1
|
Lin C, Zheng Q, Yu H, Wu T, Chen L, Lin W, Pang J, Yang Y. Uric acid-induced cardiomyocytic polyamines' insufficience: a potential mechanism mediates cardiomyocytic injury. Front Endocrinol (Lausanne) 2025; 16:1504614. [PMID: 40260285 PMCID: PMC12009720 DOI: 10.3389/fendo.2025.1504614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Accepted: 03/04/2025] [Indexed: 04/23/2025] Open
Abstract
Introduction Maintaining polyamines homeostasis is essential for cardiovascular health, whereas elevated uric acid levels are recognized as a significant risk factor for the onset and progression of cardiovascular diseases. However, the interaction between uric acid and the regulation of polyamine homeostasis has not been extensively investigated. The objective of this study was to investigate the influence of uric acid on cardiac polyamines regulation and elucidate the role of polyamines in uric acid induced cardiomyocytic injury. Methods The in vitro experiments utilized H9C2 cardiomyocytes, the hyperuricemic mouse model was established via potassium oxonate and hypoxanthine. Techniques included energy metabolomics, HPLC for polyamine quantification, qPCR, ELISA, immunofluorescence, and mitochondrial membrane potential assessment using JC-1 staining, MTT cell viability analysis. Results Uric acid treatment can alter ornithine metabolism in cardiomyocytes, revealed a potential of shifting it from the traditional ornithine cycle towards the polyamine cycle. Both ODC1 and SAT1 protein levels were up-regulated in hyperuricemic mice indicated a dysorder of polyamines homostasis. A downregulation tendency of spermidine and spermine levels were observed in cardiomyocytes under uric acid treatment. Notably, exogenous supplementation with spermidine or spermine effectively mitigated the uric acid-induced decline in cardiomyocyte viability and mitochondrial membrane potential. Discussion Uric acid disrupts polyamine homeostasis, leading to mitochondrial dysfunction and cardiomyocyte damage. Exogenous polyamine supplementation demonstrates therapeutic potential by preserving mitochondrial integrity. These findings unveil a potential mechanism underlying uric acid-induced cardiac injury and propose polyamine replenishment as a viable intervention strategy for hyperuricemia-related cardiovascular complications.
Collapse
Affiliation(s)
- Cuiting Lin
- Department of Pharmacy, Pingshan Hospital, Southern Medical University, Shenzhen, Guangdong, China
- Department of Pharmacy, Pingshan District Peoples' Hospital of Shenzhen, Shenzhen, Guangdong, China
- Guangdong Provincial Key Laboratory of Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, Guangdong, China
- Neurology Department of Shenzhen Qianhai Taikang Hospital, Shenzhen, Guangdong, China
| | - Qiang Zheng
- Department of Pharmacy, Pingshan Hospital, Southern Medical University, Shenzhen, Guangdong, China
- Department of Pharmacy, Pingshan District Peoples' Hospital of Shenzhen, Shenzhen, Guangdong, China
- Guangdong Provincial Key Laboratory of Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, Guangdong, China
| | - Haiyan Yu
- Department of Pharmacy, Pingshan Hospital, Southern Medical University, Shenzhen, Guangdong, China
- Department of Pharmacy, Pingshan District Peoples' Hospital of Shenzhen, Shenzhen, Guangdong, China
| | - Ting Wu
- Guangdong Provincial Key Laboratory of Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, Guangdong, China
| | - Lin Chen
- Department of Pharmacy, Pingshan Hospital, Southern Medical University, Shenzhen, Guangdong, China
- Department of Pharmacy, Pingshan District Peoples' Hospital of Shenzhen, Shenzhen, Guangdong, China
| | - Weihao Lin
- Department of Pharmacy, Pingshan Hospital, Southern Medical University, Shenzhen, Guangdong, China
- Department of Pharmacy, Pingshan District Peoples' Hospital of Shenzhen, Shenzhen, Guangdong, China
| | - Jianxin Pang
- Guangdong Provincial Key Laboratory of Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, Guangdong, China
| | - Yang Yang
- Department of Pharmacy, Pingshan Hospital, Southern Medical University, Shenzhen, Guangdong, China
- Department of Pharmacy, Pingshan District Peoples' Hospital of Shenzhen, Shenzhen, Guangdong, China
- Affiliated Foshan Maternity & Child Healthcare Hospital, Southern Medical University, Foshan, Guangdong, China
| |
Collapse
|
2
|
Foguet C, Jiang X, Ritchie SC, Persyn E, Xu Y, Ben-Eghan C, Taylor HJ, Di Angelantonio E, Danesh J, Butterworth AS, Lambert SA, Inouye M. Metabolic reaction fluxes as amplifiers and buffers of risk alleles for coronary artery disease. Mol Syst Biol 2025:10.1038/s44320-025-00097-2. [PMID: 40175777 DOI: 10.1038/s44320-025-00097-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 03/12/2025] [Accepted: 03/13/2025] [Indexed: 04/04/2025] Open
