1
|
Nandhini A, Anilkumar P, Jasmin J, Balamurali S. Green synthesis, characterization, structural, morphological, antibacterial, and cytotoxicity evaluation of zinc oxide nanoparticles using Fioria vitifolia extract. Biophys Chem 2025; 323:107440. [PMID: 40286642 DOI: 10.1016/j.bpc.2025.107440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2025] [Revised: 03/25/2025] [Accepted: 03/27/2025] [Indexed: 04/29/2025]
Abstract
The increasing prevalence of bacterial pathogens diseases and the rise in multidrug resistance highlights the urgent need for new drug delivery systems or novel drug molecules to enhance treatment options. Zinc oxide (ZnO) nanoparticles attracting attention due to their potential in biomedical applications, such as cancer therapy and diagnostics. ZnO is a versatile compound with excellent UV-blocking, anti-inflammatory, and wide-bandgap semiconductor properties. This study focuses on the green synthesis of ZnO nanoparticles using 'Fioria vitifolia' leaf extract, as a reducing agent with polyvinylpyrrolidone (PVP) aids in reducing particle size and preventing aggregation, enhancing nanoparticle stability. The ZnO nanoparticles were characterized using various techniques, including X-ray diffraction (XRD), Field Emission Scanning Electron Microscopy (FESEM), Energy-Dispersive X-ray Analysis (EDX), Transmission Electron Microscopy (TEM), Fourier-Transform Infrared Spectroscopy (FTIR), UV-Vis Diffuse Reflectance Spectroscopy (DRS), and Photoluminescence (PL). These analyses confirmed the successful formation of ZnO nanoparticles. The nanoparticles demonstrated strong antimicrobial activity, especially against 'Enterobacter', and exhibited significant cytotoxic effects on lung cancer cells (A549), but has low toxicity to standard cells (L929). The IC50 values affirmed their potential as anticancer agents, suggesting their dual promise as antimicrobial and anticancer compounds. The enormous potential of biosynthesized ZnO nanoparticles as biological agents a sustainable substitute for chemically synthesized medications is highlighted in this study. The potential of the nanoparticles in a range of biomedical applications is highlighted by their ecologically friendly manufacturing process as well as their proven antibacterial and anticancer qualities.
Collapse
Affiliation(s)
- A Nandhini
- Department of Chemistry, KPR Institute of Engineering and Technology, Coimbatore, Tamilnadu 641 407, India
| | - P Anilkumar
- Department of Chemistry, KPR Institute of Engineering and Technology, Coimbatore, Tamilnadu 641 407, India.
| | - J Jasmin
- Department of Chemistry, KPR Institute of Engineering and Technology, Coimbatore, Tamilnadu 641 407, India
| | - S Balamurali
- Department of Electronics and Communication Engineering, KPR Institute of Engineering and Technology, Coimbatore, Tamilnadu 641 407, India
| |
Collapse
|
2
|
Banyal A, Thakur R, Thakur P, Thakur V, Chand D, Kumar P. Sustainable vinblastine production by Alternaria alternata, an endophytic fungus isolated from Catharanthus roseus in the Northern Himalayan Region. 3 Biotech 2025; 15:187. [PMID: 40433565 PMCID: PMC12104121 DOI: 10.1007/s13205-025-04351-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2025] [Accepted: 05/08/2025] [Indexed: 05/29/2025] Open
Abstract
Vinblastine, a potent anticancer drug, is traditionally extracted from Catharanthus roseus, but its low yield and high production costs necessitate alternative sources. In this study, twelve endophytic fungi were isolated from Catharanthus roseus collected in Himachal Pradesh, India. Among these, isolate VPF-2, identified as Alternaria alternata through morphological and molecular analysis, demonstrated significant vinblastine production (8.673 mg/L) in M3 medium broth. PCR screening confirmed the presence of key biosynthetic genes, desacetoxyvindoline-4-hydroxylase (D4H) and tryptophan decarboxylase (TDC), in VPF-2. The fungal-derived vinblastine exhibited cytotoxic activity against MDCK cancer cells, with an IC50 value of 69.03 µg/mL. Structural characterization using HPTLC, UV, FTIR, LC-ESI-MS/MS, and NMR confirmed the compound's identity. This study reports the highest vinblastine yield from A. alternata to date, highlighting its potential as a sustainable and scalable alternative for industrial vinblastine production.
Collapse
Affiliation(s)
- Aditya Banyal
- Faculty of Applied Sciences and Biotechnology, Shoolini University of Biotechnology and Management Sciences, Solan, HP 173229 India
| | - Rahul Thakur
- Department of Biosciences and Technology, Maharishi Markandeshwar Engineering College, Maharishi Markandeshwar University, Mullana, Ambala, Haryana 133203 India
| | - Pryanka Thakur
- Department of Virology, Postgraduate Institute of Medical Education and Research (PGIMER), Chandigarh, 160012 India
| | - Vikram Thakur
- Department of Molecular and Translational Medicine, Centre of Emphasis On Infectious Diseases, Texas Tech University Health Sciences Center El Paso, 130 Rick Francis St., Texas, 79905 USA
| | - Duni Chand
- Department of Biotechnology, Himachal Pradesh University, Shimla, 171005 India
| | - Pradeep Kumar
- Faculty of Applied Sciences and Biotechnology, Shoolini University of Biotechnology and Management Sciences, Solan, HP 173229 India
- Department of Forensic Science, Himachal Pradesh University, Shimla, 171005 India
| |
Collapse
|
3
|
Khan S, Mathur A, Khan F. Endophytic fungi-bioinspired nanoparticles potential to control infectious disease. Crit Rev Microbiol 2025:1-23. [PMID: 40323186 DOI: 10.1080/1040841x.2025.2497795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2025] [Revised: 03/02/2025] [Accepted: 04/21/2025] [Indexed: 05/08/2025]
Abstract
The growing demand for nanomedicine and its potentially diverse biological function required the investigation of raw materials for fabricating the nanomaterial. Current developments have emphasized the implementation of green chemistry to develop metal-oxide and metal nanoparticles. Endophytic fungi have emerged as a potential reservoir of bioactive compounds exemplified by unique structures and influential antibacterial properties. Over the past decade, substantial progress has been achieved in uncovering and profiling these valuable antibacterial compounds. These endophytic fungi-derived bioactive chemicals have diverse applications in various biological properties. Nanoparticle synthesis from materials derived from endophytic fungi, be it whole extracts or pure components, owing to their accessibility, cost-effectiveness in fabrication, material-tissue compatibility, and modest cytotoxicity toward higher organism cells. Nanoparticles from endophytic fungi have been utilized to treat various diseases, including those caused by bacterial, viral, and fungal pathogens. The present review provides a comprehensive discussion of the mechanistic insight into the synthesis and application of endophytic fungi-bioinspired nanoparticles as potential therapeutic agents to control microbial infection. The underlying action mechanism involved in the antimicrobial action of the nanoparticles has also been discussed. The discussion highlights various attributes of nanoparticles that may significantly benefit future researchers as potential therapeutic agents to control microbial infection.
Collapse
Affiliation(s)
- Sohail Khan
- Department of Biotechnology, Jaypee Institute of Information Technology, Noida, Uttar Pradesh, India
| | - Ashwani Mathur
- Department of Biotechnology, Jaypee Institute of Information Technology, Noida, Uttar Pradesh, India
| | - Fazlurrahman Khan
- Ocean and Fisheries Development International Cooperation Institute, Pukyong National University, Busan, Republic of Korea
- International Graduate Program of Fisheries Science, Pukyong National University, Busan, Republic of Korea
| |
Collapse
|
4
|
Dudek A, Pietrzak M, Benkowska-Biernacka D, Pruchnik H, Boratyński F, El-Sayed ESR. Nanoliposomal Encapsulation of Red, Yellow, and Orange Natural Pigments from Monascus ruber: Characterization, Stability, and Biological Activities. Curr Microbiol 2025; 82:259. [PMID: 40272526 DOI: 10.1007/s00284-025-04238-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2024] [Accepted: 04/07/2025] [Indexed: 04/25/2025]
Abstract
Monascus pigments, a type of natural edible colorant, are extensively utilized in the food and health supplements industry. However, these pigments tend to be unstable during processing and storage. Thus, this study aims to prepare nanoliposomes of the Monascus three pigments and evaluate their properties and bioactivities. Three types of pigments (red, orange, and yellow) produced by Monascus ruber strain SRZ112 were extracted and purified then encapsulated into nanoliposomes. The prepared nanoliposomes were characterized by DLS, FT-IR, and TEM analyses. The obtained results showed that the three respective nanoliposomes have different polydispersity indexes (0.243, 0.187, and 0.202), zeta potentials (-21.79, -19.26, and-21.61 mV), and a range of particle sizes (85.31, 90.67, and 86.66 nm) with spherical unilamellar vesicles dependent on the prepared liposome type. The prepared nanoliposomes' pH, thermal, and storage stabilities were studied and compared to the free pigments. Moreover, the prepared nanoliposomes' antimicrobial, anti-inflammatory, antioxidant, and cytotoxic bioactivities were compared to the free pigments and evaluated. The prepared nanoliposomes in this study showed enhanced functionalities and bioactivities more than the free pigments. This is the first report on the nanoencapsulation of Monascus red, yellow, and orange pigments and the evaluation of their bioactivities. The achieved results in this study indicate the possibility of their exploitation in the cosmetic, pharmaceutical, and functional food industries.
Collapse
Affiliation(s)
- Anita Dudek
- Department of Physics and Biophysics, Wroclaw University of Environmental and Life Sciences, Norwida 25, 50-375, Wrocław, Poland
| | - Magdalena Pietrzak
- Department of Physics and Biophysics, Wroclaw University of Environmental and Life Sciences, Norwida 25, 50-375, Wrocław, Poland
| | - Dominika Benkowska-Biernacka
- Faculty of Chemistry, Institute of Advanced Materials, Wroclaw University of Science and Technology, Wroclaw, Poland
| | - Hanna Pruchnik
- Department of Physics and Biophysics, Wroclaw University of Environmental and Life Sciences, Norwida 25, 50-375, Wrocław, Poland
| | - Filip Boratyński
- Department of Food Chemistry and Biocatalysis, Wrocław University of Environmental and Life Sciences, Norwida 25, 50-375, Wrocław, Poland
| | - El-Sayed R El-Sayed
- Department of Food Chemistry and Biocatalysis, Wrocław University of Environmental and Life Sciences, Norwida 25, 50-375, Wrocław, Poland.
- Plant Research Department, Nuclear Research Center, Egyptian Atomic Energy Authority, Cairo, Egypt.
| |
Collapse
|
5
|
Fazal U, Zada A, Hanif M, Lee SY, Faisal M, Alatar AA, Sultana T, Sohail. Green Myco-Synthesis of Zinc Oxide Nanoparticles Using Cortinarius sp.: Hepatoprotective, Antimicrobial, and Antioxidant Potential for Biomedical Applications. Microorganisms 2025; 13:956. [PMID: 40431129 PMCID: PMC12114609 DOI: 10.3390/microorganisms13050956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2025] [Revised: 04/15/2025] [Accepted: 04/16/2025] [Indexed: 05/29/2025] Open
Abstract
The transformative effect of nanotechnology is revolutionizing medicine by introducing new therapeutic approaches. This study explores the utilization of aqueous extract from mushroom (Cortinarius sp.) used as a reducing agent to prepare zinc oxide myco-nanoparticles (ZnO-MNPs) in an eco-friendly manner. The synthesis of ZnO-MNPs has been confirmed by various characterization studies, including UV-vis spectroscopy, which revealed an absorption peak at 378 nm; X-ray diffraction (XRD) analysis, which revealed a wurtzite hexagonal structure; and Fourier transform infrared spectra (FTIR), which showed stabilizing agents around the ZnO-MNPs. The effectiveness of ZnO-MNPs as an anti-cancer agent was evaluated by monitoring liver biochemical parameters against hepatotoxicity caused by carbon tetrachloride (CCl4) in Balb C mice. The results showed that the levels of catalase, glutathione (GSH), and total protein were significantly lower, while alanine aminotransferase (ALT), aspartate aminotransferase (ASAT), alkaline phosphatase (ALP), lactate dehydrogenase (LDH), melanin dialdehyde (MDA), and total bilirubin (TB) were significantly higher in each of the CCl4 treatment groups. ZnO-MNP treatment significantly reduced the toxicological effects of CCl4 but did not completely restore the accumulation. The antimicrobial efficacy of ZnO-MNPs was investigated and showed potential results against common pathogens, including Bacillus subtilis (29.05 ± 0.76), Bacillus meurellus (27.05 ± 0.5), Acetobacter rhizospherensis (23.36 ± 0.5), and Escherichia coli (25.86 ± 0.80), while antifungal activity was relatively lower. Moreover, the 2,2-diphenyl-1-picrylhydrazyl (DPPH) assay showed that ZnO-MNPs are strong antioxidant agents. Overall, these findings highlight the effectiveness of myco-synthesized ZnO-NPs in combating pathogenic diseases, their promising role in cancer therapy, and their potential as a biomaterial option for future therapeutic applications.
Collapse
Affiliation(s)
- Uzma Fazal
- College of Bioscience and Biotechnology, Yangzhou University, Yangzhou 225009, China; (U.F.); (S.)
- Department of Botany, Government College University, Lahore 54000, Pakistan
| | - Ahmad Zada
- College of Bioscience and Biotechnology, Yangzhou University, Yangzhou 225009, China; (U.F.); (S.)
| | - Muhammad Hanif
- Department of Botany, Government College University, Lahore 54000, Pakistan
| | - Shiou Yih Lee
- Faculty of Health and Life Sciences, INTI International University, Nilai 71800, Negeri Sembilan, Malaysia;
| | - Mohammad Faisal
- Department of Botany & Microbiology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia; (M.F.); (A.A.A.)
| | - Abdulrahman A. Alatar
- Department of Botany & Microbiology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia; (M.F.); (A.A.A.)
| | - Tahira Sultana
- Department of Botany, PMAS Arid Agriculture University, Rawalpindi 46300, Pakistan;
| | - Sohail
- College of Bioscience and Biotechnology, Yangzhou University, Yangzhou 225009, China; (U.F.); (S.)
| |
Collapse
|
6
|
Al-Tameemi AI, Masarudin MJ, Rahim RA, Mizzi R, Timms VJ, Isa NM, Neilan BA. Eco-friendly zinc oxide nanoparticle biosynthesis powered by probiotic bacteria. Appl Microbiol Biotechnol 2025; 109:32. [PMID: 39878901 PMCID: PMC11779794 DOI: 10.1007/s00253-024-13355-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 11/04/2024] [Accepted: 11/05/2024] [Indexed: 01/31/2025]
Abstract
The rapid advancement of nanotechnology, particularly in the realm of pharmaceutical sciences, has significantly transformed the potential for treating life-threatening diseases. A pivotal aspect of this evolution is the emergence of "green nanotechnology," which emphasizes the environmentally sustainable synthesis of raw materials through biological processes. This review focuses on the biological synthesis and application of zinc oxide (ZnO) nanoparticles (NPs) from probiotic bacteria, particularly those sourced from wastewater. Microorganisms from wastewater tolerate harmful elements and enzymatically convert toxic heavy metals into eco-friendly materials. These probiotic bacteria are instrumental in the synthesis of ZnO NPs and exhibit remarkable antimicrobial properties with diverse industrial applications. As the challenge of drug-resistant pathogens escalates, innovative strategies for combating microbial infections are essential. This review explores the intersection of nanotechnology, microbiology, and antibacterial resistance, highlighting the importance of selecting suitable probiotic bacteria for synthesizing ZnO NPs with potent antibacterial activity. Additionally, the review addresses the biofunctionalization of NPs and their applications in environmental remediation and therapeutic innovations, including wound healing, antibacterial, and anticancer treatments. Eco-friendly NP synthesis relies on the identification of these suitable microbial "nano-factories." Targeting probiotic bacteria from wastewater can uncover new microbial NP synthesis capabilities, advancing environmentally friendly NP production methods. KEY POINTS: • Innovative strategies are needed to combat drug-resistant pathogens like MRSA. • Wastewater-derived probiotic bacteria are an eco-friendly method for ZnO synthesis. • ZnO NPs show significant antimicrobial activity against various pathogens.
Collapse
Affiliation(s)
- Ahmed Issa Al-Tameemi
- School of Environmental and Life Sciences, The University of Newcastle, Callaghan, NSW, 2308, Australia
- Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia
- College of Dentistry, Al-Iraqia University, 10053 Al Adhamiya, Baghdad, Iraq
| | - Mas Jaffri Masarudin
- Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia
| | - Raha Abdul Rahim
- Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia
| | - Rachel Mizzi
- School of Environmental and Life Sciences, The University of Newcastle, Callaghan, NSW, 2308, Australia
| | - Verlaine J Timms
- School of Environmental and Life Sciences, The University of Newcastle, Callaghan, NSW, 2308, Australia
| | - Nurulfiza Mat Isa
- Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia.
