1
|
Pratt ML, Plumb AN, Manjrekar A, Cardona LM, Chan CK, John JM, Sadler KE. Microbiome contributions to pain: a review of the preclinical literature. Pain 2025; 166:262-281. [PMID: 39258679 PMCID: PMC11723818 DOI: 10.1097/j.pain.0000000000003376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 06/28/2024] [Indexed: 09/12/2024]
Abstract
ABSTRACT Over the past 2 decades, the microbiome has received increasing attention for the role that it plays in health and disease. Historically, the gut microbiome was of particular interest to pain scientists studying nociplastic visceral pain conditions given the anatomical juxtaposition of these microorganisms and the neuroimmune networks that drive pain in such diseases. More recently, microbiomes both inside and across the surface of the body have been recognized for driving sensory symptoms in a broader set of diseases. Microbiomes have never been a more popular topic in pain research, but to date, there has not been a systematic review of the preclinical microbiome pain literature. In this article, we identified all animal studies in which both the microbiome was manipulated and pain behaviors were measured. Our analysis included 303 unique experiments across 97 articles. Microbiome manipulation methods and behavioral outcomes were recorded for each experiment so that field-wide trends could be quantified and reported. This review specifically details the animal species, injury models, behavior measures, and microbiome manipulations used in preclinical pain research. From this analysis, we were also able to conclude how manipulations of the microbiome alter pain thresholds in naïve animals and persistent pain intensity and duration in cutaneous and visceral pain models. This review summarizes by identifying existing gaps in the literature and providing recommendations for how to best plan, implement, and interpret data collected in preclinical microbiome pain experiments.
Collapse
Affiliation(s)
- McKenna L Pratt
- Department of Neuroscience, Center for Advanced Pain Studies, University of Texas at Dallas, Richardson, TX, United States
| | | | | | | | | | | | | |
Collapse
|
2
|
Kurdi M, Bajwa SJS, Sharma R, Choudhary R. Gut Microbiota and Probiotics in Perioperative Management: A Narrative Review. Cureus 2024; 16:e68404. [PMID: 39360063 PMCID: PMC11445195 DOI: 10.7759/cureus.68404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/10/2024] [Indexed: 10/04/2024] Open
Abstract
The human gut is the abode of several complex and diverse microbes. It is a fact that the human brain is interconnected with the spinal cord and sense organs; however, there is also a possibility of a connection between the brain and the gut microbiome. The human gut can be altered in various ways, the principal method being the intake of prebiotics, probiotics and synbiotics. Can this alteration in the gut microbiome be clinically utilised in the perioperative period? We conducted a literature search related to this topic using databases and search engines (Medical Literature Analysis and Retrieval System Online {MEDLINE}, Embase, Scopus, PubMed and Google Scholar). The search revealed some preclinical and clinical studies in animals and humans that demonstrate the alteration of the gut microbiome with the use of anxiolysis, probiotics/prebiotics and other perioperative factors including opioids, anaesthetics and perioperative stress. The significant effects of this alteration have been seen on preoperative anxiety and postoperative delirium/cognitive dysfunction/pain. These effects are described in this narrative review, which opens up newer vistas for high-quality research related to the gut microbiome, gut-brain axis, the related signaling pathways and their clinical application in the perioperative period.
Collapse
Affiliation(s)
- Madhuri Kurdi
- Department of Anaesthesiology, Karnataka Medical College and Research Institute, Hubballi, IND
| | - Sukhminder J S Bajwa
- Department of Anaesthesiology, Gian Sagar Medical College and Hospital, Patiala, IND
| | - Ridhima Sharma
- Department of Anaesthesiology, All India Institute of Medical Sciences, Nagpur, IND
| | - Ripon Choudhary
- Department of Anaesthesiology, Datta Meghe Medical College and Research Institute, Nagpur, IND
| |
Collapse
|
3
|
Manjarres Z, Calvo M, Pacheco R. Regulation of Pain Perception by Microbiota in Parkinson Disease. Pharmacol Rev 2023; 76:7-36. [PMID: 37863655 DOI: 10.1124/pharmrev.122.000674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 10/03/2023] [Accepted: 10/10/2023] [Indexed: 10/22/2023] Open
Abstract
Pain perception involves current stimulation in peripheral nociceptive nerves and the subsequent stimulation of postsynaptic excitatory neurons in the spinal cord. Importantly, in chronic pain, the neural activity of both peripheral nociceptors and postsynaptic neurons in the central nervous system is influenced by several inflammatory mediators produced by the immune system. Growing evidence has indicated that the commensal microbiota plays an active role in regulating pain perception by either acting directly on nociceptors or indirectly through the modulation of the inflammatory activity on immune cells. This symbiotic relationship is mediated by soluble bacterial mediators or intrinsic structural components of bacteria that act on eukaryotic cells, including neurons, microglia, astrocytes, macrophages, T cells, enterochromaffin cells, and enteric glial cells. The molecular mechanisms involve bacterial molecules that act directly on neurons, affecting their excitability, or indirectly on non-neuronal cells, inducing changes in the production of proinflammatory or anti-inflammatory mediators. Importantly, Parkinson disease, a neurodegenerative and inflammatory disorder that affects mainly the dopaminergic neurons implicated in the control of voluntary movements, involves not only a motor decline but also nonmotor symptomatology, including chronic pain. Of note, several recent studies have shown that Parkinson disease involves a dysbiosis in the composition of the gut microbiota. In this review, we first summarize, integrate, and classify the molecular mechanisms implicated in the microbiota-mediated regulation of chronic pain. Second, we analyze the changes on the commensal microbiota associated to Parkinson disease and propose how these changes affect the development of chronic pain in this pathology. SIGNIFICANCE STATEMENT: The microbiota regulates chronic pain through the action of bacterial signals into two main locations: the peripheral nociceptors and the postsynaptic excitatory neurons in the spinal cord. The dysbiosis associated to Parkinson disease reveals increased representation of commensals that potentially exacerbate chronic pain and reduced levels of bacteria with beneficial effects on pain. This review encourages further research to better understand the signals involved in bacteria-bacteria and bacteria-host communication to get the clues for the development of probiotics with therapeutic potential.
Collapse
Affiliation(s)
- Zulmary Manjarres
- Laboratorio de Neuroinmunología, Centro Científico y Tecnológico de Excelencia Ciencia & Vida, Fundación Ciencia & Vida, Santiago, Chile (Z.M., R.P.); Facultad de Ciencias Biológicas (Z.M., M.C.) and División de Anestesiología, Escuela de Medicina (M.C.), Pontificia Universidad Católica de Chile, Santiago, Chile; Millennium Nucleus for the Study of Pain, Santiago, Chile (Z.M., M.C.); and Facultad de Medicina y Ciencia, Universidad San Sebastián, Santiago, Chile (R.P.)
| | - Margarita Calvo
- Laboratorio de Neuroinmunología, Centro Científico y Tecnológico de Excelencia Ciencia & Vida, Fundación Ciencia & Vida, Santiago, Chile (Z.M., R.P.); Facultad de Ciencias Biológicas (Z.M., M.C.) and División de Anestesiología, Escuela de Medicina (M.C.), Pontificia Universidad Católica de Chile, Santiago, Chile; Millennium Nucleus for the Study of Pain, Santiago, Chile (Z.M., M.C.); and Facultad de Medicina y Ciencia, Universidad San Sebastián, Santiago, Chile (R.P.)
| | - Rodrigo Pacheco
- Laboratorio de Neuroinmunología, Centro Científico y Tecnológico de Excelencia Ciencia & Vida, Fundación Ciencia & Vida, Santiago, Chile (Z.M., R.P.); Facultad de Ciencias Biológicas (Z.M., M.C.) and División de Anestesiología, Escuela de Medicina (M.C.), Pontificia Universidad Católica de Chile, Santiago, Chile; Millennium Nucleus for the Study of Pain, Santiago, Chile (Z.M., M.C.); and Facultad de Medicina y Ciencia, Universidad San Sebastián, Santiago, Chile (R.P.)