Abstract
Genome-wide association studies have identified thousands of variants associated with disease risk but the mechanism by which such variants contribute to disease remains largely unknown. Indeed, a major challenge is that variants do not act in isolation but rather in the framework of highly complex biological networks, such as the human metabolic network, which can amplify or buffer the effect of specific risk alleles on disease susceptibility. Here we use genetically predicted reaction fluxes to perform a systematic search for metabolic fluxes acting as buffers or amplifiers of coronary artery disease (CAD) risk alleles. Our analysis identifies 30 risk locus-reaction flux pairs with significant interaction on CAD susceptibility involving 18 individual reaction fluxes and 8 independent risk loci. Notably, many of these reactions are linked to processes with putative roles in the disease such as the metabolism of inflammatory mediators. In summary, this work establishes proof of concept that biochemical reaction fluxes can have non-additive effects with risk alleles and provides novel insights into the interplay between metabolism and genetic variation on disease susceptibility.
Collapse
Affiliation(s)
- Carles Foguet
- Cambridge Baker Systems Genomics Initiative, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK.
- British Heart Foundation Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK.
- Victor Phillip Dahdaleh Heart and Lung Research Institute, University of Cambridge, Cambridge, UK.
| | - Xilin Jiang
- Cambridge Baker Systems Genomics Initiative, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
- British Heart Foundation Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
- Victor Phillip Dahdaleh Heart and Lung Research Institute, University of Cambridge, Cambridge, UK
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Scott C Ritchie
- Cambridge Baker Systems Genomics Initiative, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
- British Heart Foundation Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
- Victor Phillip Dahdaleh Heart and Lung Research Institute, University of Cambridge, Cambridge, UK
- British Heart Foundation Centre of Research Excellence, University of Cambridge, Cambridge, UK
- Health Data Research UK Cambridge, Wellcome Genome Campus and University of Cambridge, Cambridge, UK
- Cambridge Baker Systems Genomics Initiative, Baker Heart and Diabetes Institute, Melbourne, VIC, Australia
| | - Elodie Persyn
- Cambridge Baker Systems Genomics Initiative, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
- British Heart Foundation Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
- Victor Phillip Dahdaleh Heart and Lung Research Institute, University of Cambridge, Cambridge, UK
| | - Yu Xu
- Cambridge Baker Systems Genomics Initiative, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
- British Heart Foundation Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
- Victor Phillip Dahdaleh Heart and Lung Research Institute, University of Cambridge, Cambridge, UK
| | - Chief Ben-Eghan
- Cambridge Baker Systems Genomics Initiative, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
- British Heart Foundation Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
- Victor Phillip Dahdaleh Heart and Lung Research Institute, University of Cambridge, Cambridge, UK
| | - Henry J Taylor
- British Heart Foundation Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
- Victor Phillip Dahdaleh Heart and Lung Research Institute, University of Cambridge, Cambridge, UK
- Center for Precision Health Research, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Emanuele Di Angelantonio
- British Heart Foundation Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
- Victor Phillip Dahdaleh Heart and Lung Research Institute, University of Cambridge, Cambridge, UK
- British Heart Foundation Centre of Research Excellence, University of Cambridge, Cambridge, UK
- Health Data Research UK Cambridge, Wellcome Genome Campus and University of Cambridge, Cambridge, UK
- National Institute for Health and Care Research Blood and Transplant Research Unit in Donor Health and Behaviour, University of Cambridge, Cambridge, UK
- Health Data Science Research Centre, Fondazione Human Technopole, Milan, Italy
| | - John Danesh
- British Heart Foundation Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
- Victor Phillip Dahdaleh Heart and Lung Research Institute, University of Cambridge, Cambridge, UK
