1
|
Barroso KCC, Virginio VG, Chaúque BJM, Maschio VJ, Sand STVANDER, Rott MB. Coculturing Streptomyces sp. with Acanthamoeba polyphaga enhances the antimicrobial effectiveness of its crude extract against multidrug-resistant Pseudomonas aeruginosa and Escherichia coli. AN ACAD BRAS CIENC 2025; 97:e20240655. [PMID: 40243764 DOI: 10.1590/0001-3765202520240655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Accepted: 01/15/2025] [Indexed: 04/18/2025] Open
Abstract
Bacterial infections stand as prominent contributors to global mortality and morbidity rates. Harnessing the potential antimicrobial activity of secondary metabolites derived from natural sources holds promise for developing novel therapeutic drugs. Streptomyces spp. represents pivotal microorganisms in the synthesis of these compounds. Acanthamoeba spp. serves as natural virulence amplifiers for a wide range of bacterial pathogens. This study evaluates the antimicrobial efficacy of crude extracts of Streptomyces sp. cocultured trials with Acanthamoeba polyphaga against multidrug-resistant Pseudomonas aeruginosa and Escherichia coli. The production of crude extracts from Streptomyces sp. was monitored over 28 days. The antimicrobial activity against P. aeruginosa and E. coli was evaluated by measuring the inhibitory halos. Viability amoebae and bacteria were assessed. A slight decrease in the viability of A. polyphaga was noted during the coculture. Conversely, coculture promoted bacterial growth and facilitated the synthesis of extracts that showed antimicrobial effects against P. aeruginosa and E. coli, while showing no impact on amoebae. The extracts were active mainly against P. aeruginosa. The findings show that the interaction between A. polyphaga and Streptomyces sp. modulates the production of antimicrobial secondary metabolites by bacteria. Further investigations are needed to characterize the nature of this modulation, and the bactericidal components.
Collapse
Affiliation(s)
- Keli C C Barroso
- Universidade Federal do Rio Grande do Sul, Programa de Pós-Graduação em Microbiologia Agrícola e do Ambiente, Instituto de Ciências Básicas e da Saúde, Rua Ramiro Barcelos, 2600, 90035-002 Porto Alegre, RS, Brazil
| | - Veridiana G Virginio
- Universidade Federal do Rio Grande do Sul, Programa de Pós-Graduação em Microbiologia Agrícola e do Ambiente, Instituto de Ciências Básicas e da Saúde, Rua Ramiro Barcelos, 2600, 90035-002 Porto Alegre, RS, Brazil
| | - Beni J M Chaúque
- Universidade Federal do Rio Grande do Sul, Programa de Pós-Graduação em Ciências Biológicas: Farmacologia e Terapêutica, Rua Ramiro Barcelos, 2600, 90035-002 Porto Alegre, RS, Brazil
- Universidade Rovuma, Núcleo de Estudos em Ciência e Tecnologia - NECET, Curso de Biologia, Lichinga, Niassa, Caixa Postal 4, Moçambique
- Hospital de Clínicas de Porto Alegre - HCPA, Mestrado Profissional em Pesquisa Clínica - MPPC, Ramiro Barcelos 2350, 90035-903 Porto Alegre, RS, Brazil
| | - Vinicius J Maschio
- Universidade do Sul de Santa Catarina, Rua Simeão Esmeraldino de Menezes, 400, 88704-090 Tubarão, SC, Brazil
| | - Sueli T VAN DER Sand
- Universidade Federal do Rio Grande do Sul, Programa de Pós-Graduação em Microbiologia Agrícola e do Ambiente, Instituto de Ciências Básicas e da Saúde, Rua Ramiro Barcelos, 2600, 90035-002 Porto Alegre, RS, Brazil
- Universidade Rio Grande do Sul, Departamento de Microbiologia, Imunologia e Parasitologia, Laboratório de Protozoologia, Laboratório 520, Rua Ramiro Barcelos, 2600, 90035-002 Porto Alegre, RS, Brazil
| | - Marilise B Rott
- Universidade Federal do Rio Grande do Sul, Programa de Pós-Graduação em Microbiologia Agrícola e do Ambiente, Instituto de Ciências Básicas e da Saúde, Rua Ramiro Barcelos, 2600, 90035-002 Porto Alegre, RS, Brazil
- Universidade Rio Grande do Sul, Departamento de Microbiologia, Imunologia e Parasitologia, Laboratório de Protozoologia, Laboratório 520, Rua Ramiro Barcelos, 2600, 90035-002 Porto Alegre, RS, Brazil
| |
Collapse
|
2
|
Dhahbi S, Lee J, Ryu D, Akinniyi G, Yang I. Actinomycetes studies in Tunisia. Res Microbiol 2025; 176:104279. [PMID: 39827931 DOI: 10.1016/j.resmic.2025.104279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 01/15/2025] [Accepted: 01/15/2025] [Indexed: 01/22/2025]
Abstract
Tunisia, located in North Africa, has a diverse topography along the Mediterranean Sea to the Sahara Desert. These environments encompass oases, rhizosphere soils, desert deposits, saline wetlands, offshore oilrigs, and ancient monument rocks. The country's varied environments have led to the isolation of a multitude of actinomycetes. A phylogenetic analysis based on the 16S rRNA sequences of one hundred isolated actinomycetes strains revealed that the majority belong to the genus Streptomyces. Secondary metabolite studies from these actinomycetes yielded 33 natural products. Notably, compound 12, 3-O-methylviridicatin, exhibited antitumor activity and suppressed HIV expression. This showcases Tunisia's potential for natural product research.
