1
|
He S, Zhang R, Wang R, Wu D, Dai S, Wang Z, Chen T, Mao H, Li Q. Responses of nutrient utilization, rumen fermentation and microorganisms to different roughage of dairy buffaloes. BMC Microbiol 2024; 24:188. [PMID: 38811906 PMCID: PMC11134657 DOI: 10.1186/s12866-024-03342-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Accepted: 05/17/2024] [Indexed: 05/31/2024] Open
Abstract
Dairy buffaloes are typically fed a high-forage, low-quality diet with high fiber. These conditions result in an inherent energy and protein inefficiency. In order to make full and rational use of feed resources and improve the production level and breeding efficiency of dairy buffaloes, the effects of various roughages on nutrient digestibility, ruminal fermentation parameters, and microorganisms in dairy buffaloes were studied in this experiment. Three ternary hybrid buffaloes, with an average body weight of 365 ± 22.1 kg, were selected and fitted with permanent rumen fistulas. They were fed six different diets, each consisting of 1 kg concentrate supplement and one of six types of roughage, including alfalfa hay (A diet), oat hay (O diet), whole corn silage (W diet), king grass (K diet), sugarcane shoot silage (S diet), and rice straw hay (R diet) according to an incomplete Latin square design of 3 × 6, respectively. The pre-feeding period of each period was 12 d. From day 13 to 15 was the official experimental period. During the prefeeding period, free feed intake for each roughage was determined, and during the experiment, the roughage was fed at 90% of the voluntary feed intake. Digestion and metabolism tests were carried out using the total manure collection method to determine the feed intake and fecal output of each buffalo, and to collect feed and fecal samples for chemical analysis. On day 15, rumen fluid samples were collected two hours after morning feeding to determine rumen fermentation parameters and bacterial 16 S rRNA high-throughput sequencing was performed. The results showed that DM and OM digestibility were greatest for the W diet and lowest for the S diet. The rumen pH of the O diet was significantly greater than that of the W diet. The concentration of rumen fluid NH3-N (mg/dL) increased with increased CP content. The concentration of total volatile fatty acids (mmol/L) in the rumen decreased with increased NDF content but increased with increased NFC content. The relative abundances of Bacteroidetes, Firmicutes, and Spirochaetes were 57.03-74.84%, 14.29-21.86%, and 0.44-1.43% in the different quality roughage groups. Bacteroidetes were mainly Prevotellaceae1 and Rikenellaceae RC_gut_group with relative abundances of 30.17-45.75% and 3.23-7.82%. The relative abundance of Patescibacteria and Spirochaetes decreased with increasing roughage quality. These results provide a theoretical and practical basis for evaluating the nutritional value of dairy buffalo feed, utilizing feed resources, matching rations, feeding scientifically, and protecting animal health.
Collapse
Affiliation(s)
- Shichun He
- Yunnan Provincial Key Laboratory of Animal Nutrition and Feed Science, Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming, 650201, China
| | - Ruiyun Zhang
- Yunnan Provincial Key Laboratory of Animal Nutrition and Feed Science, Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming, 650201, China
| | - Rongjiao Wang
- Institute of Animal and Veterinary Medicine, Panzhihua Academy of Agricultural and Forestry Sciences, Panzhihua, 617000, China
| | - Dongwang Wu
- Yunnan Provincial Key Laboratory of Animal Nutrition and Feed Science, Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming, 650201, China
| | - Sifan Dai
- Yunnan Provincial Key Laboratory of Animal Nutrition and Feed Science, Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming, 650201, China
| | - Zibei Wang
- Yunnan Provincial Key Laboratory of Animal Nutrition and Feed Science, Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming, 650201, China
| | - Tao Chen
- Animal Husbandry station in Mangshi, Dehong Prefecture, Mangshi, Yunnan, 678400, China
| | - Huaming Mao
- Yunnan Provincial Key Laboratory of Animal Nutrition and Feed Science, Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming, 650201, China
| | - Qing Li
- Yunnan Provincial Key Laboratory of Animal Nutrition and Feed Science, Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming, 650201, China.
| |
Collapse
|
2
|
Tian KE, Luo G, Aldian D, Yayota M. Treatment of corn with lactic acid delayed in vitro ruminal degradation without compromising fermentation: a biological and morphological monitoring study. Front Vet Sci 2024; 11:1336800. [PMID: 38318149 PMCID: PMC10839040 DOI: 10.3389/fvets.2024.1336800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Accepted: 01/08/2024] [Indexed: 02/07/2024] Open
Abstract
Grain processed by lactic acid (LA) is known to improve ruminant growth and health. However, the exact mechanism regarding rumen hydrolysis of LA-treated grain is still ambiguous. This experiment was designed to compare the effects of 5% LA treatment on the trophic and morphological variations in corn and to discover the alternations in ruminal hydrolysis between LA-treated and untreated corn macroscopically and microscopically using in vitro fermentation method. The results showed that, compared with untreated corn (CN), corn treated with 5% LA for 48 h (CNLA) experienced a decrease in the dry matter, albumin fraction, aNDFom, and water-soluble carbohydrate content but an increase in the resistant starch content. The in vitro fermentation showed that the pH of CNLA was higher, but dry matter disappearance was lower than that of CN. Most of the fermentation indices were unaffected, except for decreased iso-butyrate and iso-valerate. The abundances of total bacteria, Prevotella spp., Streptococcus bovis, and Selenomonas ruminantium were higher, but those of Ruminococcus flavefaciens and Ruminococcus albus were lower in CNLA than in CN. There were differences in the scanning electron micrographs between CNLA and CN after 3 h of fermentation. This study suggests that treating corn with LA for 48 h can induce changes in its nutrient composition and alter the bacterial flora during subsequent in vitro fermentation. These changes appeared to be crucial contributors to the beneficial effects observed in rumen fermentation.
