1
|
Zhvania MG, Lobzhanidze G, Pochkhidze N, Japaridze N, Tchelidze P, Rzayev F, Gasimov E. Propionic acid affects the synaptic architecture of rat hippocampus and prefrontal cortex. Micron 2024; 181:103624. [PMID: 38492241 DOI: 10.1016/j.micron.2024.103624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 02/24/2024] [Accepted: 03/03/2024] [Indexed: 03/18/2024]
Abstract
It is well documented that propionic acid (PPA) produces behavioral, morphological, molecular and immune responses in rats that are characteristic of autism spectrum disorder in humans. However, whether PPA affects the ultrastructure and synaptic architecture of regions of autistic brain has not been adequately addressed. Earlier we show that single intraperitoneal (IP) injection of PPA (175 mg/kg) produces superficial changes in the spatial memory and learning of adolescent male Wistar rats. However, in neurons, synapses and glial cells of hippocampal CA1 area and medial prefrontal cortex transient (mainly) or enduring alterations were detected. In this study, we used electron microscopic morphometric analysis to test the effect of PPA on different structural parameters of axodendritic synapses of the hippocampus and prefrontal cortex. The animals were treated with a single IP injection of PPA (175 mg/kg). The length and width of synaptic active zone, the area of presynaptic and postsynaptic mitochondria, the distance between presynaptic mitochondria and the synapse active zone, the distance between postsynaptic mitochondria and postsynaptic density and the depth and opening diameter of neuronal porosome complex were evaluated. Our results show that synaptic mitochondria of the hippocampus and prefrontal cortex are the most vulnerable to PPA treatment: in both regions, the area of postsynaptic mitochondria were increased. In general, our results show that even small dose of PPA, which produces only superficial effects on spatial memory and learning is able to alter the synapse architecture in brain regions involved in cognition and autism pathogenesis. Therefore, the microbiome may be involved in the control of neurotransmission in these regions.
Collapse
Affiliation(s)
- Mzia G Zhvania
- School of Natural Sciences and Medicine, Ilia State University, 3/5 K. Cholokashvili Avenue, Tbilisi 0162, Georgia; Department of Brain Ultrastructure and Nanoarchitecture, Ivane Beritashvili Center of Experimental Biomedicine, 14 Gotua Street, Tbilisi 0160, Georgia.
| | - Giorgi Lobzhanidze
- Department of Brain Ultrastructure and Nanoarchitecture, Ivane Beritashvili Center of Experimental Biomedicine, 14 Gotua Street, Tbilisi 0160, Georgia
| | - Nino Pochkhidze
- School of Natural Sciences and Medicine, Ilia State University, 3/5 K. Cholokashvili Avenue, Tbilisi 0162, Georgia; Department of Brain Ultrastructure and Nanoarchitecture, Ivane Beritashvili Center of Experimental Biomedicine, 14 Gotua Street, Tbilisi 0160, Georgia
| | - Nadezhda Japaridze
- Department of Brain Ultrastructure and Nanoarchitecture, Ivane Beritashvili Center of Experimental Biomedicine, 14 Gotua Street, Tbilisi 0160, Georgia; New Vision University, 1A Evgeni Mikeladze Street, Tbilisi 0159, Georgia
| | - Pavel Tchelidze
- New Vision University, 1A Evgeni Mikeladze Street, Tbilisi 0159, Georgia
| | - Fuad Rzayev
- Azerbaijan Medical University, 23 Bakikhanov Street, Baku 1022, Azerbaijan
| | - Eldar Gasimov
- Azerbaijan Medical University, 23 Bakikhanov Street, Baku 1022, Azerbaijan
| |
Collapse
|
2
|
Jimenez V, Miranda K, Ingrid A. The old and the new about the contractile vacuole of Trypanosoma cruzi. J Eukaryot Microbiol 2022; 69:e12939. [PMID: 35916682 PMCID: PMC11178379 DOI: 10.1111/jeu.12939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 07/27/2022] [Accepted: 07/27/2022] [Indexed: 11/28/2022]
Abstract
Osmoregulation is a conserved cellular process required for the survival of all organisms. In protists, the need for robust compensatory mechanisms that can maintain cell volume and tonicity within physiological range is even more relevant, as their life cycles are often completed in different environments. Trypanosoma cruzi, the protozoan pathogen responsible for Chagas disease, is transmitted by an insect vector to multiple types of mammalian hosts. The contractile vacuole complex (CVC) is an organelle that senses and compensates osmotic changes in the parasites, ensuring their survival upon ionic and osmotic challenges. Recent work shows that the contractile vacuole is also a key component of the secretory and endocytic pathways, regulating the selective targeting of surface proteins during differentiation. Here we summarize our current knowledge of the mechanisms involved in the osmoregulatory processes that take place in the vacuole, and we explore the new and exciting functions of this organelle in cell trafficking and signaling.