Collapse
Affiliation(s)
- Souleima Dhahbi
- Department of Convergence Study on the Ocean Science and Technology, Korea Maritime and Ocean University, Busan, 49112, South Korea
| | - Jeonghee Lee
- Department of Convergence Study on the Ocean Science and Technology, Korea Maritime and Ocean University, Busan, 49112, South Korea
| | - Dohee Ryu
- Department of Convergence Study on the Ocean Science and Technology, Korea Maritime and Ocean University, Busan, 49112, South Korea
| | - Ganiyu Akinniyi
- Department of Convergence Study on the Ocean Science and Technology, Korea Maritime and Ocean University, Busan, 49112, South Korea
| | - Inho Yang
- Department of Convergence Study on the Ocean Science and Technology, Korea Maritime and Ocean University, Busan, 49112, South Korea.
| |
Collapse
|
3
|
Bandeira L, Faria C, Cavalcante F, Mesquita A, Martins C, Martins S. Metabarcoding expands knowledge on diversity and ecology of rare actinobacteria in the Brazilian Cerrado. Folia Microbiol (Praha) 2025; 70:159-175. [PMID: 38961050 DOI: 10.1007/s12223-024-01184-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 06/17/2024] [Indexed: 07/05/2024]
Abstract
Rare and unknown actinobacteria from unexplored environments have the potential to produce new bioactive molecules. This study aimed to use 16 s rRNA metabarcoding to determine the composition of the actinobacterial community, particularly focusing on rare and undescribed species, in a nature reserve within the Brazilian Cerrado called Sete Cidades National Park. Since this is an inaccessible area without due legal authorization, it is understudied, and, therefore, its diversity and biotechnological potential are not yet fully understood, and it may harbor species with groundbreaking genetic potential. In total, 543 operational taxonomic units (OTUs) across 14 phyla were detected, with Actinobacteria (41.2%), Proteobacteria (26.5%), and Acidobacteria (14.3%) being the most abundant. Within Actinobacteria, 107 OTUs were found, primarily from the families Mycobacteriaceae, Pseudonocardiaceae, and Streptomycetaceae. Mycobacterium and Streptomyces were the predominant genera across all samples. Seventeen rare OTUs with relative abundance < 0.1% were identified, with 82.3% found in only one sample yet 25.5% detected in all units. Notable rare and transient genera included Salinibacterium, Nocardia, Actinomycetospora_01, Saccharopolyspora, Sporichthya, and Nonomuraea. The high diversity and distribution of Actinobacteria OTUs indicate the area's potential for discovering new rare species. Intensified prospection on underexplored environments and characterization of their actinobacterial diversity could lead to the discovery of new species capable of generating innovative natural products.
Collapse
Affiliation(s)
- Leonardo Bandeira
- Ecology and Natural Resources, Federal University of Ceará, Fortaleza, Brazil.
- Graduate Course of Ecology and Natural Resources, Department of Biology, Campus of Pici, Federal University of Ceará, Fortaleza, 60440-900, Brazil.
| | | | - Fernando Cavalcante
- Ecology and Natural Resources, Federal University of Ceará, Fortaleza, Brazil
| | - Ariel Mesquita
- Biotechnology of Natural Resources, Federal University of Ceará, Fortaleza, Brazil
| | - Claudia Martins
- Graduate Course of Ecology and Natural Resources, Department of Biology, Campus of Pici, Federal University of Ceará, Fortaleza, 60440-900, Brazil
| | - Suzana Martins
- Graduate Course of Ecology and Natural Resources, Department of Biology, Campus of Pici, Federal University of Ceará, Fortaleza, 60440-900, Brazil
| |
Collapse
|
4
|
Rammali S, Kamal FZ, El Aalaoui M, Bencharki B, Burlui V, Khattabi A, Abderrahim A, Saad S, Romila L, Novac B, Aitlhaj-Mhand R, Petroaie AD, Ciobică A. In vitro antimicrobial and antioxidant activities of bioactive compounds extracted from Streptomyces africanus strain E2 isolated from Moroccan soil. Sci Rep 2024; 14:27372. [PMID: 39521814 PMCID: PMC11550811 DOI: 10.1038/s41598-024-77729-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Accepted: 10/24/2024] [Indexed: 11/16/2024] Open
Abstract
This study aimed to isolate Streptomyces sp. from Moroccan terrestrial ecosystems and identify bioactive compounds through GC-MS analysis. Antimicrobial activity was assessed against various pathogenic microorganisms including Staphylococcus aureus ATCC 25923, Pseudomonas aeruginosa ATCC 27853, Escherichia coli ATCC 25922 and Candida albicans ATCC 60193, and multi-drug resistant strains comprising Listeria monocytogenes, Klebsiella pneumoniae 19K 929, Proteus sp. 19K1313, Klebsiella pneumoniae 20B1572, Proteus vulgaris 16C1737, and Klebsiella pneumoniae 20B1572. Based on the results of the gene sequencing of gene 16S rRNA and phylogenetic analysis, the E2 isolate belongs to the genus Streptomyces with the highest degree of resemblance (97.51%) to the Streptomyces africanus strain NBRC 101005 (NR_112600.1). The isolate exhibited broad-spectrum antibacterial activity, with maximum efficacy against Klebsiella pneumoniae 20B1572 indicated by an inhibition zone diameter of 22.5 ± 0.71mm and a minimum inhibitory concentration (MIC) of 0.0625 mg/mL. The in vitro antioxidant potential of E2 strain was determined through screening of its ethyl acetate extract against sets of antioxidant assays. The results were indicative of E2 strain displaying strong antioxidant activity against ABTS, DPPH free radicals, and FRAP. Furthermore, there was a high significant correlation (p < 0.0001) between the total phenolic and flavonoid content and antioxidant activities. The GC-MS analysis of the extract identified six volatile compounds, with Eugenol (96%) and Maltol (93%) being the most prominent. Additionally, the HPLC-UV/vis analysis revealed six phenolic compounds: gallic acid, chlorogenic acid, vanillic acid, trans-ferulic acid, ellagic acid, and cinnamic acid. Overall, the study highlights Streptomyces sp. strain E2 as a potential source of potent antimicrobial and antioxidant metabolites, offering promise in addressing antibiotic resistance and oxidative stress-related conditions.