| |
Collapse
|
4
|
Fyntanidou B, Amaniti A, Soulioti E, Zagalioti SC, Gkarmiri S, Chorti A, Loukipoudi L, Ioannidis A, Dalakakis I, Menni AE, Shrewsbury AD, Kotzampassi K. Probiotics in Postoperative Pain Management. J Pers Med 2023; 13:1645. [PMID: 38138872 PMCID: PMC10745134 DOI: 10.3390/jpm13121645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 11/20/2023] [Accepted: 11/23/2023] [Indexed: 12/24/2023] Open
Abstract
Postoperative pain is the unpleasant sensory and emotional experience after surgery, its origin being both the inflammatory reaction induced by the surgical trauma on the abdominal wall and the splanchnic pain induced by the activation of nociceptors of the viscera, which are highly sensitive to distension, ischemia, and inflammation. Nowadays, it is well recognized that there is a close relationship between the gut microbiome and pain perception, and that microbiome is highly affected by both anesthesia and surgical manipulation. Thus, efforts to restore the disturbed microbiome via supplementation with beneficial bacteria, namely probiotics, seem to be effective. In this article, the knowledge gained mainly from experimental research on this topic is analyzed, the concluding message being that each probiotic strain works in its own way towards pain relief.
Collapse
Affiliation(s)
- Barbara Fyntanidou
- Department of Emergency Medicine, Aristotle University of Thessaloniki, 54636 Thessaloniki, Greece; (B.F.); (S.-C.Z.); (S.G.)
| | - Aikaterini Amaniti
- Department of Anesthesia & Intensive Care, Aristotle University of Thessaloniki, 54636 Thessaloniki, Greece; (A.A.); (L.L.); (I.D.)
| | - Eleftheria Soulioti
- Second Department of Anesthesiology, National and Kapodistrian University of Athens, Attikon University Hospital, 12462 Athens, Greece;
| | - Sofia-Chrysovalantou Zagalioti
- Department of Emergency Medicine, Aristotle University of Thessaloniki, 54636 Thessaloniki, Greece; (B.F.); (S.-C.Z.); (S.G.)
| | - Sofia Gkarmiri
- Department of Emergency Medicine, Aristotle University of Thessaloniki, 54636 Thessaloniki, Greece; (B.F.); (S.-C.Z.); (S.G.)
| | - Angeliki Chorti
- Department of Surgery, Aristotle University of Thessaloniki, 54636 Thessaloniki, Greece; (A.C.); (A.I.); (A.-E.M.); (A.D.S.)
| | - Lamprini Loukipoudi
- Department of Anesthesia & Intensive Care, Aristotle University of Thessaloniki, 54636 Thessaloniki, Greece; (A.A.); (L.L.); (I.D.)
| | - Aris Ioannidis
- Department of Surgery, Aristotle University of Thessaloniki, 54636 Thessaloniki, Greece; (A.C.); (A.I.); (A.-E.M.); (A.D.S.)
| | - Ioannis Dalakakis
- Department of Anesthesia & Intensive Care, Aristotle University of Thessaloniki, 54636 Thessaloniki, Greece; (A.A.); (L.L.); (I.D.)
| | - Alexandra-Eleftheria Menni
- Department of Surgery, Aristotle University of Thessaloniki, 54636 Thessaloniki, Greece; (A.C.); (A.I.); (A.-E.M.); (A.D.S.)
| | - Anne D. Shrewsbury
- Department of Surgery, Aristotle University of Thessaloniki, 54636 Thessaloniki, Greece; (A.C.); (A.I.); (A.-E.M.); (A.D.S.)
| | - Katerina Kotzampassi
- Department of Surgery, Aristotle University of Thessaloniki, 54636 Thessaloniki, Greece; (A.C.); (A.I.); (A.-E.M.); (A.D.S.)
| |
Collapse
|
5
|
Gomes P, Laroute V, Beaufrand C, Daveran-Mingot ML, Aubry N, Liebgott C, Ballet N, Legrain-Raspaud S, Theodorou V, Mercier-Bonin M, Cocaign-Bousquet M, Eutamene H. Lactococcus lactis CNCM I-5388 versus NCDO2118 by its GABA hyperproduction ability, counteracts faster stress-induced intestinal hypersensitivity in rats. FASEB J 2023; 37:e23264. [PMID: 37850915 DOI: 10.1096/fj.202301588r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Revised: 09/21/2023] [Accepted: 10/04/2023] [Indexed: 10/19/2023]
Abstract
Irritable bowel syndrome (IBS) is a functional gastrointestinal disorder characterized by its main symptom, visceral hypersensitivity (VH), which is aggravated by stress. Gut-brain interactions and gut bacteria may alleviate IBS symptoms, including VH. γ-amino butyric acid (GABA), produced notably by lactic acid bacteria (LAB), shows promising result in IBS symptoms treatment. In bacteria, GABA is generated through glutamate decarboxylase (GAD) metabolism of L-glutamic acid, maintaining intracellular pH. In mammals, GABA acts as an inhibitory neurotransmitter, modulating pain, stress, and anxiety. Therefore, utilizing GABA-producing LAB as a therapeutic approach might be beneficial. Our previous work showed that a GABA-producing Lactococcus lactis strain, NCDO2118, reduced VH induced by acute stress in rats after a 10-day oral treatment. Here, we identified the strain CNCM I-5388, with a four-fold higher GABA production rate under the same conditions as NCDO2118. Both strains shared 99.1% identical GAD amino acid sequences and in vitro analyses revealed the same optimal pH for GAD activity; however, CNCM I-5388 exhibited 17 times higher intracellular GAD activity and increased resistance to acidic pH. Additionally, in vivo experiments have demonstrated that CNCM I-5388 has faster anti-VH properties in rats compared with NCDO2118, starting from the fifth day of treatment. Finally, CNCM I-5388 anti-VH effects partially persisted after 5-day treatment interruption and after a single oral treatment. These findings highlight CNCM I-5388 as a potential therapeutic agent for managing VH in IBS patients.