- Institute of Bioscience, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia.
| | - Brett A Neilan
- School of Environmental and Life Sciences, The University of Newcastle, Callaghan, NSW, 2308, Australia.
| |
Collapse
|
7
|
Elbaz AM, Ashmawy ES, Farahat MAA, Abdel-Maksoud A, Amin SA, Mohamed ZS. Dietary Nigella sativa nanoparticles enhance broiler growth performance, antioxidant capacity, immunity, gene expression modulation, and cecal microbiota during high ambient temperatures. Sci Rep 2025; 15:861. [PMID: 39757279 PMCID: PMC11701100 DOI: 10.1038/s41598-024-82725-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Accepted: 12/09/2024] [Indexed: 01/07/2025] Open
Abstract
Environmental heat stress causes significant economic loss in the poultry industry. Therefore, interest has increased in using feed additives to reduce the negative impacts of heat stress on the chickens and improve production performance. This study aimed to assess the effect of supplementing with Nigella sativa nanoparticles (Nano-NS) as an anti-stress and growth promoter in broiler diets under hot climatic conditions. A total of 375 male one-day-old Ross 308 chicks were randomly divided into a control group and four treatment groups (75 chicks/group). The first group fed a basal diet without additives, the second group fed a basal diet supplemented with avilamycin at 50 mg/kg, and the other groups fed a basal diet supplemented with 30, 40, and 50 mg/kg Nano-NS, respectively. Despite that feed intake was not affected, feed conversion ratio, body weight gain, and crude protein digestibility improved in broilers fed Nano-NS (P < 0.05) compared with avilamycin and the control groups. Adding Nano-NS led to an increase in the dressing percentage and the relative weight of the bursa of Fabricius and thymus. Serum high-density lipoprotein levels increased while total cholesterol and low-density lipoprotein concentrations decreased (P < 0.05) in broilers fed Nano-NS compared with control groups. Furthermore, Nano-NS supplementation significantly increased (P < 0.05) serum immunoglobulin (IgG and IgA), and superoxide dismutase (SOD) levels, while decreasing malondialdehyde (MDA), interleukin-6 (IL-6), and tumor necrosis factor-alpha (TNF-α) concentration. Moreover, there was a significant increase in the Lactobacillus population and a decrease (P < 0.05) in the E. coli and C. perfringens population in chicks fed Nano-NS. In the intestinal tissues, mucin 2 (MUC2) gene expression increased in chickens fed 50 mg/kg Nano-NS compared to other groups. It is concluded that adding Nano-NS (up to 50 mg/kg) reduced the negative effects of heat stress via enhancing growth performance, immune responses, and antioxidant status, modulating the microbial community structure, and increasing the expression of the MUC2 gene in broilers under high ambient temperature.
Collapse
Affiliation(s)
- Ahmed M Elbaz
- Animal and Poultry Nutrition Department, Desert Research Center, Mataria, Cairo, Egypt.
| | - Eman S Ashmawy
- Animal and Poultry Nutrition Department, Desert Research Center, Mataria, Cairo, Egypt
| | - M A A Farahat
- Animal and Poultry Nutrition Department, Desert Research Center, Mataria, Cairo, Egypt
| | - Ahmed Abdel-Maksoud
- Animal and Poultry Nutrition Department, Desert Research Center, Mataria, Cairo, Egypt
| | - Shimaa A Amin
- Microbiology Department, Faculty of Agriculture, Ain Shams University, Cairo, Egypt
| | - Zangabel S Mohamed
- Lecture of Poultry Production Animal Production Department, Faculty of Agriculture, Benha University, Benha, Egypt
| |
Collapse
|
8
|
El-Saadony MT, Fang G, Yan S, Alkafaas SS, El Nasharty MA, Khedr SA, Hussien AM, Ghosh S, Dladla M, Elkafas SS, Ibrahim EH, Salem HM, Mosa WFA, Ahmed AE, Mohammed DM, Korma SA, El-Tarabily MK, Saad AM, El-Tarabily KA, AbuQamar SF. Green Synthesis of Zinc Oxide Nanoparticles: Preparation, Characterization, and Biomedical Applications - A Review. Int J Nanomedicine 2024; 19:12889-12937. [PMID: 39651353 PMCID: PMC11624689 DOI: 10.2147/ijn.s487188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Accepted: 10/17/2024] [Indexed: 12/11/2024] Open
Abstract
Over the last decade, biomedical nanomaterials have garnered significant attention due to their remarkable biological properties and diverse applications in biomedicine. Metal oxide nanoparticles (NPs) are particularly notable for their wide range of medicinal uses, including antibacterial, anticancer, biosensing, cell imaging, and drug/gene delivery. Among these, zinc oxide (ZnO) NPs stand out for their versatility and effectiveness. Recently, ZnO NPs have become a primary material in various sectors, such as pharmaceutical, cosmetic, antimicrobials, construction, textile, and automotive industries. ZnO NPs can generate reactive oxygen species and induce cellular apoptosis, thus underpinning their potent anticancer and antibacterial properties. To meet the growing demand, numerous synthetic approaches have been developed to produce ZnO NPs. However, traditional manufacturing processes often involve significant economic and environmental costs, prompting a search for more sustainable alternatives. Intriguingly, biological synthesis methods utilizing plants, plant extracts, or microorganisms have emerged as ideal for producing ZnO NPs. These green production techniques offer numerous medicinal, economic, environmental, and health benefits. This review highlights the latest advancements in the green synthesis of ZnO NPs and their biomedical applications, showcasing their potential to revolutionize the field with eco-friendly and cost-effective solutions.
Collapse
Affiliation(s)
- Mohamed T El-Saadony
- Department of Agricultural Microbiology, Faculty of Agriculture, Zagazig University, Zagazig, 44511, Egypt
| | - Guihong Fang
- School of Public Health, Heinz Mehlhorn Academician Workstation, Hainan Medical University, Haikou, Hainan, 571199, People’s Republic of China
- Qionghai People’s Hospital, Qionghai, Hainan, 571400, People’s Republic of China
| | - Si Yan
- Qionghai People’s Hospital, Qionghai, Hainan, 571400, People’s Republic of China
| | - Samar Sami Alkafaas
- Molecular Cell Biology Unit, Division of Biochemistry, Department of Chemistry, Faculty of Science, Tanta University, Tanta, 31527, Egypt
| | - Mahmoud A El Nasharty
- Department of Chemistry, Faculty of Science, Ain Shams University, Cairo, 11566, Egypt
| | - Sohila A Khedr
- Industrial Biotechnology Department, Faculty of Science, Tanta University, Tanta, 31733, Egypt
| | - Aya Misbah Hussien
- Biotechnology Department at Institute of Graduate Studies and Research, Alexandria University, Alexandria, 21531, Egypt
| | - Soumya Ghosh
- Natural and Medical Sciences Research Center, University of Nizwa, Nizwa, 616, Oman
| | - Mthokozisi Dladla
- Human Molecular Biology Unit (School of Biomedical Sciences), Faculty of Health Sciences, University of the Free State, Bloemfontein, 9300, South Africa
| | - Sara Samy Elkafas
- Production Engineering and Mechanical Design Department, Faculty of Engineering, Menofia University, Shebin El Kom, Menofia, 32511, Egypt
- Faculty of Control System and Robotics, ITMO University, Saint-Petersburg, 197101, Russia
| | - Essam H Ibrahim
- Biology Department, Faculty of Science, King Khalid University, Abha, 61413, Saudi Arabia
- Blood Products Quality Control and Research Department, National Organization for Research and Control of Biologicals, Cairo, 12611, Egypt
| | - Heba Mohammed Salem
- Department of Poultry Diseases, Faculty of Veterinary Medicine, Cairo University, Giza, 12211, Egypt
| | - Walid F A Mosa
- Plant Production Department (Horticulture-Pomology), Faculty of Agriculture, Saba Basha, Alexandria University, Alexandria, 21531, Egypt
| | - Ahmed Ezzat Ahmed
- Biology Department, Faculty of Science, King Khalid University, Abha, 61413, Saudi Arabia
| | - Dina Mostafa Mohammed
- Nutrition and Food Sciences Department, National Research Centre, Dokki, Giza, 12622, Egypt
| | - Sameh A Korma
- Department of Food Science, Faculty of Agriculture, Zagazig University, Zagazig, 44511, Egypt
| | | | - Ahmed M Saad
- Department of Biochemistry, Faculty of Agriculture, Zagazig University, Zagazig, 44511, Egypt
| | - Khaled A El-Tarabily
- Department of Biology, College of Science, United Arab Emirates University, Al Ain, 15551, United Arab Emirates
| | - Synan F AbuQamar
- Department of Biology, College of Science, United Arab Emirates University, Al Ain, 15551, United Arab Emirates
| |
Collapse
|
9
|
Mazhar MW, Ishtiaq M, Maqbool M, Mazher M, Amai S, Siddiqui MH, Bhatt R. Management of yield losses in Vigna radiata (L.) R. Wilczek crop caused by charcoal-rot disease through synergistic application of biochar and zinc oxide nanoparticles as boosting fertilizers and nanofungicides. BMC PLANT BIOLOGY 2024; 24:1099. [PMID: 39563266 PMCID: PMC11574982 DOI: 10.1186/s12870-024-05813-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Accepted: 11/11/2024] [Indexed: 11/21/2024]
Abstract
The mung bean crop (Vigna radiata (L.) R. Wilczek) is widely recognized as a key source of pulse food worldwide. However, this crop suffers substantial yield losses due to humid environments, particularly from infestations by the fungal pathogen Macrophomina phaseolina, which causes charcoal rot disease. This infestation results in significant agronomic losses, affecting both the crop's growth characteristics and overall yield. Previous research suggests that these losses can be mitigated through environmentally friendly soil amendments, such as biochar, as well as by applying various nanofungicides. This study aims to explore the potential of biochar and zinc oxide nanoparticles (ZnONPs) to reduce the severity of charcoal rot disease and enhance the agronomic traits and yield of mung bean plants affected by this disease. The experiment was conducted in triplicate, applying ZnONPs at three concentrations (5, 10, and 20 mg. L- 1) via foliar spraying, combined with two levels of biochar (20 g and 40 g per pot). Positive and negative control treatments were also included for comparison. The results demonstrated that applying 40 g of biochar per pot and 20 mg. L- 1 of foliar-applied ZnONPs increased the activities of the anti-oxidative defence enzymes. Additionally, this treatment strategy boosted the plants' disease resistance mechanisms, leading to lower mortality rates and reduced levels of malondialdehyde (MDA) and hydrogen peroxide (H₂O₂) by 61.7% and 49.23%. Moreover, the treatment positively impacted key growth parameters, increasing total chlorophyll content by 43%, plant height by 47%, and legume count per plant by 80.4%. The application of biochar and ZnONPs also improved seed protein content, reflecting an enhancement in nutritional quality. This study supports the use of biochar and ZnONPs as biostimulants to manage yield losses in mung bean crops affected by charcoal rot disease. The future prospects of using ZnONPs and biochar as treatments in agriculture are promising, as they offer innovative, eco-friendly solutions to enhance crop productivity, improve soil health, and reduce reliance on synthetic chemicals, paving the way for more sustainable and resilient agricultural systems.
Collapse
Grants
- RSP2024R194 The open access fund was supported by Researchers Supporting Project Number (RSP2024R194), King Saud University, Riyadh, Saudi Arabia.
- RSP2024R194 The open access fund was supported by Researchers Supporting Project Number (RSP2024R194), King Saud University, Riyadh, Saudi Arabia.
- RSP2024R194 The open access fund was supported by Researchers Supporting Project Number (RSP2024R194), King Saud University, Riyadh, Saudi Arabia.
- RSP2024R194 The open access fund was supported by Researchers Supporting Project Number (RSP2024R194), King Saud University, Riyadh, Saudi Arabia.
- RSP2024R194 The open access fund was supported by Researchers Supporting Project Number (RSP2024R194), King Saud University, Riyadh, Saudi Arabia.
- RSP2024R194 The open access fund was supported by Researchers Supporting Project Number (RSP2024R194), King Saud University, Riyadh, Saudi Arabia.
- RSP2024R194 The open access fund was supported by Researchers Supporting Project Number (RSP2024R194), King Saud University, Riyadh, Saudi Arabia.
Collapse
Affiliation(s)
- Muhammad Waqas Mazhar
- Department of Botany, Mirpur University of Science and Technology, Mirpur, 10250, Pakistan
| | - Muhammad Ishtiaq
- Department of Botany, Mirpur University of Science and Technology, Mirpur, 10250, Pakistan.
- Department of Botany, Climate Change Research Centre, Herbarium and Biodiversity Conservation, Azad Jammu and Kashmir University of Bhimber (AJKUoB), Bhimber, 10040 (AJK), Pakistan.
| | - Mehwish Maqbool
- Department of Botany, Mirpur University of Science and Technology, Mirpur, 10250, Pakistan
| | - Mubsher Mazher
- Department of Botany, Mirpur University of Science and Technology, Mirpur, 10250, Pakistan
| | - Saud Amai
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Manzer H Siddiqui
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Rajan Bhatt
- PAU-Krishi Vigyan Kendra, Amritsar, Punjab, 143601, India
| |
Collapse
|
10
|
Adeleke BS, Olowe OM, Ayilara MS, Fasusi OA, Omotayo OP, Fadiji AE, Onwudiwe DC, Babalola OO. Biosynthesis of nanoparticles using microorganisms: A focus on endophytic fungi. Heliyon 2024; 10:e39636. [PMID: 39553612 PMCID: PMC11564013 DOI: 10.1016/j.heliyon.2024.e39636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 10/16/2024] [Accepted: 10/18/2024] [Indexed: 11/19/2024] Open
Abstract
The concept of this review underscores a significant shift towards sustainable agricultural practices, particularly from the view point of microbial biotechnology and nanotechnology. The global food insecurity that causes increasing ecological imbalances is exacerbating food insecurity, and this has necessitated eco-friendly agricultural innovations. The chemical fertilizers usage aims at boosting crop yields, but with negative environmental impact, thus pushing for alternatives. Microbial biotechnology and nanotechnology fields are gaining traction for their potential in sustainable agriculture. Endophytic fungi promise to synthesize nanoparticles (NPs) that can enhance crop productivity and contribute to ecosystem stability. Leveraging on endophytic fungi could be key to achieving food security goals. Endophytic fungi explore diverse mechanisms in enhancing plant growth and resilience to environmental stresses. The application of endophytic fungi in agricultural settings is profound with notable successes. Hence, adopting interdisciplinary research approaches by combining mycology, nanotechnology, agronomy, and environmental science can meaningfully serve as potential pathways and hurdles for the commercialization of these biotechnologies. Therefore, setting regulatory frameworks for endophytic nanomaterials use in agriculture, by considering their safety and environmental impact assessments will potentially provide future research directions in addressing the current constraints and unlock the potential of endophytic fungi in agriculture.
