1
|
Debnath A, Sabui S, Chatterjee NS. Structural and functional characterization of colonization factors AIBI-CS6 and AIIBII-CS6 of enterotoxigenic Escherichia coli. Protein Expr Purif 2023; 203:106201. [PMID: 36400365 DOI: 10.1016/j.pep.2022.106201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Revised: 10/30/2022] [Accepted: 11/10/2022] [Indexed: 11/17/2022]
Abstract
Over time, the structure and function of the broadly dispersed colonization factor (CF) CS6 of enterotoxigenic Escherichia coli (ETEC) have become more significant. CS6 is composed of tightly-associated subunits, CssA and CssB which due to presence of natural point mutation gave rise to CS6 subtypes. In contrast to the other ETEC CFs, CS6 is an afimbrial, spherical-shaped oligomers of (CssA-CssB)n complex where 'n' is concentration dependent. In this study, we have compared AIBI-CS6 and AIIBII-CS6 structurally and functionally. The Mw of CssAI was 18.5 kDa but Mw of CssAII was 15.1 kDa. Both CssBI and CssBII had Mw of 15.9 kDa. The substitution of Gly39 with Ala39 in CssAI leads to reduction in Mw from 18.5 to 15.1 kDa. Due to higher Mw of CssAI, the size of AIBI concentration-dependent oligomers should be higher. However, the Mw of AIIBII oligomers were higher and AIIBII also showed higher oligomeric forms compared to AIBI both in native PAGE and electron microscopy. The oligomers of both subtypes could withstand greater temperatures and denaturant concentrations. In terms of cellular response, the levels of inflammatory cytokines were significantly higher in case of AIBI-CS6 expressing ETEC as compared to AIIBII-CS6 expressing ETEC both in vitro and in vivo. When inflammatory cytokines were evaluated after infecting suckling mice with these ETEC strains, the results were consistent. In conclusion, even though there was subtle structural difference between AIBI-CS6 and AIIBII-CS6 due to natural point mutations but ETEC strains expressing these subtypes displayed great variability in pathogenicity.
Collapse
Affiliation(s)
- Anusuya Debnath
- Department of Biotechnology, Brainware University, Kolkata, India; National Institute of Cholera and Enteric Diseases, Kolkata, India.
| | - Subrata Sabui
- University of California-Irvine, VAMCLB-151, Long Beach, CA, 90822, USA; National Institute of Cholera and Enteric Diseases, Kolkata, India
| | - Nabendu Sekhar Chatterjee
- Division of Basic Medical Sciences at Indian Council of Medical Research (ICMR), New Delhi, India; National Institute of Cholera and Enteric Diseases, Kolkata, India
| |
Collapse
|
2
|
Asadi Z, Ghanbarpour R, Kalantar-Neyestanaki D, Alizade H. Determination of extended-spectrum β-lactamase producing and hybrid pathotypes of Escherichia coli isolates from diarrheic samples. GENE REPORTS 2022. [DOI: 10.1016/j.genrep.2022.101583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
3
|
Bhakat D, Mondal I, Mukhopadhyay AK, Chatterjee NS. Iron influences the expression of colonization factor CS6 of enterotoxigenic Escherichia coli. MICROBIOLOGY-SGM 2021; 167. [PMID: 34550064 DOI: 10.1099/mic.0.001089] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Enterotoxigenic Escherichia coli (ETEC) is a major pathogen of acute watery diarrhoea. The pathogenicity of ETEC is linked to adherence to the small intestine by colonization factors (CFs) and secretion of heat-labile enterotoxin (LT) and/or heat-stable enterotoxin (ST). CS6 is one of the most common CFs in our region and worldwide. Iron availability functions as an environmental cue for enteropathogenic bacteria, signalling arrival within the human host. Therefore, iron could modify the expression of CS6 in the intestine. The objective of this study was to determine the effect of iron availability on CS6 expression in ETEC. This would help in understanding the importance of iron during ETEC pathogenesis. ETEC strain harbouring CS6 was cultured under increasing concentrations of iron salt to assess the effect on CS6 RNA expression by quantitative RT-PCR, protein expression by ELISA, promoter activity by β-galactosidase activity, and epithelial adhesion on HT-29 cells. RNA expression of CS6 was maximum in presence of 0.2 mM iron (II) salt. The expression increased by 50-fold, which also reduced under iron-chelation conditions and an increased iron concentration of 0.4 mM or more. The surface expression of CS6 also increased by 60-fold in presence of 0.2 mM iron. The upregulation of CS6 promoter activity by 25-fold under this experimental condition was in accordance with the induction of CS6 RNA and protein. This increased CS6 expression was independent of ETEC strains. Bacterial adhesion to HT-29 epithelial cells was also enhanced by five-fold in the presence of 0.2 mM iron salt. These findings suggest that CS6 expression is dependent on iron concentration. However, with further increases in iron concentration beyond 0.2 mM CS6 expression is decreased, suggesting that there might be a strong regulatory mechanism for CS6 expression under different iron concentrations.