- British Heart Foundation Centre of Research Excellence, University of Cambridge, Cambridge, UK
- Health Data Research UK Cambridge, Wellcome Genome Campus and University of Cambridge, Cambridge, UK
- National Institute for Health and Care Research Blood and Transplant Research Unit in Donor Health and Behaviour, University of Cambridge, Cambridge, UK
- Department of Human Genetics, the Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, UK
| | - Adam S Butterworth
- British Heart Foundation Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
- Victor Phillip Dahdaleh Heart and Lung Research Institute, University of Cambridge, Cambridge, UK
- British Heart Foundation Centre of Research Excellence, University of Cambridge, Cambridge, UK
- Health Data Research UK Cambridge, Wellcome Genome Campus and University of Cambridge, Cambridge, UK
- National Institute for Health and Care Research Blood and Transplant Research Unit in Donor Health and Behaviour, University of Cambridge, Cambridge, UK
| | - Samuel A Lambert
- Cambridge Baker Systems Genomics Initiative, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
- British Heart Foundation Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
- Victor Phillip Dahdaleh Heart and Lung Research Institute, University of Cambridge, Cambridge, UK
- Health Data Research UK Cambridge, Wellcome Genome Campus and University of Cambridge, Cambridge, UK
| | - Michael Inouye
- Cambridge Baker Systems Genomics Initiative, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK.
- British Heart Foundation Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK.
- Victor Phillip Dahdaleh Heart and Lung Research Institute, University of Cambridge, Cambridge, UK.
- British Heart Foundation Centre of Research Excellence, University of Cambridge, Cambridge, UK.
- Health Data Research UK Cambridge, Wellcome Genome Campus and University of Cambridge, Cambridge, UK.
- Cambridge Baker Systems Genomics Initiative, Baker Heart and Diabetes Institute, Melbourne, VIC, Australia.
| |
Collapse
|
3
|
Belin MAF, Vieira TA, Grandini NA, Siqueira JS, Palacio TLN, Cruzeiro J, Sormani LE, Tanganini MD, Barbosa GS, Gregolin CS, de Campos DHS, Bazan SGZ, Minatel IO, Lima GPP, Correa CR. Cardiac biogenic amine profile and its relationship with parameters of cardiovascular disease in obesity. Vascul Pharmacol 2024; 156:107412. [PMID: 39033868 DOI: 10.1016/j.vph.2024.107412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 07/17/2024] [Accepted: 07/18/2024] [Indexed: 07/23/2024]
Abstract
AIMS To identify the cardiac biogenic amine profile of obese rats and associate these compounds with parameters of cardiovascular disease. MAIN METHODS Wistar rats (n = 20) were randomly distributed into two groups: control and obese. Obesity was induced by a high-sugar fat diet. Biochemical parameters were evaluated. Doppler Echocardiography and systolic blood pressure; interleukin-10 (IL-10), tumor necrosis factor-alpha (TNF-α), protein carbonylation, ferric reducing antioxidant power (FRAP), and catalase activity were measured in cardiac tissue. HPLC evaluated the cardiac biogenic profile. Data were compared using the Student's T or Mann-Whitney tests and Spearman's correlation at 5% significance. The principal component analysis (PCA) was performed. KEY FINDINGS Obesity generated hypertension, cardiac remodeling and dysfunction, and imbalanced all biochemical, inflammatory, and oxidative markers (p < 0.001). Eight biogenic amines were found in cardiac tissue. Obesity increased serotonin and decreased agmatine, putrescine, cadaverine, and spermidine. Serotonin (r = 0.534 to 0.808) was strong and positively correlated with obesity, biochemical parameters, cardiac inflammation, oxidative stress, hypertension, cardiac remodeling, and dysfunction (p < 0.001). Spermidine (r = -0.560 to -0.680), putrescine (r = -0.532 to -0.805), cadaverine (r = -0.534 to -0.860), and agmatine (r = -0.579 to -0.884) were inversely correlated with the same parameters (p < 0.001). PCA allowed for distinguishing the control and obese groups. SIGNIFICANCE There are strong correlations between cardiac biogenic amine levels, cardiac remodeling, and dysfunction resulting from obesity. CONCLUSION There is an association between cardiac biogenic amines and cardiovascular disease in obesity. In addition, agmatine, putrescine, cadaverine, and, mainly, serotonin may be new biomarkers for cardiovascular health in obesity and help to improve the diagnosis and treatment of CVD resulting or not from obesity. However, more research is needed to support this conclusion.