Collapse
Affiliation(s)
- Said Rammali
- Laboratory of Agro-Alimentary and Health, Faculty of Sciences and Techniques, Hassan First University of Settat, B.P. 539, 26000, Settat, Morocco
| | - Fatima Zahra Kamal
- Higher Institute of Nursing Professions and Health Technical (ISPITS), 40000, Marrakech, Morocco
- Laboratory of Physical Chemistry of Processes and Materials, Faculty of Sciences and Techniques, Hassan First University, 26000, Settat, Morocco
| | - Mohamed El Aalaoui
- Regional Center of Agronomic Research of Settat, Tertiary Road 1406, At 5 Km from Settat, 26400, Settat, Morocco
| | - Bouchaib Bencharki
- Laboratory of Agro-Alimentary and Health, Faculty of Sciences and Techniques, Hassan First University of Settat, B.P. 539, 26000, Settat, Morocco
| | - Vasile Burlui
- Department of Biomaterials, Faculty of Dental Medicine, Apollonia University, 700511, Iasi, Romania
| | - Abdelkrim Khattabi
- Laboratory of Agro-Alimentary and Health, Faculty of Sciences and Techniques, Hassan First University of Settat, B.P. 539, 26000, Settat, Morocco
| | - Aasfar Abderrahim
- Plant and Microbial Biotechnology Center, Moroccan Foundation for Advanced Science, Innovation and Research (MAScIR), Mohammed VI Polytechnic University, Ben Guerir, Morocco
| | - Salhi Saad
- Laboratory of Biochemistry, Neurosciences, Natural Ressources and Environment, Faculty of Sciences and Techniques, Hassan First University of Settat, B.P. 539, 26000, Settat, Morocco
| | - Laura Romila
- Apollonia University, Păcurari Street 11, 700511, Iasi, Romania.
| | - Bogdan Novac
- Grigore T. Popa University of Medicine and Pharmacy, 16, Universitatii Street, 700115, Iasi, Romania
| | | | - Antoneta Dacia Petroaie
- Grigore T. Popa University of Medicine and Pharmacy, 16, Universitatii Street, 700115, Iasi, Romania
| | - Alin Ciobică
- Department of Biology, Faculty of Biology, Alexandru Ioan Cuza University of Iasi, 20th Carol I Avenue, 700506, Iasi, Romania
- Academy of Romanian Scientists, 3 Ilfov, 050044, Bucharest, Romania
- Clinical Department, Apollonia University, Păcurari Street 11, 700511, Iasi, Romania
- CENEMED Platform for Interdisciplinary Research, "Grigore T. Popa" University of Medicine and Pharmacy of Iasi, 16th Universitatii Street, 700115, Iasi, Romania
| |
Collapse
|
5
|
Dong D, Li M, Zhang T, Niu Z, Xue G, Bai H, Zhao W, Yu J, Jiang W, Wu H. Antagonistic Activity of Streptomyces alfalfae 11F against Fusarium Wilt of Watermelon and Transcriptome Analysis Provides Insights into the Synthesis of Phenazine-1-Carboxamide. PLANTS (BASEL, SWITZERLAND) 2023; 12:3796. [PMID: 38005693 PMCID: PMC10675820 DOI: 10.3390/plants12223796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 09/18/2023] [Accepted: 09/18/2023] [Indexed: 11/26/2023]
Abstract
Streptomyces alfalfa strain 11F has inhibitory effects on many phytopathogenic fungi and improves the establishment and biomass yield of switchgrass. However, the antagonistic effects of strain 11F on Fusarium wilt of watermelon and its secondary metabolites that contribute to its biocontrol activity are poorly understood. We evaluated the antagonistic and growth-promoting effects of strain 11F and conducted a transcriptome analysis to identify the metabolites contributing to antifungal activity. Strain 11F had marked inhibitory effects on six fungal pathogens. The incidence of Fusarium wilt of watermelon seedlings was decreased by 46.02%, while watermelon seedling growth was promoted, as indicated by plant height (8.7%), fresh weight (23.1%), and dry weight (60.0%). Clean RNA-sequencing data were annotated with 7553 functional genes. The 2582 differentially expressed genes (DEGs) detected in the Control vs. Case 2 comparison were divided into 42 subcategories of the biological process, cellular component, and molecular function Gene Ontology categories. Seven hundred and forty functional genes (55.47% of the DEGs) were assigned to Kyoto Encyclopedia of Genes and Genomes metabolic pathways, reflecting the complexity of the strain 11F metabolic regulatory system. The expression level of the gene phzF, which encodes an enzyme essential for phenazine-1-carboxylic acid (PCA) synthesis, was downregulated 3.7-fold between the 24 h and 48 h fermentation time points, suggesting that strain 11F can produce phenazine compounds. A phenazine compound from 11F was isolated and identified as phenazine-1-carboxamide (PCN), which contributed to the antagonistic activity against Fusarium oxysporum f. sp. niveum. PCA was speculated to be the synthetic precursor of PCN. The downregulation in phzF expression might be associated with the decrease in PCA accumulation and the increase in PCN synthesis in strain 11F from 24 to 48 h. Streptomyces alfalfae 11F protects watermelon seedlings from Fusarium wilt of watermelon and promotes seedling growth. The transcriptome analysis of strain 11F provides insights into the synthesis of PCN, which has antifungal activity against F. oxysporum f. sp. niveum of watermelon.
