2019; 133:110755. [PMID: 31408720 DOI: 10.1016/j.fct.2019.110755] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Revised: 08/03/2019] [Accepted: 08/08/2019] [Indexed: 01/18/2023]
Abstract
This study aimed to investigate the effects of Coriandrum sativum aqueous extract (CSAE) on the rat progeny of mothers exposed to methylmercury (MeHg). The presence of bioactive compounds and CSAE's antioxidant capacity been evaluated, and the offspring were assessed for their total mercury levels, motor behavioral parameters and oxidative stress in the cerebellum. The analysis of the bioactive compounds revealed significant amounts of polyphenols, flavonoids, and anthocyanins, as well as a variety of minerals. A DPPH test showed the CSAE had important antioxidant activity. The MeHg + CSAE group performed significantly better spontaneous locomotor activity, palmar grip strength, balance, and motor coordination in behavioral tests compared the MeHg group, as well as in the parameters of oxidative stress, with similar results to those of the control group. The MeHg + CSAE group also had significantly reduced mercury levels in comparison to the MeHg group. Based on the behavioral tests, which detected large locomotor, balance, and coordination improvements, as well as a reduction in oxidative stress, we conclude that CSAE had positive functional results in the offspring of rats exposed to MeHg.
Collapse
Affiliation(s)
- Keuri Eleutério Rodrigues
- Neuroscience and Cellular Biology Post Graduation Program, Biological Sciences Institute, Federal University of Para, Belem, PA, Brazil; Molecular and Cellular Neurochemistry Laboratory, Biological Sciences Institute, Federal University of Para, Belem, PA, Brazil
| | - Fábio Rodrigues de Oliveira
- Neuroscience and Cellular Biology Post Graduation Program, Biological Sciences Institute, Federal University of Para, Belem, PA, Brazil; Bromatology and Quality Control Laboratory, Health and Biological Sciences Department, Federal University of Amapa (UNIFAP), Macapa, Ap, Brazil
| | - Benilson Ramos Cassunde Barbosa
- Molecular and Cellular Neurochemistry Laboratory, Biological Sciences Institute, Federal University of Para, Belem, PA, Brazil
| | - Ricardo S Oliveira Paraense
- Molecular and Cellular Neurochemistry Laboratory, Biological Sciences Institute, Federal University of Para, Belem, PA, Brazil
| | - Cahy Manoel Bannwart
- Molecular and Cellular Neurochemistry Laboratory, Biological Sciences Institute, Federal University of Para, Belem, PA, Brazil
| | - Bruno Gonçalves Pinheiro
- Behavioral and Inflammatory Pharmacology Laboratory, Health Sciences Institute, Pharmacy College, Federal University of Para, Belem, PA, Brazil
| | | | - Nilton Akio Muto
- Amazonian Bioactive Compounds Valorization Center, Federal University of Para, Belem, PA, Brazil
| | | | - Moises Hamoy
- Natural Products' Toxicology and Pharmacology Laboratory, Biological Sciences Institute, Federal University of Para, Belem, PA, Brazil
| | - Barbarella de Matos Macchi
- Molecular and Cellular Neurochemistry Laboratory, Biological Sciences Institute, Federal University of Para, Belem, PA, Brazil
| | - Cristiane do Socorro Ferraz Maia
- Behavioral and Inflammatory Pharmacology Laboratory, Health Sciences Institute, Pharmacy College, Federal University of Para, Belem, PA, Brazil
| | - Alejandro Ferraz do Prado
- Structural Biology Laboratory, Biological Sciences Institute, Federal University of Para, Belem, PA, Brazil
| | - José Luiz Martins do Nascimento
- Neuroscience and Cellular Biology Post Graduation Program, Biological Sciences Institute, Federal University of Para, Belem, PA, Brazil; Molecular and Cellular Neurochemistry Laboratory, Biological Sciences Institute, Federal University of Para, Belem, PA, Brazil; National Institute of Science and Technology in Neuroimmunomodulation (INCT-NIM), Rio de Janeiro, RJ, Brazil; Pharmaceutical Sciences Post Graduation Program, Health and Biological Sciences Department, Federal University of Amapa (UNIFAP), Macapa, Ap, Brazil.