Collapse
Affiliation(s)
- Bartholomew Saanu Adeleke
- Microbiology Programme, Department of Biological Sciences, School of Science, Olusegun Agagu University of Science and Technology, PMB 353, Okitipupa, Nigeria
- Food Security and Safety Focus Area, Faculty of Natural and Agricultural Sciences, North-West University, Private Bag X2046, Mmabatho, 2735, South Africa
| | - Olumayowa Mary Olowe
- Food Security and Safety Focus Area, Faculty of Natural and Agricultural Sciences, North-West University, Private Bag X2046, Mmabatho, 2735, South Africa
| | - Modupe Stella Ayilara
- Food Security and Safety Focus Area, Faculty of Natural and Agricultural Sciences, North-West University, Private Bag X2046, Mmabatho, 2735, South Africa
- Deaprtment of Biological Sciences, Kings University, Ode-Omu, Nigeria
| | - Oluwaseun Adeyinka Fasusi
- Food Security and Safety Focus Area, Faculty of Natural and Agricultural Sciences, North-West University, Private Bag X2046, Mmabatho, 2735, South Africa
- Deaprtment of Biological Sciences, Kings University, Ode-Omu, Nigeria
| | - Oluwadara Pelumi Omotayo
- Food Security and Safety Focus Area, Faculty of Natural and Agricultural Sciences, North-West University, Private Bag X2046, Mmabatho, 2735, South Africa
| | - Ayomide Emmanuel Fadiji
- Food Security and Safety Focus Area, Faculty of Natural and Agricultural Sciences, North-West University, Private Bag X2046, Mmabatho, 2735, South Africa
- Hawkesbury Institute for Environment, Western Sydney University, Penrith, Australia
| | - Damian C. Onwudiwe
- Materials Science Innovation and Modelling (MaSIM) Research Focus Area, Faculty of Natural and Agricultural Science, North-West University (Mafikeng Campus), Private Bag X2046, Mmabatho, South Africa
| | - Olubukola Oluranti Babalola
- Food Security and Safety Focus Area, Faculty of Natural and Agricultural Sciences, North-West University, Private Bag X2046, Mmabatho, 2735, South Africa
- Department of Life Sciences, Imperial College London, Silwood Park Campus, Buckhurst Road, Ascot, Berkshire, SL5 7PY, UK
| |
Collapse
|
11
|
Sarabyar S, Farahbakhsh A, Tahmasebi HA, Mahmoodzadeh Vaziri B, Khosroyar S. Enhancing photocatalytic degradation of beta-blocker drugs using TiO 2 NPs/zeolite and ZnO NPs/zeolite as photocatalysts: optimization and kinetic investigations. Sci Rep 2024; 14:27390. [PMID: 39521784 PMCID: PMC11550835 DOI: 10.1038/s41598-024-73888-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Accepted: 09/23/2024] [Indexed: 11/16/2024] Open
Abstract
This study delves into the development and optimization of photocatalysts, namely ZnO NPs/Zeolite and TiO2 NPs/Zeolite, for the degradation of two beta-blocker drugs, including Atenolol (AT) and Metoprolol (ME). Structural and morphological analyses of the catalysts were conducted, and optimal conditions for drug degradation were determined using a Box-Behnken design. The results underscored the significant influence of pH, catalyst amount, drug concentration, and H2O2 concentration on the degradation process using ZnO NPs/Zeolite and TiO2 NPs/Zeolite as the catalysts. The optimal values of drug concentration, pH, catalyst amount, and H2O2 concentration, were determined to be 32 and 33 mg L-1, 4.2 and 4.6, 428 and 386 mg, and 2.6 and 2.5 mM utilizing ZnO NPs/Zeolite and TiO2 NPs/Zeolite as the catalyst, respectively. Following optimization, the kinetics of the photodegradation process were investigated, revealing promising rates and half-life times for both drugs. The pseudo-first-order rate constants for Atenolol and Metoprolol degradation were 0.064 ± 0.007 min-1 and 0.065 ± 0.004 min-1 with ZnO NPs/Zeolite and 0.071 ± 0.007 min-1 and 0.071 ± 0.006 min-1 with TiO2 NPs/Zeolite, respectively. Furthermore, ZnO NPs/Zeolite and TiO2 NPs/Zeolite demonstrated reusability up to 5 and 6 times, respectively, without significant activity loss. The comparative analysis highlighted the superior performance of TiO2 NPs/Zeolite over ZnO NPs/Zeolite, attributed to lower consumption, shorter degradation time, improved reusability, and compatibility with milder acidic conditions. Overall, the research showcases the potential of ZnO NPs/Zeolite and TiO2 NPs/Zeolite as an effective and sustainable solution for removing Metoprolol and Atenolol contaminants.
Collapse
Affiliation(s)
- Sara Sarabyar
- Department of Chemical Engineering, Quchan Branch, Islamic Azad University, Quchan, Iran
| | - Afshin Farahbakhsh
- Department of Chemical Engineering, Quchan Branch, Islamic Azad University, Quchan, Iran.
| | - Hamzeh Ali Tahmasebi
- Department of Chemical Engineering, Quchan Branch, Islamic Azad University, Quchan, Iran
| | | | - Susan Khosroyar
- Department of Chemical Engineering, Quchan Branch, Islamic Azad University, Quchan, Iran
| |
Collapse
|
12
|
Thirumavalavan M, Sukumar K, Sabarimuthu SQ. Trends in green synthesis, pharmaceutical and medical applications of nano ZnO: A review. INORG CHEM COMMUN 2024; 169:113002. [DOI: 10.1016/j.inoche.2024.113002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/09/2024]
|
13
|
Vieira IRS, da Silva AA, da Silva BD, Neto LT, Tessaro L, Furtado CRG, de Sousa AMF, Carvalho NMF, Conte-Junior CA. Eco-friendly synthesis of ZnO nanomaterial from green tea extract: photocatalytic, antibacterial and antioxidant potential. BIOMASS CONVERSION AND BIOREFINERY 2024; 14:24317-24331. [DOI: 10.1007/s13399-023-04456-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 05/27/2023] [Accepted: 06/04/2023] [Indexed: 01/06/2025]
|
14
|
El-Sayed ESR, El-Sayyad GS, Abdel-Fatah SS, El-Batal AI, Boratyński F. Novel nanoconjugates of metal oxides and natural red pigment from the endophyte Monascus ruber using solid-state fermentation. Microb Cell Fact 2024; 23:259. [PMID: 39343880 PMCID: PMC11439306 DOI: 10.1186/s12934-024-02533-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Accepted: 09/19/2024] [Indexed: 10/01/2024] Open
Abstract
BACKGROUND Antimicrobial resistance has emerged as a major global health threat, necessitating the urgent development of new antimicrobials through innovative methods to combat the rising prevalence of resistant microbes. With this view, we developed three novel nanoconjugates using microbial natural pigment for effective application against certain pathogenic microbes. RESULTS A natural red pigment (RP) extracted from the endophyte Monascus ruber and gamma rays were applied to synthesize RP-ZnO, RP-CuO, and RP-MgO nanoconjugates. The synthesized nanoconjugates were characterized by different techniques to study their properties. The antimicrobial potential of these nanoconjugates was evaluated. Moreover, the antibiofilm, protein leakage, growth curve, and UV light irradiation effect of the synthesized nanoconjugates were also studied. Our results confirmed the nano-size, shape, and stability of the prepared conjugates. RP-ZnO, RP-CuO, and RP-MgO nanoconjugates showed broad antimicrobial potential against the tested bacterial and fungal pathogens. Furthermore, the RP-ZnO nanoconjugate possessed the highest activity, followed by the RP-CuO against the tested microbes. The highest % inhibition of biofilm formation by the RP-ZnO nanoconjugate. Membrane leakage of E. coli and S. aureus by RP-ZnO nanoconjugate was more effective than RP-MgO and RP-CuO nanoconjugates. Finally, UV light irradiation intensified the antibiotic action of the three nanoconjugates and RP-ZnO potential was greater than that of the RP-MgO, and RP-CuO nanoconjugates. CONCLUSION These findings pave the way for exploiting the synthesized nanoconjugates as potential materials in biomedical applications, promoting natural, green, and eco-friendly approaches.
Collapse
Affiliation(s)
- El-Sayed R El-Sayed
- Department of Food Chemistry and Biocatalysis, Wrocław University of Environmental and Life Sciences, Norwida 25, 50-375, Wrocław, Poland.
- Plant Research Department, Nuclear Research Center, Egyptian Atomic Energy Authority, Cairo, Egypt.
| | - Gharieb S El-Sayyad
- Drug Radiation Research Department, National Center for Radiation Research and Technology (NCRRT), Egyptian Atomic Energy Authority (EAEA), Cairo, Egypt.
| | - Sobhy S Abdel-Fatah
- Drug Radiation Research Department, National Center for Radiation Research and Technology (NCRRT), Egyptian Atomic Energy Authority (EAEA), Cairo, Egypt
| | - Ahmed I El-Batal
- Drug Radiation Research Department, National Center for Radiation Research and Technology (NCRRT), Egyptian Atomic Energy Authority (EAEA), Cairo, Egypt
| | - Filip Boratyński
- Department of Food Chemistry and Biocatalysis, Wrocław University of Environmental and Life Sciences, Norwida 25, 50-375, Wrocław, Poland
| |
Collapse
|
15
|
Verma N, Kaushal P, Sidhu AK. Harnessing biological synthesis: Zinc oxide nanoparticles for plant biotic stress management. Front Chem 2024; 12:1432469. [PMID: 39055042 PMCID: PMC11269107 DOI: 10.3389/fchem.2024.1432469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 06/20/2024] [Indexed: 07/27/2024] Open
Abstract
Crop growth and yield are negatively impacted by increased biotic stress in the agricultural sector due to increasing global warming and changing climatic patterns. The host plant's machinery is exploited by biotic stress, which is caused by organisms like bacteria, fungi, viruses, insects, nematodes, and mites. This results in nutrient deprivation, increased reactive oxygen species and disturbances in physiological, morphological, and molecular processes. Although used widely, conventional disease management strategies like breeding, intercropping, and chemical fertilizers have drawbacks in terms of time commitment and environmental impact. An environmentally beneficial substitute is offered by the developing field of nanotechnology, where nanoparticles such as zinc oxide are gaining popularity due to their potential applications as antimicrobials and nano-fertilizers. This review delves into the biological synthesis of ZnO nanoparticles employing plants and microbes, function of ZnO nanoparticles in biotic stress mitigation, elucidating their effectiveness and toxicological implications in agricultural. This study supports a cautious approach, stressing the prudent application of ZnO nanoparticles to avoid possible toxicity, in line with the larger global agenda to end hunger, guarantee food security, and advance sustainable agriculture.
Collapse
Affiliation(s)
- Naveen Verma
- Department of Biotechnology, Khalsa College, Amritsar, India
| | - Priya Kaushal
- Department of Biotechnology, Guru Nanak Dev University, Amritsar, India
| | | |
Collapse
|
16
|
El-Nagar D, Salem SH, El-Zamik FI, El-Basit HMIA, Galal YGM, Soliman SM, Aziz HAA, Rizk MA, El-Sayed ESR. Bioprospecting endophytic fungi for bioactive metabolites with seed germination promoting potentials. BMC Microbiol 2024; 24:200. [PMID: 38851702 PMCID: PMC11162052 DOI: 10.1186/s12866-024-03337-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 05/16/2024] [Indexed: 06/10/2024] Open
Abstract
There is an urgent need for new bioactive molecules with unique mechanisms of action and chemistry to address the issue of incorrect use of chemical fertilizers and pesticides, which hurts both the environment and the health of humans. In light of this, research was done for this work to isolate, identify, and evaluate the germination-promoting potential of various plant species' fungal endophytes. Zea mays L. (maize) seed germination was examined using spore suspension of 75 different endophytic strains that were identified. Three promising strains were identified through screening to possess the ability mentioned above. These strains Alternaria alternate, Aspergilus flavus, and Aspergillus terreus were isolated from the stem of Tecoma stans, Delonix regia, and Ricinus communis, respectively. The ability of the three endophytic fungal strains to produce siderophore and indole acetic acid (IAA) was also examined. Compared to both Aspergillus flavus as well as Aspergillus terreus, Alternaria alternata recorded the greatest rates of IAA, according to the data that was gathered. On CAS agar versus blue media, all three strains failed to produce siderophores. Moreover, the antioxidant and antifungal potentials of extracts from these fungi were tested against different plant pathogens. The obtained results indicated the antioxidant and antifungal activities of the three fungal strains. GC-Mass studies were carried out to determine the principal components in extracts of all three strains of fungi. The three strains' fungus extracts included both well-known and previously unidentified bioactive compounds. These results may aid in the development of novel plant growth promoters by suggesting three different fungal strains as sources of compounds that may improve seed germination. According to the study that has been given, as unexplored sources of bioactive compounds, fungal endophytes have great potential.
Collapse
Affiliation(s)
- Dina El-Nagar
- Soil and Water Research Department, Nuclear Research Center, Egyptian Atomic Energy Authority, Cairo, Egypt
| | - S H Salem
- Department of Microbiology, Faculty of Agriculture, Zagazig University, Zagazig, Egypt
| | - Fatma I El-Zamik
- Department of Microbiology, Faculty of Agriculture, Zagazig University, Zagazig, Egypt
| | | | - Y G M Galal
- Soil and Water Research Department, Nuclear Research Center, Egyptian Atomic Energy Authority, Cairo, Egypt
| | - S M Soliman
- Soil and Water Research Department, Nuclear Research Center, Egyptian Atomic Energy Authority, Cairo, Egypt
| | - H A Abdel Aziz
- Soil and Water Research Department, Nuclear Research Center, Egyptian Atomic Energy Authority, Cairo, Egypt
| | - M A Rizk
- Soil and Water Research Department, Nuclear Research Center, Egyptian Atomic Energy Authority, Cairo, Egypt
| | - El-Sayed R El-Sayed
- Plant Research Department, Nuclear Research Center, Egyptian Atomic Energy Authority, Cairo, Egypt.
| |
Collapse
|
17
|
Hatab MH, Badran AMM, Elaroussi MA, Rashad E, Taleb AMA, Elokil AA. Effect of Zinc Oxide Nanoparticles as Feed Additive on Blood Indices, Physiological, Immunological Responses, and Histological Changes in Broiler Chicks. Biol Trace Elem Res 2024; 202:2279-2293. [PMID: 37667095 PMCID: PMC10955013 DOI: 10.1007/s12011-023-03820-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Accepted: 08/16/2023] [Indexed: 09/06/2023]
Abstract
A feeding trial of 5-week duration was performed to assess the response of broiler chicks to dietary supplementation with different doses of myco-fabricated zinc oxide nanoparticles (ZONPs) on blood indices, physiological, immunological response, antioxidant status, intestinal microbial count, and histological changes in immune organs. A total of 162 3-day-old Ross 308 broiler chicks were weighed individually and distributed equally into 3 dietary treatments with 6 replicate of 9 chicks in each in a completely randomized design. Chicks were fed ad libitum a basal ration prepared as starter, grower, and finisher supplemented with 0 (T1, control), 40 (T2), and 60 (T3) mg zinc oxide nanoparticles (ZONPs)/kg feed. Results showed that supplementing with ZONPs at both studied levels increased the relative weights of the spleen, bursa, thymus, and liver and decreased the relative weight of the kidney, gizzard, and intestine. A significant increase in the concentrations of hemoglobin (Hb), hematocrit (PCV%), red and white blood cell counts, total protein (TP), globulin (GLOB), aspartate transferase (AST), alanine transferase (ALT), alkaline phosphatase (ALP), superoxide dismutase (SOD), glutathione peroxidase (GPx), and total antioxidant capacity (TAC) and a significant decrease in malonaldehyde (MDA), uric acid, and creatinine concentration were observed. Furthermore, all immunological organs showed histological alteration and increased both types of immunity in ZONPs groups with more pronounced effects in the T2 group.
Collapse
Affiliation(s)
- Mahmoud H Hatab
- Biological Application Department, Nuclear Research Center, Egyptian Atomic Energy Authority, P.O. Box 13759, Cairo, Egypt.
| | - Aml M M Badran
- Poultry Breeding Department, Animal Production Research Institute, Agriculture Research Center, Ministry of Agriculture, Dokki, Giza, Egypt
| | - Mahmoud A Elaroussi
- Biological Application Department, Nuclear Research Center, Egyptian Atomic Energy Authority, P.O. Box 13759, Cairo, Egypt
| | - Eman Rashad
- Cytology and Histology Department, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| | - Adel M Abu Taleb
- Biological Application Department, Nuclear Research Center, Egyptian Atomic Energy Authority, P.O. Box 13759, Cairo, Egypt
| | - Abdelmotaleb A Elokil
- Animal Production Department, Faculty of Agriculture, Benha University, Moshtohor, Egypt
| |
Collapse
|
18
|
Elenany AM, Atia MMM, Abbas EEA, Moustafa M, Alshaharni MO, Negm S, Elnahal ASMA. Nanoparticles and Chemical Inducers: A Sustainable Shield against Onion White Rot. BIOLOGY 2024; 13:219. [PMID: 38666831 PMCID: PMC11048201 DOI: 10.3390/biology13040219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 03/20/2024] [Accepted: 03/22/2024] [Indexed: 04/28/2024]
Abstract
This study investigated the effectiveness of nanoparticles and chemical inducers in managing onion white rot caused by Sclerotium cepivorum. The pathogen severely threatens onion cultivation, resulting in significant yield losses and economic setbacks. Traditional fungicides, though effective, raise environmental concerns, prompting a shift toward eco-friendly alternatives. In this study, four S. cepivorum isolates were utilized, each exhibiting varying degrees of pathogenicity, with the third isolate from Abu-Hamad demonstrating the highest potency. During the in vitro studies, three nanoparticles (NPs) were investigated, including Fe3O4 NPs, Cu NPs, and ZnO NPs, which demonstrated the potential to inhibit mycelial growth, with salicylic acid and Fe3O4 NPs exhibiting synergistic effects. In vivo, these nanoparticles reduced the disease incidence and severity, with Fe3O4 NPs at 1000-1400 ppm resulting in 65.0-80.0% incidence and 80.0-90.0% severity. ZnO NPs had the most positive impact on the chlorophyll content, while Cu NPs had minimal effects. At 1000 ppm, Fe3O4 NPs had variable effects on the phenolic compounds (total: 6.28, free: 4.81, related: 2.59), while ZnO NPs caused minor fluctuations (total: 3.60, free: 1.82, related: 1.73). For the chemical inducers, salicylic acid reduced the disease (10.0% incidence, 25.0% to 10.0% severity) and promoted growth, and it elevated the chlorophyll values and enhanced the phenolic compounds in infected onions. Potassium phosphate dibasic (PDP) had mixed effects, and ascorbic acid showed limited efficacy toward disease reduction. However, PDP at 1400 ppm and ascorbic acid at 1000 ppm elevated the chlorophyll values and enhanced the phenolic compounds. Furthermore, this study extended to traditional fungicides, highlighting their inhibitory effects on S. cepivorum. This research provides a comprehensive comparative analysis of these approaches, emphasizing their potential in eco-friendly onion white rot management.