Collapse
Affiliation(s)
- Debjyoti Bhakat
- Division of Biochemistry, ICMR-National Institute of Cholera and Enteric Diseases, Kolkata, India
| | - Indranil Mondal
- Division of Biochemistry, ICMR-National Institute of Cholera and Enteric Diseases, Kolkata, India
| | - Asish Kumar Mukhopadhyay
- Division of Bacteriology, ICMR-National Institute of Cholera and Enteric Diseases, Kolkata, India
| | | |
Collapse
|
4
|
Mondal I, Bhakat D, Chowdhury G, Manna A, Samanta S, Deb AK, Mukhopadhyay AK, Chatterjee NS. Distribution of virulence factors and its relatedness towards the antimicrobial response of enterotoxigenic Escherichia coli strains isolated from patients in Kolkata, India. J Appl Microbiol 2021; 132:675-686. [PMID: 34242448 DOI: 10.1111/jam.15206] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 06/11/2021] [Accepted: 06/29/2021] [Indexed: 12/14/2022]
Abstract
AIM Enterotoxigenic Escherichia coli (ETEC) is one of the most widely recognized diarrhoeal pathogens in developing countries. The advancement of ETEC vaccine development depends on the antigenic determinants of the ETEC isolates from a particular geographical region. So, the aim here was to comprehend the distribution of virulence determinants of the clinical ETEC strains of this region. Additionally, an attempt was made to find any correlation with the antimicrobial response pattern. METHODS AND RESULTS Multiplex PCR was employed to identify virulence determinants followed by confirmatory singleplex PCR. For observation of antibiotic response, the Kirby-Bauer method was used. Out of 379 strains, 46% of strains harboured both the enterotoxins ST and LT, whereas 15% were LT only. Among the major colonization factors (CFs), CS6 (41%) was the most prevalent followed by CFA/I (35%) and CFA/III was the lowest (3%). Among the minor CFs, CS21 (25%) was most prevalent, while CS15 showed the lowest (3%) presence. Among the non-classical virulence factors, EatA (69%) was predominant. ETEC strains harbouring CS6 showed resistance towards the commonly used drug Ciprofloxacin (70%). CONCLUSION CS6 and elt+est toxin genes co-occurred covering 51% of the isolates. CS21 was found in most strains with est genes (43%). EatA was found to occur frequently when ST was present alone or with LT. CS6-harbouring strains showed an independent correlation to antimicrobial resistance. SIGNIFICANCE AND IMPACT OF THE STUDY This study would aid in identifying the commonly circulating ETEC isolates of Kolkata, India, and their prevalent virulence determinants. Knowledge of antibiotic resistance patterns would also help in the appropriate use of antibiotics. Furthermore, the study would aid in identifying the multivalent antigens suitable for region-specific ETEC vaccines with maximum coverage.