Collapse
Affiliation(s)
- Pedro Gomes
- Toulouse Biotechnology Institute (TBI), Université de Toulouse, CNRS, INRAE, INSA, Toulouse, France
- Toxalim (Research Centre in Food Toxicology), Université de Toulouse, INRAE, ENVT, INP-Purpan, UPS, Toulouse, France
| | - Valérie Laroute
- Toulouse Biotechnology Institute (TBI), Université de Toulouse, CNRS, INRAE, INSA, Toulouse, France
| | - Catherine Beaufrand
- Toxalim (Research Centre in Food Toxicology), Université de Toulouse, INRAE, ENVT, INP-Purpan, UPS, Toulouse, France
| | | | - Nathalie Aubry
- Toulouse Biotechnology Institute (TBI), Université de Toulouse, CNRS, INRAE, INSA, Toulouse, France
| | - Chloé Liebgott
- Toxalim (Research Centre in Food Toxicology), Université de Toulouse, INRAE, ENVT, INP-Purpan, UPS, Toulouse, France
| | | | | | - Vassilia Theodorou
- Toxalim (Research Centre in Food Toxicology), Université de Toulouse, INRAE, ENVT, INP-Purpan, UPS, Toulouse, France
| | - Muriel Mercier-Bonin
- Toxalim (Research Centre in Food Toxicology), Université de Toulouse, INRAE, ENVT, INP-Purpan, UPS, Toulouse, France
| | - Muriel Cocaign-Bousquet
- Toulouse Biotechnology Institute (TBI), Université de Toulouse, CNRS, INRAE, INSA, Toulouse, France
| | - Hélène Eutamene
- Toxalim (Research Centre in Food Toxicology), Université de Toulouse, INRAE, ENVT, INP-Purpan, UPS, Toulouse, France
| |
Collapse
|
6
|
Ahangari Maleki M, Malek Mahdavi A, Soltani-Zangbar MS, Yousefi M, Khabbazi A. Randomized double-blinded controlled trial on the effect of synbiotic supplementation on IL-17/IL-23 pathway and disease activity in patients with axial spondyloarthritis. Immunopharmacol Immunotoxicol 2023; 45:43-51. [PMID: 35947039 DOI: 10.1080/08923973.2022.2112220] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
BACKGROUND Interleukin 17 (IL17)-expressing CD4+ T cells and IL-17/IL-23 pathway play a key role in the pathogenesis of axial spondyloarthritis (axSpA). Synbiotics have been suggested due to their immunomodulatory effects in the treatment of autoimmune diseases. This randomized double-blind, placebo-controlled trial was designed to assess the effects of synbiotic supplement on IL-17/IL-23 pathway and disease activity in patients with axSpA. METHODS Forty-eight axSpA patients were randomly allocated to use one synbiotic capsule or placebo daily for 12 weeks. Disease activity was assessed using the Bath Ankylosing Spondylitis Disease Activity Index (BASDAI) and ASAS-endorsed disease activity score-C-reactive protein (ASDAS-CRP). The secondary outcome was proportion of IL17-expressing CD4+ T cells, IL-17 and IL-23 gene expression, and supernatant levels of IL-17 and IL-23, which were measured at the baseline and end of the trial. RESULTS A total of 48 patients were randomized into the synbiotic and placebo groups. Thirty-eight patients completed the study. Synbiotic supplementation significantly reduced the proportion of IL17-expressing CD4+ T cells (4.88 ± 2.47 vs. 2.16 ± 1.25), gene expression of IL-17 (1.03 ± 0.24 vs. 0.65 ± 0.26) and IL-23 (1.01 ± 0.13 vs. 0.68 ± 0.24) and serum IL-17 (38.22 ± 14.40 vs. 24.38 ± 11.68) and IL-23 (51.77 ± 17.40 vs. 32.16 ± 12.46) compared with baseline. Significant differences between groups were noticed only in the proportion of IL17-expressing CD4+ T cells, and IL-17 and IL-23 gene expression. Synbiotic supplementation did not significantly alter BASDAI and ASDAS-CRP compared with baseline and placebo group at the end of trial. CONCLUSION Present study indicated beneficial effect of synbiotic supplement on IL-17/IL-23 pathway without improving disease activity in axSpApatients.HighlightsSynbiotic supplementation reduced IL17-expressing CD4+ T cells proportion in axSpA.Synbiotic supplementation decreased IL-17 and IL-23 gene expression in axSpA.Synbiotic supplementation did not change disease activity score in axSpA.
Collapse
Affiliation(s)
- Masoud Ahangari Maleki
- Connective Tissue Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Aida Malek Mahdavi
- Connective Tissue Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Tuberculosis and Lung Disease Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Rahat Breath and Sleep Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Mehdi Yousefi
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Alireza Khabbazi
- Connective Tissue Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
7
|
Tian S, Zhang H, Chen S, Wu P, Chen M. Global research progress of visceral hypersensitivity and irritable bowel syndrome: bibliometrics and visualized analysis. Front Pharmacol 2023; 14:1175057. [PMID: 37201020 PMCID: PMC10185792 DOI: 10.3389/fphar.2023.1175057] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 04/18/2023] [Indexed: 05/20/2023] Open
Abstract
Background: Irritable bowel syndrome (IBS) is a group of functional intestinal disorders characterized by abdominal pain, bloating, and changes in bowel habits, and/or stool characteristics. Recent studies have shown that there has been a significant advancement in the study of visceral hypersensitivity in IBS. Through the use of bibliometrics, this study aims to provide a comprehensive overview of the knowledge structure and research hotpots of visceral hypersensitivity in IBS. Methods: Publications related to visceral hypersensitivity in IBS from 2012 to 2022 were searched on the web of science core collection (WoSCC) database. CiteSpace.6.1. R2 and Vosviewer 1.6.17 were used to perform bibliometric analysis. Results: A total of 974 articles led by China and the United States from 52 countries were included. Over the past decade, the number of articles on visceral hypersensitivity and IBS has steadily increased year by year. China, the United States, and Belgium are the main countries in this field. Univ Oklahoma, Univ Gothenburg, and Zhejiang University are the main research institutions. Simren, Magnus, Greenwood-van meerveld, Beverley, and Tack, Jan are the most published authors in this research field. The research on the causes, genes, and pathways involved in visceral hypersensitivity in IBS and the mechanism of IBS are the main topics and hotspots in this field. This study also found that gut microbiota may be related to the occurrence of visceral hypersensitivity, and probiotics may be a new method for the treatment of visceral hypersensitivity and pain, which may become a new direction for research in this field. Conclusion: This is the first bibliometric study to comprehensively summarize the research trends and developments of visceral hypersensitivity in IBS. This information provides the research frontier and hot topics in this field in recent years, which will provide a reference for scholars studying this field.
Collapse
Affiliation(s)
- Siyu Tian
- School of Clinical Medicine, Chengdu University of TCM, Chengdu, China
| | - Hang Zhang
- School of Clinical Medicine, Chengdu University of TCM, Chengdu, China
| | - Siqi Chen
- School of Clinical Medicine, Chengdu University of TCM, Chengdu, China
| | - Pengning Wu
- School of Clinical Medicine, Chengdu University of TCM, Chengdu, China
| | - Min Chen
- Department of Colorectal Diseases, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
- *Correspondence: Min Chen,
| |
Collapse
|
8
|
Calderon-Rivera A, Gomez K, Loya-López S, Wijeratne EK, Stratton H, Tang C, Duran P, Masterson K, Alsbiei O, Gunatilaka AL, Khanna R. Betulinic acid analogs inhibit N- and T-type voltage-gated calcium channels to attenuate nerve-injury associated neuropathic and formalin models of pain. NEUROBIOLOGY OF PAIN (CAMBRIDGE, MASS.) 2023; 13:100116. [PMID: 36687466 PMCID: PMC9853350 DOI: 10.1016/j.ynpai.2023.100116] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 01/10/2023] [Accepted: 01/11/2023] [Indexed: 01/15/2023]
Abstract
Over the past three decades, there has been a significant growth in the use of natural products, with approximately 80% of individuals using them for some aspect of primary healthcare. Our laboratories have identified and studied natural compounds with analgesic effects from dry land plants or their associated fungus during the past ten years. Here, we isolated and characterized thirteen betulin analogs and fifteen betulinic acid analogs for their capacity to prevent calcium influx brought on by depolarization in sensory neurons. The in vitro inhibition of voltage-gated calcium channels by the top drugs was then assessed using whole cell patch clamp electrophysiology. In vivo experiments, conducted at two sites, evaluated the best compound in acute and tonic, neuropathic, inflammatory, post-operative and visceral models of pain. We found that the betulinic acid analog 8 inhibited calcium influx in rat dorsal root ganglion neurons by inhibiting N- (CaV2.2) and T- (CaV3) type voltage-gated calcium channels. Moreover, intrathecal delivery of analog 8 had analgesic activity in both spared nerve injury model of neuropathic pain and acute and tonic pain induced by formalin. The results presented herein highlight the potential antinociceptive properties of betulinic acid analog 8 and set the stage for the development of novel non-opioid pain therapeutics based on the triterpenoid scaffold of betulinic acid.