Collapse
Affiliation(s)
- Dan Dong
- Institute of Plant Protection, Beijing Academy of Agriculture and Forestry Sciences, Key Laboratory of Environment Friendly Management on Fruit and Vegetable Pests in North China (Co-Construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Beijing 100097, China; (D.D.); (T.Z.); (Z.N.); (W.Z.); (J.Y.)
| | - Maoying Li
- National Watermelon and Melon Improvement Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China;
| | - Taotao Zhang
- Institute of Plant Protection, Beijing Academy of Agriculture and Forestry Sciences, Key Laboratory of Environment Friendly Management on Fruit and Vegetable Pests in North China (Co-Construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Beijing 100097, China; (D.D.); (T.Z.); (Z.N.); (W.Z.); (J.Y.)
| | - Zhenfeng Niu
- Institute of Plant Protection, Beijing Academy of Agriculture and Forestry Sciences, Key Laboratory of Environment Friendly Management on Fruit and Vegetable Pests in North China (Co-Construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Beijing 100097, China; (D.D.); (T.Z.); (Z.N.); (W.Z.); (J.Y.)
| | - Guoping Xue
- Inner Mongolia Academy of Agricultural and Animal Husbandry Sciences, Hohhot 010031, China; (G.X.); (H.B.)
| | - Hongmei Bai
- Inner Mongolia Academy of Agricultural and Animal Husbandry Sciences, Hohhot 010031, China; (G.X.); (H.B.)
| | - Wenyu Zhao
- Institute of Plant Protection, Beijing Academy of Agriculture and Forestry Sciences, Key Laboratory of Environment Friendly Management on Fruit and Vegetable Pests in North China (Co-Construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Beijing 100097, China; (D.D.); (T.Z.); (Z.N.); (W.Z.); (J.Y.)
| | - Jiajia Yu
- Institute of Plant Protection, Beijing Academy of Agriculture and Forestry Sciences, Key Laboratory of Environment Friendly Management on Fruit and Vegetable Pests in North China (Co-Construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Beijing 100097, China; (D.D.); (T.Z.); (Z.N.); (W.Z.); (J.Y.)
| | - Wei Jiang
- Inner Mongolia Academy of Agricultural and Animal Husbandry Sciences, Hohhot 010031, China; (G.X.); (H.B.)
| | - Huiling Wu
- Institute of Plant Protection, Beijing Academy of Agriculture and Forestry Sciences, Key Laboratory of Environment Friendly Management on Fruit and Vegetable Pests in North China (Co-Construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Beijing 100097, China; (D.D.); (T.Z.); (Z.N.); (W.Z.); (J.Y.)
| |
Collapse
|
6
|
Genetic Diversity and Anti-Oxidative Potential of Streptomyces spp. Isolated from Unexplored Niches of Meghalaya, India. Curr Microbiol 2022; 79:379. [DOI: 10.1007/s00284-022-03088-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Accepted: 10/11/2022] [Indexed: 11/06/2022]
|
7
|
Alam K, Hao J, Zhong L, Fan G, Ouyang Q, Islam MM, Islam S, Sun H, Zhang Y, Li R, Li A. Complete genome sequencing and in silico genome mining reveal the promising metabolic potential in Streptomyces strain CS-7. Front Microbiol 2022; 13:939919. [PMID: 36274688 PMCID: PMC9581153 DOI: 10.3389/fmicb.2022.939919] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 09/05/2022] [Indexed: 11/13/2022] Open
Abstract
Gram-positive Streptomyces bacteria can produce valuable secondary metabolites. Streptomyces genomes include huge unknown silent natural product (NP) biosynthetic gene clusters (BGCs), making them a potential drug discovery repository. To collect antibiotic-producing bacteria from unexplored areas, we identified Streptomyces sp. CS-7 from mountain soil samples in Changsha, P.R. China, which showed strong antibacterial activity. Complete genome sequencing and prediction in silico revealed that its 8.4 Mbp genome contains a total of 36 BGCs for NPs. We purified two important antibiotics from this strain, which were structurally elucidated to be mayamycin and mayamycin B active against Staphylococcus aureus. We identified functionally a BGC for the biosynthesis of these two compounds by BGC direct cloning and heterologous expression in Streptomyces albus. The data here supported this Streptomyces species, especially from unexplored habitats, having a high potential for new NPs.