Collapse
Affiliation(s)
| | - Taynara Aparecida Vieira
- Department of Pathology, Medical School, Sao Paulo State University (Unesp), Botucatu 18618-687, Brazil
| | - Núbia Alves Grandini
- Department of Pathology, Medical School, Sao Paulo State University (Unesp), Botucatu 18618-687, Brazil
| | - Juliana Silva Siqueira
- Department of Pathology, Medical School, Sao Paulo State University (Unesp), Botucatu 18618-687, Brazil
| | | | - Jordanna Cruzeiro
- Department of Pathology, Medical School, Sao Paulo State University (Unesp), Botucatu 18618-687, Brazil
| | - Luis Eduardo Sormani
- Department of Pathology, Medical School, Sao Paulo State University (Unesp), Botucatu 18618-687, Brazil
| | - Murilo Dalarme Tanganini
- Department of Pathology, Medical School, Sao Paulo State University (Unesp), Botucatu 18618-687, Brazil
| | - Gabriela Souza Barbosa
- Department of Pathology, Medical School, Sao Paulo State University (Unesp), Botucatu 18618-687, Brazil
| | - Cristina Schmitt Gregolin
- Department of Pathology, Medical School, Sao Paulo State University (Unesp), Botucatu 18618-687, Brazil
| | | | | | - Igor Otávio Minatel
- Department of Chemical and Biological Sciences, Institute of Bioscience, São Paulo State University (Unesp), Botucatu 18618-687, Brazil
| | - Giuseppina Pace Pereira Lima
- Department of Chemical and Biological Sciences, Institute of Bioscience, São Paulo State University (Unesp), Botucatu 18618-687, Brazil
| | - Camila Renata Correa
- Department of Pathology, Medical School, Sao Paulo State University (Unesp), Botucatu 18618-687, Brazil.
| |
Collapse
|
4
|
Neves LS, Saraiva F, Ferreira R, Leite-Moreira A, Barros AS, Diaz SO. Metabolomics and Cardiovascular Risk in Patients with Heart Failure: A Systematic Review and Meta-Analysis. Int J Mol Sci 2024; 25:5693. [PMID: 38891881 PMCID: PMC11172189 DOI: 10.3390/ijms25115693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 05/17/2024] [Accepted: 05/21/2024] [Indexed: 06/21/2024] Open
Abstract
The associations of plasma metabolites with adverse cardiovascular (CV) outcomes are still underexplored and may be useful in CV risk stratification. We performed a systematic review and meta-analysis to establish correlations between blood metabolites and adverse CV outcomes in patients with heart failure (HF). Four cohorts were included, involving 83 metabolites and 37 metabolite ratios, measured in 1158 HF patients. Hazard ratios (HR) of 42 metabolites and 3 metabolite ratios, present in at least two studies, were combined through meta-analysis. Higher levels of histidine (HR 0.74, 95% CI [0.64; 0.86]) and tryptophan (HR 0.82 [0.71; 0.96]) seemed protective, whereas higher levels of symmetric dimethylarginine (SDMA) (HR 1.58 [1.30; 1.93]), N-methyl-1-histidine (HR 1.56 [1.27; 1.90]), SDMA/arginine (HR 1.38 [1.14; 1.68]), putrescine (HR 1.31 [1.06; 1.61]), methionine sulfoxide (HR 1.26 [1.03; 1.52]), and 5-hydroxylysine (HR 1.25 [1.05; 1.48]) were associated with a higher risk of CV events. Our findings corroborate important associations between metabolic imbalances and a higher risk of CV events in HF patients. However, the lack of standardization and data reporting hampered the comparison of a higher number of studies. In a future clinical scenario, metabolomics will greatly benefit from harmonizing sample handling, data analysis, reporting, and sharing.