Collapse
Affiliation(s)
- Aida Calderon-Rivera
- Department of Molecular Pathobiology, College of Dentistry, New York University, New York, NY, United States
- NYU Pain Research Center, New York University, New York, NY, United States
| | - Kimberly Gomez
- Department of Molecular Pathobiology, College of Dentistry, New York University, New York, NY, United States
- NYU Pain Research Center, New York University, New York, NY, United States
| | - Santiago Loya-López
- Department of Molecular Pathobiology, College of Dentistry, New York University, New York, NY, United States
- NYU Pain Research Center, New York University, New York, NY, United States
| | - E.M. Kithsiri Wijeratne
- Natural Products Center, School of Natural Resources and the Environment, College of Agriculture and Life Sciences, The University of Arizona, Tucson, AZ, United States
| | - Harrison Stratton
- Department of Pharmacology, College of Medicine, The University of Arizona, Tucson, AZ, United States
| | - Cheng Tang
- Department of Molecular Pathobiology, College of Dentistry, New York University, New York, NY, United States
- NYU Pain Research Center, New York University, New York, NY, United States
| | - Paz Duran
- Department of Molecular Pathobiology, College of Dentistry, New York University, New York, NY, United States
- NYU Pain Research Center, New York University, New York, NY, United States
| | - Kyleigh Masterson
- NYU Pain Research Center, New York University, New York, NY, United States
| | - Omar Alsbiei
- NYU Pain Research Center, New York University, New York, NY, United States
| | - A.A. Leslie Gunatilaka
- Natural Products Center, School of Natural Resources and the Environment, College of Agriculture and Life Sciences, The University of Arizona, Tucson, AZ, United States
| | - Rajesh Khanna
- Department of Molecular Pathobiology, College of Dentistry, New York University, New York, NY, United States
- NYU Pain Research Center, New York University, New York, NY, United States
| |
Collapse
|
9
|
Gomez K, Tang C, Tan B, Perez-Miller S, Ran D, Loya S, Calderon-Rivera A, Stratton HJ, Duran P, Masterson KA, Gabrielsen AT, Alsbiei O, Dorame A, Serafini M, Moutal A, Wang J, Khanna R. Stereospecific Effects of Benzimidazolonepiperidine Compounds on T-Type Ca 2+ Channels and Pain. ACS Chem Neurosci 2022; 13:2035-2047. [PMID: 35671441 DOI: 10.1021/acschemneuro.2c00256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
T-type calcium channels activate in response to subthreshold membrane depolarizations and represent an important source of Ca2+ influx near the resting membrane potential. These channels regulate neuronal excitability and have been linked to pain. For this reason, T-type calcium channels are suitable molecular targets for the development of new non-opioid analgesics. Our previous work identified an analogue of benzimidazolonepiperidine, 5bk, that preferentially inhibited CaV3.2 channels and reversed mechanical allodynia. In this study, we synthesized and screened a small library of 47 compounds derived from 5bk. We found several compounds that inhibited the Ca2+ influx in DRG neurons of all sizes. After separating the enantiomers of each active compound, we found two compounds, 3-25-R and 3-14-3-S, that potently inhibited the Ca2+ influx. Whole-cell patch clamp recordings from small- to medium-sized DRG neurons revealed that both compounds decreased total Ca2+. Application of 3-14-3-S (but not 3-25-R) blocked transiently expressed CaV3.1-3.3 channels with a similar IC50 value. 3-14-3-S decreased T-type, but not N-type, Ca2+ currents in DRG neurons. Furthermore, intrathecal delivery of 3-14-3-S relieved tonic, neuropathic, and inflammatory pain in preclinical models. 3-14-3-S did not exhibit any activity against G protein-coupled opioid receptors. Preliminary docking studies also suggest that 3-14-3-S can bind to the central pore domain of T-type channels. Together, our chemical characterization and functional and behavioral data identify a novel T-type calcium channel blocker with in vivo efficacy in experimental models of tonic, neuropathic, and inflammatory pain.
Collapse
Affiliation(s)
- Kimberly Gomez
- Department of Molecular Pathobiology, College of Dentistry, New York University, 433 First Avenue, 8th Floor, New York, New York 10010, United States
| | - Cheng Tang
- Department of Molecular Pathobiology, College of Dentistry, New York University, 433 First Avenue, 8th Floor, New York, New York 10010, United States.,The National and Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha 410081, China
| | - Bin Tan
- Department of Medicinal Chemistry, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, William Levine Hall, Room 320, 160 Frelinghuysen Road, Piscataway, New Jersey 0885, United States
| | - Samantha Perez-Miller
- Department of Molecular Pathobiology, College of Dentistry, New York University, 433 First Avenue, 8th Floor, New York, New York 10010, United States
| | - Dongzhi Ran
- School of Medicine, Department of Pharmacology and Physiology, Saint Louis University, 1402 S. Grand Blvd. Schwitalla Hall, Room 432, Saint Louis, Missouri 63104, United States
| | - Santiago Loya
- Department of Molecular Pathobiology, College of Dentistry, New York University, 433 First Avenue, 8th Floor, New York, New York 10010, United States
| | - Aida Calderon-Rivera
- Department of Molecular Pathobiology, College of Dentistry, New York University, 433 First Avenue, 8th Floor, New York, New York 10010, United States
| | - Harrison J Stratton
- School of Medicine, Department of Pharmacology and Physiology, Saint Louis University, 1402 S. Grand Blvd. Schwitalla Hall, Room 432, Saint Louis, Missouri 63104, United States
| | - Paz Duran
- Department of Molecular Pathobiology, College of Dentistry, New York University, 433 First Avenue, 8th Floor, New York, New York 10010, United States
| | - Kyleigh A Masterson
- School of Medicine, Department of Pharmacology and Physiology, Saint Louis University, 1402 S. Grand Blvd. Schwitalla Hall, Room 432, Saint Louis, Missouri 63104, United States
| | - Anna T Gabrielsen
- School of Medicine, Department of Pharmacology and Physiology, Saint Louis University, 1402 S. Grand Blvd. Schwitalla Hall, Room 432, Saint Louis, Missouri 63104, United States
| | - Omar Alsbiei
- School of Medicine, Department of Pharmacology and Physiology, Saint Louis University, 1402 S. Grand Blvd. Schwitalla Hall, Room 432, Saint Louis, Missouri 63104, United States
| | - Angie Dorame
- School of Medicine, Department of Pharmacology and Physiology, Saint Louis University, 1402 S. Grand Blvd. Schwitalla Hall, Room 432, Saint Louis, Missouri 63104, United States
| | - Maria Serafini
- School of Medicine, Department of Pharmacology and Physiology, Saint Louis University, 1402 S. Grand Blvd. Schwitalla Hall, Room 432, Saint Louis, Missouri 63104, United States
| | - Aubin Moutal
- School of Medicine, Department of Pharmacology and Physiology, Saint Louis University, 1402 S. Grand Blvd. Schwitalla Hall, Room 432, Saint Louis, Missouri 63104, United States
| | - Jun Wang
- Department of Pharmacology, College of Medicine, University of Arizona, Tucson, Arizona 85724, United States
| | - Rajesh Khanna
- Department of Molecular Pathobiology, College of Dentistry, New York University, 433 First Avenue, 8th Floor, New York, New York 10010, United States
| |
Collapse
|
10
|
Gu X, Song LJ, Li LX, Liu T, Zhang MM, Li Z, Wang P, Li M, Zuo XL. Fusobacterium nucleatum Causes Microbial Dysbiosis and Exacerbates Visceral Hypersensitivity in a Colonization-Independent Manner. Front Microbiol 2020; 11:1281. [PMID: 32733392 PMCID: PMC7358639 DOI: 10.3389/fmicb.2020.01281] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2019] [Accepted: 05/19/2020] [Indexed: 12/12/2022] Open
Abstract
Background: Microbial dysbiosis is closely associated with visceral hypersensitivity and is involved in the pathogenesis of irritable bowel syndrome (IBS), but the specific strains that play a key role have yet to be identified. Previous bioinformatic studies have demonstrated that Fusobacterium is a shared microbial feature between IBS patients and maternal separation (MS)-stressed rats. In this study, we assessed the potential role of Fusobacterium nucleatum (F. nucleatum) in the pathogenesis of IBS. Methods: Fecal samples of patients with diarrhea predominant-IBS (IBS-D) and healthy controls were obtained. An MS rat model was established to receive gavage of either F. nucleatum or normal saline. Visceral sensitivity was evaluated through colorectal distension test, and fecal microbiota was analyzed by 16S rRNA gene sequencing. F. nucleatum-specific IgA levels in fecal supernatants were assessed by western blotting. The antigen reacted with the specific IgA of F. nucleatum was identified by mass spectrometry and the construction of a recombinant Escherichia coli BL21 (DE3). Results: IBS-D patients showed a lower Shannon index and a higher abundance of Fusobacterium. The F. nucleatum-gavage was shown to exacerbate visceral hypersensitivity in MS rats, with both the F. nucleatum-gavage and MS causing a decreased Shannon index and a clear segregation of fecal microbiota. In addition, specific IgA against F. nucleatum was detected in fecal supernatants of both the F. nucleatum-gavaged rats and the IBS-D patients. The FomA protein, which is a major outer membrane protein of F. nucleatum, was confirmed to react with the specific IgA of F. nucleatum in fecal supernatants. Conclusion:Fusobacterium increased significantly in IBS-D patients, and F. nucleatum was involved in the pathogenesis of IBS by causing microbial dysbiosis and exacerbating visceral hypersensitivity in a colonization-independent manner. Meanwhile, F. nucleatum was found to induce an increase in specific secretory IgA through FomA.