Collapse
Affiliation(s)
- Veronica Jimenez
- Department of Biological Science, College of Natural Sciences and Mathematics, California State University Fullerton, Fullerton, California, USA
| | - Kildare Miranda
- Laboratorio de Ultraestrutura Celular Hertha Meyer, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
- Centro Nacional de Biologia Estrutural e Bioimagem, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Augusto Ingrid
- Department of Biological Science, College of Natural Sciences and Mathematics, California State University Fullerton, Fullerton, California, USA
- Laboratorio de Ultraestrutura Celular Hertha Meyer, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
3
|
Behavioral and neuroanatomical effects on exposure to White noise in rats. Neurosci Lett 2020; 728:134898. [DOI: 10.1016/j.neulet.2020.134898] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Revised: 03/04/2020] [Accepted: 03/06/2020] [Indexed: 12/13/2022]
|
4
|
Development of pancreatic acini in embryos of the grass snake
Natrix natrix
(Lepidosauria, Serpentes). J Morphol 2019; 281:110-121. [DOI: 10.1002/jmor.21083] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Revised: 10/17/2019] [Accepted: 10/28/2019] [Indexed: 12/16/2022]
|
5
|
Saffi GT, Botelho RJ. Lysosome Fission: Planning for an Exit. Trends Cell Biol 2019; 29:635-646. [PMID: 31171420 DOI: 10.1016/j.tcb.2019.05.003] [Citation(s) in RCA: 72] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Revised: 05/01/2019] [Accepted: 05/03/2019] [Indexed: 01/26/2023]
Abstract
Lysosomes are acidic and degradative organelles that receive and digest a plethora of molecular and particulate cargo delivered by endocytosis, autophagy, and phagocytosis. The mechanisms responsible for sorting, transporting, and ultimately delivering membranes and cargo to lysosomes through fusion have been intensely investigated. Much less is understood about lysosome fission, which is necessary to balance the incessant flow of cargo into lysosomes and maintain steady-state number, size, and function of lysosomes. Here, we review the emerging picture of how lipid signals, coat and adaptor proteins, and motor-cytoskeletal assemblies drive budding, tubulation, splitting, and 'kiss-and-run' events that enable fission and exit from lysosomes and related organelles.
Collapse
Affiliation(s)
- Golam T Saffi
- Department of Chemistry and Biology and the Molecular Science Graduate Program, Ryerson University, Toronto, ONT, M5B2K3, Canada
| | - Roberto J Botelho
- Department of Chemistry and Biology and the Molecular Science Graduate Program, Ryerson University, Toronto, ONT, M5B2K3, Canada.
| |
Collapse
|
6
|
Gi Protein Modulation of the Potassium Channel TASK-2 Mediates Vesicle Osmotic Swelling to Facilitate the Fusion of Aquaporin-2 Water Channel Containing Vesicles. Cells 2018; 7:cells7120276. [PMID: 30572630 PMCID: PMC6315517 DOI: 10.3390/cells7120276] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Revised: 12/13/2018] [Accepted: 12/13/2018] [Indexed: 11/17/2022] Open
Abstract
Vesicle fusion is a fundamental cell biological process similar from yeasts to humans. For secretory vesicles, swelling is considered a step required for the expulsion of intravesicular content. Here this concept is revisited providing evidence that it may instead represent a general mechanism. We report the first example that non-secretory vesicles, committed to insert the Aquaporin-2 water channel into the plasma membrane, swell and this phenomenon is required for fusion to plasma membrane. Through an interdisciplinary approach, using atomic force microscope (AFM), a fluorescence-based assay of vesicle volume changes and NMR spectroscopy to measure water self-diffusion coefficient, we provide evidence that Gi protein modulation of potassium channel TASK-2 localized in AQP2 vesicles, is required for vesicle swelling. Estimated intravesicular K⁺ concentration in AQP2 vesicles, as measured by inductively coupled plasma mass spectrometry, was 5.3 mM, demonstrating the existence of an inwardly K⁺ chemical gradient likely generating an osmotic gradient causing vesicle swelling upon TASK-2 gating. Of note, abrogation of K⁺ gradient significantly impaired fusion between vesicles and plasma membrane. We conclude that vesicle swelling is a potentially important prerequisite for vesicle fusion to the plasma membrane and may be required also for other non-secretory vesicles, depicting a general mechanism for vesicle fusion.