Collapse
Affiliation(s)
- K. E. Tian
- The United Graduate School of Agricultural Science, Gifu University, Gifu, Japan
| | - Gan Luo
- College of Animal and Veterinary Science, Southwest University for Nationalities, Chengdu, China
| | - Dicky Aldian
- The United Graduate School of Agricultural Science, Gifu University, Gifu, Japan
| | - Masato Yayota
- The United Graduate School of Agricultural Science, Gifu University, Gifu, Japan
- Faculty of Applied Biological Sciences, Gifu University, Gifu, Japan
- Education and Research Center for Food Animal Health, Gifu University, Gifu, Japan
| |
Collapse
|
3
|
Effect of Heat Processing of Rubber Seed Kernel on In Vitro Rumen Biohydrogenation of Fatty Acids and Fermentation. FERMENTATION 2023. [DOI: 10.3390/fermentation9020143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
The aim of this study was to assess the effect of rubber seed kernel heat processing on in vitro rumen biohydrogenation of fatty acids and fermentation. The experiment was conducted with a completely randomized design (CRD). The inclusion of RSK at 0% (CON) and 20% with different processing methods as follows: Raw rubber seed kernel (RAWR), roasted rubber seed kernel (ROR), microwave irradiated rubber seed kernel (MIR), and rubber seed kernel were heated in a hot air oven (RHO) in total mixed ration (TMR) diets. The hydrogen cyanide (HCN) was reduced using RSK heat methods. The heat processing of RSK had no effect on cumulative gas production at 96 h, the gas production from the insoluble fraction (b), or degradability (p > 0.05), whereas it reduced the gas production from the immediately soluble fraction (a) and constant rate of gas production for the insoluble fraction (c) (p < 0.01). The RSK processing methods did not influence ruminal pH, total volatile fatty acid (VFA), or VFA proportions (p > 0.05). RSK heat processing reduced ammonia-nitrogen (NH3-N) (p < 0.04) while increasing the bacterial population (p < 0.02). Heat treatment had no effect on linoleic acid (C18:2 cis-9,12 + tran-9,12) (p > 0.05). The RHO increases oleic acid (C18:1 cis-9 + tran-9) and linolenic acid (C18:3 cis-9,12,15) concentrations (p < 0.01). In conclusion, RHO reduced rumen biohydrogenation of unsaturated fatty acids (UFA), especially C18:3 and C18:1.
Collapse
|
4
|
Influence of direct-fed microbial blend and Ferula elaeochytris on in vitro rumen fermentation pattern and degradability during simulated ruminal acidosis. J Vet Res 2022; 66:411-419. [PMID: 36349133 PMCID: PMC9597934 DOI: 10.2478/jvetres-2022-0052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Accepted: 09/13/2022] [Indexed: 11/07/2022] Open
Abstract
Introduction The use of probiotics and phytobiotics has attracted interest because of their protective effect against acidosis. Ferula elaeochytris (FE) is considered a good source of bioactive compounds, mainly monoterpene α-pinene. This study aimed to investigate the effect of a direct-fed microbial blend (Pro) and FE on rumen fermentation parameters in vitro under normal and acidosis conditions. Material and Methods An in vitro experiment using the Hohenheimer Futterwerttest (HFT) gas production system was conducted. An acidosis challenge was made to compare the effectiveness of the probiotics blend and FE extract on ruminal pH regulation. To generate different ruminal fermentation parameters, the design of the trial considered the 2 additives (Pro and FE) × 6 incubation times (2, 4, 8, 12, 24 and 48 h) × 2 conditions (acidosis and normal) × 2 incubation runs for each feedstuff (barley, alfalfa and straw). Results An acidosis challenge was successfully induced. The Pro and FE additives had no impact on the observed rumen fermentation parameters such as volatile fatty acid concentration or ammonia (P = 0.001). The acidosis condition decreased total in vitro degradability (IVD) by 3.5% and 21.9% for barley and straw, respectively (P < 0.001). The additives had different significant effects on the IVD of nutrients during both normal and acidosis conditions. In alfalfa samples, FE supplementation significantly decreased the IVD of all observed nutrients under the ruminal acidosis condition, although it had no effect during the normal condition. Conclusion An acidosis challenge was successfully induced and the effect of additives was varied on fermentation parameters and rumen degradability of different feeds either under normal or acidosis conditions.
Collapse
|
5
|
Pang K, Chai S, Yang Y, Wang X, Liu S, Wang S. Dietary forage to concentrate ratios impact on yak ruminal microbiota and metabolites. Front Microbiol 2022; 13:964564. [PMID: 36033892 PMCID: PMC9410728 DOI: 10.3389/fmicb.2022.964564] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 07/22/2022] [Indexed: 12/04/2022] Open
Abstract
To improve the rumen fermentation function and growth performance of yaks (Bos grunniens), better understanding of the effect of different dietary forage to concentrate ratios on rumen microbiota and metabolites is needed. In the present study, three diets with different dietary forage to concentrate ratios (50:50, 65:35, and 80:20) were fed to 36 housed male yaks. The changes in the distribution of rumen microorganisms and metabolites and the interactions between them were studied by 16S rRNA gene sequencing and liquid chromatography-mass spectrometry (LC–MS). The diversity and richness of microorganisms in the rumen varied according to diet. The most abundant phyla were Firmicutes and Bacteroidetes. Firmicutes was the most abundant in the C50 group, and the relative abundance of Bacteroidetes was significantly lower in the C65 group than in the C80 group (p < 0.05). The Christensenellaceae_R-7_group, Rikenellaceae_RC9_gut_group, and Methanobrevibacter had the highest relative abundances at the genus level. Among them, Christensenellace_R-7_group had the highest relative abundance in the C50 group. The Rikenellaceae_RC9_gut_group was significantly abundant in the C80 group compared with the C50 group. The Methanobrevibacter content was higher in the C65 group than in the other two groups. Both the concentration and metabolic pathways of rumen metabolites were influenced by the dietary concentrate ratio; lipids, lipid-like molecules, organic acid metabolites, and organic oxide-related metabolites differed between the groups. Significant changes were found for six metabolic pathways, including arginine and proline metabolism; glycine, serine, and threonine metabolism; glyoxylate and dicarboxylate metabolism; arginine biosynthesis; glycerophospholipid metabolism; glycerolipid metabolism; and nitrogen metabolism.