Collapse
Affiliation(s)
- Leonel Sousa Neves
- Cardiovascular R&D Centre, UnIC@RISE, Department of Surgery and Physiology, Faculty of Medicine, University of Porto, 4200-319 Porto, Portugal; (L.S.N.); (F.S.); (A.L.-M.)
| | - Francisca Saraiva
- Cardiovascular R&D Centre, UnIC@RISE, Department of Surgery and Physiology, Faculty of Medicine, University of Porto, 4200-319 Porto, Portugal; (L.S.N.); (F.S.); (A.L.-M.)
| | - Rita Ferreira
- LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal;
| | - Adelino Leite-Moreira
- Cardiovascular R&D Centre, UnIC@RISE, Department of Surgery and Physiology, Faculty of Medicine, University of Porto, 4200-319 Porto, Portugal; (L.S.N.); (F.S.); (A.L.-M.)
| | - António S. Barros
- Cardiovascular R&D Centre, UnIC@RISE, Department of Surgery and Physiology, Faculty of Medicine, University of Porto, 4200-319 Porto, Portugal; (L.S.N.); (F.S.); (A.L.-M.)
| | - Sílvia O. Diaz
- Cardiovascular R&D Centre, UnIC@RISE, Department of Surgery and Physiology, Faculty of Medicine, University of Porto, 4200-319 Porto, Portugal; (L.S.N.); (F.S.); (A.L.-M.)
| |
Collapse
|
5
|
Al Sultan A, Rattray Z, Rattray NJW. Toxicometabolomics-based cardiotoxicity evaluation of Thiazolidinedione exposure in human-derived cardiomyocytes. Metabolomics 2024; 20:24. [PMID: 38393619 PMCID: PMC10891199 DOI: 10.1007/s11306-024-02097-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Accepted: 01/29/2024] [Indexed: 02/25/2024]
Abstract
INTRODUCTION Thiazolidinediones (TZDs), represented by pioglitazone and rosiglitazone, are a class of cost-effective oral antidiabetic agents posing a marginal hypoglycaemia risk. Nevertheless, observations of heart failure have hindered the clinical use of both therapies. OBJECTIVE Since the mechanism of TZD-induced heart failure remains largely uncharacterised, this study aimed to explore the as-yet-unidentified mechanisms underpinning TZD cardiotoxicity using a toxicometabolomics approach. METHODS The present investigation included an untargeted liquid chromatography-mass spectrometry-based toxicometabolomics pipeline, followed by multivariate statistics and pathway analyses to elucidate the mechanism(s)of TZD-induced cardiotoxicity using AC16 human cardiomyocytes as a model, and to identify the prognostic features associated with such effects. RESULTS Acute administration of either TZD agent resulted in a significant modulation in carnitine content, reflecting potential disruption of the mitochondrial carnitine shuttle. Furthermore, perturbations were noted in purine metabolism and amino acid fingerprints, strongly conveying aberrations in cardiac energetics associated with TZD usage. Analysis of our findings also highlighted alterations in polyamine (spermine and spermidine) and amino acid (L-tyrosine and valine) metabolism, known modulators of cardiac hypertrophy, suggesting a potential link to TZD cardiotoxicity that necessitates further research. In addition, this comprehensive study identified two groupings - (i) valine and creatine, and (ii) L-tryptophan and L-methionine - that were significantly enriched in the above-mentioned mechanisms, emerging as potential fingerprint biomarkers for pioglitazone and rosiglitazone cardiotoxicity, respectively. CONCLUSION These findings demonstrate the utility of toxicometabolomics in elaborating on mechanisms of drug toxicity and identifying potential biomarkers, thus encouraging its application in the toxicological sciences. (245 words).
Collapse
Affiliation(s)
- Abdullah Al Sultan
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, 161 Cathedral Street, Glasgow, G4 0RE, UK
- Faculty of Pharmacy, Kuwait University, Safat, 13110, Kuwait
| | - Zahra Rattray
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, 161 Cathedral Street, Glasgow, G4 0RE, UK
| | - Nicholas J W Rattray
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, 161 Cathedral Street, Glasgow, G4 0RE, UK.