Collapse
Affiliation(s)
- Khorshed Alam
- Helmholtz International Lab for Anti-infectives, Shandong University-Helmholtz Institute of Biotechnology, State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| | - Jinfang Hao
- Helmholtz International Lab for Anti-infectives, Shandong University-Helmholtz Institute of Biotechnology, State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| | - Lin Zhong
- Helmholtz International Lab for Anti-infectives, Shandong University-Helmholtz Institute of Biotechnology, State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| | - Guoqing Fan
- Helmholtz International Lab for Anti-infectives, Shandong University-Helmholtz Institute of Biotechnology, State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| | - Qing Ouyang
- Helmholtz International Lab for Anti-infectives, Shandong University-Helmholtz Institute of Biotechnology, State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| | - Md. Mahmudul Islam
- Department of Microbiology, Rajshahi Institute of Biosciences (RIB), Affiliated University of Rajshahi, Rajshahi, Bangladesh
| | - Saiful Islam
- Bangladesh Council of Scientific and Industrial Research (BCSIR), Chattogram Laboratories, Chattogram, Bangladesh
| | - Hongluan Sun
- Helmholtz International Lab for Anti-infectives, Shandong University-Helmholtz Institute of Biotechnology, State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| | - Youming Zhang
- Helmholtz International Lab for Anti-infectives, Shandong University-Helmholtz Institute of Biotechnology, State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
- Chinese Academy of Sciences, Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Shenzhen, China
| | - Ruijuan Li
- Helmholtz International Lab for Anti-infectives, Shandong University-Helmholtz Institute of Biotechnology, State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
- Ruijuan Li,
| | - Aiying Li
- Helmholtz International Lab for Anti-infectives, Shandong University-Helmholtz Institute of Biotechnology, State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
- *Correspondence: Aiying Li,
| |
Collapse
|
8
|
Alam K, Mazumder A, Sikdar S, Zhao YM, Hao J, Song C, Wang Y, Sarkar R, Islam S, Zhang Y, Li A. Streptomyces: The biofactory of secondary metabolites. Front Microbiol 2022; 13:968053. [PMID: 36246257 PMCID: PMC9558229 DOI: 10.3389/fmicb.2022.968053] [Citation(s) in RCA: 130] [Impact Index Per Article: 43.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 08/15/2022] [Indexed: 11/13/2022] Open
Abstract
Natural products derived from microorganisms serve as a vital resource of valuable pharmaceuticals and therapeutic agents. Streptomyces is the most ubiquitous bacterial genus in the environments with prolific capability to produce diverse and valuable natural products with significant biological activities in medicine, environments, food industries, and agronomy sectors. However, many natural products remain unexplored among Streptomyces. It is exigent to develop novel antibiotics, agrochemicals, anticancer medicines, etc., due to the fast growth in resistance to antibiotics, cancer chemotherapeutics, and pesticides. This review article focused the natural products secreted by Streptomyces and their function and importance in curing diseases and agriculture. Moreover, it discussed genomic-driven drug discovery strategies and also gave a future perspective for drug development from the Streptomyces.
Collapse
Affiliation(s)
- Khorshed Alam
- Helmholtz International Lab for Anti-Infectives, Shandong University-Helmholtz Institute of Biotechnology, State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| | - Arpita Mazumder
- Department of Microbiology, University of Chittagong, Chittagong, Bangladesh
| | - Suranjana Sikdar
- Department of Microbiology, University of Chittagong, Chittagong, Bangladesh
| | - Yi-Ming Zhao
- Helmholtz International Lab for Anti-Infectives, Shandong University-Helmholtz Institute of Biotechnology, State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| | - Jinfang Hao
- Helmholtz International Lab for Anti-Infectives, Shandong University-Helmholtz Institute of Biotechnology, State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| | - Chaoyi Song
- Helmholtz International Lab for Anti-Infectives, Shandong University-Helmholtz Institute of Biotechnology, State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| | - Yanyan Wang
- Helmholtz International Lab for Anti-Infectives, Shandong University-Helmholtz Institute of Biotechnology, State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| | - Rajib Sarkar
- Industrial Microbiology Research Division, BCSIR Chattogram Laboratories, Bangladesh Council of Scientific and Industrial Research (BCSIR), Chattogram, Bangladesh
| | - Saiful Islam
- Industrial Microbiology Research Division, BCSIR Chattogram Laboratories, Bangladesh Council of Scientific and Industrial Research (BCSIR), Chattogram, Bangladesh
- Saiful Islam,
| | - Youming Zhang
- Helmholtz International Lab for Anti-Infectives, Shandong University-Helmholtz Institute of Biotechnology, State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
- Chinese Academy of Sciences (CAS) Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
- Youming Zhang,
| | - Aiying Li
- Helmholtz International Lab for Anti-Infectives, Shandong University-Helmholtz Institute of Biotechnology, State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
- *Correspondence: Aiying Li,
| |
Collapse
|
9
|
Zhou J, Feng Z, Zhang W, Xu J. Evaluation of the antimicrobial and cytotoxic potential of endophytic fungi extracts from mangrove plants Rhizophora stylosa and R. mucronata. Sci Rep 2022; 12:2733. [PMID: 35177749 PMCID: PMC8854691 DOI: 10.1038/s41598-022-06711-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Accepted: 02/03/2022] [Indexed: 12/30/2022] Open