Collapse
|
7
|
Sharma S, LeClaire M, Gimzewski JK. Ascent of atomic force microscopy as a nanoanalytical tool for exosomes and other extracellular vesicles. NANOTECHNOLOGY 2018; 29:132001. [PMID: 29376505 DOI: 10.1088/1361-6528/aaab06] [Citation(s) in RCA: 75] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Over the last 30 years, atomic force microscopy (AFM) has made several significant contributions to the field of biology and medicine. In this review, we draw our attention to the recent applications and promise of AFM as a high-resolution imaging and force sensing technology for probing subcellular vesicles: exosomes and other extracellular vesicles. Exosomes are naturally occurring nanoparticles found in several body fluids such as blood, saliva, cerebrospinal fluid, amniotic fluid and urine. Exosomes mediate cell-cell communication, transport proteins and genetic content between distant cells, and are now known to play important roles in progression of diseases such as cancers, neurodegenerative disorders and infectious diseases. Because exosomes are smaller than 100 nm (about 30-120 nm), the structural and molecular characterization of these vesicles at the individual level has been challenging. AFM has revealed a new degree of complexity in these nanosized vesicles and generated growing interest as a nanoscale tool for characterizing the abundance, morphology, biomechanics, and biomolecular make-up of exosomes. With the recent interest in exosomes for diagnostic and therapeutic applications, AFM-based characterization promises to contribute towards improved understanding of these particles at the single vesicle and sub-vesicular levels. When coupled with complementary methods like optical super resolution STED and Raman, AFM could further unlock the potential of exosomes as disease biomarkers and as therapeutic agents.
Collapse
Affiliation(s)
- S Sharma
- California NanoSystems Institute, University of California, Los Angeles, CA 90095, United States of America
| | | | | |
Collapse
|
8
|
Singh P, Hui CY. Hydrodynamics govern the pre-fusion docking time of synaptic vesicles. J R Soc Interface 2018; 15:rsif.2017.0818. [PMID: 29386403 DOI: 10.1098/rsif.2017.0818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Accepted: 01/09/2018] [Indexed: 11/12/2022] Open
Abstract
Synaptic vesicle fusion is a crucial step in the neurotransmission process. Neurotransmitter-filled vesicles are pre-docked at the synapse by the mediation of ribbon structures and SNARE proteins at the ribbon synapses. An electrical impulse triggers the fusion process of pre-docked vesicles, leading to the formation of a fusion pore and subsequently resulting in the release of neurotransmitter into the synaptic cleft. In this study, a continuum model of lipid membrane along with lubrication theory is used to determine the traverse time of the synaptic vesicle under the influence of hydrodynamic forces. We find that the traverse time is strongly dependent on how fast the driving force decays or grows with closure of the gap between the vesicle and the plasma membrane. If the correct behaviour is chosen, the traverse time obtained is of the order of a few hundred milliseconds and lies within the experimentally obtained value of approximately 250 ms (Zenisek D, Steyer JA, Almers W. 2000 Nature406, 849-854 (doi:10.1038/35022500)). We hypothesize that there are two different force behaviours, which complies with the experimental findings of pre-fusion docking of synaptic vesicles at the ribbon synapses. The common theme in the proposed force models is that the driving force has to very rapidly increase or decrease with the amount of clamping.
Collapse
Affiliation(s)
- Pankaj Singh
- Department of Theoretical and Applied Mechanics, Cornell University, Ithaca, NY 14853, USA
| | - Chung-Yuen Hui
- Department of Mechanical and Aerospace Engineering, Cornell University, Ithaca, NY 14853, USA
| |
Collapse
|
9
|
Lewis KT, Maddipati KR, Naik AR, Jena BP. Unique Lipid Chemistry of Synaptic Vesicle and Synaptosome Membrane Revealed Using Mass Spectrometry. ACS Chem Neurosci 2017; 8:1163-1169. [PMID: 28244738 DOI: 10.1021/acschemneuro.7b00030] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Synaptic vesicles measuring 30-50 nm in diameter containing neurotransmitters either completely collapse at the presynaptic membrane or dock and transiently fuse at the base of specialized 15 nm cup-shaped lipoprotein structures called porosomes at the presynaptic membrane of synaptosomes to release neurotransmitters. Recent study reports the unique composition of major lipids associated with neuronal porosomes. Given that lipids greatly influence the association and functions of membrane proteins, differences in lipid composition of synaptic vesicle and the synaptosome membrane was hypothesized. To test this hypothesis, the lipidome of isolated synaptosome, synaptosome membrane, and synaptic vesicle preparation were determined by using mass spectrometry in the current study. Results from the study demonstrate the enriched presence of triacyl glycerols and sphingomyelins in synaptic vesicles, as opposed to the enriched presence of phospholipids in the synaptosome membrane fraction, reflecting on the tight regulation of nerve cells in compartmentalization of membrane lipids at the nerve terminal.