Collapse
Affiliation(s)
- Kaiyue Pang
- Qinghai Academy of Animal Husbandry and Veterinary Sciences in Qinghai University, Xining, Qinghai, China
- Key Laboratory of Plateau Grazing Animal Nutrition and Feed Science of Qinghai Province, Xining, Qinghai, China
- Yak Engineering Technology Research Center of Qinghai Province, Xining, Qinghai, China
| | - Shatuo Chai
- Qinghai Academy of Animal Husbandry and Veterinary Sciences in Qinghai University, Xining, Qinghai, China
- Key Laboratory of Plateau Grazing Animal Nutrition and Feed Science of Qinghai Province, Xining, Qinghai, China
- Yak Engineering Technology Research Center of Qinghai Province, Xining, Qinghai, China
| | - Yingkui Yang
- Qinghai Academy of Animal Husbandry and Veterinary Sciences in Qinghai University, Xining, Qinghai, China
- Key Laboratory of Plateau Grazing Animal Nutrition and Feed Science of Qinghai Province, Xining, Qinghai, China
- Yak Engineering Technology Research Center of Qinghai Province, Xining, Qinghai, China
| | - Xun Wang
- Qinghai Academy of Animal Husbandry and Veterinary Sciences in Qinghai University, Xining, Qinghai, China
- Key Laboratory of Plateau Grazing Animal Nutrition and Feed Science of Qinghai Province, Xining, Qinghai, China
- Yak Engineering Technology Research Center of Qinghai Province, Xining, Qinghai, China
| | - Shujie Liu
- Qinghai Academy of Animal Husbandry and Veterinary Sciences in Qinghai University, Xining, Qinghai, China
- Key Laboratory of Plateau Grazing Animal Nutrition and Feed Science of Qinghai Province, Xining, Qinghai, China
- Yak Engineering Technology Research Center of Qinghai Province, Xining, Qinghai, China
| | - ShuXiang Wang
- Qinghai Academy of Animal Husbandry and Veterinary Sciences in Qinghai University, Xining, Qinghai, China
- Key Laboratory of Plateau Grazing Animal Nutrition and Feed Science of Qinghai Province, Xining, Qinghai, China
- Yak Engineering Technology Research Center of Qinghai Province, Xining, Qinghai, China
- *Correspondence: ShuXiang Wang,
| |
Collapse
|
6
|
Ricci S, Pacífico C, Castillo-Lopez E, Rivera-Chacon R, Schwartz-Zimmermann HE, Reisinger N, Berthiller F, Zebeli Q, Petri RM. Progressive microbial adaptation of the bovine rumen and hindgut in response to a step-wise increase in dietary starch and the influence of phytogenic supplementation. Front Microbiol 2022; 13:920427. [PMID: 35935232 PMCID: PMC9354822 DOI: 10.3389/fmicb.2022.920427] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Accepted: 06/27/2022] [Indexed: 01/08/2023] Open
Abstract
Microbial composition and activity in the gastrointestinal tract (GIT) of cattle has important implications for animal health and welfare, driving the focus of research toward ways to modify their function and abundance. However, our understanding of microbial adaption to nutritional changes remains limited. The aim of this study was to examine the progressive mechanisms of adaptation in the rumen and hindgut of cattle receiving increasing amounts of starch with or without dietary supplementation of a blended phytogenic feed additive (PFA; containing menthol, thymol and eugenol). We used 16S rRNA gene amplicon sequencing to assess the microbial composition and predicted metabolic pathways in ruminal solid and liquid digesta, and feces. Furthermore, we employed targeted liquid chromatography-mass spectrometry methods to evaluate rumen fluid metabolites. Results indicated a rapid microbial adaptation to diet change, starting on the second day of starch feeding for the particle associated rumen liquid (PARL) microbes. Solid rumen digesta- and feces-associated microbes started changing from the following day. The PARL niche was the most responsive to dietary changes, with the highest number of taxa and predicted pathways affected by the increase in starch intake, as well as by the phytogenic supplementation. Despite the differences in the microbial composition and metabolic potential of the different GIT niches, all showed similar changes toward carbohydrate metabolism. Metabolite measurement confirmed the high prevalence of glucose and volatile fatty acids (VFAs) in the rumen due to the increased substrate availability and metabolic activity of the microbiota. Families Prevotellaceae, Ruminococcaceae and Lachnospiraceae were found to be positively correlated with carbohydrate metabolism, with the latter two showing wide-ranging predicted metabolic capabilities. Phytogenic supplementation affected low abundant taxa and demonstrated the potential to prevent unwanted implications of feeding high-concentrate diet, such as reduction of microbial diversity. The inclusion of 50% concentrate in the diet caused a major shift in microbial composition and activity in the GIT of cattle. This study demonstrated the ability of microorganisms in various GIT niches to adjust differentially, yet rapidly, to changing dietary conditions, and revealed the potential beneficial effects of supplementation with a PFA during dietary adaptation.
Collapse
Affiliation(s)
- Sara Ricci
- Christian Doppler Laboratory for Innovative Gut Health Concepts of Livestock, Department for Farm Animals and Veterinary Public Health, Institute of Animal Nutrition and Functional Plant Compounds, University of Veterinary Medicine, Vienna, Austria
- *Correspondence: Sara Ricci
| | - Cátia Pacífico
- Christian Doppler Laboratory for Innovative Gut Health Concepts of Livestock, Department for Farm Animals and Veterinary Public Health, Institute of Animal Nutrition and Functional Plant Compounds, University of Veterinary Medicine, Vienna, Austria
| | - Ezequias Castillo-Lopez
- Christian Doppler Laboratory for Innovative Gut Health Concepts of Livestock, Department for Farm Animals and Veterinary Public Health, Institute of Animal Nutrition and Functional Plant Compounds, University of Veterinary Medicine, Vienna, Austria
| | - Raul Rivera-Chacon
- Christian Doppler Laboratory for Innovative Gut Health Concepts of Livestock, Department for Farm Animals and Veterinary Public Health, Institute of Animal Nutrition and Functional Plant Compounds, University of Veterinary Medicine, Vienna, Austria
| | - Heidi E. Schwartz-Zimmermann
- Christian Doppler Laboratory for Innovative Gut Health Concepts of Livestock, Department of Agrobiotechnology (IFA-Tulln), Institute of Bioanalytics and Agro-Metabolomics, University of Natural Resources and Life Sciences, Vienna, Austria
| | | | - Franz Berthiller
- Christian Doppler Laboratory for Innovative Gut Health Concepts of Livestock, Department of Agrobiotechnology (IFA-Tulln), Institute of Bioanalytics and Agro-Metabolomics, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Qendrim Zebeli
- Christian Doppler Laboratory for Innovative Gut Health Concepts of Livestock, Department for Farm Animals and Veterinary Public Health, Institute of Animal Nutrition and Functional Plant Compounds, University of Veterinary Medicine, Vienna, Austria
| | - Renee M. Petri
- Agriculture and Agri-Food Canada, Sherbrooke Research and Development Centre, Sherbrooke, QC, Canada
| |
Collapse
|
7
|
Wang Q, Zeng Y, Zeng X, Wang X, Wang Y, Dai C, Li J, Huang P, Huang J, Hussain T, Zhu M, Yang H. Effects of Dietary Energy Levels on Rumen Fermentation, Gastrointestinal Tract Histology, and Bacterial Community Diversity in Fattening Male Hu Lambs. Front Microbiol 2021; 12:695445. [PMID: 34566905 PMCID: PMC8460862 DOI: 10.3389/fmicb.2021.695445] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Accepted: 08/02/2021] [Indexed: 12/11/2022] Open
Abstract
This study investigated rumen fermentation and histological and microbial diversity in male Hu lamb fed diets with different metabolizable energy (ME) levels (MEA, 9.17 MJ/kg, MEB, 10.00 MJ/kg, and MEC, 10.82 MJ/kg). Thirty-six male Hu lambs were randomly allotted to three treatments, and the feeding trial lasted for 67 days. Rumen fermentation results suggest that the iso-valerate had a significant effect on dietary energy level. The papillary height (PH) of rumen was the highest in the MEB group, the crypt depth (CD) was significantly increased in the duodenum and jejunum, and the villus height (VH)-to-CD ratio (VH/CD) was significantly decreased in the duodenum by increasing dietary energy levels; the VH, villus width (VW), and VH/CD also had significant differences in the ileum. 16S rRNA sequencing results showed that the operational taxonomic units (OTUs) number, the ACE, and Chao1 indices were linearly decreased by increasing dietary energy level; 24 phyla including 124 genera were identified, and the relative abundance of Papillibacter and Quinella linearly decreased by increasing the dietary energy level. Compared to MEA and MEB groups, the relative abundance of unidentified_Veillonellaceae and Anaerovibrio was significantly increased in the MEC group at the genus level. The relative abundance of the carbohydrate metabolism pathway predicted by Phylogenetic Investigation of Communities by Reconstruction of Unobserved States (PICRUSt) was linearly increased by increasing the dietary energy levels. Three metabolic pathways identified in Kyoto Encyclopedia of Genes and Genomes (KEGG) level 3 were significantly influenced as the dietary energy level increased. In summary, these results demonstrated that the dietary energy levels affected the rumen fermentation parameters, morphological structures of the gastrointestinal tract (GIT), and the composition and function of rumen microflora in male Hu sheep.