| |
Collapse
|
21
|
Felicioli A, Cilia G, Mancini S, Turchi B, Galaverna G, Cirlini M, Cerri D, Fratini F. In vitro antibacterial activity and volatile characterisation of organic Apis mellifera ligustica (Spinola, 1906) beeswax ethanol extracts. FOOD BIOSCI 2019. [DOI: 10.1016/j.fbio.2019.04.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
22
|
Lorenzo JM, Mousavi Khaneghah A, Gavahian M, Marszałek K, Eş I, Munekata PES, Ferreira ICFR, Barba FJ. Understanding the potential benefits of thyme and its derived products for food industry and consumer health: From extraction of value-added compounds to the evaluation of bioaccessibility, bioavailability, anti-inflammatory, and antimicrobial activities. Crit Rev Food Sci Nutr 2018; 59:2879-2895. [DOI: 10.1080/10408398.2018.1477730] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
Affiliation(s)
- Jose M. Lorenzo
- Centro Tecnológico de la Carne de Galicia, Parque Tecnológico de Galicia, San Cibrao das Viñas, Ourense, Spain
| | - Amin Mousavi Khaneghah
- Department of Food Science, Faculty of Food Engineering, University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - Mohsen Gavahian
- Product and Process Research Center, Food Industry Research and Development Institute, Hsinchu, Taiwan, ROC
| | - Krystian Marszałek
- Prof. Wacław Dąbrowski Institute of Agricultural and Food Biotechnology, Department of Fruit and Vegetable Product Technology, Warsaw, Poland
| | - Ismail Eş
- Department of Material and Bioprocess Engineering, Faculty of Chemical Engineering, University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - Paulo E. S. Munekata
- Department of Food Engineering, Faculty of Animal Science and Food Engineering, University of São Paulo, Jardim Elite, Pirassununga, São Paulo, Brazil
| | - Isabel C. F. R. Ferreira
- Mountain Research Centre (CIMO), Polytechnic Institute of Bragança (IPB), Campus de Santa Apolonia, Bragança, Portugal
| | - Francisco J. Barba
- Universitat de València, Faculty of Pharmacy, Preventive Medicine and Public Health, Food Science, Toxicology and Forensic Medicine Department, Nutrition and Food Science Area, Avda.Vicent Andrés Estellés, Burjassot, València, Spain
| |
Collapse
|
23
|
Lam PL, Lee KKH, Wong RSM, Cheng GYM, Bian ZX, Chui CH, Gambari R. Recent advances on topical antimicrobials for skin and soft tissue infections and their safety concerns. Crit Rev Microbiol 2018; 44:40-78. [PMID: 28423970 DOI: 10.1080/1040841x.2017.1313811] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Antimicrobial resistance of disease-related microorganisms is considered a worldwide prevalent and serious issue which increases the failure of treatment outcomes and leads to high mortality. Considering that the increased resistance to systemic antimicrobial therapy often needs of the use of more toxic agents, topical antimicrobial therapy emerges as an attractive route for the treatment of infectious diseases. The topical antimicrobial therapy is based on the absorption of high drug doses in a readily accessible skin surface, resulting in a reduction of microbial proliferation at infected skin sites. Topical antimicrobials retain the following features: (a) they are able to escape the enzymatic degradation and rapid clearance in the gastrointestinal tract or the first-pass metabolism during oral administration; (b) alleviate the physical discomfort related to intravenous injection; (c) reduce possible adverse effects and drug interactions of systemic administrations; (d) increase patient compliance and convenience; and (e) reduce the treatment costs. Novel antimicrobials for topical application have been widely exploited to control the emergence of drug-resistant microorganisms. This review provides a description of antimicrobial resistance, common microorganisms causing skin and soft tissue infections, topical delivery route of antimicrobials, safety concerns of topical antimicrobials, recent advances, challenges and future prospective in topical antimicrobial development.