Abstract
Mangrove endophytic fungi are tolerant to numerous stresses and are inevitably capable of exhibiting excellent biological activity by producing impressive numbers of metabolites with special biological functions, based on previous work on the biological potential of mangrove-derived endophytic fungi. To obtain marked antimicrobial and cytotoxic fermentation products of culturable endophytic fungi from mangrove forests, our research evaluated the antimicrobial and cytotoxic activities of crude extracts of endophytic fungi from Rhizophora stylosa and Rhizophora mucronata. Forty-six fungal isolates were cultured on four different media, namely, dextrose agar (PDA), Czapek’s agar (CZA), rice medium (RM) and grain medium (GM) and harvested by ethyl acetate solvent at 40 days. The extracts were tested for antimicrobial activity by the microdilution method against the gram-negative bacteria Pseudomonas adaceae (PA), gram-positive bacteria Enterococcus faecalis (EF), methicillin-resistant Staphylococcus aureus (MRSA) and pathogenic fungus Monilia albicans (MA). The cytotoxic activity of the extracts was evaluated by MTT assay using A549 human lung cancer cells, HeLa human cervical carcinoma cells, and HepG2 human hepatocellular cells. The results showed that rice medium could promote the secretion of antimicrobial and antitumour secondary metabolites of endophytic fungi in comparison with other cultivation media. Seventeen strains (68%) from R. stylosa exhibited inhibitory effects on indicators, especially N. protearum HHL46, which could inhibit the growth of four microbes with MIC values reaching 0.0625 mg/mL. Fifteen strains (71.4%) from R. mucronata displayed activities against human pathogenic microbes; in particular, Pestalotiopsis sp. HQD6 and N. protearum HQD5 could resist the growth of four microbes with MIC values ranging from 0.015 to 1 mg/mL. In the cytotoxicity assay, the extracts of 10 strains (40%), 9 strains (40%) and 13 strains (52%) of R. stylosa and 13 strains (61.9%), 10 strains (47.6%) and 10 strains (47.6%) of R. mucronata displayed cytotoxicity against A549, HeLa and HepG2 cancer cells with cell viability values ≤ 50%. Neopestalotiopsis protearum HHL46, Phomopsis longicolla HHL50, Botryosphaeria fusispora HQD83, Fusarium verticillioides HQD48 and Pestalotiopsis sp. HQD6 displayed significant antitumour activity with IC50 values below 20 μg/mL. These results highlighted the antimicrobial and antitumour potential of endophytic fungi from R. stylosa and R. mucronata and the possibility of exploiting their antimicrobial and cytotoxic agents.
Collapse
Affiliation(s)
- Jing Zhou
- One Health Institute, School of Chemical Engineering and Technology, Hainan University, Haikou, 570228, People's Republic of China.,Hainan Provincial Fine Chemical Engineering Research Center, School of Life Sciences, Hainan University, Haikou, 570228, People's Republic of China
| | - Zhao Feng
- One Health Institute, School of Chemical Engineering and Technology, Hainan University, Haikou, 570228, People's Republic of China
| | - Wenfang Zhang
- One Health Institute, School of Chemical Engineering and Technology, Hainan University, Haikou, 570228, People's Republic of China
| | - Jing Xu
- One Health Institute, School of Chemical Engineering and Technology, Hainan University, Haikou, 570228, People's Republic of China. .,Hainan Provincial Fine Chemical Engineering Research Center, School of Life Sciences, Hainan University, Haikou, 570228, People's Republic of China.
| |
Collapse
|
10
|
Nikbakht M, Omidi B, Amozegar MA, Amini K. Isolation and identification of Streptomyces tunisiensis from Garmsar salt cave soil with antibacterial and gene expression activity against Pseudomonas aeruginosa. MAIN GROUP CHEMISTRY 2022. [DOI: 10.3233/mgc-210172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
It is known that more than 70% of the current antibiotics have been produced by Streptomyces; therefore, the main goal of the present study was to isolate halophiles Streptomyces to investigate their antimicrobial properties on the expression of the pathogenic genes of clinically resistant Pseudomonas aeruginosa. To this aim, isolation of Streptomyces from soil was performed by serial dilution method, and cultivation on ISP2 and SCA medium. The secondary metabolite was extracted by ethyl acetate method. The presence of exo A, alg D and oprl genes were determined by PCR in 50 clinical isolates of Pseudomonas aeruginosa. The inhibitory effect of active metabolites on gene expression were investigated by employing the real-time PCR technique. The purification of secondary metabolites were performed by employing the HPLC technique. Moreover, the FTIR technique was employed to determine the functional groups to help performing identifications by employing the LC-MS technique. Finally, selected Streptomyces was identified by 16S ribosomal RNA gene. Accordingly, the possible forms of Streptomyces were isolated and identified, in which Streptomyces number 25 had the highest growth inhibition zone against the clinical strains of Pseudomonas aeruginosa. The obtained results of molecular analysis showed 95.4% similarity to Streptomyces tunisiensis. The effect of selected Streptomyces secondary metabolites reduced expressions of both of exo A and algD genes in 1024μg/mL concentration. In this regard, the potent fraction could be known as an isobutyl Nonactin analogue. The concluding remarks of this work showed the antimicrobial activity of halophilus Streptomyces species against the resistant strains of Pseudomonas aeruginosa with the ability of producing antibiotics proposing for running further investigations to determine the active compound structures.