- Strathclyde Centre for Molecular Bioscience, University of Strathclyde, Glasgow, G4 0RE, UK.
| |
Collapse
|
6
|
Aboumsallem JP, Shi C, De Wit S, Markousis-Mavrogenis G, Bracun V, Eijgenraam TR, Hoes MF, Meijers WC, Screever EM, Schouten ME, Voors AA, Silljé HHW, De Boer RA. Multi-omics analyses identify molecular signatures with prognostic values in different heart failure aetiologies. J Mol Cell Cardiol 2023; 175:13-28. [PMID: 36493852 DOI: 10.1016/j.yjmcc.2022.12.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 10/31/2022] [Accepted: 12/02/2022] [Indexed: 12/12/2022]
Abstract
BACKGROUND Heart failure (HF) is the leading cause of morbidity and mortality worldwide, and there is an urgent need for more global studies and data mining approaches to uncover its underlying mechanisms. Multiple omics techniques provide a more holistic molecular perspective to study pathophysiological events involved in the development of HF. METHODS In this study, we used a label-free whole myocardium multi-omics characterization from three commonly used mouse HF models: transverse aortic constriction (TAC), myocardial infarction (MI), and homozygous Phospholamban-R14del (PLN-R14Δ/Δ). Genes, proteins, and metabolites were analysed for differential expression between each group and a corresponding control group. The core transcriptome and proteome datasets were used for enrichment analysis. For genes that were upregulated at both the RNA and protein levels in all models, clinical validation was performed by means of plasma level determination in patients with HF from the BIOSTAT-CHF cohort. RESULTS Cell death and tissue repair-related pathways were upregulated in all preclinical models. Fatty acid oxidation, ATP metabolism, and Energy derivation processes were downregulated in all investigated HF aetiologies. Putrescine, a metabolite known for its role in cell survival and apoptosis, demonstrated a 4.9-fold (p < 0.02) increase in PLN-R14Δ/Δ, 2.7-fold (p < 0.005) increase in TAC mice, and 2.2-fold (p < 0.02) increase in MI mice. Four Biomarkers were associated with all-cause mortality (PRELP: Hazard ratio (95% confidence interval) 1.79(1.35, 2.39), p < 0.001; CKAP4: 1.38(1.21, 1.57), p < 0.001; S100A11: 1.37(1.13, 1.65), p = 0.001; Annexin A1 (ANXA1): 1.16(1.04, 1.29) p = 0.01), and three biomarkers were associated with HF-Related Rehospitalization, (PRELP: 1.88(1.4, 2.53), p < 0.001; CSTB: 1.15(1.05, 1.27), p = 0.003; CKAP4: 1.18(1.02, 1.35), P = 0.023). CONCLUSIONS Cell death and tissue repair pathways were significantly upregulated, and ATP and energy derivation processes were significantly downregulated in all models. Common pathways and biomarkers with potential clinical and prognostic associations merit further investigation to develop optimal management and therapeutic strategies for all HF aetiologies.
Collapse
Affiliation(s)
- Joseph Pierre Aboumsallem
- Department of Cardiology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands; Department of Cardiology, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Canxia Shi
- Department of Cardiology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Sanne De Wit
- Department of Cardiology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - George Markousis-Mavrogenis
- Department of Cardiology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Valentina Bracun
- Department of Cardiology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Tim R Eijgenraam
- Department of Cardiology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Martijn F Hoes
- Department of Cardiology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Wouter C Meijers
- Department of Cardiology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands; Department of Cardiology, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Elles M Screever
- Department of Cardiology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands; Department of Cardiology, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Marloes E Schouten
- Department of Cardiology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Adriaan A Voors
- Department of Cardiology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Herman H W Silljé
- Department of Cardiology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Rudolf A De Boer
- Department of Cardiology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands; Department of Cardiology, Erasmus Medical Center, Rotterdam, The Netherlands.