Collapse
Affiliation(s)
- Qiye Wang
- Hunan Provincial Key Laboratory of Animal Intestinal Function and Regulation, Hunan International Joint Laboratory of Animal Intestinal Ecology and Health, Laboratory of Animal Nutrition and Human Health, College of Life Sciences, Hunan Normal University, Changsha, China.,Hubei Zhiqinghe Agriculture and Animal Husbandry Co., Ltd., Yichang, China
| | - Yutong Zeng
- Hunan Provincial Key Laboratory of Animal Intestinal Function and Regulation, Hunan International Joint Laboratory of Animal Intestinal Ecology and Health, Laboratory of Animal Nutrition and Human Health, College of Life Sciences, Hunan Normal University, Changsha, China
| | - Xianglin Zeng
- Hunan Provincial Key Laboratory of Animal Intestinal Function and Regulation, Hunan International Joint Laboratory of Animal Intestinal Ecology and Health, Laboratory of Animal Nutrition and Human Health, College of Life Sciences, Hunan Normal University, Changsha, China
| | - Xin Wang
- Hunan Provincial Key Laboratory of Animal Intestinal Function and Regulation, Hunan International Joint Laboratory of Animal Intestinal Ecology and Health, Laboratory of Animal Nutrition and Human Health, College of Life Sciences, Hunan Normal University, Changsha, China
| | - Yancan Wang
- Hunan Provincial Key Laboratory of Animal Intestinal Function and Regulation, Hunan International Joint Laboratory of Animal Intestinal Ecology and Health, Laboratory of Animal Nutrition and Human Health, College of Life Sciences, Hunan Normal University, Changsha, China
| | - Chunpeng Dai
- Hubei Zhiqinghe Agriculture and Animal Husbandry Co., Ltd., Yichang, China
| | - Jianzhong Li
- Hunan Provincial Key Laboratory of Animal Intestinal Function and Regulation, Hunan International Joint Laboratory of Animal Intestinal Ecology and Health, Laboratory of Animal Nutrition and Human Health, College of Life Sciences, Hunan Normal University, Changsha, China
| | - Pengfei Huang
- Hunan Provincial Key Laboratory of Animal Intestinal Function and Regulation, Hunan International Joint Laboratory of Animal Intestinal Ecology and Health, Laboratory of Animal Nutrition and Human Health, College of Life Sciences, Hunan Normal University, Changsha, China
| | - Jing Huang
- Hunan Provincial Key Laboratory of Animal Intestinal Function and Regulation, Hunan International Joint Laboratory of Animal Intestinal Ecology and Health, Laboratory of Animal Nutrition and Human Health, College of Life Sciences, Hunan Normal University, Changsha, China
| | - Tarique Hussain
- Animal Sciences Division, Nuclear Institute for Agriculture and Biology, Faisalabad, Pakistan
| | - Mingzhi Zhu
- National Research Center of Engineering Technology for Utilization of Functional Ingredients from Botanicals, Co-Innovation Center of Education Ministry for Utilization of Botanical Functional Ingredients, College of Horticulture, Hunan Agricultural University, Changsha, China
| | - Huansheng Yang
- Hunan Provincial Key Laboratory of Animal Intestinal Function and Regulation, Hunan International Joint Laboratory of Animal Intestinal Ecology and Health, Laboratory of Animal Nutrition and Human Health, College of Life Sciences, Hunan Normal University, Changsha, China.,Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, Key Laboratory of Agro-Ecological Processes in Subtropical Region, Hunan Provincial Engineering Research Center of Healthy Livestock, Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South-Central, Ministry of Agriculture, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, China
| |
Collapse
|
8
|
Tsuchiya Y, Chiba E, Sugino T, Kawashima K, Hasunuma T, Kushibiki S, Kim YH, Sato S. Notice of RETRACTION: Changes in rumen fermentation, bacterial community, and predicted functional pathway in Holstein cows with and without subacute ruminal acidosis during the periparturient period. J Dairy Sci 2020; 103:4702-4716. [PMID: 32171513 DOI: 10.3168/jds.2019-17546] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Accepted: 01/22/2020] [Indexed: 12/21/2022]
Abstract
The authors have elected to retract this paper in accordance with the following points. The article as written contains misleading information and omits important details. Cows in this study were assigned to groups based on the current definition of subacute ruminal acidosis; they were housed on two different farms and fed two different sets of rations in this study. However, multiple farms were not described in the materials and methods and this was not accounted for in the statistical analysis as published. The diets shown in Table 1 were not actually fed to animals; rather, the proportions of ingredients listed represent an average of the two farms housing the cows.
The authors regret the errors.