Collapse
Affiliation(s)
- Maryam Nikbakht
- Department of Biology, Central Tehran Branch, Islamic Azad University, Tehran, Iran
| | - Behin Omidi
- Department of Biology, Central Tehran Branch, Islamic Azad University, Tehran, Iran
| | - Mohammad Ali Amozegar
- Department of Microbiology, Faculty of Basic Science, University of Tehran, Tehran, Iran
| | - Kumarss Amini
- Department of Microbiology, Saveh Branch, Islamic Azad University, Saveh, Iran
| |
Collapse
|
11
|
Ma Y, Xu M, Liu H, Yu T, Guo P, Liu W, Jin X. Antimicrobial compounds were isolated from the secondary metabolites of Gordonia, a resident of intestinal tract of Periplaneta americana. AMB Express 2021; 11:111. [PMID: 34331149 PMCID: PMC8324697 DOI: 10.1186/s13568-021-01272-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Accepted: 07/23/2021] [Indexed: 12/27/2022] Open
Abstract
Gordonia sp. are members of the actinomycete family, their contribution to the environment improvement and environmental protection by their biological degradation ability, but there are few studies on the antimicrobial activity of their secondary metabolites. Our team isolated and purified an actinomycete WA 4-31 from the intestinal tract of Periplaneta americana, firstly identified the strain WA 4-31 by the morphological characteristics and the phylogenetic analyses, and found it was completely homologous to the strain of Gordonia terrae from the Indian desert. Meanwhile, actinomycin D (1), actinomycin X2 (2), mojavensin A (3) and cyclic (leucine-leucne) dipeptide (4) were obtained from the EtOAc extract from the broth of WA 4-31. Compounds 1–4 showed anti-fungus activities against Candida albicans, Aspergillus niger, A. fumigatus and Trichophyton rubrum, also anti-MRSA and inhibited Escherichia coli in different degree. Interestingly, we found when 3 was mixed with 4 with ratio of 1:1, the activity of the mixture on anti-Candida albicans was better than the single. Besides, compounds 1–3 had varying degrees of antiproliferative activities on CNE-2 and HepG-2 cell lines. These indicated that Gordonia rare actinomycete from the intestinal tract of Periplaneta americana possessed a potential as a source of active secondary metabolites.
Collapse
|
12
|
Azish M, Shams-Ghahfarokhi M, Razzaghi-Abyaneh M. Antifungal activity and mechanism of action of dichloromethane extract fraction A from Streptomyces libani against Aspergillus fumigatus. J Appl Microbiol 2021; 131:1212-1225. [PMID: 33590651 DOI: 10.1111/jam.15040] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 02/01/2021] [Accepted: 02/13/2021] [Indexed: 12/21/2022]
Abstract
AIMS This study aimed to investigate the mechanism of antifungal action of Streptomyces libani dichloromethane extract fraction A (DCEFA) against Aspergillus fumigatus and the host cytotoxicity. METHODS AND RESULTS DCEFA was purified from S. libani by autobiography and showed strong antifungal activity against A. fumigatus. A combination of electron microscopy, cell permeability assays, total oxidant status (TOS) assay, cell cytotoxicity assay and haemolysis activity was carried out to determine the target site of DCEFA. Exposure of A. fumigatus to DCEFA caused the damage to membranous cellular structures and increased release of cellular materials, potassium ions and TOS production. DCEFA was bound to ergosterol but did not affect fungal cell wall and ergosterol content. DCEFA did not show any obvious haemolytic activity for RBCs and toxicity against HEK-293 cell line. CONCLUSIONS DCEFA may inhibit A. fumigatus growth by targeting fungal cell membrane which results in the leakage of potassium ions and other cellular components, TOS production and final cell death. SIGNIFICANCE AND IMPACT OF THE STUDY DCEFA of S. libani could be considered as a potential source of novel antifungals which may be useful for drug development against A. fumigatus as a life-threatening human pathogen.
Collapse
Affiliation(s)
- M Azish
- Department of Mycology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - M Shams-Ghahfarokhi
- Department of Mycology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | | |
Collapse
|
13
|
Wu GY, Zhu ZY, Zhang X, Wang MM, Li JX, Hu YJ, Tan HB. Chemical constituents from the Streptomyces morookaensis strain Sm4-1986. Nat Prod Res 2021; 36:3681-3688. [PMID: 33538196 DOI: 10.1080/14786419.2021.1881095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Three new compounds, including 6-methoxy-3,4,5,7-tetramethylisochromane-3,8-diol (1), 3,4,5,7-tetramethylisochromane-3,6,8-triol (2), streptimidone derivative (3), along with ten known compounds (4-13) were isolated from the Streptomyces morookaensis strain Sm4-1986. Their chemical structures were established based on the information from UV, IR, NMR (1H NMR, 13C NMR, 1H-1H COSY, HSQC, HMBC, NOESY), and mass spectroscopic. Moreover, all the isolated new compounds were evaluated for antibacterial activities (S. aureus, B. cereus, S. epidermids and methicillin-resistant S. aureus) and their cytotoxicities against MCF-7, A549, Hela tumor cell lines and Marc-145 normal cell line.