Collapse
Affiliation(s)
- Xiang Gu
- Department of Gastroenterology, Qilu Hospital, Cheloo College of Medicine, Shandong University, Jinan, China.,Laboratory of Translational Gastroenterology, Qilu Hospital, Cheloo College of Medicine, Shandong University, Jinan, China
| | - Li-Jin Song
- Department of Gastroenterology, Qilu Hospital, Cheloo College of Medicine, Shandong University, Jinan, China.,Laboratory of Translational Gastroenterology, Qilu Hospital, Cheloo College of Medicine, Shandong University, Jinan, China
| | - Li-Xiang Li
- Department of Gastroenterology, Qilu Hospital, Cheloo College of Medicine, Shandong University, Jinan, China.,Laboratory of Translational Gastroenterology, Qilu Hospital, Cheloo College of Medicine, Shandong University, Jinan, China
| | - Tong Liu
- Department of Gastroenterology, Qilu Hospital, Cheloo College of Medicine, Shandong University, Jinan, China.,Laboratory of Translational Gastroenterology, Qilu Hospital, Cheloo College of Medicine, Shandong University, Jinan, China
| | - Ming-Ming Zhang
- Department of Gastroenterology, Qilu Hospital, Cheloo College of Medicine, Shandong University, Jinan, China.,Laboratory of Translational Gastroenterology, Qilu Hospital, Cheloo College of Medicine, Shandong University, Jinan, China
| | - Zhen Li
- Department of Gastroenterology, Qilu Hospital, Cheloo College of Medicine, Shandong University, Jinan, China.,Laboratory of Translational Gastroenterology, Qilu Hospital, Cheloo College of Medicine, Shandong University, Jinan, China
| | - Peng Wang
- Department of Gastroenterology, Qilu Hospital, Cheloo College of Medicine, Shandong University, Jinan, China.,Laboratory of Translational Gastroenterology, Qilu Hospital, Cheloo College of Medicine, Shandong University, Jinan, China
| | - Ming Li
- Department of Gastroenterology, Qilu Hospital, Cheloo College of Medicine, Shandong University, Jinan, China.,Laboratory of Translational Gastroenterology, Qilu Hospital, Cheloo College of Medicine, Shandong University, Jinan, China
| | - Xiu-Li Zuo
- Department of Gastroenterology, Qilu Hospital, Cheloo College of Medicine, Shandong University, Jinan, China.,Laboratory of Translational Gastroenterology, Qilu Hospital, Cheloo College of Medicine, Shandong University, Jinan, China
| |
Collapse
|
11
|
Abstract
Stress is a nonspecific response of the body to any demand imposed upon it, disrupting the body homoeostasis and manifested with symptoms such as anxiety, depression or even headache. These responses are quite frequent in the present competitive world. The aim of this review is to explore the effect of stress on gut microbiota. First, we summarize evidence of where the microbiota composition has changed as a response to a stressful situation, and thereby the effect of the stress response. Likewise, we review different interventions that can modulate microbiota and could modulate the stress according to the underlying mechanisms whereby the gut-brain axis influences stress. Finally, we review both preclinical and clinical studies that provide evidence of the effect of gut modulation on stress. In conclusion, the influence of stress on gut microbiota and gut microbiota on stress modulation is clear for different stressors, but although the preclinical evidence is so extensive, the clinical evidence is more limited. A better understanding of the mechanism underlying stress modulation through the microbiota may open new avenues for the design of therapeutics that could boost the pursued clinical benefits. These new designs should not only focus on stress but also on stress-related disorders such as anxiety and depression, in both healthy individuals and different populations.
Collapse
|
12
|
Abstract
In recent years, interest in the relationship between gut microbiota and disease states has grown considerably. Indeed, several strategies have been employed to modify the microbiome through the administration of different diets, by the administration of antibiotics or probiotics, or even by transplantation of feces. In the present manuscript, we focus specifically on the potential application of probiotics, which seem to be a safe strategy, in the management of digestive, pain, and emotional disorders. We present evidence from animal models and human studies, notwithstanding that translation to clinic still deserves further investigation. The microbiome influences gut functions as well as neurological activity by a variety of mechanisms, which are also discussed. The design and performance of larger trials is urgently needed to verify whether these new strategies might be useful not only for the treatment of disorders affecting the gastrointestinal tract but also in the management of emotional and pain disorders not directly related to the gut.
Collapse
|
13
|
Cao L, Wu X, Bai Y, Wu X, Gu S. Anti-inflammatory and antioxidant activities of probiotic powder containing Lactobacillus plantarum 1.2567 in necrotic enteritis model of broiler chickens. Livest Sci 2019. [DOI: 10.1016/j.livsci.2019.03.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
14
|
Restraint stress induced gut dysmotility is diminished by a milk oligosaccharide (2'-fucosyllactose) in vitro. PLoS One 2019; 14:e0215151. [PMID: 31017915 PMCID: PMC6481803 DOI: 10.1371/journal.pone.0215151] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Accepted: 03/27/2019] [Indexed: 12/21/2022] Open
Abstract
Background Stress causes severe dysmotility in the mammalian gut. Almost all research done to date has concentrated on prevention of stress-induced altered gut motility but not on treatment. We had previously shown that intraluminal 2′FL could acutely moderate propulsive motility in isolated mouse colonic segments. Because 2′FL appeared to modulate enteric nervous system dependent motility, we wondered if the oligosaccharide could reverse the effects of prior restraint stress, ex vivo. We tested whether 2′FL could benefit the dysmotility of isolated jejunal and colonic segments from animals subjected to prior acute restraint stress. Methods Jejunal and colonic segments were obtained from male Swiss Webster mice that were untreated or subjected to 1 hour of acute restraint stress. Segments were perfused with Krebs buffer and propagating contractile clusters (PCC) digitally video recorded. 2′FL or β-lactose were added to the perfusate at a concentration of 1 mg/ml. Spatiotemporal maps were constructed from paired before and after treatment recordings, each consisting of 20 min duration and PCC analyzed for frequency, velocity and amplitude. Key Results Stress decreased propulsive motility in murine small intestine while increasing it in the colon. 2′FL in jejunum of previously stressed mice produced a 50% increase in PCC velocity (p = 0.0001), a 43% increase in frequency (p = 0.0002) and an insignificant decrease in peak amplitude. For stressed colon, 2′FL reduced the frequency by 23% (p = 0.017) and peak amplitude by 26% (p = 0.011), and was without effect on velocity. β-lactose had negligible or small treatment effects. Conclusions & Inferences We show that the prebiotic 2′FL may have potential as a treatment for acute stress-induced gut dysmotility, ex vivo, and that, as is the case for certain beneficial microbes, the mechanism occurs in the gut, likely via action on the enteric nervous system.