Collapse
Affiliation(s)
- Yoshiyuki Tsuchiya
- Graduate School of Veterinary Sciences, Iwate University, Morioka, Iwate 020-8550, Japan; Cooperative Department of Veterinary Medicine, Faculty of Agriculture, Iwate University, Morioka, Iwate 020-8550, Japan
| | - Ena Chiba
- Cooperative Department of Veterinary Medicine, Faculty of Agriculture, Iwate University, Morioka, Iwate 020-8550, Japan
| | - Toshihisa Sugino
- The Research Center for Animal Science, Graduate School of Biosphere Science, Hiroshima University, Higashi-Hiroshima 739-8528, Japan
| | - Kenji Kawashima
- Chiba Prefectural Livestock Research Center, Yachimata, Chiba 289-1113, Japan
| | - Toshiya Hasunuma
- Toyama Prefectural Agricultural, Forestry and Fisheries Research Center, Toyama 939-8153, Japan
| | - Shiro Kushibiki
- Institute of Livestock and Grassland Science, National Agriculture and Food Research Organization, Tsukuba, Ibaraki 305-0901, Japan
| | - Yo-Han Kim
- Cooperative Department of Veterinary Medicine, Faculty of Agriculture, Iwate University, Morioka, Iwate 020-8550, Japan.
| | - Shigeru Sato
- Graduate School of Veterinary Sciences, Iwate University, Morioka, Iwate 020-8550, Japan; Cooperative Department of Veterinary Medicine, Faculty of Agriculture, Iwate University, Morioka, Iwate 020-8550, Japan.
| |
Collapse
|
9
|
Klinsoda J, Vötterl J, Zebeli Q, Metzler-Zebeli BU. Lactic Acid Treatment of Cereals and Dietary Phytase Modified Fecal Microbiome Composition Without Affecting Expression of Virulence Factor Genes in Growing Pigs. Front Microbiol 2019; 10:2345. [PMID: 31681210 PMCID: PMC6808178 DOI: 10.3389/fmicb.2019.02345] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Accepted: 09/26/2019] [Indexed: 12/29/2022] Open
Abstract
Besides the major nutrients, phosphorus (P) is an essential mineral for both the host animal and the porcine gut microbiota. Different strategies including phytase supplementation and more recently lactic acid (LA) are used to enhance the P availability from cereals in pig diets; however, their impact on the gut microbiota has been rarely related to fecal shedding of opportunistic pathogens. The present study investigated the effect of phytase supplementation and the treatment of dietary cereals with 2.5% LA on the fecal microbiome composition of metabolic active bacteria and expression of virulence factor genes of enterotoxigenic Escherichia coli and Clostridium perfringens in growing pigs. Phytase supplementation reduced the fecal abundance of the most abundant Lactobacillaceae family, whereas the LA-treatment of cereals had a stronger impact on the bacterial community, reducing amylolytic, pullulanolytic and hemicellulolytic Lactobacillaceae, Lachnospiraceae and Ruminococcaceae as well as the fecal bacterial species richness (Chao1) and diversity (Shannon index). Mainly the family Clostridiaceae benefited from the decline in the aforementioned families, being enriched by both dietary treatments. Multigroup data integration using sparse partial least squares-discriminant analysis showed that among the most discriminative operational taxonomic units (OTU) especially two unclassified Clostridiaceae-OTUs, one Prevotella copri-like OTU and one OTU within the vadinCA11 group were associated with calcium and P levels but were negatively linked with complex carbohydrates in feces. Heat-stable toxin A (Sta) of enterotoxigenic E. coli and Stx2e of Shiga-toxin producing E. coli were expressed in feces but were similar among feeding groups. Without modifying the total bacterial gene copies and virulence factor expression of E. coli, both dietary phytase supplementation and LA-treatment of cereals drastically altered the bacterial community composition in pig feces. Results thereby allowed for the characterization of bacterial nutrient dependencies, indicating a link between fecal P availability, complex carbohydrate composition and alterations in the predominant genera.
Collapse
Affiliation(s)
- Jutamat Klinsoda
- Institute of Animal Nutrition and Functional Plant Compounds, University of Veterinary Medicine, Vienna, Austria.,Institute of Food Research and Product Development, Kasetsart University, Bangkok, Thailand
| | - Julia Vötterl
- Institute of Animal Nutrition and Functional Plant Compounds, University of Veterinary Medicine, Vienna, Austria
| | - Qendrim Zebeli
- Institute of Animal Nutrition and Functional Plant Compounds, University of Veterinary Medicine, Vienna, Austria
| | - Barbara U Metzler-Zebeli
- Institute of Animal Nutrition and Functional Plant Compounds, University of Veterinary Medicine, Vienna, Austria
| |
Collapse
|
10
|
Metzler-Zebeli BU, Haselmann A, Klevenhusen F, Knaus W, Zebeli Q. Lactic acid treatment of by-products and phosphorus level in the diet modulate bacterial microbiome and the predicted metagenome functions using the rumen simulation technique. J Dairy Sci 2018; 101:9800-9814. [PMID: 30146296 DOI: 10.3168/jds.2018-14821] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Accepted: 06/14/2018] [Indexed: 12/27/2022]
Abstract
This study used a rumen simulation technique to evaluate the effects of soaking of by-product-rich concentrate (BPC) in 5% lactic acid (LAC; vol/vol) on the rumen microbiota, predicted metagenome, fermentation characteristics, and nutrient degradation without or with supplemented P. The diet was supplemented with 1.6 g of P in the form of monocalcium phosphate per kilogram of dry matter in addition to 284 mg of inorganic P/d per fermentor via artificial saliva. Fermentor fluid was collected for analyses of short-chain fatty acids, fermentation gases, redox potential, and microbiota and feed residues for calculation of nutrient degradation. The microbiota composition was assessed using paired-end Illumina (Illumina Inc., San Diego, CA) MiSeq sequencing of the V3 to V5 region of the 16S rRNA gene. Soaking in LAC reduced the contents of crude protein, neutral and acid detergent fibers, and organic matter fractions as well as ash and P content of the BPC. Both the LAC treatment of BPC and the inorganic P modified the relative bacterial abundances mainly within the predominant orders Bacteroidales and Clostridiales. Supervised DIABLO N-integration networking supported that operational taxonomic units related to BS11, Ruminococcaceae, Christensenellaceae, Eubacterium, and Selenomonas were the most discriminant for the LAC-treated BPC, whereas other operational taxonomic units related to BS11, RFN20, Ruminococcus, and Succiniclasticum were best correlated with the inorganic P supplementation. Integration networking also showed that carbohydrate and pyruvate metabolism, biosynthesis of unsaturated fatty acids, and degradation of several xenobiotics were stimulated by the LAC treatment of BPC. Those data supported the enhanced fermentation activity as indicated by increased total short-chain fatty acid concentration, especially propionate and butyrate, and methane, but decreased ruminal crude protein degradation, with the LAC-treated compared with control-treated BPC. In contrast, despite an increased abundance of imputed functions, such as inositol phosphate metabolism, phosphatidylinositol signaling, and fructose and mannose metabolism, the reduced abundance of the imputed Kyoto Encyclopedia of Genes and Genomes pathway "transcription machinery" as well as the decrease in total short-chain fatty acids and nutrient degradation indicated reduced bacterial metabolic activity with the inorganic P supplementation. In conclusion, soaking of BPC in LAC may favor the proliferation of certain fibrolytic bacterial taxa and stimulate their metabolic activity, whereas the supplemented P to a diet already meeting ruminal P needs may impair ruminal nutrient utilization.