Collapse
Affiliation(s)
- Ahmed Mohammed Elenany
- Plant Pathology Department, Faculty of Agriculture, Zagazig University, Zagazig 44511, Egypt; (A.M.E.)
| | | | - Entsar E. A. Abbas
- Plant Pathology Department, Faculty of Agriculture, Zagazig University, Zagazig 44511, Egypt; (A.M.E.)
| | - Mahmoud Moustafa
- Department of Biology, College of Science, King Khalid University, Abha 61413, Saudi Arabia
| | - Mohammed O. Alshaharni
- Department of Biology, College of Science, King Khalid University, Abha 61413, Saudi Arabia
| | - Sally Negm
- Department of Life Sciences, College of Science and Art Mahyel Aseer, King Khalid University, Abha 62529, Saudi Arabia
| | | |
Collapse
|
19
|
Abd Elmonem HA, Morsi RM, Mansour DS, El-Sayed ESR. Myco-fabricated ZnO nanoparticles ameliorate neurotoxicity in mice model of Alzheimer's disease via acetylcholinesterase inhibition and oxidative stress reduction. Biometals 2023; 36:1391-1404. [PMID: 37556014 PMCID: PMC10684416 DOI: 10.1007/s10534-023-00525-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 07/30/2023] [Indexed: 08/10/2023]
Abstract
Alzheimer's disease (AD) is one of the primary health problems linked to the decrease of acetylcholine in cholinergic neurons and elevation in oxidative stress. Myco-fabrication of ZnO-NPs revealed excellent biological activities, including anti-inflammatory and acetylcholinesterase inhibitory potentials. This study aims to determine if two distinct doses of myco-fabricated ZnO-NPs have a positive impact on behavioral impairment and several biochemical markers associated with inflammation and oxidative stress in mice that have been treated by aluminum chloride (AlCl3) to induce AD. Sixty male mice were haphazardly separated into equally six groups. Group 1 was injected i.p. with 0.5 ml of deionized water daily during the experiment. Mice in group 2 received AlCl3 (50 mg/kg/day i.p.). Groups 3 and 4 were treated i.p. with 5 and 10 mg/kg/day of ZnO-NPs only, respectively. Groups 5 and 6 were given i.p. 5 and 10 mg/kg/day ZnO-NPs, respectively, add to 50 mg/kg/day AlCl3. Results showed that the AlCl3 caused an increase in the escape latency time and a reduction in the time spent in the target quadrant, indicating a decreased improvement in learning and memory. Moreover, acetylcholinesterase enzyme (AChE) activity and malondialdehyde (MDA), tumor necrosis factor-alpha (TNF-α), and interleukin 1β (IL-1β) levels were significantly increased, and the content of glutathione (GSH), activities of superoxide dismutase (SOD), catalase (CAT), alanine aminotransferase (ALT), and aspartate aminotransferase (AST), as well as levels of serotonin and dopamine, were decreased in brain tissues only in AlCl3 treated mice. However, treatment of mice with myco-fabrication of ZnO-NPs at doses of 5 or 10 mg/kg improves learning and memory function through ameliorate all the previous parameters in the AD mice group. The low dose of 5 mg/kg is more effective than a high dose of 10 mg/kg. In accordance with these findings, myco-fabricated ZnO-NPs could enhance memory and exhibit a protective influence against memory loss caused by AlCl3.
Collapse
Affiliation(s)
- Hanan A Abd Elmonem
- Biological Applications Department, Nuclear Research Center, Egyptian Atomic Energy Authority, Cairo, Egypt
| | - Reham M Morsi
- Biological Applications Department, Nuclear Research Center, Egyptian Atomic Energy Authority, Cairo, Egypt
| | - Doaa S Mansour
- Biological Applications Department, Nuclear Research Center, Egyptian Atomic Energy Authority, Cairo, Egypt
| | - El-Sayed R El-Sayed
- Plant Research Department, Nuclear Research Center, Egyptian Atomic Energy Authority, Cairo, Egypt.
| |
Collapse
|
20
|
Huq MA, Apu MAI, Ashrafudoulla M, Rahman MM, Parvez MAK, Balusamy SR, Akter S, Rahman MS. Bioactive ZnO Nanoparticles: Biosynthesis, Characterization and Potential Antimicrobial Applications. Pharmaceutics 2023; 15:2634. [PMID: 38004613 PMCID: PMC10675506 DOI: 10.3390/pharmaceutics15112634] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 07/22/2023] [Accepted: 11/15/2023] [Indexed: 11/26/2023] Open
Abstract
In recent years, biosynthesized zinc oxide nanoparticles (ZnONPs) have gained tremendous attention because of their safe and non-toxic nature and distinctive biomedical applications. A diverse range of microbes (bacteria, fungi and yeast) and various parts (leaf, root, fruit, flower, peel, stem, etc.) of plants have been exploited for the facile, rapid, cost-effective and non-toxic synthesis of ZnONPs. Plant extracts, microbial biomass or culture supernatant contain various biomolecules including enzymes, amino acids, proteins, vitamins, alkaloids, flavonoids, etc., which serve as reducing, capping and stabilizing agents during the biosynthesis of ZnONPs. The biosynthesized ZnONPs are generally characterized using UV-VIS spectroscopy, TEM, SEM, EDX, XRD, FTIR, etc. Antibiotic resistance is a serious problem for global public health. Due to mutation, shifting environmental circumstances and excessive drug use, the number of multidrug-resistant pathogenic microbes is continuously rising. To solve this issue, novel, safe and effective antimicrobial agents are needed urgently. Biosynthesized ZnONPs could be novel and effective antimicrobial agents because of their safe and non-toxic nature and powerful antimicrobial characteristics. It is proven that biosynthesized ZnONPs have strong antimicrobial activity against various pathogenic microorganisms including multidrug-resistant bacteria. The possible antimicrobial mechanisms of ZnONPs are the generation of reactive oxygen species, physical interactions, disruption of the cell walls and cell membranes, damage to DNA, enzyme inactivation, protein denaturation, ribosomal destabilization and mitochondrial dysfunction. In this review, the biosynthesis of ZnONPs using microbes and plants and their characterization have been reviewed comprehensively. Also, the antimicrobial applications and mechanisms of biosynthesized ZnONPs against various pathogenic microorganisms have been highlighted.
Collapse
Affiliation(s)
- Md. Amdadul Huq
- Department of Food and Nutrition, College of Biotechnology and Natural Resource, Chung-Ang University, Anseong 17546, Republic of Korea
| | - Md. Aminul Islam Apu
- Department of Nutrition and Hospitality Management, The University of Mississippi, Oxford, MS 38677, USA;
| | - Md. Ashrafudoulla
- Department of Food Science and Technology, Chung-Ang University, Anseong 17546, Republic of Korea;
| | - Md. Mizanur Rahman
- Department of Biotechnology and Genetic Engineering, Faculty of Biological Science, Islamic University, Kushtia 7003, Bangladesh;
| | | | - Sri Renukadevi Balusamy
- Department of Food Science and Technology, Sejong University, Seoul 05006, Republic of Korea;
| | - Shahina Akter
- Department of Food Science and Biotechnology, Gachon University, Seongnam 13120, Republic of Korea;
| | - Md. Shahedur Rahman
- Department of Genetic Engineering and Biotechnology, Jashore University of Science and Technology, Jashore 7408, Bangladesh
| |
Collapse
|
21
|
Radulescu DM, Surdu VA, Ficai A, Ficai D, Grumezescu AM, Andronescu E. Green Synthesis of Metal and Metal Oxide Nanoparticles: A Review of the Principles and Biomedical Applications. Int J Mol Sci 2023; 24:15397. [PMID: 37895077 PMCID: PMC10607471 DOI: 10.3390/ijms242015397] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 10/04/2023] [Accepted: 10/17/2023] [Indexed: 10/29/2023] Open
Abstract
In recent years, interest in nanotechnology has increased exponentially due to enhanced progress and technological innovation. In tissue engineering, the development of metallic nanoparticles has been amplified, especially due to their antibacterial properties. Another important characteristic of metal NPs is that they enable high control over the features of the developed scaffolds (optimizing their mechanical strength and offering the controlled release of bioactive agents). Currently, the main concern related to the method of synthesis of metal oxide NPs is the environmental impact. The physical and chemical synthesis uses toxic agents that could generate hazards or exert carcinogenicity/environmental toxicity. Therefore, a greener, cleaner, and more reliable approach is needed. Green synthetic has come as a solution to counter the aforementioned limitations. Nowadays, green synthesis is preferred because it leads to the prevention/minimization of waste, the reduction of derivatives/pollution, and the use of non-toxic (safer) solvents. This method not only uses biomass sources as reducing agents for metal salts. The biomolecules also cover the synthesized NPs or act as in situ capping and reducing agents. Further, their involvement in the formation process reduces toxicity, prevents nanoparticle agglomeration, and improves the antimicrobial activity of the nanomaterial, leading to a possible synergistic effect. This study aims to provide a comprehensive review of the green synthesis of metal and metal oxide nanoparticles, from the synthesis routes, selected solvents, and parameters to their latest application in the biomedical field.
Collapse
Affiliation(s)
- Denisa-Maria Radulescu
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Chemical Engineering and Biotechnologies, Bucharest National Polytechnic University of Science and Technology, 011061 Bucharest, Romania; (D.-M.R.); (V.-A.S.); (A.F.); (D.F.); (A.-M.G.)
| | - Vasile-Adrian Surdu
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Chemical Engineering and Biotechnologies, Bucharest National Polytechnic University of Science and Technology, 011061 Bucharest, Romania; (D.-M.R.); (V.-A.S.); (A.F.); (D.F.); (A.-M.G.)
| | - Anton Ficai
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Chemical Engineering and Biotechnologies, Bucharest National Polytechnic University of Science and Technology, 011061 Bucharest, Romania; (D.-M.R.); (V.-A.S.); (A.F.); (D.F.); (A.-M.G.)
- Academy of Romanian Scientists, Ilfov 3, 050044 Bucharest, Romania
| | - Denisa Ficai
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Chemical Engineering and Biotechnologies, Bucharest National Polytechnic University of Science and Technology, 011061 Bucharest, Romania; (D.-M.R.); (V.-A.S.); (A.F.); (D.F.); (A.-M.G.)
| | - Alexandru-Mihai Grumezescu
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Chemical Engineering and Biotechnologies, Bucharest National Polytechnic University of Science and Technology, 011061 Bucharest, Romania; (D.-M.R.); (V.-A.S.); (A.F.); (D.F.); (A.-M.G.)
- Academy of Romanian Scientists, Ilfov 3, 050044 Bucharest, Romania
- Research Institute of the University of Bucharest—ICUB, University of Bucharest, 050657 Bucharest, Romania
| | - Ecaterina Andronescu
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Chemical Engineering and Biotechnologies, Bucharest National Polytechnic University of Science and Technology, 011061 Bucharest, Romania; (D.-M.R.); (V.-A.S.); (A.F.); (D.F.); (A.-M.G.)
| |
Collapse
|
22
|
Murali M, Gowtham HG, Shilpa N, Singh SB, Aiyaz M, Sayyed RZ, Shivamallu C, Achar RR, Silina E, Stupin V, Manturova N, Shati AA, Alfaifi MY, Elbehairi SEI, Kollur SP. Zinc oxide nanoparticles prepared through microbial mediated synthesis for therapeutic applications: a possible alternative for plants. Front Microbiol 2023; 14:1227951. [PMID: 37744917 PMCID: PMC10516225 DOI: 10.3389/fmicb.2023.1227951] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 08/16/2023] [Indexed: 09/26/2023] Open
Abstract
Zinc oxide nanoparticles (ZnO-NPs) synthesized through biogenic methods have gained significant attention due to their unique properties and potential applications in various biological fields. Unlike chemical and physical approaches that may lead to environmental pollution, biogenic synthesis offers a greener alternative, minimizing hazardous environmental impacts. During biogenic synthesis, metabolites present in the biotic sources (like plants and microbes) serve as bio-reductants and bio-stabilizers. Among the biotic sources, microbes have emerged as a promising option for ZnO-NPs synthesis due to their numerous advantages, such as being environmentally friendly, non-toxic, biodegradable, and biocompatible. Various microbes like bacteria, actinomycetes, fungi, and yeast can be employed to synthesize ZnO-NPs. The synthesis can occur either intracellularly, within the microbial cells, or extracellularly, using proteins, enzymes, and other biomolecules secreted by the microbes. The main key advantage of biogenic synthesis is manipulating the reaction conditions to optimize the preferred shape and size of the ZnO-NPs. This control over the synthesis process allows tailoring the NPs for specific applications in various fields, including medicine, agriculture, environmental remediation, and more. Some potential applications include drug delivery systems, antibacterial agents, bioimaging, biosensors, and nano-fertilizers for improved crop growth. While the green synthesis of ZnO-NPs through microbes offers numerous benefits, it is essential to assess their toxicological effects, a critical aspect that requires thorough investigation to ensure their safe use in various applications. Overall, the presented review highlights the mechanism of biogenic synthesis of ZnO-NPs using microbes and their exploration of potential applications while emphasizing the importance of studying their toxicological effects to ensure a viable and environmentally friendly green strategy.
Collapse
Affiliation(s)
| | - H. G. Gowtham
- Department of PG Studies in Biotechnology, Nrupathunga University, Bangalore, India
| | - N. Shilpa
- Department of Studies in Microbiology, University of Mysore, Mysuru, India
| | - S. Brijesh Singh
- Department of Studies in Botany, University of Mysore, Mysuru, India
| | - Mohammed Aiyaz
- Department of Studies in Biotechnology, University of Mysore, Mysuru, India
| | - R. Z. Sayyed
- Department of Microbiology, PSGVP Mandal’s S I Patil Arts, G B Patel Science and STKV Sangh Commerce College, Shahada, India
| | - Chandan Shivamallu
- Department of Biotechnology and Bioinformatics, School of Life Sciences, JSS Academy of Higher Education & Research, Myuru, India
| | - Raghu Ram Achar
- Division of Biochemistry, School of Life Sciences, JSS Academy of Higher Education and Research, Mysuru, India
| | - Ekaterina Silina
- Department of Human Pathology, I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
- Department of Surgery, Pirogov Russian National Research Medical University (RNRMU), Moscow, Russia
| | - Victor Stupin
- Department of Surgery, Pirogov Russian National Research Medical University (RNRMU), Moscow, Russia
| | - Natalia Manturova
- Department of Surgery, Pirogov Russian National Research Medical University (RNRMU), Moscow, Russia
| | - Ali A. Shati
- Biology Department, Faculty of Science, King Khalid University, Abha, Saudi Arabia
| | - Mohammad Y. Alfaifi
- Biology Department, Faculty of Science, King Khalid University, Abha, Saudi Arabia
| | | | | |
Collapse
|
23
|
El-Behery RR, El-Sayed ESR, El-Sayyad GS. Gamma rays-assisted bacterial synthesis of bimetallic silver-selenium nanoparticles: powerful antimicrobial, antibiofilm, antioxidant, and photocatalytic activities. BMC Microbiol 2023; 23:224. [PMID: 37587432 PMCID: PMC10428608 DOI: 10.1186/s12866-023-02971-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Accepted: 08/04/2023] [Indexed: 08/18/2023] Open
Abstract
BACKGROUND Bimetallic nanoparticles (BNPs) has drawn a lot of attention especially during the last couple of decades. A bimetallic nanoparticle stands for a combination of two different metals that exhibit several new and improved physicochemical properties. Therefore, the green synthesis and design of bimetallic nanoparticles is a field worth exploring. METHODS In this study, we present a green synthesis of silver nanoparticles (Ag NPs), selenium (Se) NPs, and bimetallic Ag-Se NPs using Gamma irradiation and utilizing a bacterial filtrate of Bacillus paramycoides. Different Techniques such as UV-Vis., XRD, DLS, SEM, EDX, and HR-TEM, were employed for identifying the synthesized NPs. The antimicrobial and antibiofilm activities of both the Ag/Se monometallic and bimetallic Ag-Se NPs were evaluated against some standard microbial strains including, Aspergillus brasiliensis ATCC16404, Candida albicans ATCC10231, Alternaria alternate EUM108, Fusarium oxysporum EUM37, Escherichia coli ATCC11229, Bacillus cereus ATCC15442, Klebsiella pneumoniae ATCC13883, Bacillus subtilis ATCC15442, and Pseudomonas aeruginosa ATCC6538 as a model tested pathogenic microbes. The individual free radical scavenging potentials of the synthesized Ag NPs, Se NPs, and bimetallic Ag-Se NPs were determined using the DPPH radical scavenging assay. The degradation of methylene blue (MB) dye in the presence of the synthesized Ag NPs, Se NPs, and bimetallic Ag-Se NPs was used to assess their photocatalytic behavior. RESULTS According to the UV-Vis. spectrophotometer, the dose of 20.0 kGy that results in Ag NPs with the highest O.D. = 3.19 at 390 nm is the most effective dose. In a similar vein, the optimal dose for the synthesis of Se NPs was 15.0 kGy dose with O.D. = 1.74 at 460 nm. With a high O.D. of 2.79 at 395 nm, the most potent dose for the formation of bimetallic Ag-Se NPs is 15.0 kGy. The recorded MIC-values for Ag-Se NPs were 62.5 µg mL- 1, and the data clearly demonstrated that C. albicans was the organism that was most susceptible to the three types of NPs. The MIC value was 125 µg mL- 1 for both Ag NPs and Se NPs. In antibiofilm assay, 5 µg mL- 1 Ag-Se NPs inhibited C. albicans with a percentage of 90.88%, E. coli with a percentage of 90.70%, and S. aureus with a percentage of 90.62%. The synthesized NPs can be arranged as follows in decreasing order of antioxidant capacity as an antioxidant result: Ag-Se NPs > Se NPs > Ag NPs. The MB dye degradation in the presence of the synthesized Ag NPs, Se NPs, and bimetallic Ag-Se NPs was confirmed by the decrease in the measured absorbance (at 664 nm) after 20 min of exposure to sunlight. CONCLUSION Our study provides insight towards the synthesis of bimetallic NPs through green methodologies, to develop synergistic combinatorial antimicrobials with possible applications in the treatment of infectious diseases caused by clinically and industrial relevant drug-resistant strains.