Collapse
|
15
|
Cross-species examination of single- and multi-strain probiotic treatment effects on neuropsychiatric outcomes. Neurosci Biobehav Rev 2018; 99:160-197. [PMID: 30471308 DOI: 10.1016/j.neubiorev.2018.11.010] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2018] [Revised: 11/10/2018] [Accepted: 11/18/2018] [Indexed: 12/15/2022]
Abstract
Interest in elucidating gut-brain-behavior mechanisms and advancing neuropsychiatric disorder treatments has led to a recent proliferation of probiotic trials. Yet, a considerable gap remains in our knowledge of probiotic efficacy across populations and experimental contexts. We conducted a cross-species examination of single- and multi-strain combinations of established probiotics. Forty-eight human (seven infant/child, thirty-six young/middle-aged adult, five older adult) and fifty-eight non-human (twenty-five rat, twenty-seven mouse, five zebrafish, one quail) investigations met the inclusion/exclusion criteria. Heterogeneity of probiotic strains, substrains, and study methodologies limited our ability to conduct meta-analyses. Human trials detected variations in anxiety, depression, or emotional regulation (single-strain 55.6%; multi-strain 50.0%) and cognition or social functioning post-probiotic intake (single-strain 25.9%; multi-strain 31.5%). For the non-human studies, single- (60.5%) and multi-strain (45.0%) combinations modified stress, anxiety, or depression behaviors in addition to altering social or cognitive performance (single-strain 57.9%; multi-strain 85.0%). Rigorous trials that confirm existing findings, investigate additional probiotic strain/substrain combinations, and test novel experimental paradigms, are necessary to develop future probiotic treatments that successfully target specific neuropsychiatric outcomes.
Collapse
|
16
|
Singh AK, Hertzberger RY, Knaus UG. Hydrogen peroxide production by lactobacilli promotes epithelial restitution during colitis. Redox Biol 2018; 16:11-20. [PMID: 29471162 PMCID: PMC5835490 DOI: 10.1016/j.redox.2018.02.003] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Revised: 02/01/2018] [Accepted: 02/10/2018] [Indexed: 12/14/2022] Open
Abstract
Inflammatory bowel disease (IBD) is a multifactorial chronic inflammatory disease of the gastrointestinal tract, characterized by cycles of acute flares, recovery and remission phases. Treatments for accelerating tissue restitution and prolonging remission are scarce, but altering the microbiota composition to promote intestinal homeostasis is considered a safe, economic and promising approach. Although probiotic bacteria have not yet fulfilled fully their promise in clinical trials, understanding the mechanism of how they exert beneficial effects will permit devising improved therapeutic strategies. Here we probe if one of the defining features of lactobacilli, the ability to generate nanomolar H2O2, contributes to their beneficial role in colitis. H2O2 generation by wild type L. johnsonii was modified by either deleting or overexpressing the enzymatic H2O2 source(s) followed by orally administering the bacteria before and during DSS colitis. Boosting luminal H2O2 concentrations within a physiological range accelerated recovery from colitis, while significantly exceeding this H2O2 level triggered bacteraemia. This study supports a role for increasing H2O2 within the physiological range at the epithelial barrier, independently of the enzymatic source and/or delivery mechanism, for inducing recovery and remission in IBD.
Collapse
Affiliation(s)
- Ashish K Singh
- Conway Institute, School of Medicine, University College Dublin, Dublin, Ireland
| | - Rosanne Y Hertzberger
- Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, The Netherlands; NIZO Food Research, Ede, The Netherlands
| | - Ulla G Knaus
- Conway Institute, School of Medicine, University College Dublin, Dublin, Ireland.
| |
Collapse
|
17
|
Martín R, Chain F, Miquel S, Motta JP, Vergnolle N, Sokol H, Langella P. Using murine colitis models to analyze probiotics-host interactions. FEMS Microbiol Rev 2018; 41:S49-S70. [PMID: 28830096 DOI: 10.1093/femsre/fux035] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Accepted: 06/08/2017] [Indexed: 02/07/2023] Open
Abstract
Probiotics are defined as 'live microorganisms which when administered in adequate amounts confer a health benefit on the host'. So, to consider a microorganism as a probiotic, a demonstrable beneficial effect on the health host should be shown as well as an adequate defined safety status and the capacity to survive transit through the gastrointestinal tract and to storage conditions. In this review, we present an overview of the murine colitis models currently employed to test the beneficial effect of the probiotic strains as well as an overview of the probiotics already tested. Our aim is to highlight both the importance of the adequate selection of the animal model to test the potential probiotic strains and of the value of the knowledge generated by these in vivo tests.
Collapse
Affiliation(s)
- Rebeca Martín
- INRA, Commensals and Probiotics-Host Interactions Laboratory, Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay, 78350 Jouy-en-Josas, France
| | - Florian Chain
- INRA, Commensals and Probiotics-Host Interactions Laboratory, Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay, 78350 Jouy-en-Josas, France
| | - Sylvie Miquel
- Laboratoire Microorganismes: Génome et Environnement (LMGE), UMR CNRS 6023, Université Clermont-Auvergne, 63000 Clermont-Ferrand, France
| | - Jean-Paul Motta
- Department of Biological Science, Inflammation Research Network, University of Calgary, AB T3E 4N1, Canada.,IRSD, Université de Toulouse, INSERM, INRA, ENVT, UPS, F-31300 Toulouse, France
| | - Nathalie Vergnolle
- IRSD, Université de Toulouse, INSERM, INRA, ENVT, UPS, F-31300 Toulouse, France
| | - Harry Sokol
- INRA, Commensals and Probiotics-Host Interactions Laboratory, Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay, 78350 Jouy-en-Josas, France.,Sorbonne University - Université Pierre et Marie Curie (UPMC), 75252 Paris, France.,Institut National de la Santé et de la Recherche Médicale (INSERM) Equipe de Recherche Labélisée (ERL) 1157, Avenir Team Gut Microbiota and Immunity, 75012 Paris, France.,Department of Gastroenterology, Saint Antoine Hospital, Assistance Publique - Hopitaux de Paris, UPMC, 75012 Paris, France
| | - Philippe Langella
- INRA, Commensals and Probiotics-Host Interactions Laboratory, Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay, 78350 Jouy-en-Josas, France
| |
Collapse
|
18
|
Sichetti M, De Marco S, Pagiotti R, Traina G, Pietrella D. Anti-inflammatory effect of multistrain probiotic formulation (L. rhamnosus, B. lactis, and B. longum). Nutrition 2018; 53:95-102. [PMID: 29674267 DOI: 10.1016/j.nut.2018.02.005] [Citation(s) in RCA: 74] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Revised: 01/31/2018] [Accepted: 02/01/2018] [Indexed: 01/22/2023]
Abstract
OBJECTIVE In recent years, a great number of studies have been directed toward the evaluation of gastrointestinal microbiota modulation through the introduction of beneficial microorganisms, also known as probiotics. Many studies have highlighted how this category of bacteria is very important for the good development, functioning, and maintenance of our immune system. There is a delicate balance between the immune system, located under the gut epithelial barrier, and the microbiota, but many factors can induce a disequilibrium that leads to an inflammatory state and dysbiosis. The aim of this work is to verify the anti-inflammatory effects of a probiotic formulation of Lactobacillus rhamnosus, Bifidobacterium lactis, and Bifidobacterium longum (Serobioma). METHODS To mimic the natural host compartmentalization between probiotics and immune cells through the intestinal epithelial barrier in vitro, the transwell model was used. We focused on a particular subset of immune cells that play a key role in the mucosal immune system. The immunomodulatory effects of probiotic formulation were investigated in the human macrophage cell line THP1 and macrophages derived from ex vivo human peripheral blood mononuclear cells. RESULTS Probiotic formulation induced a significant increase in anti-inflammatory cytokine interleukin-10 (IL-10) production and was able to decrease the secretion of the major proinflammatory cytokines IL-1β and IL-6 by 70% and 80%, respectively. Finally, for the first time, the ability of probiotic formulation to favor the macrophage M2 phenotype has been identified. CONCLUSION The transwell model is an intriguing toll approach to studying the human epithelial barrier.