Collapse
Affiliation(s)
- Barbara U Metzler-Zebeli
- Institute of Animal Nutrition and Functional Plant Compounds, Department for Farm Animals and Veterinary Public Health, University of Veterinary Medicine Vienna, Veterinärplatz 1, 1210 Vienna, Austria
| | - Andreas Haselmann
- Department of Sustainable Agricultural Systems, Division of Livestock Sciences, BOKU-University of Natural Resources and Life Sciences, 1180 Vienna, Austria
| | - Fenja Klevenhusen
- Institute of Animal Nutrition and Functional Plant Compounds, Department for Farm Animals and Veterinary Public Health, University of Veterinary Medicine Vienna, Veterinärplatz 1, 1210 Vienna, Austria
| | - Wilhelm Knaus
- Department of Sustainable Agricultural Systems, Division of Livestock Sciences, BOKU-University of Natural Resources and Life Sciences, 1180 Vienna, Austria
| | - Qendrim Zebeli
- Institute of Animal Nutrition and Functional Plant Compounds, Department for Farm Animals and Veterinary Public Health, University of Veterinary Medicine Vienna, Veterinärplatz 1, 1210 Vienna, Austria.
| |
Collapse
|
11
|
Bi Y, Zeng S, Zhang R, Diao Q, Tu Y. Effects of dietary energy levels on rumen bacterial community composition in Holstein heifers under the same forage to concentrate ratio condition. BMC Microbiol 2018; 18:69. [PMID: 29996759 PMCID: PMC6042446 DOI: 10.1186/s12866-018-1213-9] [Citation(s) in RCA: 82] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Accepted: 06/27/2018] [Indexed: 12/20/2022] Open
Abstract
Background The rumen bacterial community plays a critical role in feeds degradation and productivity. The effects of different forage to concentrate ratios on the ruminal microbial population structure have been studied extensively; however, research into changes in the ruminal bacterial community composition in heifers fed different energy level diets, with the same forage to concentrate ratio, has been very limited. The purpose of this study was to investigate the effects of different dietary energy levels, with the same forage to concentrate ratio, on ruminal bacterial community composition of heifers. Furthermore, we also determine the relationship between rumen bacteria and ruminal fermentation parameters. Results The 16S rRNA gene sequencing showed that, under the same forage to concentrate ratio of 50:50, an 8% difference in dietary energy level had no significant impact on the alpha diversity and the relative abundance of the major phyla and most of the major genera in heifers. In all the treatments groups, Firmicutes, Bacteroidetes, and Proteobacteria were the dominant phyla. Spearman correlation analysis between the relative abundances of the rumen bacteria at the genus level and the fermentation parameters showed that the relative abundances of Prevotella and BF311 were positively correlated with the ammonia nitrogen and butyrate concentrations, and these two genera were negatively correlated with the propionate and isovalerate concentrations, respectively, and the genus Bifidobacterium was positively correlated with the butyrate concentration and was negatively correlated with propionate and isovalerate concentration. The total volatile fatty acid concentration was positively correlated with BF311 abundances, and was negatively correlated with Trichococcus and Facklamia abundances. Conclusions Under the same forage to concentrate ratio condition of 50:50, an 8% difference in dietary energy levels had little impact on rumen bacterial community composition in heifers. The correlations between some genera of ruminal bacteria and the concentrations of volatile fatty acids and ammonia nitrogen might be indicative that the ruminal fermentation parameters are strongly influenced by the rumen bacterial community composition.
Collapse
Affiliation(s)
- Yanliang Bi
- Key Laboratory of Feed Biotechnology of the Ministry of Agriculture, Feed Research Institute, Chinese Academy of Agricultural Sciences, NO. 12 Zhongguancun South Street, Haidian District, Beijing, 100081, China
| | - Shuqin Zeng
- Key Laboratory of Feed Biotechnology of the Ministry of Agriculture, Feed Research Institute, Chinese Academy of Agricultural Sciences, NO. 12 Zhongguancun South Street, Haidian District, Beijing, 100081, China
| | - Rong Zhang
- Key Laboratory of Feed Biotechnology of the Ministry of Agriculture, Feed Research Institute, Chinese Academy of Agricultural Sciences, NO. 12 Zhongguancun South Street, Haidian District, Beijing, 100081, China
| | - Qiyu Diao
- Key Laboratory of Feed Biotechnology of the Ministry of Agriculture, Feed Research Institute, Chinese Academy of Agricultural Sciences, NO. 12 Zhongguancun South Street, Haidian District, Beijing, 100081, China.
| | - Yan Tu
- Key Laboratory of Feed Biotechnology of the Ministry of Agriculture, Feed Research Institute, Chinese Academy of Agricultural Sciences, NO. 12 Zhongguancun South Street, Haidian District, Beijing, 100081, China.
| |
Collapse
|
12
|
Nagata R, Kim YH, Ohkubo A, Kushibiki S, Ichijo T, Sato S. Effects of repeated subacute ruminal acidosis challenges on the adaptation of the rumen bacterial community in Holstein bulls. J Dairy Sci 2018; 101:4424-4436. [DOI: 10.3168/jds.2017-13859] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Accepted: 01/02/2018] [Indexed: 11/19/2022]
|
13
|
Münnich M, Khol-Parisini A, Klevenhusen F, Metzler-Zebeli BU, Zebeli Q. Graded replacement of maize grain with molassed sugar beet pulp modulated ruminal microbial community and fermentation profile in vitro. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2018; 98:991-997. [PMID: 28722751 DOI: 10.1002/jsfa.8547] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Revised: 07/11/2017] [Accepted: 07/11/2017] [Indexed: 06/07/2023]
Abstract
BACKGROUND Molassed sugar beet pulp (Bp) is a viable alternative to grains in cattle nutrition for reducing human edible energy input. Yet little is known about the effects of high inclusion rates of Bp on rumen microbiota. This study used an in vitro approach and the quantitative polymerase chain reaction technique to establish the effects of a graded replacement of maize grain (MG) by Bp on the ruminal microbial community, fermentation profile and nutrient degradation. RESULTS Six different amounts of Bp (0-400 g kg-1 ), which replaced MG in the diet, were tested using the in vitro semi-continuous rumen simulation technique. The increased inclusion of Bp resulted in greater dietary content and degradation of neutral detergent fibre (P < 0.01). Further, Bp feeding enhanced (P < 0.01) the abundance of genus Prevotella and shifted (P < 0.01) the short-chain fatty acid patterns in favour of acetate and propionate and at the expense of butyrate. A total replacement of MG with Bp resulted in an increased daily methane production (P < 0.01). CONCLUSION Results suggest positive effects of the replacement of MG by Bp especially in terms of stimulating ruminal acetate and propionate fermentation. However, high replacement rates of Bp resulted in lowered utilization of ammonia and higher ruminal methane production. © 2017 Society of Chemical Industry.