Collapse
Affiliation(s)
- Reham R El-Behery
- Drug Radiation Research Department, National Center for Radiation Research and Technology (NCRRT), Egyptian Atomic Energy Authority (EAEA), Cairo, Egypt
| | - El-Sayed R El-Sayed
- Plant Research Department, Nuclear Research Center, Egyptian Atomic Energy Authority (EAEA), Cairo, Egypt.
| | - Gharieb S El-Sayyad
- Drug Radiation Research Department, National Center for Radiation Research and Technology (NCRRT), Egyptian Atomic Energy Authority (EAEA), Cairo, Egypt.
| |
Collapse
|
24
|
Anjum S, Vyas A, Sofi T. Fungi-mediated synthesis of nanoparticles: characterization process and agricultural applications. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2023; 103:4727-4741. [PMID: 36781932 DOI: 10.1002/jsfa.12496] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 12/31/2022] [Accepted: 02/13/2023] [Indexed: 06/08/2023]
Abstract
In the field of nanotechnology, the use of biologically active products from fungi for the reduction and synthesis of nanoparticles as an alternative to toxic chemicals has received extensive attention, due to their production of large quantities of proteins, high yields, easy handling, and the low toxicity of the residues. Fungi have become valuable tools for the manufacture of nanoparticles in comparison with other biological systems because of their enhanced growth control and diversity of metabolites, including enzymes, proteins, peptides, polysaccharides, and other macro-molecules. The ability to use different species of fungi and to perform the synthesis under different conditions enables the production of nanoparticles with different physicochemical characteristics. Fungal nanotechnology has been used to develop and offer products and services in the agricultural, medicinal, and industrial sectors. Agriculturally, it has found applications in plant disease management, crop improvement, biosensing, and the production of environmentally friendly, non-toxic pesticides and fertilizers to enhance agricultural production in general. The subject of this review is the application of fungi in the synthesis of inorganic nanoparticles, characterization, and possible applications of fungal nanoparticles in the diverse agricultural sector. The literature shows potential uses of fungi in biogenic synthesis, enabling the production of nanoparticles with different physiognomies. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Shahnaz Anjum
- Department of Botany, Lovely Professional University, Phagwara, India
- Division of Plant Pathology, FoH, Sher-e-Kashmir University of Agricultural Sciences and Technology, Kashmir, India
| | - Ashish Vyas
- Department of Microbiology and Biochemistry, Lovely Professional University, Phagwara, India
| | - Tariq Sofi
- Division of Plant Pathology, FoH, Sher-e-Kashmir University of Agricultural Sciences and Technology, Kashmir, India
| |
Collapse
|
25
|
Xu J, Zeng Y, Yu C, Xu S, Tang L, Zeng X, Huang Y, Sun Z, Xu B, Yu T. Visualization of the relationship between fungi and cancer from the perspective of bibliometric analysis. Heliyon 2023; 9:e18592. [PMID: 37529342 PMCID: PMC10388209 DOI: 10.1016/j.heliyon.2023.e18592] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 07/20/2023] [Accepted: 07/21/2023] [Indexed: 08/03/2023] Open
Abstract
The relationship between cancer and microorganisms has been extensively studied, with bacteria receiving more attention than fungi. However, fungi have been shown to play a significant role in cancer development and progression. Understanding the underlying mechanisms is crucial for identifying new avenues in prevention and treatment. To evaluate the current state of research on fungi and cancer, we conducted a comprehensive bibliometric analysis. Using the Web of Science Core Collection database, we searched for English-language articles published between 1998 and 2022. Analyzing the resulting publication data, we identified trends, patterns, and research gaps. Our analysis encompassed co-authorship networks, citation analysis, and keyword co-occurrence analysis. With 8283 publications identified, averaging 331.32 publications per year, our findings highlight China, the United States, India, Japan, and Germany as the top contributing countries. The Chinese Academy of Sciences, Sun Yat-Sen University, and University of São Paulo emerged as the most productive institutions. Key themes in the literature included "cancer," "cytotoxicity," "apoptosis," "metabolites," and "fungus." Recent trends indicate increased interest in keywords such as "green synthesis," "molecular docking," "anticancer activity," "antibacterial," "anticancer," and "silver nanoparticles." Our study provides a comprehensive assessment of the current research landscape in the field of fungi and cancer, offering insights into collaborative networks, research directions, and emerging hotspots. The growing publication rate demonstrates the rising interest in the topic, while identifying leading countries, institutions, and research themes serves as a valuable resource for researchers, policymakers, and funders interested in supporting investigations on fungi-derived compounds as potential anti-cancer agents.
Collapse
Affiliation(s)
- Jiawei Xu
- Department of Breast Surgery, Affiliated Cancer Hospital of Nanchang University, Jiangxi Cancer Hospital, The Second Affiliated Hospital of Nanchang Medical College, Jiangxi Clinical Research Center for Cancer, 330029, China
| | - Ying Zeng
- Affiliated People Hospital of Nanchang University, Nanchang 330000, China
| | - Chengdong Yu
- Department of Breast Surgery, Affiliated Cancer Hospital of Nanchang University, Jiangxi Cancer Hospital, The Second Affiliated Hospital of Nanchang Medical College, Jiangxi Clinical Research Center for Cancer, 330029, China
| | - Siyi Xu
- Department of Breast Surgery, Affiliated Cancer Hospital of Nanchang University, Jiangxi Cancer Hospital, The Second Affiliated Hospital of Nanchang Medical College, Jiangxi Clinical Research Center for Cancer, 330029, China
| | - Lei Tang
- Department of Breast Surgery, Affiliated Cancer Hospital of Nanchang University, Jiangxi Cancer Hospital, The Second Affiliated Hospital of Nanchang Medical College, Jiangxi Clinical Research Center for Cancer, 330029, China
| | - Xiaoqiang Zeng
- Department of Breast Surgery, Affiliated Cancer Hospital of Nanchang University, Jiangxi Cancer Hospital, The Second Affiliated Hospital of Nanchang Medical College, Jiangxi Clinical Research Center for Cancer, 330029, China
| | - Yanxiao Huang
- Department of Breast Surgery, Affiliated Cancer Hospital of Nanchang University, Jiangxi Cancer Hospital, The Second Affiliated Hospital of Nanchang Medical College, Jiangxi Clinical Research Center for Cancer, 330029, China
| | - Zhengkui Sun
- Department of Breast Surgery, Affiliated Cancer Hospital of Nanchang University, Jiangxi Cancer Hospital, The Second Affiliated Hospital of Nanchang Medical College, Jiangxi Clinical Research Center for Cancer, 330029, China
| | - Bin Xu
- Jiangxi Health Committee Key (JHCK) Laboratory of Tumor Metastasis, Jiangxi Cancer Hospital, Nanchang 330029, Jiangxi, China
| | - Tenghua Yu
- Department of Breast Surgery, Affiliated Cancer Hospital of Nanchang University, Jiangxi Cancer Hospital, The Second Affiliated Hospital of Nanchang Medical College, Jiangxi Clinical Research Center for Cancer, 330029, China
| |
Collapse
|
26
|
El-Sayed ESR, Mohamed SS, Mousa SA, El-Seoud MAA, Elmehlawy AA, Abdou DAM. Bifunctional role of some biogenic nanoparticles in controlling wilt disease and promoting growth of common bean. AMB Express 2023; 13:41. [PMID: 37119397 PMCID: PMC10148937 DOI: 10.1186/s13568-023-01546-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Accepted: 04/16/2023] [Indexed: 05/01/2023] Open
Abstract
In the present era, nanomaterials are emerging as a powerful tool for management of plant disease and improving crop production to meet the growing global need for food. Thus, this paper was conducted to explore the effectiveness of five different types of nanoparticles (NPs) viz., Co3O4NPs, CuONPs, Fe3O4NPs, NiONPs, and ZnONPs as treatments for Fusarium wilt as well as their role in promoting growth of the common bean plant. The five types of NPs were applied as a treatment for wilt in two ways, therapeutic and protective plans under greenhouse conditions. In vivo experiments showed that all types of NPs significantly increased disease control and diminished the symptoms of Fusarium wilt for both incidence and severity. The recorded values for disease control using the respective NPs during the protective plan were 82.77, 60.17, 49.67, 38.23, and 70.59%. Meanwhile these values were 92.84, 64.67, 51.33, 45.61, 73.84% during the therapeutic plan. Moreover, CuONPs during the protective plan were the best among the five types of NPs employed in terms of wilt disease management. Regarding the use of these NPs as growth promoters, the obtained results confirmed the effectiveness of the five types of NPs in enhancing vegetative growth of the plant under greenhouse conditions, in comparison with control. Among the five NPs, CuONPs improved the plant vegetative growth and particularly increased the content of the photosynthetic pigments; chlorophyll-a (2.96 mg/g), -b (1.93 mg/g), and total carotenoids (1.16 mg/g). These findings suggest the successful and potential exploitation of nanomaterials in agriculture deployed as nano-based products including nano-fungicides and nano-fertilizers. In terms of sustainability, this promising and exceptional multifunctional role of these nanomaterials will surely exert positive impacts on both the environment and sustainable agriculture.
Collapse
Affiliation(s)
- El-Sayed R El-Sayed
- Plant Research Department, Nuclear Research Center, Egyptian Atomic Energy Authority, Cairo, Egypt.
| | - Samar S Mohamed
- Microbiology Department, Faculty of Science, Ain Shams University, Cairo, Egypt
| | - Shaimaa A Mousa
- Plant Research Department, Nuclear Research Center, Egyptian Atomic Energy Authority, Cairo, Egypt
| | - Mohamed A Abo El-Seoud
- Plant Research Department, Nuclear Research Center, Egyptian Atomic Energy Authority, Cairo, Egypt
| | - Adel A Elmehlawy
- Microbiology Department, Faculty of Science, Ain Shams University, Cairo, Egypt
| | - Dalia A M Abdou
- Microbiology Department, Faculty of Science, Ain Shams University, Cairo, Egypt
| |
Collapse
|
27
|
Chaudhary V, Chowdhury R, Thukral P, Pathania D, Saklani S, Rustagi S, Gautam A, Mishra YK, Singh P, Kaushik A. Biogenic green metal nano systems as efficient anti-cancer agents. ENVIRONMENTAL RESEARCH 2023; 229:115933. [PMID: 37080272 DOI: 10.1016/j.envres.2023.115933] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Revised: 04/12/2023] [Accepted: 04/15/2023] [Indexed: 05/03/2023]
Abstract
Metal/metal oxide nano systems (M-NSs) of tunable and manipulative properties are emerging suitable for cancer management via immunity development, early-stage diagnosis, nanotherapeutics, and targeted drug delivery systems. However, noticeable toxicity, off-targeted actions, lacking biocompatibility, and being expensive limit their acceptability. Moreover, involving high energy (top-down routes) and hazardous chemicals (bottom-up chemical routes) is altering human cycle. To manage such challenges, biomass (plants, microbes, animals) and green chemistry-based M-NSs due to scalability, affordability, are cellular, tissue, and organ acceptability are emerging as desired biogenic M-NSs for cancer management with enhanced features. The state-of-art and perspective of green metal/metal oxide nano systems (GM-NSs) as an efficient anti-cancer agent including, imaging, immunity building elements, site-specific drug delivery, and therapeutics developments are highlighted in this review critically. It is expected that this report will serve as guideline for design and develop high-performance GM-NSs for establishing them as next-generation anti-cancer agent capable to manage cancer in personalized manner.
Collapse
Affiliation(s)
- Vishal Chaudhary
- Research Cell & Physics Department, Bhagini Nivedita College, University of Delhi, Delhi, India; SUMAN Laboratory (SUstainable Materials and Advanced Nanotechnology Lab), New Delhi, 110072, India.
| | - Ruchita Chowdhury
- SUMAN Laboratory (SUstainable Materials and Advanced Nanotechnology Lab), New Delhi, 110072, India; Department of Chemistry, Netaji Subhas University of Technology, New Delhi, 110078, India
| | - Prachi Thukral
- SUMAN Laboratory (SUstainable Materials and Advanced Nanotechnology Lab), New Delhi, 110072, India; Department of Applied Chemistry, Delhi Technological University, New Delhi, 110042, India
| | - Diksha Pathania
- Animal Nutrition Division, ICAR-National Dairy Research Institute, Karnal, 132001, India
| | - Shivani Saklani
- School of Biological and Environmental Sciences, Shoolini University, Solan, 173229, India
| | - Sarvesh Rustagi
- School of Applied and Life Sciences, Uttaranchal University, Dehradun, Uttrakhand, India
| | - Akash Gautam
- Centre for Neural and Cognitive Sciences, University of Hyderabad, Hyderabad, 500046, India.
| | - Yogendra Kumar Mishra
- Mads Clausen Institute, NanoSYD, University of Southern Denmark, Alison 2, 6400, Sønderborg, Denmark
| | - Pardeep Singh
- School of Advanced Chemical Sciences, Shoolini University, Solan, 173229, India
| | - Ajeet Kaushik
- NanoBioTech Laboratory, Department of Environmental Engineering, Florida Polytechnic University, Lakeland, FL, 33805, USA; School of Engineering, University of Petroleum and Energy Studies, Dehradun 248007, India.
| |
Collapse
|
28
|
Brady NG, O'Leary SL, Moormann GC, Singh MK, Watt J, Bachand GD. Mycosynthesis of Zinc Oxide Nanoparticles Exhibits Fungal Species Dependent Morphological Preference. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2205799. [PMID: 36587980 DOI: 10.1002/smll.202205799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 12/13/2022] [Indexed: 06/17/2023]
Abstract
Filamentous fungi can synthesize a variety of nanoparticles (NPs), a process referred to as mycosynthesis that requires little energy input, do not require the use of harsh chemicals, occurs at near neutral pH, and do not produce toxic byproducts. While NP synthesis involves reactions between metal ions and exudates produced by the fungi, the chemical and biochemical parameters underlying this process remain poorly understood. Here, the role of fungal species and precursor salt on the mycosynthesis of zinc oxide (ZnO) NPs is investigated. This data demonstrates that all five fungal species tested are able to produce ZnO structures that can be morphologically classified into i) well-defined NPs, ii) coalesced/dissolving NPs, and iii) micron-sized square plates. Further, species-dependent preferences for these morphologies are observed, suggesting potential differences in the profile or concentration of the biochemical constituents in their individual exudates. This data also demonstrates that mycosynthesis of ZnO NPs is independent of the anion species, with nitrate, sulfate, and chloride showing no effect on NP production. These results enhance the understanding of factors controlling the mycosynthesis of ceramic NPs, supporting future studies that can enable control over the physical and chemical properties of NPs formed through this "green" synthesis method.