Collapse
Affiliation(s)
- Kenneth T Lewis
- Department of Physiology and ‡Department of Pathology, Lipidomics Core Facility, Wayne State University School of Medicine , Detroit, Michigan 48201, United States
| | - Krishna R Maddipati
- Department of Physiology and ‡Department of Pathology, Lipidomics Core Facility, Wayne State University School of Medicine , Detroit, Michigan 48201, United States
| | - Akshata R Naik
- Department of Physiology and ‡Department of Pathology, Lipidomics Core Facility, Wayne State University School of Medicine , Detroit, Michigan 48201, United States
| | - Bhanu P Jena
- Department of Physiology and ‡Department of Pathology, Lipidomics Core Facility, Wayne State University School of Medicine , Detroit, Michigan 48201, United States
| |
Collapse
|
10
|
Ren L, Pour MD, Majdi S, Li X, Malmberg P, Ewing AG. Zinc Regulates Chemical-Transmitter Storage in Nanometer Vesicles and Exocytosis Dynamics as Measured by Amperometry. Angew Chem Int Ed Engl 2017; 56:4970-4975. [PMID: 28319311 PMCID: PMC5540326 DOI: 10.1002/anie.201700095] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2017] [Indexed: 01/12/2023]
Abstract
We applied electrochemical techniques with nano-tip electrodes to show that micromolar concentrations of zinc not only trigger changes in the dynamics of exocytosis, but also vesicle content in a model cell line. The vesicle catecholamine content in PC12 cells is significantly decreased after 100 μm zinc treatment, but, catecholamine release during exocytosis remains nearly the same. This contrasts with the number of molecules stored in the exocytosis vesicles, which decreases, and we find that the amount of catecholamine released from zinc-treated cells reaches nearly 100 % content expelled. Further investigation shows that zinc slows down exocytotic release. Our results provide the missing link between zinc and the regulation of neurotransmitter release processes, which might be important in memory formation and storage.
Collapse
Affiliation(s)
- Lin Ren
- Department of Chemistry and Chemical Engineering, Chalmers University of Technology, Kemivägen 10, 412 96, Gothenburg, Sweden
| | - Masoumeh Dowlatshahi Pour
- Department of Chemistry and Chemical Engineering, Chalmers University of Technology, Kemivägen 10, 412 96, Gothenburg, Sweden
- National Center for Imaging Mass Spectrometry, Chalmers University of Technology and Gothenburg University, Kemivägen 10, 412 96, Gothenburg, Sweden
| | - Soodabeh Majdi
- Department of Chemistry and Molecular Biology, University of Gothenburg, Kemivägen 10, 412 96, Gothenburg, Sweden
| | - Xianchan Li
- Department of Chemistry and Molecular Biology, University of Gothenburg, Kemivägen 10, 412 96, Gothenburg, Sweden
| | - Per Malmberg
- Department of Chemistry and Chemical Engineering, Chalmers University of Technology, Kemivägen 10, 412 96, Gothenburg, Sweden
- National Center for Imaging Mass Spectrometry, Chalmers University of Technology and Gothenburg University, Kemivägen 10, 412 96, Gothenburg, Sweden
| | - Andrew G Ewing
- Department of Chemistry and Chemical Engineering, Chalmers University of Technology, Kemivägen 10, 412 96, Gothenburg, Sweden
- National Center for Imaging Mass Spectrometry, Chalmers University of Technology and Gothenburg University, Kemivägen 10, 412 96, Gothenburg, Sweden
- Department of Chemistry and Molecular Biology, University of Gothenburg, Kemivägen 10, 412 96, Gothenburg, Sweden
| |
Collapse
|
11
|
Ren L, Pour MD, Majdi S, Li X, Malmberg P, Ewing AG. Zinc Regulates Chemical-Transmitter Storage in Nanometer Vesicles and Exocytosis Dynamics as Measured by Amperometry. Angew Chem Int Ed Engl 2017. [DOI: 10.1002/ange.201700095] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Lin Ren
- Department of Chemistry and Chemical Engineering; Chalmers University of Technology; Kemivägen 10 412 96 Gothenburg Sweden
| | - Masoumeh Dowlatshahi Pour
- Department of Chemistry and Chemical Engineering; Chalmers University of Technology; Kemivägen 10 412 96 Gothenburg Sweden
- National Center for Imaging Mass Spectrometry; Chalmers University of Technology and Gothenburg University; Kemivägen 10 412 96 Gothenburg Sweden