Collapse
Affiliation(s)
- Matthias Münnich
- Institute of Animal Nutrition and Functional Plant Compounds, Department for Farm Animals and Veterinary Public Health, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Annabella Khol-Parisini
- Institute of Animal Nutrition and Functional Plant Compounds, Department for Farm Animals and Veterinary Public Health, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Fenja Klevenhusen
- Institute of Animal Nutrition and Functional Plant Compounds, Department for Farm Animals and Veterinary Public Health, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Barbara U Metzler-Zebeli
- University Clinic for Swine, Department of Farm Animals and Veterinary Public Health, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Qendrim Zebeli
- Institute of Animal Nutrition and Functional Plant Compounds, Department for Farm Animals and Veterinary Public Health, University of Veterinary Medicine Vienna, Vienna, Austria
| |
Collapse
|
14
|
Mickdam E, Khiaosa-ard R, Metzler-Zebeli B, Humer E, Harder H, Khol-Parisini A, Zebeli Q. Modulation of ruminal fermentation profile and microbial abundance in cows fed diets treated with lactic acid, without or with inorganic phosphorus supplementation. Anim Feed Sci Technol 2017. [DOI: 10.1016/j.anifeedsci.2017.05.017] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
15
|
Restoration of in situ fiber degradation and the role of fibrolytic microbes and ruminal pH in cows fed grain-rich diets transiently or continuously. Animal 2017; 11:2193-2202. [PMID: 28528583 DOI: 10.1017/s1751731117001112] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
In this study, we used two different grain-rich feeding models (continuous or transient) to determine their effects on in situ fiber degradation and abundances of important rumen fibrolytic microbes in the rumen. The role of the magnitude of ruminal pH drop during grain feeding in the fiber degradation was also determined. The study was performed in eight rumen-fistulated dry cows. They were fed forage-only diet (baseline), and then challenged with a 60% concentrate diet for 4 weeks, either continuously (n=4 cows) or transiently (n=4 cows). The cows of transient feeding had 1 week off concentrate in between. Ruminal degradation of grass silage and fiber-rich hay was determined by the in situ technique, and microbial abundances attached to incubated samples were analyzed by quantitative PCR. The in situ trials were performed at the baseline and in the 1st and the last week of concentrate feeding in the continuous model. The in situ trials were done in cows of the transient model at the baseline and in the 1st week of the re-challenge with concentrate. In situ degradation of NDF and ADF of the forage samples, and microbial abundances were determined at 0, 4, 8, 24 and 48 h of the incubation. Ruminal pH and temperature during the incubation were recorded using indwelling pH sensors. Compared with the respective baseline, both grain-rich feeding models lowered ruminal pH and increased the duration of pH below 5.5 and 5.8. Results of the grass silage incubation showed that in the continuous model the extent of NDF and ADF degradation was lower in the 1st, but not in the last week compared with the baseline. For the transient model, degradation of NDF of the silage was lower during the re-challenge compared with the baseline. Degradation of NDF and ADF of the hay was suppressed by both feeding models compared with the respective baseline. Changes in fiber degradation of either grass silage or hay were not related to the magnitude of ruminal pH depression during grain-rich feeding. In both feeding models total fungal numbers and relative abundance of Butyrivibrio fibrisolvens attached to the incubated forages were decreased by the challenge. Overall, Fibrobacter succinogenes was more sensitive to the grain challenge compared with Ruminococcus albus and Ruminococcus flavefaciens. The study provided evidence for a restored ruminal fiber degradation after prolonged time of grain-rich feeding, however depending on physical and chemical characteristics of forages.
Collapse
|
16
|
Humer E, Zebeli Q. Grains in ruminant feeding and potentials to enhance their nutritive and health value by chemical processing. Anim Feed Sci Technol 2017. [DOI: 10.1016/j.anifeedsci.2017.02.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
17
|
Wang Y, Cao P, Wang L, Zhao Z, Chen Y, Yang Y. Bacterial community diversity associated with different levels of dietary nutrition in the rumen of sheep. Appl Microbiol Biotechnol 2017; 101:3717-3728. [PMID: 28175950 DOI: 10.1007/s00253-017-8144-5] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2016] [Revised: 01/02/2017] [Accepted: 01/27/2017] [Indexed: 01/16/2023]
Abstract
The sheep rumen microbial community plays an important role in animal performance and the environment. Few studies have paid close attention to the impact of different levels of dietary nutrition on rumen microbial populations. A total of 112 healthy Tan sheep were selected and randomly allotted to one of four dietary treatments (groups I, II, III, and IV). Each treatment included four replicated pens with seven sheep each for a total of 28 sheep per treatment. The sheep were fed four diets with nutrient levels that were 84, 96, 108, or 120% of the recommendation. In this study, a next-generation sequencing strategy and quantitative real-time PCR analysis were applied to investigate changes in whole ruminal bacteria with increased dietary energy and protein levels. The study observed 133 genera belonging to 16 phyla distributed throughout the rumen samples, with Firmicutes and Bacteroidetes predominating. Additionally, the higher nutritional dietary level linearly increased (P < 0.05) the number of Bacteroidetes and Proteobacteria but linearly decreased (P < 0.05) the Firmicutes richness. At the species level, the abundance of Prevotella ruminicola, Ruminococcus flavefaciens, and Succinivibrio dextrinosolvens linearly increased (P < 0.05), whereas the abundance of Selenomonas ruminantium and Veillonella parvula did not (P > 0.05). Furthermore, we predicted the potential functions of rumen bacteria. In particular, the relative abundances of the genes related to carbohydrates were overrepresented, and the genes involved in amino acid metabolism linearly increased (P < 0.05). These findings provide the first deep insights into the rumen microbial composition and the targeted improvement of dietary protein and energy use efficiency in Tan sheep.