Collapse
Affiliation(s)
- Nathan G Brady
- Center for Integrated Nanotechnologies, Sandia National Laboratories, Albuquerque, NM, 87185, USA
| | - Shamus L O'Leary
- Center for Integrated Nanotechnologies, Sandia National Laboratories, Albuquerque, NM, 87185, USA
| | - Garrett C Moormann
- Center for Integrated Nanotechnologies, Sandia National Laboratories, Albuquerque, NM, 87185, USA
| | - Manish K Singh
- Center for Integrated Nanotechnologies, Los Alamos National Laboratory, Los Alamos, NM, 87545, USA
| | - John Watt
- Center for Integrated Nanotechnologies, Los Alamos National Laboratory, Los Alamos, NM, 87545, USA
| | - George D Bachand
- Center for Integrated Nanotechnologies, Sandia National Laboratories, Albuquerque, NM, 87185, USA
| |
Collapse
|
29
|
Digra S, Nonzom S. An insight into endophytic antimicrobial compounds: an updated analysis. PLANT BIOTECHNOLOGY REPORTS 2023; 17:1-31. [PMID: 37359493 PMCID: PMC10013304 DOI: 10.1007/s11816-023-00824-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 12/30/2022] [Accepted: 02/28/2023] [Indexed: 06/28/2023]
Abstract
Resistance in micro-organisms against antimicrobial compounds is an emerging phenomenon in the modern era as compared to the traditional world which brings new challenges to discover novel antimicrobial compounds from different available sources, such as, medicinal plants, various micro-organisms, like, bacteria, fungi, algae, actinomycetes, and endophytes. Endophytes reside inside the plants without exerting any harmful impact on the host plant along with providing ample of benefits. In addition, they are capable of producing diverse antimicrobial compounds similar to their host, allowing them to serve as useful micro-organism for a range of therapeutic purposes. In recent years, a large number of studies on the antimicrobial properties of endophytic fungi have been carried out globally. These antimicrobials have been used to treat various bacterial, fungal, and viral infections in humans. In this review, the potential of fungal endophytes to produce diverse antimicrobial compounds along with their various benefits to their host have been focused on. In addition, classification systems of endophytic fungi as well as the need for antimicrobial production with genetic involvement and some of the vital novel antimicrobial compounds of endophytic origin can further be utilized in the pharmaceutical industries for various formulations along with the role of nanoparticles as antimicrobial agents have been highlighted.
Collapse
Affiliation(s)
- Shivani Digra
- Depatment of Botany, University of Jammu, Jammu, J&K 180006 India
| | - Skarma Nonzom
- Depatment of Botany, University of Jammu, Jammu, J&K 180006 India
| |
Collapse
|
30
|
El-Moslamy SH, Elnouby MS, Rezk AH, El-Fakharany EM. Scaling-up strategies for controllable biosynthetic ZnO NPs using cell free-extract of endophytic Streptomyces albus: characterization, statistical optimization, and biomedical activities evaluation. Sci Rep 2023; 13:3200. [PMID: 36823304 PMCID: PMC9950444 DOI: 10.1038/s41598-023-29757-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Accepted: 02/09/2023] [Indexed: 02/25/2023] Open
Abstract
In this study, we identified a suitable precursor and good cellular compartmentalization for enhancing bioactive metabolites to produce biosynthetic zinc oxide nanoparticles (ZnO NPs). An effective medium for cultivating endophytic Streptomyces albus strain E56 was selected using several optimized approaches in order to maximize the yield of biosynthetic ZnO NPs. The highest biosynthetic ZnO NPs yield (4.63 g/L) was obtained when pipetting the mixed cell-free fractions with 100 mM of zinc sulfate as a precursor. The generation of biosynthetic ZnO NPs was quickly verified using a colored solution (white color) and UV-Visible spectroscopy (maximum peak, at 320 nm). On a small scale, the Taguchi method was applied to improve the culture medium for culturing the strain E56. As a result, its cell-dry weight was 3.85 times that of the control condition. And then the biosynthesis of ZnO NPs (7.59 g/L) was increased by 1.6 times. Furthermore, by using the Plackett-Burman design to improve the utilized biogenesis pathway, the biosynthesis of ZnO NPs (18.76 g/L) was increased by 4.3 times. To find the best growth production line, we used batch and fed batch fermentation modes to gradually scale up biomass output. All kinetics of studied cell growth were evaluated during fed-batch fermentation as follows: biomass yield was 271.45 g/L, yield coefficient was 94.25 g/g, and ZnO NPs yield was 345.32 g/L. In vitro, the effects of various dosages of the controllable biosynthetic ZnO NPs as antimicrobial and anticancer agents were also investigated. The treatments with controllable biosynthetic ZnO NPs had a significant impact on all the examined multidrug-resistant human pathogens as well as cancer cells.
Collapse
Affiliation(s)
- Shahira H El-Moslamy
- Bioprocess Development Department, Genetic Engineering and Biotechnology Research Institute (GEBRI), City of Scientific Research and Technological Applications (SRTA-City), New Borg Al-Arab City, 21934, Alexandria, Egypt.
| | - Mohamed S Elnouby
- Advanced Technology and New Materials Research Institute (ATNMRI), City of Scientific Research and Technological Applications (SRTA-City), New Borg El‑Arab City, 21934, Alexandria, Egypt
| | - Ahmed H Rezk
- Bioprocess Development Department, Genetic Engineering and Biotechnology Research Institute (GEBRI), City of Scientific Research and Technological Applications (SRTA-City), New Borg Al-Arab City, 21934, Alexandria, Egypt
| | - Esmail M El-Fakharany
- Protein Research Department, Genetic Engineering and Biotechnology Research Institute (GEBRI), City of Scientific Research and Technological Applications (SRTA-City), New Borg Al-Arab City, 21934, Alexandria, Egypt.
| |
Collapse
|
31
|
Gamma irradiation mediated production improvement of some myco-fabricated nanoparticles and exploring their wound healing, anti-inflammatory and acetylcholinesterase inhibitory potentials. Sci Rep 2023; 13:1629. [PMID: 36717680 PMCID: PMC9887004 DOI: 10.1038/s41598-023-28670-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Accepted: 01/23/2023] [Indexed: 01/31/2023] Open
Abstract
In the current scenario, scaling up the microbial production of nanoparticles with diverse biological applications is an emerging prospect for NPs' sustainable industry. Thus, this paper was conducted to develop a suitable applicative process for the myco-fabrication of cobalt-ferrite (CoFeNPs), selenium (SeNPs), and zinc oxide (ZnONPs) nanoparticles. A strain improvement program using gamma irradiation mutagenesis was applied to improve the NPs-producing ability of the fungal strains. The achieved yields of CoFeNPs, SeNPs, and ZnONPs were intensified by a 14.47, 7.85, and 22.25-fold increase from the initial yield following gamma irradiation and isolation of stable mutant strains. The myco-fabricated CoFeNPs, SeNPs, and ZnONPs were then exploited to study their wound healing, and anti-inflammatory. In addition, the acetylcholinesterase inhibition activities of the myco-fabricated NPs were evaluated and analyzed by molecular docking. The obtained results confirmed the promising wound healing, anti-inflammatory, and acetylcholinesterase inhibition potentials of the three types of NPs. Additionally, data from analyzing the interaction of NPs with acetylcholinesterase enzyme by molecular docking were in conformation with the experimental data.
Collapse
|
32
|
Mohamed HI, Fawzi EM, Abd-Elsalam KA, Ashry NA, Basit A. Endophytic fungi-derived biogenic nanoparticles: Mechanisms and applications. FUNGAL CELL FACTORIES FOR SUSTAINABLE NANOMATERIALS PRODUCTIONS AND AGRICULTURAL APPLICATIONS 2023:361-391. [DOI: 10.1016/b978-0-323-99922-9.00024-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
|
33
|
Metal nanoparticles against multi-drug-resistance bacteria. J Inorg Biochem 2022; 237:111938. [PMID: 36122430 DOI: 10.1016/j.jinorgbio.2022.111938] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 06/21/2022] [Accepted: 07/18/2022] [Indexed: 01/18/2023]
Abstract
Antimicrobial-resistant (AMR) bacterial infections remain a significant public health concern. The situation is exacerbated by the rapid development of bacterial resistance to currently available antimicrobials. Metal nanoparticles represent a new perspective in treating AMR due to their unique mechanisms, such as disrupting bacterial cell membrane potential and integrity, biofilm inhibition, reactive oxygen species (ROS) formation, enhancing host immune responses, and inhibiting RNA and protein synthesis by inducing intracellular processes. Metal nanoparticles (MNPs) properties such as size, shape, surface functionalization, surface charges, and co-encapsulated drug delivery capability all play a role in determining their potential against multidrug-resistant bacterial infections. Silver, gold, zinc oxide, selenium, copper, cobalt, and iron oxide nanoparticles have recently been studied extensively against multidrug-resistant bacterial infections. This review aims to provide insight into the size, shape, surface properties, and co-encapsulation of various MNPs in managing multidrug-resistant bacterial infections.
Collapse
|
34
|
Gazwi HSS, Shoeib NA, Mahmoud ME, Soltan OIA, Hamed MM, Ragab AE. Phytochemical Profile of the Ethanol Extract of Malvaviscus arboreus Red Flower and Investigation of the Antioxidant, Antimicrobial, and Cytotoxic Activities. Antibiotics (Basel) 2022; 11:antibiotics11111652. [PMID: 36421296 PMCID: PMC9686500 DOI: 10.3390/antibiotics11111652] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 11/12/2022] [Accepted: 11/16/2022] [Indexed: 11/19/2022] Open
Abstract
Flowers are rich sources of bioactive antimicrobial, antioxidant, and anticancer components. This study aimed to determine the constituents of the ethanol extract of Malvaviscus arboreus red flower (ERF) by GC-MS analysis and HPLC identification of phenolic compounds and flavonoids, in addition to the 1HNMR fingerprint. The antimicrobial, antioxidant, and cytotoxic activities of the ERF were investigated. The GC-MS analysis revealed twenty-one components, while HPLC analysis revealed the presence of phenolic and flavonoid compounds. The ERF showed antifungal and antibacterial activity. The highest antibacterial activity was found against Vibrio damsela where a time-kill assay revealed a decline in the amount of viable V. damsela. For fungi, the highest activity was observed against Aspergillus terreus. Using the SRB test on HepG2, the anti-proliferative efficacy of the ERF was evaluated. Cell cycle analysis was utilized to determine autophagic cell death. The ERF prevented the proliferation of the HepG2 cell line with an IC50 of 67.182 µg/µL. The extract primarily promoted apoptosis in HepG2 cells by accumulating hypodiploid cells in the sub-G0/G1 phase, increased caspase 3/7 activity, and caused considerable autophagic cell death in apoptosis-deficient cells. Finally, the observed elevation of cancer cell death indicated that ERF had substantial anticancer potential against HepG2 cells.
Collapse
Affiliation(s)
- Hanaa S. S. Gazwi
- Department of Agricultural Chemistry, Faculty of Agriculture, Minia University, El-Minya 61519, Egypt
- Correspondence: (H.S.S.G.); (A.E.R.)
| | - Nagwa A. Shoeib
- Department of Pharmacognosy, Faculty of Pharmacy, Tanta University, Tanta 31257, Egypt
| | - Magda E. Mahmoud
- Department of Agricultural Chemistry, Faculty of Agriculture, Minia University, El-Minya 61519, Egypt
| | - Osama I. A. Soltan
- Department of Food Science, Faculty of Agriculture, Minia University, El-Minia 61519, Egypt
| | - Moaz M. Hamed
- Marine Microbiology Laboratory, National Institute of Oceanography and Fisheries, Cairo 11562, Egypt
| | - Amany E. Ragab
- Department of Pharmacognosy, Faculty of Pharmacy, Tanta University, Tanta 31257, Egypt
- Correspondence: (H.S.S.G.); (A.E.R.)
| |
Collapse
|
35
|
An Evaluation of the Biocatalyst for the Synthesis and Application of Zinc Oxide Nanoparticles for Water Remediation—A Review. Catalysts 2022. [DOI: 10.3390/catal12111442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Global water scarcity is threatening the lives of humans, and it is exacerbated by the contamination of water, which occurs because of increased industrialization and soaring population density. The available conventional physical and chemical water treatment techniques are hazardous to living organisms and are not environmentally friendly, as toxic chemical elements are used during these processes. Nanotechnology has presented a possible way in which to solve these issues by using unique materials with desirable properties. Zinc oxide nanoparticles (ZnO NPs) can be used effectively and efficiently for water treatment, along with other nanotechnologies. Owing to rising concerns regarding the environmental unfriendliness and toxicity of nanomaterials, ZnO NPs have recently been synthesized through biologically available and replenishable sources using a green chemistry or green synthesis protocol. The green-synthesized ZnO NPs are less toxic, more eco-friendly, and more biocompatible than other chemically and physically synthesized materials. In this article, the biogenic synthesis and characterization techniques of ZnO NPs using plants, bacteria, fungi, algae, and biological derivatives are reviewed and discussed. The applications of the biologically prepared ZnO NPs, when used for water treatment, are outlined. Additionally, their mechanisms of action, such as the photocatalytic degradation of dyes, the production of reactive oxygen species (ROS), the generation of compounds such as hydrogen peroxide and superoxide, Zn2+ release to degrade microbes, as well as their adsorbent properties with regard to heavy metals and other contaminants in water bodies, are explained. Furthermore, challenges facing the green synthesis of these nanomaterials are outlined. Future research should focus on how nanomaterials should reach the commercialization stage, and suggestions as to how this ought to be achieved are presented.
Collapse
|
36
|
Hatab MH, Rashad E, Saleh HM, El-Sayed ESR, Taleb AMA. Effects of dietary supplementation of myco-fabricated zinc oxide nanoparticles on performance, histological changes, and tissues Zn concentration in broiler chicks. Sci Rep 2022; 12:18791. [PMID: 36335156 PMCID: PMC9637221 DOI: 10.1038/s41598-022-22836-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Accepted: 10/19/2022] [Indexed: 11/06/2022] Open
Abstract
A five weeks biological experiment was planned to investigate the impacts of dietary supplementation with zinc oxide nanoparticles (ZnONPs) synthesized by the endophytic fungus Alternaria tenuissima on productive performance, carcass traits, organ relative weights, serum biochemical parameters, histological alteration in some internal organs and concentration of this element in the serum, liver, thigh and breast muscle in broiler chicks. A total of 108 3-day-old commercial broiler chicks (Cobb 500) were individually weighed and equally distributed in a completely randomized design arrangement according to the dose of ZnONPs supplementation into 3 dietary experimental groups. There were 6 replications having 6 birds per replicate (n = 36/ treatment) for each treatment. The three experiential dietary treatments received corn-soybean meal-based diets enhanced with 0 (control), 40 and 60 mg/kg diet of ZnONPs respectively with feed and water were provided ad libitum consumption through 5 weeks life span. Present results indicated that after 5 weeks of feeding trial and as compared to control, the ZnONPs supplementation groups recorded higher body weight, improved feed consumption, feed conversion ratio and performance index. Serum biochemical analyses revealed that serum cholesterol, triglyceride, low density lipoprotein and uric acid decreased significantly, while high density lipoprotein and liver enzyme concentrations were increased significantly. Meanwhile, zinc accumulation in serum, liver and breast and thigh muscle were linearly increased with increasing zinc supplementation. It could be concluded that supplementation of ZnONPs to broiler diet at 40 or 60 mg/kg improved productive performance, birds' physiological status and the lower levels Zn (40 mg/kg diet) revealed promising results and can be used as an effective feed additive in broilers.