| |
Collapse
|
7
|
Lima MF, Amaral AG, Moretto IA, Paiva-Silva FJTN, Pereira FOB, Barbas C, dos Santos AM, Simionato AVC, Rupérez FJ. Untargeted Metabolomics Studies of H9c2 Cardiac Cells Submitted to Oxidative Stress, β-Adrenergic Stimulation and Doxorubicin Treatment: Investigation of Cardiac Biomarkers. Front Mol Biosci 2022; 9:898742. [PMID: 35847971 PMCID: PMC9277393 DOI: 10.3389/fmolb.2022.898742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 05/26/2022] [Indexed: 11/13/2022] Open
Abstract
One of the biggest challenges in the search for more effective treatments for diseases is understanding their etiology. Cardiovascular diseases (CVD) are an important example of this, given the high number of deaths annually. Oxidative stress (the imbalance between oxidant and antioxidant species in biological system) is one of the factors responsible for CVD occurrence, demanding extensive investigation. Excess of reactive oxygen species (ROS) are primarily responsible for this condition, and clinical and scientific literature have reported a significant increase in ROS when therapeutic drugs, such as doxorubicin and isoproterenol, are administered. In this context, the aim of this study is the investigation of potential biomarkers that might be associated with oxidative stress in cardiomyocytes. For this purpose, H9c2 cardiomyocytes were submitted to oxidative stress conditions by treatment with doxorubicin (DOX), isoproterenol (ISO) and hydrogen peroxide (PER). Metabolomics analyses of the cell extract and the supernatant obtained from the culture medium were then evaluated by CE-ESI(+)-TOF-MS. Following signal processing, statistical analyses, and molecular features annotations, the results indicate changes in the aspartate, serine, pantothenic acid, glycerophosphocholine and glutathione metabolism in the cell extract.
Collapse
Affiliation(s)
- Monica Força Lima
- Center for Metabolomics and Bioanalysis (CEMBIO), Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Madrid, Spain
- Department of Analytical Chemistry, Institute of Chemistry, University of Campinas (UNICAMP), Campinas, Brazil
| | - Alan Gonçalves Amaral
- Department of Analytical Chemistry, Institute of Chemistry, University of Campinas (UNICAMP), Campinas, Brazil
| | - Isabela Aparecida Moretto
- Department of Structural and Functional Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, Brazil
| | | | - Flávia Oliveira Borges Pereira
- Department of Structural and Functional Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, Brazil
| | - Coral Barbas
- Center for Metabolomics and Bioanalysis (CEMBIO), Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Madrid, Spain
| | - Aline Mara dos Santos
- Department of Structural and Functional Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, Brazil
- *Correspondence: Aline Mara dos Santos, ; Francisco Javier Rupérez,
| | - Ana Valéria Colnaghi Simionato
- Department of Analytical Chemistry, Institute of Chemistry, University of Campinas (UNICAMP), Campinas, Brazil
- National Institute of Science and Technology in Bioanalytics (INCTBio), Campinas, Brazil
| | - Francisco Javier Rupérez
- Center for Metabolomics and Bioanalysis (CEMBIO), Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Madrid, Spain
- *Correspondence: Aline Mara dos Santos, ; Francisco Javier Rupérez,
| |
Collapse
|
8
|
Xiong X, Li J, Zhang S, Jia X, Xiao C. Involvement of Polyamines From Cardiac Mast Cells in Myocardial Remodeling Induced by Pressure Overload Through Mitochondrial Permeability Transition Pore Opening. Front Cardiovasc Med 2022; 9:850688. [PMID: 35479269 PMCID: PMC9035547 DOI: 10.3389/fcvm.2022.850688] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Accepted: 03/03/2022] [Indexed: 11/13/2022] Open
Abstract
Objective Polyamines mainly contain spermine (SPM), spermidine (SPD), and putrescine (PUT). Many research results suggest that polyamines participate in cell proliferation, differentiation, and the regulation of gene expression, and have a close relationship with the occurrence and development of many diseases. However, the role and possible mechanisms of action of polyamines from cardiac mast cells in myocardial remodeling induced by pressure overload remain to be elucidated. Methods Pressure overload was induced by abdominal aortic constriction (AAC). Toluidine blue staining was used to visualize mast cells in cardiac tissue. The polyamine content of cardiac tissue was analyzed using high-performance liquid chromatography. Opening of the mitochondrial permeability transition pore (MPTP) was determined by the Ca2+-induced swelling of isolated cardiac mitochondria, measured as a reduction in A520. Results Compared with sham rats, the cardiac mast cell density, the polyamine content (PUT, SPB, and SPM), and myocardial MPTP opening in rats with AAC were significantly increased (P < 0.05), and were accompanied by increased myocardial fibrosis and heart weight/body weight ratio. Intraperitoneal injection of polyamines mimicked these results, and these effects were reversed by cromolyn sodium, a mast cell stabilizer (P < 0.05). Myocardial MPTP opening increased in rats with AAC (P < 0.05), and the three polyamines also increased myocardial MPTP opening (P < 0.05). Conclusion Mast cell-derived polyamines are involved in pressure overload-induced myocardial remodeling by increasing opening of the MPTP.