Collapse
Affiliation(s)
- Yaoyue Wang
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, People's Republic of China
| | - Pinghua Cao
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, Henan, People's Republic of China
| | - Lei Wang
- Qinghai Academy of Animal Science and Veterinary Medicine, Qinghai University, Xining, Qinghai, People's Republic of China
| | - Zhaoyan Zhao
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, People's Republic of China
| | - Yulin Chen
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, People's Republic of China.
| | - Yuxin Yang
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, People's Republic of China.
| |
Collapse
|
18
|
Gruber L, Khol-Parisini A, Humer E, Abdel-Raheem SM, Zebeli Q. Long-term influence of feeding barley treated with lactic acid and heat on performance and energy balance in dairy cows. Arch Anim Nutr 2016; 71:54-66. [PMID: 27858467 DOI: 10.1080/1745039x.2016.1253226] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
The study evaluated the long-term influence of feeding ground barley treated with lactic acid (LA) alone or with LA and heat on performance, energy and protein balance in dairy cows. Thirty cows were fed three diets differing in the treatment of barley grain, either unprocessed ground barley (Control), ground barley steeped in 1% LA at room temperature (LA-treated barley) or ground barley steeped in 1% LA with an additional heating at 55°C (LAH-treated barley). Cows were studied from week 3 to 17 post-partum. Dry matter intake (DMI), milk yield and composition and body weight (BW) were measured daily. Estimated energy and protein balances were calculated and blood samples were collected three times during the experiment and analysed for common metabolites of energy and lipid metabolism. Digestibility of different treated barley and other dietary ingredients was investigated in vivo using four wethers. The treatment of barley with LA and LAH increased the digestibility of organic matter (OM) by approximately 5% and the content of metabolisable energy by 0.5-0.6 MJ/kg DM. Data showed no effect of feeding diets containing LA- or LAH-treated barley at 39% of DM on overall DMI, BW, BW change, milk production and composition and on the blood variables studied. Diet influenced the estimated balances of net energy of lactation (p < 0.01) and the content of utilisable protein at the duodenum (p = 0.07) with cows fed the diet with LA-treated barley showing improved balances. In conclusion, feeding diets containing LA- or LAH-treated barley had no influence on performance, milk composition and blood metabolites, but LA treatment without heat seems to improve the energy balance of cows.
Collapse
Affiliation(s)
- Leonhard Gruber
- a Institute of Livestock Research , Agricultural Research and Education Centre Raumberg-Gumpenstein , Irdning , Austria
| | - Annabella Khol-Parisini
- b Department for Farm Animals and Veterinary Public Health, Institute of Animal Nutrition and Functional Plant Compounds , Vetmeduni Vienna , Vienna , Austria
| | - Elke Humer
- b Department for Farm Animals and Veterinary Public Health, Institute of Animal Nutrition and Functional Plant Compounds , Vetmeduni Vienna , Vienna , Austria
| | - Sherief M Abdel-Raheem
- c Department of Animal Nutrition and Clinical Nutrition , Faculty of Veterinary Medicine, Assiut University , Assiut , Egypt
| | - Qendrim Zebeli
- b Department for Farm Animals and Veterinary Public Health, Institute of Animal Nutrition and Functional Plant Compounds , Vetmeduni Vienna , Vienna , Austria
| |
Collapse
|
19
|
Khol-Parisini A, Humer E, Harder H, Mickdam E, Zebeli Q. Metabolic responses, performance, and reticuloruminal pH of early-lactating cows fed concentrates treated with lactic acid, with or without inorganic phosphorus supplementation. J Dairy Sci 2016; 99:6237-6250. [PMID: 27236756 DOI: 10.3168/jds.2016-11208] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Accepted: 04/14/2016] [Indexed: 12/31/2022]
Abstract
Recent data indicate beneficial effects of treating grains with lactic acid (LA) in alleviating the need for inorganic phosphorus supplementation during ruminal fermentation in vitro. The aim of this study was to evaluate the effects of feeding concentrates treated with LA with or without inorganic phosphorus supplementation on feed intake, performance, blood variables, and reticuloruminal pH in dairy cows. A total of 16 early-lactating cows (12 Simmental and 4 Brown Swiss) were included in this study from d 1 until d 37 postpartum. Cows were fed 3 total mixed rations differing in supplementation of inorganic phosphorus and treatment of concentrates. The control (CON) and LA (+P) diets included a concentrate mixture containing 0.8% monocalcium phosphate, and the LA (-P) diet contained no inorganic phosphorus source. The concentrates of the LA (+P) and LA (-P) diets were treated with 5% LA for 24h before feeding, and the concentrate of the CON diet was not treated. Dry matter intake and milk yield were recorded daily, and milk composition and blood variables were determined on several occasions during the trial. Reticuloruminal pH was measured using indwelling sensors that allowed for continuous measurement during the experimental period. Data showed depressed dry matter intake in cows receiving LA-treated concentrates, but milk yield, body weight, and body weight changes remained similar among treatment groups. Cows receiving the LA-treated diets had lower concentrations of serum nonesterified fatty acids, cholesterol, and insulin, and they tended to have higher serum phosphorus levels. On the other hand, reticuloruminal pH was lower and duration of the pH being <6.0 was longer in cows in the LA-treated groups. Aspartate aminotransferase, gamma-glutamyltransferase, and concentrations of bilirubin and bile acids were lower in the LA (-P) group. Taken together, the 5% LA-treated diet without inorganic phosphorus supplementation did not exert any negative effects on performance. The observed beneficial effects on blood metabolites related to lipid metabolism, insulin sensitivity, and liver variables, as well as the tendency for greater systemic phosphorus circulation, suggest that diets including concentrates treated with 5% LA may allow for savings of inorganic phosphorus supplementation in dairy cows. Treatment with 5% LA enhanced cows' risk of developing subacute rumen acidosis, although this condition showed no adverse effects with respect to liver variables and the inflammatory response.
Collapse
Affiliation(s)
- A Khol-Parisini
- Institute of Animal Nutrition and Functional Plant Compounds, Department for Farm Animals and Veterinary Public Health, University of Veterinary Medicine Vienna, 1210 Vienna, Austria
| | - E Humer
- Institute of Animal Nutrition and Functional Plant Compounds, Department for Farm Animals and Veterinary Public Health, University of Veterinary Medicine Vienna, 1210 Vienna, Austria
| | - H Harder
- Institute of Animal Nutrition and Functional Plant Compounds, Department for Farm Animals and Veterinary Public Health, University of Veterinary Medicine Vienna, 1210 Vienna, Austria
| | - E Mickdam
- Institute of Animal Nutrition and Functional Plant Compounds, Department for Farm Animals and Veterinary Public Health, University of Veterinary Medicine Vienna, 1210 Vienna, Austria; Faculty of Veterinary Medicine, South Valley University, 83523 Qena, Egypt
| | - Q Zebeli
- Institute of Animal Nutrition and Functional Plant Compounds, Department for Farm Animals and Veterinary Public Health, University of Veterinary Medicine Vienna, 1210 Vienna, Austria.
| |
Collapse
|