Collapse
Affiliation(s)
- M H Hatab
- Biological Application Department, Nuclear Research Center, Egyptian Atomic Energy Authority, Cairo, Egypt.
| | - E Rashad
- Cytology and Histology Department, Cairo University, Giza, Egypt
| | - Hisham M Saleh
- Biological Application Department, Nuclear Research Center, Egyptian Atomic Energy Authority, Cairo, Egypt
| | - El-Sayed R El-Sayed
- Plant Research Department, Nuclear Research Center, Egyptian Atomic Energy Authority, Cairo, Egypt.
| | - A M Abu Taleb
- Biological Application Department, Nuclear Research Center, Egyptian Atomic Energy Authority, Cairo, Egypt
| |
Collapse
|
37
|
Khalil AT, Ovais M, Iqbal J, Ali A, Ayaz M, Abbas M, Ahmad I, Devkota HP. Microbes-mediated synthesis strategies of metal nanoparticles and their potential role in cancer therapeutics. Semin Cancer Biol 2022; 86:693-705. [PMID: 34118405 DOI: 10.1016/j.semcancer.2021.06.006] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 06/03/2021] [Accepted: 06/05/2021] [Indexed: 01/27/2023]
Abstract
Past few years have seen a paradigm shift towards ecofriendly, green and biological fabrication of metal nanoparticles (MNPs) for diverse nanomedicinal applications especially in cancer nanotheranostics. Besides, the well-known green synthesis methods of plant materials, the potential of the microbial world (bacteria, fungi, alga, etc.) in biofabrication is equally realized. Biomolecules and enzymes in the microbial cells are capable of catalyzing the biosynthesis process. These microbial derived inorganic nanoparticles have been frequently evaluated as potential agents in cancer therapies revealing exciting results. Through, cellular and molecular pathways, these microbial derived nanoparticles are capable of killing the cancer cells. Considering the recent developments in the anticancer applications of microbial derived inorganic MNPs, a dire need was felt to bring the available information to a single document. This manuscript reviews not only the mechanistic aspects of the microbial derived MNPs but also include the diverse mechanisms that governs their anticancer potential. Besides, an updated literature review is presented that includes studies of 2019-onwards.
Collapse
Affiliation(s)
- Ali Talha Khalil
- Department of Pathology, Lady Reading Hospital Medical Teaching Institution, Peshawar, KP, Pakistan.
| | - Muhammad Ovais
- National Center for Nanosciences and Nanotechnology (NCNST), Beijjing, China.
| | - Javed Iqbal
- Center for Plant Sciences and Biodiversity, University of Swat, Kanju, 19201, Pakistan.
| | - Arbab Ali
- National Center for Nanosciences and Nanotechnology (NCNST), Beijjing, China.
| | - Muhammad Ayaz
- Department of Pharmacy, University of Malakand, Chakdara, KP, Pakistan.
| | | | - Irshad Ahmad
- Department of Life Sciences, King Fahd University of Petroleum and Minerals, Dhahran, Saudi Arabia.
| | - Hari Parsad Devkota
- Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto, 862-0973, Japan; Program for Leading Graduate Schools, HIGO Program, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto, 862-0973, Japan.
| |
Collapse
|
38
|
Zhang L, Zhang M, Mujumdar AS, Yu D, Wang H. Potential nano bacteriostatic agents to be used in meat-based foods processing and storage: A critical review. Trends Food Sci Technol 2022. [DOI: 10.1016/j.tifs.2022.11.023] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
39
|
Sivasankarapillai VS, Krishnamoorthy N, Eldesoky GE, Wabaidur SM, Islam MA, Dhanusuraman R, Ponnusamy VK. One-pot green synthesis of ZnO nanoparticles using Scoparia Dulcis plant extract for antimicrobial and antioxidant activities. APPLIED NANOSCIENCE 2022; 13:1-11. [PMID: 36120603 PMCID: PMC9469822 DOI: 10.1007/s13204-022-02610-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 08/13/2022] [Indexed: 11/29/2022]
Abstract
Nanostructured Zinc oxide (ZnO) materials have attained exciting research interests among various metal oxide nanoparticles due to their unique features. Thus, the scope of applications for ZnO nanoparticles (ZnO NPs) is vast and efficient. The current study demonstrates a simple and environmental-friendly approach for the synthesis of ZnO NPs using the extract of the Scoparia Dulcis. Scoparia Dulcis is a common medicinal plant in Kerala (India) that is traditionally used for its medicinal properties. Morphological characterizations of the as-synthesized ZnO NPs were evaluated using X-ray diffraction, Fourier transform infrared spectroscopy (FTIR), and field-emission scanning electron microscopy (FESEM). The results revealed that ZnO NPs showed pebble-like morphology and possessed an average particle size of ~ 20 nm. Further, antibacterial and antifungal activities of as-prepared ZnO NPs were investigated against E. coli, Staphylococcus aureus, as well as Candida albicans, and Aspergillus niger, respectively, using the agar-well diffusion method. The results revealed that the prepared ZnO NPs shows excellent antimicrobial activity against the examined microorganisms. Moreover, the antioxidant activity of the as-synthesized ZnO NPs was evaluated using the DPPH assay, which indicated an excellent IC50 value of 1.78 μg/mL that shows high antioxidant activity. All these results proved that the S. dulcis plant extract-mediated synthesis method is a simple, low-cost, eco-friendly procedure for preparing efficient ZnO NPs for biomedical applications.
Collapse
Affiliation(s)
- Vishnu Sankar Sivasankarapillai
- Nano Electrochemistry Lab (NEL), Department of Chemistry, National Institute of Technology Puducherry, Karaikal, 609609 India
| | - Nishkala Krishnamoorthy
- Nano Electrochemistry Lab (NEL), Department of Chemistry, National Institute of Technology Puducherry, Karaikal, 609609 India
| | - Gaber E. Eldesoky
- Chemistry Department, College of Science, King Saud University, Riyadh, 11451 Saudi Arabia
| | | | - Md Ataul Islam
- Division of Pharmacy and Optometry, School of Health Science, Faculty of Biology, Medicine and Health, University of Manchester, Manchester City, UK
| | - Ragupathy Dhanusuraman
- Nano Electrochemistry Lab (NEL), Department of Chemistry, National Institute of Technology Puducherry, Karaikal, 609609 India
| | - Vinoth Kumar Ponnusamy
- Department of Medicinal and Applied Chemistry, Kaohsiung Medical University (KMU), Kaohsiung City, 807 Taiwan
- Research Center for Precision Environmental Medicine, Kaohsiung Medical University (KMU), Kaohsiung City, 807 Taiwan
- Department of Medical Research, Kaohsiung Medical University Hospital (KMUH), Kaohsiung City, 807 Taiwan
| |
Collapse
|
40
|
Biosynthesis of zinc oxide nanoparticles via endophyte Trichoderma viride and evaluation of their antimicrobial and antioxidant properties. Arch Microbiol 2022; 204:620. [PMID: 36100763 DOI: 10.1007/s00203-022-03218-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 07/26/2022] [Accepted: 08/25/2022] [Indexed: 11/02/2022]
Abstract
The biogenic method for synthesis of nanoparticles is preferred over the traditional strategies, on account of its ease, environmental friendliness, and cost-effectivity, wherein fungi endorse themselves to be the most appropriate precursor for the same. In recent times numerous metal nanoparticles have been reported to exhibit significant therapeutic activities, out of which Zinc Oxide nanoparticles (ZnO NPs) stand apart on account of their multidimensional nature. Thus, this study was carried out with an aim to biosynthesize ZnO NPs utilizing endophyte Trichoderma viride, isolated from the seeds of Momordica charantia. The physicochemical characterization of NPs was done via employing a combination of spectroscopic and microscopic techniques. The NPs were found to have a hexagonal shape and possessed an average particle size of around 63.3 nm. The antimicrobial activity of NPs was evaluated against multi-drug resistant organisms and it was observed to be an appreciable one whereas the antioxidant activity was deduced to be dose-dependent. Thus, these ZnO NPs can be considered as a probable active ingredient of any future therapeutic conceptualization after undertaking a thorough toxicological assessment.
Collapse
|
41
|
Anwar MM, Aly SSH, Nasr EH, El-Sayed ESR. Improving carboxymethyl cellulose edible coating using ZnO nanoparticles from irradiated Alternaria tenuissima. AMB Express 2022; 12:116. [PMID: 36070053 PMCID: PMC9452608 DOI: 10.1186/s13568-022-01459-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Accepted: 08/30/2022] [Indexed: 11/29/2022] Open
Abstract
In this paper, gamma-irradiation was successfully used to intensify the yield of Zinc oxide nanoparticles (ZnONPs) produced by the fungus Alternaria tenuissima as a sustainable and green process. The obtained data showed that 500 Gy of gamma-irradiation increased ZnONPs' yield to approximately four-fold. The synthesized ZnONPs were then exploited to develop active Carboxymethyl Cellulose films by casting method at two different concentration of ZnONPs 0.5% and 1.0%. The physicochemical, mechanical, antioxidant, and antimicrobial properties of the prepared films were evaluated. The incorporation of ZnONPs in the Carboxymethyl Cellulose films had significantly decreased solubility (from 78.31% to 66.04% and 59.72%), water vapor permeability (from 0.475 g m-2 to 0.093 g m-2 and 0.026 g m-2), and oxygen transfer rate (from 24.7 × 10-2 to 2.3 × 10-2 and 1.8 × 10-2) of the respective prepared films. Meanwhile, tensile strength (from 183.2 MPa to 203.34 MPa and 235.94 MPa), elongation (from 13.0% to 62.5% and 83.7%), and Yang's modulus (from 325.344 to 1410.0 and 1814.96 MPa) of these films were increased. Moreover, the antioxidant and antimicrobial activities against several human and plant pathogens the prepared of Carboxymethyl Cellulose-ZnONPs films were significantly increased. In conclusion, the prepared Carboxymethyl Cellulose-ZnONPs films showed enhanced activities in comparison with Carboxymethyl Cellulose film without NPs. With these advantages, the fabricated Carboxymethyl Cellulose-ZnONPs films in this study could be effectively utilized as protective edible coating films of food products.
Collapse
Affiliation(s)
- Mervat M Anwar
- Plant Research Department, Nuclear Research Center, Egyptian Atomic Energy Authority, Cairo, Egypt.
| | - Sanaa S H Aly
- Food Engineering and Packing Department, Agriculture Research Centre, Food Technology Research Institute, Giza, Egypt
| | - Essam H Nasr
- Plant Research Department, Nuclear Research Center, Egyptian Atomic Energy Authority, Cairo, Egypt
| | - El-Sayed R El-Sayed
- Plant Research Department, Nuclear Research Center, Egyptian Atomic Energy Authority, Cairo, Egypt.
| |
Collapse
|
42
|
Kim YJ, Choe YE, Shin SJ, Park JH, Dashnyam K, Kim HS, Jun SK, Knowles JC, Kim HW, Lee JH, Lee HH. Photocatalytic effect-assisted antimicrobial activities of acrylic resin incorporating zinc oxide nanoflakes. BIOMATERIALS ADVANCES 2022; 139:213025. [PMID: 35882118 DOI: 10.1016/j.bioadv.2022.213025] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 06/13/2022] [Accepted: 07/05/2022] [Indexed: 06/15/2023]
Abstract
To overcome the deficiency of the antimicrobial effect of polymer, zinc oxide nanoparticles have been widely utilized as advanced nanofillers due to their antimicrobial and photocatalytic activity. However, the underlying antimicrobial mechanism has not been fully understood apart from topological and physical characteristics. In this study, we prepared zinc oxide nanoparticles-based acrylic resin to explore its antimicrobial mechanism under controlled mechanophysical conditions by using silane-treated zinc oxide nanoflakes (S-ZnNFs). S-ZnNFs incorporated acrylic resin (poly(methyl methacrylate), PMMA) composites up to 2 wt% were selected based on comparable mechanophysical properties (e.g., roughness, wettability, strength and hardness), possibly affecting antimicrobial properties beyond the zinc oxide nanoparticle effect, to bare PMMA. Antimicrobial adhesion results were still observed in 2 wt% S-ZnNFs incorporated PMMA using Candida albicans (C. albicans), one of the fungal infection species. In order to confirm the antimicrobial effects by photocatalysis, we pre-exposed the UV light on 2 wt% S-ZnNF composites before cell seeding, revealing synergetic antimicrobial effect via additional reactive oxygen species (ROS) generation to C. albicans over zinc oxide nanoparticle-induced one. RNA-seq analysis revealed distinguished cellular responses between zinc oxide nanoparticles and UV-mediated photocatalytic effect, but both linked to generation of intracellular ROS. Thus, the above data suggest that induction of high intracellular ROS of C. albicans was the main antimicrobial mechanism under controlled mechanophysical parameters and synergetic ROS accumulation can be induced by photocatalysis, recapitulating a promising use of a S-ZnNFs or possibly zinc oxide nanoparticles as intracellular-ROS-generating antimicrobial nanofillers in acrylic composite for biomedical applications.
Collapse
Affiliation(s)
- Yu-Jin Kim
- Department of Biomaterials Science, College of Dentistry, Dankook University, 119 Dandae-ro, Cheonan, Chungcheongnam-do, 31116, Republic of Korea
| | - Young-Eun Choe
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, 119 Dandae-ro, Cheonan, Chungcheongnam-do, 31116, Republic of Korea; Department of Nanobiomedical Science & BK21 PLUS NBM Global Research Center for Regenerative Medicine, Dankook University, 119 Dandae-ro, Cheonan, Chungcheongnam-do, 31116, Republic of Korea
| | - Seong-Jin Shin
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, 119 Dandae-ro, Cheonan, Chungcheongnam-do, 31116, Republic of Korea
| | - Jeong-Hui Park
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, 119 Dandae-ro, Cheonan, Chungcheongnam-do, 31116, Republic of Korea; Department of Nanobiomedical Science & BK21 PLUS NBM Global Research Center for Regenerative Medicine, Dankook University, 119 Dandae-ro, Cheonan, Chungcheongnam-do, 31116, Republic of Korea
| | - Khandmaa Dashnyam
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, 119 Dandae-ro, Cheonan, Chungcheongnam-do, 31116, Republic of Korea; Department of Nanobiomedical Science & BK21 PLUS NBM Global Research Center for Regenerative Medicine, Dankook University, 119 Dandae-ro, Cheonan, Chungcheongnam-do, 31116, Republic of Korea; Drug Research Institute, Mongolian Pharmaceutical University & Monos Group, Ulaanbaatar 14250, Mongolia
| | - Hye Sung Kim
- Department of Biomaterials Science, College of Dentistry, Dankook University, 119 Dandae-ro, Cheonan, Chungcheongnam-do, 31116, Republic of Korea; Institute of Tissue Regeneration Engineering (ITREN), Dankook University, 119 Dandae-ro, Cheonan, Chungcheongnam-do, 31116, Republic of Korea; Mechanobiology Dental Medicine Research Center, Dankook University, 119 Dandae-ro, Cheonan, Chungcheongnam-do, 31116, Republic of Korea; Cell & Matter Institute, Dankook University, 119 Dandae-ro, Cheonan, Chungcheongnam-do, 31116, Republic of Korea
| | - Soo-Kyung Jun
- Department of Biomaterials Science, College of Dentistry, Dankook University, 119 Dandae-ro, Cheonan, Chungcheongnam-do, 31116, Republic of Korea; Institute of Tissue Regeneration Engineering (ITREN), Dankook University, 119 Dandae-ro, Cheonan, Chungcheongnam-do, 31116, Republic of Korea; Department of Hygiene, Hanseo University, 46 Hanseo 1-ro, Seosan, Chungcheongnam-do, 31962, Republic of Korea
| | - Jonathan C Knowles
- Department of Nanobiomedical Science & BK21 PLUS NBM Global Research Center for Regenerative Medicine, Dankook University, 119 Dandae-ro, Cheonan, Chungcheongnam-do, 31116, Republic of Korea; UCL Eastman-Korea Dental Medicine Innovation Centre, Dankook University, 119 Dandae-ro, Cheonan, Chungcheongnam-do, 31116, Republic of Korea; Cell & Matter Institute, Dankook University, 119 Dandae-ro, Cheonan, Chungcheongnam-do, 31116, Republic of Korea; Division of Biomaterials and Tissue Engineering, Eastman Dental Institute, Royal Free Hospital, Rowland Hill Street, London NW3 2PF, UK; The Discoveries Centre for Regenerative and Precision Medicine, Eastman Dental Institute, University College London, London, UK
| | - Hae-Won Kim
- Department of Biomaterials Science, College of Dentistry, Dankook University, 119 Dandae-ro, Cheonan, Chungcheongnam-do, 31116, Republic of Korea; Institute of Tissue Regeneration Engineering (ITREN), Dankook University, 119 Dandae-ro, Cheonan, Chungcheongnam-do, 31116, Republic of Korea; Department of Nanobiomedical Science & BK21 PLUS NBM Global Research Center for Regenerative Medicine, Dankook University, 119 Dandae-ro, Cheonan, Chungcheongnam-do, 31116, Republic of Korea; Mechanobiology Dental Medicine Research Center, Dankook University, 119 Dandae-ro, Cheonan, Chungcheongnam-do, 31116, Republic of Korea; UCL Eastman-Korea Dental Medicine Innovation Centre, Dankook University, 119 Dandae-ro, Cheonan, Chungcheongnam-do, 31116, Republic of Korea; Cell & Matter Institute, Dankook University, 119 Dandae-ro, Cheonan, Chungcheongnam-do, 31116, Republic of Korea
| | - Jung-Hwan Lee
- Department of Biomaterials Science, College of Dentistry, Dankook University, 119 Dandae-ro, Cheonan, Chungcheongnam-do, 31116, Republic of Korea; Institute of Tissue Regeneration Engineering (ITREN), Dankook University, 119 Dandae-ro, Cheonan, Chungcheongnam-do, 31116, Republic of Korea; Department of Nanobiomedical Science & BK21 PLUS NBM Global Research Center for Regenerative Medicine, Dankook University, 119 Dandae-ro, Cheonan, Chungcheongnam-do, 31116, Republic of Korea; Mechanobiology Dental Medicine Research Center, Dankook University, 119 Dandae-ro, Cheonan, Chungcheongnam-do, 31116, Republic of Korea; UCL Eastman-Korea Dental Medicine Innovation Centre, Dankook University, 119 Dandae-ro, Cheonan, Chungcheongnam-do, 31116, Republic of Korea; Cell & Matter Institute, Dankook University, 119 Dandae-ro, Cheonan, Chungcheongnam-do, 31116, Republic of Korea.