Collapse
Affiliation(s)
- Marzia Sichetti
- Unit of Biochemical Sciences and Health, Department of Pharmaceutical Sciences, University of Perugia, Perugia, Italy; Unit of Food and Nutritional Sciences, Department of Pharmaceutical Sciences, University of Perugia, Perugia, Italy
| | - Stefania De Marco
- Unit of Biochemical Sciences and Health, Department of Pharmaceutical Sciences, University of Perugia, Perugia, Italy
| | - Rita Pagiotti
- Unit of Biochemical Sciences and Health, Department of Pharmaceutical Sciences, University of Perugia, Perugia, Italy
| | - Giovanna Traina
- Unit of Food and Nutritional Sciences, Department of Pharmaceutical Sciences, University of Perugia, Perugia, Italy
| | - Donatella Pietrella
- Unit of Biochemical Sciences and Health, Department of Pharmaceutical Sciences, University of Perugia, Perugia, Italy.
| |
Collapse
|
19
|
Greenwood-Van Meerveld B, Johnson AC. Stress-Induced Chronic Visceral Pain of Gastrointestinal Origin. Front Syst Neurosci 2017; 11:86. [PMID: 29213232 PMCID: PMC5702626 DOI: 10.3389/fnsys.2017.00086] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Accepted: 11/10/2017] [Indexed: 12/12/2022] Open
Abstract
Visceral pain is generally poorly localized and characterized by hypersensitivity to a stimulus such as organ distension. In concert with chronic visceral pain, there is a high comorbidity with stress-related psychiatric disorders including anxiety and depression. The mechanisms linking visceral pain with these overlapping comorbidities remain to be elucidated. Evidence suggests that long term stress facilitates pain perception and sensitizes pain pathways, leading to a feed-forward cycle promoting chronic visceral pain disorders such as irritable bowel syndrome (IBS). Early life stress (ELS) is a risk-factor for the development of IBS, however the mechanisms responsible for the persistent effects of ELS on visceral perception in adulthood remain incompletely understood. In rodent models, stress in adult animals induced by restraint and water avoidance has been employed to investigate the mechanisms of stress-induce pain. ELS models such as maternal separation, limited nesting, or odor-shock conditioning, which attempt to model early childhood experiences such as neglect, poverty, or an abusive caregiver, can produce chronic, sexually dimorphic increases in visceral sensitivity in adulthood. Chronic visceral pain is a classic example of gene × environment interaction which results from maladaptive changes in neuronal circuitry leading to neuroplasticity and aberrant neuronal activity-induced signaling. One potential mechanism underlying the persistent effects of stress on visceral sensitivity could be epigenetic modulation of gene expression. While there are relatively few studies examining epigenetically mediated mechanisms involved in visceral nociception, stress-induced visceral pain has been linked to alterations in DNA methylation and histone acetylation patterns within the brain, leading to increased expression of pro-nociceptive neurotransmitters. This review will discuss the potential neuronal pathways and mechanisms responsible for stress-induced exacerbation of chronic visceral pain. Additionally, we will review the importance of specific experimental models of adult stress and ELS in enhancing our understanding of the basic molecular mechanisms of pain processing.
Collapse
Affiliation(s)
- Beverley Greenwood-Van Meerveld
- Oklahoma Center for Neuroscience, University of Oklahoma Health Science Center, Oklahoma City, OK, United States
- Department of Physiology, University of Oklahoma Health Science Center, Oklahoma City, OK, United States
- VA Medical Center, Oklahoma City, OK, United States
| | | |
Collapse
|
20
|
Lashermes A, Boudieu L, Barbier J, Sion B, Gelot A, Barnich N, Ardid D, Carvalho FA. Adherent-Invasive E. coli enhances colonic hypersensitivity and P2X receptors expression during post-infectious period. Gut Microbes 2017; 9:26-37. [PMID: 28806140 PMCID: PMC5914911 DOI: 10.1080/19490976.2017.1361091] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Irritable Bowel Syndrome (IBS) and Inflammatory Bowel Disease (IBD) are related gastrointestinal disorders characterized by abdominal pain associated with colonic hypersensitivity (CHS). Studies in humans have reported an abnormal colonization of Adherent-Invasive E. coli (AIEC) in the ileum of Crohn's disease (CD) patients associated with overexpression of the bacterial colonizing receptor CEACAM6. The aim of the present study was to investigate whether AIEC reference strain LF82 could induce intestinal impairment during infectious and/or post-infectious periods and subsequently the development of CHS. Transgenic mice overexpressing human CEACAM6 protein (TG) and their wild-type littermates were gavaged by CD-associated AIEC bacteria (reference strain LF82) or PBS for 3 d. Colonic hypersensitivity was assessed by colorectal distension (CRD) test during infectious (D4) and post-infectious periods (D21). Several markers of intestinal inflammation were monitored and the colonic expression of purinergic P2X receptors was quantified. At D4, an increased visceromotor response (VMR) to the CRD test was observed in TG mice infected with CD-associated AIEC LF82 in comparison with non-infected TG mice and persisted in a subgroup of infected animals at D21 after bacteria clearance. Increased VMR was associated with low-grade intestinal inflammation, increased intestinal permeability and expression of P2X 3, 4 and 7. This study shows that certain susceptible hosts infected with CD-associated AIEC bacteria can develop persistent CHS associated with low-grade inflammation and increased P2X receptors expression. Thus, CD-associated AIEC infection in CEACAM6 transgenic mice could be used as a novel post-infectious mouse model mimicking quiescent IBD with IBS-like symptoms such as visceral pain.