| | - Soodabeh Majdi
- Department of Chemistry and Molecular Biology; University of Gothenburg; Kemivägen 10 412 96 Gothenburg Sweden
| | - Xianchan Li
- Department of Chemistry and Molecular Biology; University of Gothenburg; Kemivägen 10 412 96 Gothenburg Sweden
| | - Per Malmberg
- Department of Chemistry and Chemical Engineering; Chalmers University of Technology; Kemivägen 10 412 96 Gothenburg Sweden
- National Center for Imaging Mass Spectrometry; Chalmers University of Technology and Gothenburg University; Kemivägen 10 412 96 Gothenburg Sweden
| | - Andrew G. Ewing
- Department of Chemistry and Chemical Engineering; Chalmers University of Technology; Kemivägen 10 412 96 Gothenburg Sweden
- National Center for Imaging Mass Spectrometry; Chalmers University of Technology and Gothenburg University; Kemivägen 10 412 96 Gothenburg Sweden
- Department of Chemistry and Molecular Biology; University of Gothenburg; Kemivägen 10 412 96 Gothenburg Sweden
| |
Collapse
|
12
|
Naik AR, Kulkarni SP, Lewis KT, Taatjes DJ, Jena BP. Functional Reconstitution of the Insulin-Secreting Porosome Complex in Live Cells. Endocrinology 2016; 157:54-60. [PMID: 26523491 PMCID: PMC4701877 DOI: 10.1210/en.2015-1653] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Supramolecular cup-shaped lipoprotein structures called porosomes embedded in the cell plasma membrane mediate fractional release of intravesicular contents from cells during secretion. The presence of porosomes, have been documented in many cell types including neurons, acinar cells of the exocrine pancreas, GH-secreting cells of the pituitary, and insulin-secreting pancreatic β-cells. Functional reconstitution of porosomes into artificial lipid membranes, have also been accomplished. Earlier studies on mouse insulin-secreting Min6 cells report 100-nm porosome complexes composed of nearly 30 proteins. In the current study, porosomes have been functionally reconstituted for the first time in live cells. Isolated Min6 porosomes reconstituted into live Min6 cells demonstrate augmented levels of porosome proteins and a consequent increase in the potency and efficacy of glucose-stimulated insulin release. Elevated glucose-stimulated insulin secretion 48 hours after reconstitution, reflects on the remarkable stability and viability of reconstituted porosomes, documenting the functional reconstitution of native porosomes in live cells. These results, establish a new paradigm in porosome-mediated insulin secretion in β-cells.
Collapse
Affiliation(s)
- Akshata R Naik
- Department of Physiology (A.R.N., S.P.K., K.T.L., B.P.J.), Wayne State University School of Medicine, Detroit, Michigan 48201; and Department of Pathology and Laboratory Medicine (D.J.T.), Microscopy Imaging Center, University of Vermont College of Medicine, Burlington, Vermont 05405
| | - Sanjana P Kulkarni
- Department of Physiology (A.R.N., S.P.K., K.T.L., B.P.J.), Wayne State University School of Medicine, Detroit, Michigan 48201; and Department of Pathology and Laboratory Medicine (D.J.T.), Microscopy Imaging Center, University of Vermont College of Medicine, Burlington, Vermont 05405
| | - Kenneth T Lewis
- Department of Physiology (A.R.N., S.P.K., K.T.L., B.P.J.), Wayne State University School of Medicine, Detroit, Michigan 48201; and Department of Pathology and Laboratory Medicine (D.J.T.), Microscopy Imaging Center, University of Vermont College of Medicine, Burlington, Vermont 05405
| | - Douglas J Taatjes
- Department of Physiology (A.R.N., S.P.K., K.T.L., B.P.J.), Wayne State University School of Medicine, Detroit, Michigan 48201; and Department of Pathology and Laboratory Medicine (D.J.T.), Microscopy Imaging Center, University of Vermont College of Medicine, Burlington, Vermont 05405
| | - Bhanu P Jena
- Department of Physiology (A.R.N., S.P.K., K.T.L., B.P.J.), Wayne State University School of Medicine, Detroit, Michigan 48201; and Department of Pathology and Laboratory Medicine (D.J.T.), Microscopy Imaging Center, University of Vermont College of Medicine, Burlington, Vermont 05405
| |
Collapse
|