Collapse
Affiliation(s)
- P L Lam
- a Department of Applied Biology and Chemical Technology, State Key Laboratory of Chirosciences , The Hong Kong Polytechnic University , Hong Kong , P.R. China
| | - K K H Lee
- b Department of Medicine and Therapeutics, School of Biomedical Sciences, MOE Key Laboratory for Regenerative Medicine , The Chinese University of Hong Kong , Hong Kong , P.R. China
| | - R S M Wong
- b Department of Medicine and Therapeutics, School of Biomedical Sciences, MOE Key Laboratory for Regenerative Medicine , The Chinese University of Hong Kong , Hong Kong , P.R. China
| | - G Y M Cheng
- c Faculty of Health Sciences , University of Macau , Macau , P.R. China
| | - Z X Bian
- d Clinical Division, School of Chinese Medicine , Hong Kong Baptist University , Hong Kong , P.R. China
| | - C H Chui
- a Department of Applied Biology and Chemical Technology, State Key Laboratory of Chirosciences , The Hong Kong Polytechnic University , Hong Kong , P.R. China
- d Clinical Division, School of Chinese Medicine , Hong Kong Baptist University , Hong Kong , P.R. China
| | - R Gambari
- e Department of Life Sciences and Biotechnology, Centre of Biotechnology , University of Ferrara , Ferrara , Italy
| |
Collapse
|
24
|
Karaman M, Bogavac M, Radovanović B, Sudji J, Tešanović K, Janjušević L. Origanum vulgare essential oil affects pathogens causing vaginal infections. J Appl Microbiol 2017; 122:1177-1185. [PMID: 28176439 DOI: 10.1111/jam.13413] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Revised: 01/21/2017] [Accepted: 01/30/2017] [Indexed: 11/27/2022]
Abstract
AIMS This study aimed to investigate the application of Origanum vulgare L. essential oil (EO) as an alternative antimicrobial agent against vaginal infections. METHODS AND RESULTS Microdilution methods were applied for the detection of the minimal inhibitory (MIC) and the minimal bactericidal/fungicidal (MBC/MFC) concentration of 15 clinical strains originating from women with symptoms of vaginal infection. Optical density determination (OD) was used for detection of the Candida growth rate. Staining with DAPI was used to detect the influence of EO on nuclear condensation and fragmentation, while the brine shrimp bioassay was used to determine the toxicity of EO. Chemical composition analysis was done using GS-MS. According to the MIC and MBC/MFC values, the most susceptible strains to EO were: Escherichia coli 1, E. coli 2, Staphylococcus aureus 3 and Candida albicans 1-3. Inhibition of C. albicans filamentation was detected at 0·45 μl ml-1 . CONCLUSIONS The obtained inhibition (%) from Candida growth curves points to a shorter period of time (24 h) for determining IC50 as MIC and IC99 as MFC value. These values could be recommended as valid parameters for the faster detection of the effectiveness of EO on Candida isolates. SIGNIFICANCE AND IMPACT OF THE STUDY Examination of potential of the O. vulgare EO as a main antimicrobial constituent within vaginalettes in gynaecological practice.
Collapse
Affiliation(s)
- M Karaman
- Faculty of Sciences, University of Novi Sad, Novi Sad, Serbia
| | - M Bogavac
- Faculty of Medicine, University of Novi Sad, Novi Sad, Serbia
| | - B Radovanović
- Faculty of Medicine, University of Novi Sad, Novi Sad, Serbia
| | - J Sudji
- Institute of Occupational Health Novi Sad, Novi Sad, Serbia
| | - K Tešanović
- Faculty of Sciences, University of Novi Sad, Novi Sad, Serbia
| | - L Janjušević
- Faculty of Sciences, University of Novi Sad, Novi Sad, Serbia
| |
Collapse
|
25
|
Mandras N, Nostro A, Roana J, Scalas D, Banche G, Ghisetti V, Del Re S, Fucale G, Cuffini AM, Tullio V. Liquid and vapour-phase antifungal activities of essential oils against Candida albicans and non-albicans Candida. BMC COMPLEMENTARY AND ALTERNATIVE MEDICINE 2016; 16:330. [PMID: 27576581 PMCID: PMC5006570 DOI: 10.1186/s12906-016-1316-5] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 05/14/2016] [Accepted: 08/24/2016] [Indexed: 11/10/2022]
Abstract