Collapse
Affiliation(s)
- Gui-Yun Wu
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, China.,Key Laboratory of Plant Resources Conservation and Sustainable Utilization, Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou China
| | - Zhi-Yan Zhu
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou China.,College of Life Sciences, Yangtze University, Jingzhou China
| | - Xiao Zhang
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, China.,Key Laboratory of Plant Resources Conservation and Sustainable Utilization, Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou China
| | - Miao-Miao Wang
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou China
| | - Jian-Xiong Li
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou China
| | - Ying-Jie Hu
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Hai-Bo Tan
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou China
| |
Collapse
|
14
|
Therapeutic applications and biological activities of bacterial bioactive extracts. Arch Microbiol 2021; 203:4755-4776. [PMID: 34370077 PMCID: PMC8349711 DOI: 10.1007/s00203-021-02505-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 07/24/2021] [Accepted: 07/27/2021] [Indexed: 02/07/2023]
Abstract
Bacteria are rich in a wide variety of secondary metabolites, such as pigments, alkaloids, antibiotics, and others. These bioactive microbial products serve a great application in human and animal health. Their molecular diversity allows these natural products to possess several therapeutic attributes and biological functions. That's why the current natural drug industry focuses on uncovering all the possible ailments and diseases that could be combated by bacterial extracts and their secondary metabolites. In this paper, we review the major utilizations of bacterial natural products for the treatment of cancer, inflammatory diseases, allergies, autoimmune diseases, infections and other diseases that threaten public health. We also elaborate on the identified biological activities of bacterial secondary metabolites including antibacterial, antifungal, antiviral and antioxidant activities all of which are essential nowadays with the emergence of drug-resistant microbial pathogens. Throughout this review, we discuss the possible mechanisms of actions in which bacterial-derived biologically active molecular entities could possess healing properties to inspire the development of new therapeutic agents in academia and industry.
Collapse
|
15
|
Mojicevic M, D'Agostino PM, Pavic A, Vojnovic S, Senthamaraikannan R, Vasiljevic B, Gulder TAM, Nikodinovic-Runic J. Streptomyces sp. BV410 isolate from chamomile rhizosphere soil efficiently produces staurosporine with antifungal and antiangiogenic properties. Microbiologyopen 2020; 9:e986. [PMID: 31989798 PMCID: PMC7066459 DOI: 10.1002/mbo3.986] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Revised: 12/03/2019] [Accepted: 12/05/2019] [Indexed: 12/20/2022] Open
Abstract
Applying a bioactivity‐guided isolation approach, staurosporine was separated and identified as the active principle in the culture extract of the new isolate Streptomyces sp. BV410 collected from the chamomile rhizosphere. The biotechnological production of staurosporine by strain BV410 was optimized to yield 56 mg/L after 14 days of incubation in soy flour–glucose–starch–mannitol‐based fermentation medium (JS). The addition of FeSO4 significantly improved the staurosporine yield by 30%, while the addition of ZnSO4 significantly reduced staurosporine yield by 62% in comparison with the starting conditions. Although staurosporine was first isolated in 1977 from Lentzea albida (now Streptomyces staurosporeus) and its potent kinase inhibitory effect has been established, here, the biological activity of this natural product was assessed in depth in vivo using a selection of transgenic zebrafish (Danio rerio) models, including Tg(fli1:EGFP) with green fluorescent protein‐labeled endothelial cells allowing visualization and monitoring of blood vessels. This confirmed a remarkable antiangiogenic activity of the compound at doses of 1 ng/ml (2.14 nmol/L) which is below doses inducing toxic effects (45 ng/ml; 75 nmol/L). A new, efficient producing strain of commercially significant staurosporine has been described along with optimized fermentation conditions, which may lead to optimization of the staurosporine scaffold and its wider applicability.
Collapse
Affiliation(s)
- Marija Mojicevic
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Belgrade, Serbia.,Department of Biotechnology and Pharmaceutical Engineering, Faculty of Technology, University of Novi Sad, Novi Sad, Serbia
| | - Paul M D'Agostino
- Chair of Technical Biochemistry, Technische Universität Dresden, Dresden, Germany.,Biosystems Chemistry, Department of Chemistry and Center for Integrated Protein Science Munich (CIPSM), Technische Universität München, Garching bei München, Germany
| | - Aleksandar Pavic
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Belgrade, Serbia
| | - Sandra Vojnovic
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Belgrade, Serbia
| | | | - Branka Vasiljevic
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Belgrade, Serbia
| | - Tobias A M Gulder
- Chair of Technical Biochemistry, Technische Universität Dresden, Dresden, Germany.,Biosystems Chemistry, Department of Chemistry and Center for Integrated Protein Science Munich (CIPSM), Technische Universität München, Garching bei München, Germany
| | | |
Collapse
|