| | - Hae-Hyoung Lee
- Department of Biomaterials Science, College of Dentistry, Dankook University, 119 Dandae-ro, Cheonan, Chungcheongnam-do, 31116, Republic of Korea; Institute of Tissue Regeneration Engineering (ITREN), Dankook University, 119 Dandae-ro, Cheonan, Chungcheongnam-do, 31116, Republic of Korea; Department of Nanobiomedical Science & BK21 PLUS NBM Global Research Center for Regenerative Medicine, Dankook University, 119 Dandae-ro, Cheonan, Chungcheongnam-do, 31116, Republic of Korea; UCL Eastman-Korea Dental Medicine Innovation Centre, Dankook University, 119 Dandae-ro, Cheonan, Chungcheongnam-do, 31116, Republic of Korea.
| |
Collapse
|
43
|
Catalytic potential of endophytes facilitates synthesis of biometallic zinc oxide nanoparticles for agricultural application. Biometals 2022; 35:967-985. [PMID: 35834149 DOI: 10.1007/s10534-022-00417-1] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Accepted: 06/21/2022] [Indexed: 01/06/2023]
Abstract
Recent advances fascinated the use of biological resources in combination with metals to obtain high quality biometals and apply its advantages in different fields. Endophytic mediated Zinc oxide nanoparticles (ZnO-NPs) is an economical and ecofriendly way for farmers to avoid Zn deficiency in rice crop and obtain high yield. Here we synthesized ZnO-NPs utilizing endophytic bacterial strain of Enterobacter hormaechei (E. hormaechei). The physiochemical properties of the prepared NPs were determined through UV-Vis spectroscopy, XRD, FT-IR, SEM and TEM. The prepared NPs revealed surface plasmon resonance (SPR) at 320 nm (nm) and crystalline structure with 21 nm average crystalline size. FT-IR spectra showed the presence of carboxylic, alcohol and amine functional groups, which confirm the biometallic assembling of the ZnO and endophytic bacterial functional groups. SEM showed pyramidal symmetry whereas TEM revealed poly dispersed spherical shape with particle size distribution 18-48 nm. Our results showed that prepared NPs possess significant antifungal, antibacterial and antioxidant potential at 25, 50 and 100 µg/mL concentrations. Moreover, Cytotoxic and hemolytic assay showed significant results (less % viability and hemolysis activity) at 50 and 100 µg/mL (ZnO-NP's) concentrations as compared to control. The prepared ZnO-NPs were used as bio fertilizer in various concentrations as a foliar spray, which showed significant enhancement of the rice plant growth, along with chlorophyll, proteins and carotenoid contents. These results recommend that endophytic mediated ZnO-NPs are biocompatible and possess significant potential for agricultural applications.
Collapse
|
44
|
Microbial Mediated Synthesis of Zinc Oxide Nanoparticles, Characterization and Multifaceted Applications. J Inorg Organomet Polym Mater 2022. [DOI: 10.1007/s10904-022-02406-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
AbstractNanoparticles have gained considerable importance compared to bulk counterparts due to their unique properties. Due to their high surface to volume ratio and high reactivity, metallic and metal-oxide nanostructures have shown great potential applications. Among them, zinc oxide nanoparticles (ZnONPs) have gained tremendous attention attributed to their unique properties such as low toxicity, biocompatibility, simplicity, easy fabrication, and environmental friendly. Remarkably, ZnONPs exhibit optical, physical, antimicrobial, anticancer, anti-inflammatory and wound healing properties. These nanoparticles have been applied in various fields such as in biomedicine, biosensors, electronics, food, cosmetic industries, textile, agriculture and environment. The synthesis of ZnONPs can be performed by chemical, physical and biological methods. Although the chemical and physical methods suffer from some disadvantages such as the involvement of high temperature and pressure conditions, high cost and not environmentally friendly, the green synthesis of ZnONPs offers a promising substitute to these conventional methods. On that account, the microbial mediated synthesis of ZnONPs is clean, eco-friendly, nontoxic and biocompatible method. This paper reviews the microbial synthesis of ZnONPs, parameters used for the optimization process and their physicochemical properties. The potential applications of ZnONPs in biomedical, agricultural and environmental fields as well as their toxic aspects on human beings and animals have been reviewed.
Collapse
|
45
|
Hussein HG, El-Sayed ESR, Younis NA, Hamdy AEHA, Easa SM. Harnessing endophytic fungi for biosynthesis of selenium nanoparticles and exploring their bioactivities. AMB Express 2022; 12:68. [PMID: 35674975 PMCID: PMC9177918 DOI: 10.1186/s13568-022-01408-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 05/24/2022] [Indexed: 01/03/2023] Open
Abstract
In the light of the fast growing several applications of selenium nanoparticles (SeNPs) in different industrial and agricultural sectors, this paper was conducted to explore the suitability of endophytic fungi as nano-factories for SeNPs. Thus, 75 fungal isolates were recovered from plant tissues and tested for their efficacy to biosynthesize SeNPs. Four promising strains were found able to synthesis SeNPs with different characteristics and identified. These strains were Aspergillus quadrilineatus isolated from the twigs of Ricinus communis, Aspergillus ochraceus isolated from the leaves of Ricinus communis, Aspergillus terreus isolated from the twigs of Azadirachta indica, and Fusarium equiseti isolated from the twigs of Hibiscus rose-sinensis. The synthesized SeNPs were characterized by several techniques viz., UV–Vis, X-ray diffraction, Dynamic light scattering analyses, High resolution transmission electron microscopy, and Fourier transform infrared spectroscopy, to study their crystalline structure, particle sized distribution, and morphology. Furthermore, the in vitro antimicrobial and antioxidant activities were evaluated. SeNPs synthesized by the four strains showed potent antifungal and antibacterial potentials against different human and phyto- pathogens. Moreover, SeNPs synthesized by the respective strains showed promising antioxidant power with IC50 values of 198.32, 151.23, 100.31, and 91.52 µg mL− 1. To the best of our knowledge, this is the first study on the use of endophytic fungi for SeNPs’ biosynthesis. The presented research recommends the use of endophytic fungi as facile one-pot production bio-factories of SeNPs with promising characteristics. Discovery of four different promising endophytic fungi for a facile-synthesis of SeNPs. SeNPs were successfully mycosynthesized and characterized. SeNPs exhibited promising antifungal, antibacterial, and antioxidant activities.
Collapse
Affiliation(s)
- Heba G Hussein
- Plant Research Department, Nuclear Research Center, Egyptian Atomic Energy Authority, Cairo, Egypt
| | - El-Sayed R El-Sayed
- Plant Research Department, Nuclear Research Center, Egyptian Atomic Energy Authority, Cairo, Egypt.
| | - Nahed A Younis
- Plant Research Department, Nuclear Research Center, Egyptian Atomic Energy Authority, Cairo, Egypt
| | - Abd El Hamid A Hamdy
- Chemistry of Natural and Microbial Products Department, National Research Center, Giza, Egypt
| | - Saadia M Easa
- Microbiology Department, Faculty of Science, Ain Shams University, Cairo, Egypt
| |
Collapse
|
46
|
Kamaruzaman NH, Mohd Noor NN, Radin Mohamed RMS, Al-Gheethi A, Ponnusamy SK, Sharma A, Vo DVN. Applicability of bio-synthesized nanoparticles in fungal secondary metabolites products and plant extracts for eliminating antibiotic-resistant bacteria risks in non-clinical environments. ENVIRONMENTAL RESEARCH 2022; 209:112831. [PMID: 35123962 DOI: 10.1016/j.envres.2022.112831] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 01/23/2022] [Accepted: 01/24/2022] [Indexed: 06/14/2023]
Abstract
The abundance of antibiotic-resistant bacteria in the prawn pond effluents can substantially impact the natural environment. The settlement ponds, which are the most common treatment method for farms wastewater, might effectively reduce the suspended solids and organic matter. However, the method is insufficient for bacterial inactivation. The current paper seeks to highlight the environmental issue associated with the distribution of antibiotic resistant bacteria (ARB) from prawn farm wastewater and their impact on the microbial complex community in the surface water which receiving these wastes. The inactivation of antibiotic-resistant bacteria in prawn wastewater is strongly recommended because the presence of antibiotic-resistant bacteria in the environment causes water pollution and public health issues. The nanoparticles are more efficient for bacterial inactivation. They are widely accepted due to their high chemical and mechanical stability, broad spectrum of radiation absorption, high catalytic activity, and high antimicrobial activity. Many studies have examined the use of fungi or plants extract to synthesis zinc oxide nanoparticles (ZnO NPs). It is evident from recent papers in the literature that green synthesized ZnO NPs from microbes and plant extracts are non-toxic and effective. ZnO NPs inactivate the bacterial cells as a function for releasing reactive oxygen species (ROS) and zinc ions. The inactivation of antibiotic-resistant bacteria tends to be more than 90% which exhibit strong antimicrobial behavior against bacterial species.
Collapse
Affiliation(s)
- Nur Hazirah Kamaruzaman
- Micropollutant Research Centre (MPRC), Faculty of Civil Engineering and Built Environment, Universiti Tun Hussein Onn Malaysia (UTHM), 86400, Parit Raja, Batu Pahat, Johor, Malaysia
| | - Nur Nabilah Mohd Noor
- Micropollutant Research Centre (MPRC), Faculty of Civil Engineering and Built Environment, Universiti Tun Hussein Onn Malaysia (UTHM), 86400, Parit Raja, Batu Pahat, Johor, Malaysia
| | - Radin Maya Saphira Radin Mohamed
- Micropollutant Research Centre (MPRC), Faculty of Civil Engineering and Built Environment, Universiti Tun Hussein Onn Malaysia (UTHM), 86400, Parit Raja, Batu Pahat, Johor, Malaysia.
| | - Adel Al-Gheethi
- Micropollutant Research Centre (MPRC), Faculty of Civil Engineering and Built Environment, Universiti Tun Hussein Onn Malaysia (UTHM), 86400, Parit Raja, Batu Pahat, Johor, Malaysia.
| | - Senthil Kumar Ponnusamy
- Department of Chemical Engineering, Sri Sivasubramaniya Nadar College of Engineering, Chennai, 603110, India
| | - Ajit Sharma
- Department of Chemistry, School of Chemical Engineering and Physical Sciences, Lovely Professional University, Phagwara, 144411, India
| | - Dai-Viet N Vo
- Center of Excellence for Green Energy and Environmental Nanomaterials (CE@GrEEN), Nguyen Tat Thanh University, 300A Nguyen Tat Thanh, District 4, Ho Chi Minh City, 755414, Viet Nam
| |
Collapse
|
47
|
Parvathiraja C, Shailajha S. High-performance visible light photocatalyst antibacterial applications of ZnO and plasmonic-decorated ZnO nanoparticles. APPLIED NANOSCIENCE 2022. [DOI: 10.1007/s13204-022-02488-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
48
|
Abstract
Metal nanoparticles (NPs) are increasingly being used in many areas, e.g., industry, pharmacy, and biomedical engineering. NPs can be obtained through chemical and biological synthesis or using physical methods. AgNPs, AuNPs, CuNPs, FeNPs, MgNPs, SnO2NPs, TiO2NPs, and ZnONPs are the most commonly synthesized metal nanoparticles. Many of them have anti-microbial properties and documented activity supported by many tests against some species of pathogenic bacteria, viruses, and fungi. AgNPs, which are used for the production of commercial self-sterilizing packages, are one of the best-explored nanoparticles. Moreover, the EFSA has approved the use of small doses of silver nanoparticles (0.05 mg Ag·kg−1) to food products. Recent studies have shown that metal NPs can be used for the production of coatings to prevent the spread of the SARS-CoV-2 virus, which has caused the global pandemic. Some nanoparticles (e.g., ZnONPs and MgONPs) have the Generally Recognized As Safe (GRAS) status, i.e., they are considered safe for consumption and can be used for the production of edible coatings, protecting food against spoilage. Promising results have been obtained in research on the use of more than one type of nanometals, which prevents the development of pathogen resistance through various mechanisms of inactivation thereof.
Collapse
|
49
|
El-Sayed ESR, Mousa SA, Abdou DA, Abo El-Seoud MA, Elmehlawy AA, Mohamed SS. Exploiting the exceptional biosynthetic potency of the endophytic Aspergillus terreus in enhancing production of Co3O4, CuO, Fe3O4, NiO, and ZnO nanoparticles using bioprocess optimization and gamma irradiation. Saudi J Biol Sci 2022; 29:2463-2474. [PMID: 35531225 PMCID: PMC9072909 DOI: 10.1016/j.sjbs.2021.12.019] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 12/02/2021] [Accepted: 12/09/2021] [Indexed: 12/17/2022] Open
Abstract
Developing a suitable applicative process and scaling up the microbial synthesis of nanomaterials is an attractive and emerging prospect for a future sustainable industrial production. In this paper, optimization of fermentation conditions for enhanced production of Co3O4, CuO, Fe3O4, NiO, and ZnO nanoparticles by the endophytic A. terreus ORG-1 was studied. Different cultivation conditions were evaluated. Then, a response surface methodology program was used to optimize physical conditions controlling the biosynthesis of these NPs. Finally, the use of gamma irradiation for improvement of NPs’ production was adopted. Under the optimum conditions and after gamma irradiation, the final yields of the respective NPs reached 545.71, 651.67, 463.19, 954.88, 1356.42 mg L−1. To the best of our knowledge, this is the first report on the production and enhancement of different types of nanomaterials from one microbial culture that can open up the way towards the industrialization of the microbial production of nanomaterials.
Collapse
|
50
|
Abdullah FH, Bakar NHHA, Bakar MA. Current advancements on the fabrication, modification, and industrial application of zinc oxide as photocatalyst in the removal of organic and inorganic contaminants in aquatic systems. JOURNAL OF HAZARDOUS MATERIALS 2022; 424:127416. [PMID: 34655867 DOI: 10.1016/j.jhazmat.2021.127416] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Revised: 09/08/2021] [Accepted: 09/30/2021] [Indexed: 06/13/2023]
Abstract
Industrial wastewaters contain hazardous contaminants that pollute the environment and cause socioeconomic problems, thus demanding the employment of effective remediation procedures such as photocatalysis. Zinc oxide (ZnO) nanomaterials have emerged to be a promising photocatalyst for the removal of pollutants in wastewater owing to their excellent and attractive characteristics. The dynamic tunable features of ZnO allow a wide range of functionalization for enhanced photocatalytic efficiency. The current review summarizes the recent advances in the fabrication, modification, and industrial application of ZnO photocatalyst based on the analysis of the latest studies, including the following aspects: (1) overview on the properties, structures, and features of ZnO, (2) employment of dopants, heterojunction, and immobilization techniques for improved photodegradation performance, (3) applicability of suspended and immobilized photocatalytic systems, (4) application of ZnO hybrids for the removal of various types of hazardous pollutants from different wastewater sources in industries, and (5) potential of bio-inspired ZnO hybrid nanomaterials for photocatalytic applications using renewable and biodegradable resources for greener photocatalytic technologies. In addition, the knowledge gap in this field of work is also highlighted.
Collapse
Affiliation(s)
- F H Abdullah
- Nanoscience Research Laboratory, School of Chemical Sciences, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia.
| | - N H H Abu Bakar
- Nanoscience Research Laboratory, School of Chemical Sciences, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia.
| | - M Abu Bakar
- Nanoscience Research Laboratory, School of Chemical Sciences, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia
| |
Collapse
|