BACKGROUND The management of Candida infections faces many problems, such as a limited number of antifungal drugs, toxicity, resistance of Candida to commonly antifungal drugs, relapse of Candida infections, and the high cost of antifungal drugs. Though azole antifungal agents and derivatives continue to dominate as drugs of choice against Candida infections, there are many available data referring to the anticandidal activity of essential oils. Since we have previous observed a good antimicrobial activity of some essential oils against filamentous fungi, the aim of this study was to extend the research to evaluate the activity of the same oils on Candida albicans, C.glabrata and C.tropicalis clinical strains, as well as the effects of related components. Essential oils selection was based both on ethnomedicinal use and on proved antibacterial and/or antifungal activity of some of these oils. Fluconazole and voriconazole were used as reference drugs. METHODS The minimum inhibitory concentration (MIC) and the minimal fungicidal concentration (MFC) of essential oils (thyme red, fennel, clove, pine, sage, lemon balm, and lavender) and their major components were investigated by the broth microdilution method (BM) and the vapour contact assay (VC). RESULTS Using BM, pine oil showed the best activity against all strains tested, though C.albicans was more susceptible than C.glabrata and C.tropicalis (MIC50-MIC90 = 0.06 %, v/v). On the contrary, sage oil displayed a weak activity (MIC50-MIC90 = 1 %, v/v). Thyme red oil (MIC50-MIC90 ≤ 0.0038 %, v/v for C.albicans and C.tropicalis, and 0.0078- < 0.015 %, v/v for C.glabrata), followed by lemon balm, lavender and sage were the most effective by VC. Carvacrol and thymol showed the highest activity, whereas linalyl acetate showed the lowest activity both by two methods. α-pinene displayed a better activity by BM than VC. CONCLUSION Results show a good activity of essential oils, mainly thymus red and pine oils, and their components carvacrol, thymol and α-pinene against Candida spp., including fluconazole/voriconazole resistant strains. These data encourage adequately controlled and randomized clinical investigations. The use in vapour phase could have additional advantages without requiring direct contact, resulting in easy of environmental application such as in hospital, and/or in school.
Collapse
|
26
|
Machado D, Castro J, Palmeira-de-Oliveira A, Martinez-de-Oliveira J, Cerca N. Bacterial Vaginosis Biofilms: Challenges to Current Therapies and Emerging Solutions. Front Microbiol 2016; 6:1528. [PMID: 26834706 PMCID: PMC4718981 DOI: 10.3389/fmicb.2015.01528] [Citation(s) in RCA: 85] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2015] [Accepted: 12/18/2015] [Indexed: 12/30/2022] Open
Abstract
Bacterial vaginosis (BV) is the most common genital tract infection in women during their reproductive years and it has been associated with serious health complications, such as preterm delivery and acquisition or transmission of several sexually transmitted agents. BV is characterized by a reduction of beneficial lactobacilli and a significant increase in number of anaerobic bacteria, including Gardnerella vaginalis, Atopobium vaginae, Mobiluncus spp., Bacteroides spp. and Prevotella spp.. Being polymicrobial in nature, BV etiology remains unclear. However, it is certain that BV involves the presence of a thick vaginal multi-species biofilm, where G. vaginalis is the predominant species. Similar to what happens in many other biofilm-related infections, standard antibiotics, like metronidazole, are unable to fully eradicate the vaginal biofilm, which can explain the high recurrence rates of BV. Furthermore, antibiotic therapy can also cause a negative impact on the healthy vaginal microflora. These issues sparked the interest in developing alternative therapeutic strategies. This review provides a quick synopsis of the currently approved and available antibiotics for BV treatment while presenting an overview of novel strategies that are being explored for the treatment of this disorder, with special focus on natural compounds that are able to overcome biofilm-associated antibiotic resistance.
Collapse
Affiliation(s)
- Daniela Machado
- Laboratory of Research in Biofilms Rosário Oliveira, Centre of Biological Engineering, University of Minho Braga, Portugal
| | - Joana Castro
- Laboratory of Research in Biofilms Rosário Oliveira, Centre of Biological Engineering, University of MinhoBraga, Portugal; Instituto de Ciências Biomédicas Abel Salazar, Universidade do PortoPorto, Portugal
| | - Ana Palmeira-de-Oliveira
- Health Sciences Research Center, Faculty of Health Sciences, University of Beira InteriorCovilhã, Portugal; Labfit, Health Products Research and Development LdaCovilhã, Portugal
| | - José Martinez-de-Oliveira
- Health Sciences Research Center, Faculty of Health Sciences, University of Beira InteriorCovilhã, Portugal; Child and Woman's Health Department, Centro Hospitalar Cova da BeiraCovilhã, Portugal
| | - Nuno Cerca
- Laboratory of Research in Biofilms Rosário Oliveira, Centre of Biological Engineering, University of Minho Braga, Portugal
| |
Collapse
|