Collapse
Affiliation(s)
- Amandine Lashermes
- Université Clermont Auvergne, Inserm U1107, NeuroDol, CHRN Auvergne, Clermont-Ferrand, France
| | - Ludivine Boudieu
- Université Clermont Auvergne, Inserm U1107, NeuroDol, CHRN Auvergne, Clermont-Ferrand, France
| | - Julie Barbier
- Université Clermont Auvergne, Inserm U1107, NeuroDol, CHRN Auvergne, Clermont-Ferrand, France
| | - Benoit Sion
- Université Clermont Auvergne, Inserm U1107, NeuroDol, CHRN Auvergne, Clermont-Ferrand, France
| | - Agathe Gelot
- Université Clermont Auvergne, Inserm U1107, NeuroDol, CHRN Auvergne, Clermont-Ferrand, France
| | - Nicolas Barnich
- Université Clermont Auvergne, Inserm U1071, M2iSH, USC-INRA 2018, Clermont-Ferrand, France
| | - Denis Ardid
- Université Clermont Auvergne, Inserm U1107, NeuroDol, CHRN Auvergne, Clermont-Ferrand, France
| | - Frédéric Antonio Carvalho
- Université Clermont Auvergne, Inserm U1107, NeuroDol, CHRN Auvergne, Clermont-Ferrand, France,CONTACT Frédéric A. Carvalho, PhD Université d'Auvergne, INSERM 1107 NeuroDol, 28 place Henri Dunant, BP38, F-63001 Clermont-Ferrand, France
| |
Collapse
|
21
|
Nonaka Y, Izumo T, Maekawa T, Shibata H. Anti-stress effect of the Lactobacillus pentosus strain S-PT84 in mice. BIOSCIENCE OF MICROBIOTA FOOD AND HEALTH 2017; 36:121-128. [PMID: 28748133 PMCID: PMC5510157 DOI: 10.12938/bmfh.17-003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/20/2017] [Accepted: 04/20/2017] [Indexed: 12/22/2022]
Abstract
We investigated if the orally administered Lactobacillus pentosus strain S-PT84 (S-PT84) might show anti-stress activity and ameliorate stress-induced immune suppression in mice. Stress of mice induced an increase in serum corticosterone and a decrease in splenic natural killer activity and in the number of splenocytes versus control mice. However, these changes were not observed in stressed mice that had been administered S-PT84. Furthermore, interleukin (IL)-12 and IL-10 production, which was downregulated in lipopolysaccharide-activated macrophages from stressed mice, was maintained at control levels in the macrophages of stressed mice that had been fed S-PT84. Interferon-γ production, which was downregulated in concanavalin A-activated splenocytes from stressed mice, tended to be maintained at control levels in stressed mice that had been fed S-PT84, although IL-4 production by these cells was not influenced by S-PT84 administration. Additionally, reduced glutathione (GSH) levels were decreased in serum and peritoneal macrophages from stressed mice versus controls, but these GSH levels were significantly higher in stressed animals that had been administered S-PT84 compared with those that had not. These results suggest that S-PT84 exerts anti-stress activity through immune modulation and/or antioxidative activity.
Collapse
Affiliation(s)
- Yuji Nonaka
- Research Institute, Suntory Global Innovation Center Limited, 8-1-1 Seikadai, Seika-cho, Soraku-gun, Kyoto 619-0284, Japan.,Institute for Health Care Science, Suntory Wellness Limited, 8-1-1 Seikadai, Seika-cho, Soraku-gun, Kyoto 619-0284, Japan
| | - Takayuki Izumo
- Institute for Health Care Science, Suntory Wellness Limited, 8-1-1 Seikadai, Seika-cho, Soraku-gun, Kyoto 619-0284, Japan
| | - Toshihiro Maekawa
- Institute for Health Care Science, Suntory Wellness Limited, 8-1-1 Seikadai, Seika-cho, Soraku-gun, Kyoto 619-0284, Japan
| | - Hiroshi Shibata
- Institute for Health Care Science, Suntory Wellness Limited, 8-1-1 Seikadai, Seika-cho, Soraku-gun, Kyoto 619-0284, Japan
| |
Collapse
|
22
|
Saccharomyces boulardii CNCM I-745 supplementation reduces gastrointestinal dysfunction in an animal model of IBS. PLoS One 2017; 12:e0181863. [PMID: 28732069 PMCID: PMC5521842 DOI: 10.1371/journal.pone.0181863] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2017] [Accepted: 07/07/2017] [Indexed: 12/12/2022] Open
Abstract
Background We evaluated the effect of Saccharomyces boulardii CNCM I-745 on intestinal neuromuscular anomalies in an IBS-type mouse model of gastrointestinal motor dysfunctions elicited by Herpes Simplex Virus type 1 (HSV-1) exposure. Methods Mice were inoculated intranasally with HSV-1 (102 PFU) or vehicle at time 0 and 4 weeks later by the intragastric (IG) route (108 PFU). Six weeks after IG inoculum, mice were randomly allocated to receive oral gavage with either S. boulardii (107 CFU/day) or vehicle. After 4 weeks the following were determined: a) intestinal motility using fluorescein-isothiocyanate dextran distribution in the gut, fecal pellet expulsion, stool water content, and distal colonic transit of glass beads; b) integrity of the enteric nervous system (ENS) by immunohistochemistry on ileal whole-mount preparations and western blot of protein lysates from ileal longitudinal muscle and myenteric plexus; c) isometric muscle tension with electric field and pharmacological (carbachol) stimulation of ileal segments; and d) intestinal inflammation by levels of tumor necrosis factor α, interleukin(IL)-1β, IL-10 and IL-4. Results S. boulardii CNCM I-745 improved HSV-1 induced intestinal dysmotility and alteration of intestinal transit observed ten weeks after IG inoculum of the virus. Also, the probiotic yeast ameliorated the structural alterations of the ENS induced by HSV-1 (i.e., reduced peripherin immunoreactivity and expression, increased glial S100β protein immunoreactivity and neuronal nitric oxide synthase level, reduced substance P-positive fibers). Moreover, S. boulardii CNCM I-745 diminished the production of HSV-1 associated pro-inflammatory cytokines in the myenteric plexus and increased levels of anti-inflammatory interleukins. Conclusions S. boulardii CNCM I-745 ameliorated gastrointestinal neuromuscular anomalies in a mouse model of gut dysfunctions typically observed with irritable bowel syndrome.
Collapse
|
23
|
Mend Your Fences: The Epithelial Barrier and its Relationship With Mucosal Immunity in Inflammatory Bowel Disease. Cell Mol Gastroenterol Hepatol 2017; 4:33-46. [PMID: 28560287 PMCID: PMC5439240 DOI: 10.1016/j.jcmgh.2017.03.007] [Citation(s) in RCA: 439] [Impact Index Per Article: 54.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2016] [Accepted: 03/20/2017] [Indexed: 12/12/2022]
Abstract
The intestinal epithelium can be easily disrupted during gut inflammation as seen in inflammatory bowel disease (IBD), such as ulcerative colitis or Crohn's disease. For a long time, research into the pathophysiology of IBD has been focused on immune cell-mediated mechanisms. Recent evidence, however, suggests that the intestinal epithelium might play a major role in the development and perpetuation of IBD. It is now clear that IBD can be triggered by disturbances in epithelial barrier integrity via dysfunctions in intestinal epithelial cell-intrinsic molecular circuits that control the homeostasis, renewal, and repair of intestinal epithelial cells. The intestinal epithelium in the healthy individual represents a semi-permeable physical barrier shielding the interior of the body from invasions of pathogens on the one hand and allowing selective passage of nutrients on the other hand. However, the intestinal epithelium must be considered much more than a simple physical barrier. Instead, the epithelium is a highly dynamic tissue that responds to a plenitude of signals including the intestinal microbiota and signals from the immune system. This epithelial response to these signals regulates barrier function, the composition of the microbiota, and mucosal immune homeostasis within the lamina propria. The epithelium can thus be regarded as a translator between the microbiota and the immune system and aberrant signal transduction between the epithelium and adjacent immune cells might promote immune dysregulation in IBD. This review summarizes the important cellular and molecular barrier components of the intestinal epithelium and emphasizes the mechanisms leading to barrier dysfunction during intestinal inflammation.
Collapse
Key Words
- BMP, bone morphogenic protein
- CD, Crohn's disease
- Fz, frizzled
- HD, humans α-defensin
- IBD, inflammatory bowel disease
- IECs, intestinal epithelial cells
- IL, interleukin
- Immune-Epithelial Crosstalk
- Intestinal Epithelial Barrier
- Intestinal Inflammation
- JAMs, junctional adhesion molecules
- Lgr5, leucine rich repeat containing G-protein coupled receptor 5
- MARVEL, myelin and lymphocyte and related proteins for vesicle trafficking and membrane link
- MLCK, myosin light chain kinase
- NFκB, nuclear factor kappa-light-chain-enhancer of activated B cells
- NOD-2, nucleotide-binding oligomerization domain-containing protein 2
- STAT, signal transducer and activator of transcription
- TAMP, tight junction–associated MARVEL protein
- TJ, tight junction
- TNF, tumor necrosis factor
- TSLP, thymic stromal lymphopoietin
- UC, ulcerative colitis
Collapse
|