Collapse
Affiliation(s)
- Indranil Mondal
- Division of Biochemistry, ICMR-National Institute of Cholera and Enteric Diseases, Kolkata, India
| | - Debjyoti Bhakat
- Division of Biochemistry, ICMR-National Institute of Cholera and Enteric Diseases, Kolkata, India
| | - Goutam Chowdhury
- Division of Bacteriology, ICMR-National Institute of Cholera and Enteric Diseases, Kolkata, India
| | - Asis Manna
- Infectious Diseases and Beliaghata General Hospital, Kolkata, India
| | - Sandip Samanta
- Dr. B.C.Roy Post Graduate Institute of Pediatric Sciences, Kolkata, India
| | - Alok Kumar Deb
- Division of Epidemiology, ICMR-National Institute of Cholera and Enteric Diseases, Kolkata, India
| | - Asish Kumar Mukhopadhyay
- Division of Bacteriology, ICMR-National Institute of Cholera and Enteric Diseases, Kolkata, India
| | | |
Collapse
|
5
|
Kuhlmann FM, Martin J, Hazen TH, Vickers TJ, Pashos M, Okhuysen PC, Gómez-Duarte OG, Cebelinski E, Boxrud D, del Canto F, Vidal R, Qadri F, Mitreva M, Rasko DA, Fleckenstein JM. Conservation and global distribution of non-canonical antigens in Enterotoxigenic Escherichia coli. PLoS Negl Trop Dis 2019; 13:e0007825. [PMID: 31756188 PMCID: PMC6897418 DOI: 10.1371/journal.pntd.0007825] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Revised: 12/06/2019] [Accepted: 10/02/2019] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Enterotoxigenic Escherichia coli (ETEC) cause significant diarrheal morbidity and mortality in children of resource-limited regions, warranting development of effective vaccine strategies. Genetic diversity of the ETEC pathovar has impeded development of broadly protective vaccines centered on the classical canonical antigens, the colonization factors and heat-labile toxin. Two non-canonical ETEC antigens, the EtpA adhesin, and the EatA mucinase are immunogenic in humans and protective in animal models. To foster rational vaccine design that complements existing strategies, we examined the distribution and molecular conservation of these antigens in a diverse population of ETEC isolates. METHODS Geographically diverse ETEC isolates (n = 1159) were interrogated by PCR, immunoblotting, and/or whole genome sequencing (n = 46) to examine antigen conservation. The most divergent proteins were purified and their core functions assessed in vitro. RESULTS EatA and EtpA or their coding sequences were present in 57.0% and 51.5% of the ETEC isolates overall, respectively; and were globally dispersed without significant regional differences in antigen distribution. These antigens also exhibited >93% amino acid sequence identity with even the most divergent proteins retaining the core adhesin and mucinase activity assigned to the prototype molecules. CONCLUSIONS EtpA and EatA are well-conserved molecules in the ETEC pathovar, suggesting that they serve important roles in virulence and that they could be exploited for rational vaccine design.
Collapse
Affiliation(s)
- F. Matthew Kuhlmann
- Department of Medicine, Division of Infectious Diseases, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - John Martin
- Department of Medicine, Division of Infectious Diseases, Washington University School of Medicine, St. Louis, Missouri, United States of America
- McDonnell Genome Institute, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Tracy H. Hazen
- Department of Microbiology and Immunology and Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
| | - Tim J. Vickers
- Department of Medicine, Division of Infectious Diseases, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Madeline Pashos
- Department of Medicine, Division of Infectious Diseases, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Pablo C. Okhuysen
- The Department of Infectious Diseases, Infection Control and Employee Health, University of Texas M.D. Anderson Cancer Center, Houston, Texas, United States of America
| | - Oscar G. Gómez-Duarte
- Department of Pediatrics, Division of Infectious Diseases, University at Buffalo, The State University of New York, Buffalo, New York, United States of America
| | | | - Dave Boxrud
- Minnesota Department of Health, St. Paul, Minnesota, United States of America
| | - Felipe del Canto
- Programa de Microbiología y Micología, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Roberto Vidal
- Programa de Microbiología y Micología, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile
- Instituto Milenio de Inmunonología e Inmunoterapia, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Firdausi Qadri
- Infectious Diseases Division, International Centre for Diarrhoeal Disease Research, Bangladesh (icddr,b), Dhaka, Bangladesh
| | - Makedonka Mitreva
- Department of Medicine, Division of Infectious Diseases, Washington University School of Medicine, St. Louis, Missouri, United States of America
- McDonnell Genome Institute, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - David A. Rasko
- Department of Microbiology and Immunology and Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
| | - James M. Fleckenstein
- Department of Medicine, Division of Infectious Diseases, Washington University School of Medicine, St. Louis, Missouri, United States of America
- Medicine Service, Veterans Affairs Medical Center, St. Louis, Missouri, United States of America
| |
Collapse
|