Collapse
Affiliation(s)
- Xiaolan Xiong
- Third-Grade Pharmacological Laboratory on Traditional Chinese Medicine China Three Gorges University, Yichang, China
- Medical College, China Three Gorges University, Yichang, China
- The Second People’s Hospital of Yichang, Yichang, China
| | - Junming Li
- The First People’s Hospital of Yichang, Yichang, China
| | - Shizhong Zhang
- Third-Grade Pharmacological Laboratory on Traditional Chinese Medicine China Three Gorges University, Yichang, China
- Medical College, China Three Gorges University, Yichang, China
- *Correspondence: Shizhong Zhang,
| | - Xiaoli Jia
- Third-Grade Pharmacological Laboratory on Traditional Chinese Medicine China Three Gorges University, Yichang, China
- Medical College, China Three Gorges University, Yichang, China
| | - Chao Xiao
- Third-Grade Pharmacological Laboratory on Traditional Chinese Medicine China Three Gorges University, Yichang, China
- Medical College, China Three Gorges University, Yichang, China
| |
Collapse
|
9
|
Zhong AB, Muti IH, Eyles SJ, Vachet RW, Sikora KN, Bobst CE, Calligaris D, Stopka SA, Agar JN, Wu CL, Mino-Kenudson MA, Agar NYR, Christiani DC, Kaltashov IA, Cheng LL. Multiplatform Metabolomics Studies of Human Cancers With NMR and Mass Spectrometry Imaging. Front Mol Biosci 2022; 9:785232. [PMID: 35463966 PMCID: PMC9024335 DOI: 10.3389/fmolb.2022.785232] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 03/02/2022] [Indexed: 11/22/2022] Open
Abstract
The status of metabolomics as a scientific branch has evolved from proof-of-concept to applications in science, particularly in medical research. To comprehensively evaluate disease metabolomics, multiplatform approaches of NMR combining with mass spectrometry (MS) have been investigated and reported. This mixed-methods approach allows for the exploitation of each individual technique's unique advantages to maximize results. In this article, we present our findings from combined NMR and MS imaging (MSI) analysis of human lung and prostate cancers. We further provide critical discussions of the current status of NMR and MS combined human prostate and lung cancer metabolomics studies to emphasize the enhanced metabolomics ability of the multiplatform approach.
Collapse
Affiliation(s)
- Anya B. Zhong
- Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| | - Isabella H. Muti
- Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| | - Stephen J. Eyles
- Department of Biochemistry and Molecular Biology, University of Massachusetts-Amherst, Amherst, MA, United States
| | - Richard W. Vachet
- Department of Biochemistry and Molecular Biology, University of Massachusetts-Amherst, Amherst, MA, United States
| | - Kristen N. Sikora
- Department of Biochemistry and Molecular Biology, University of Massachusetts-Amherst, Amherst, MA, United States
| | - Cedric E. Bobst
- Department of Biochemistry and Molecular Biology, University of Massachusetts-Amherst, Amherst, MA, United States
| | - David Calligaris
- Department of Radiology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, United States
| | - Sylwia A. Stopka
- Department of Radiology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, United States
| | - Jeffery N. Agar
- Department of Chemistry and Chemical Biology, Northeastern University, Boston, MA, United States
| | - Chin-Lee Wu
- Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| | | | - Nathalie Y. R. Agar
- Department of Radiology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, United States
- Dana-Farber Cancer Institute, Boston, MA, United States
| | - David C. Christiani
- Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
- Harvard T.H. Chan School of Public Health, Boston, MA, United States
| | - Igor A. Kaltashov
- Department of Radiology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, United States
| | - Leo L. Cheng
- Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
10
|
Yu Z, Jiao Y, Zhang J, Xu Q, Xu J, Li R, Yuan W, Guo H, Sun Z, Zheng L. Effect of Serum Spermidine on the Prognosis in Patients with Acute Myocardial Infarction: A Cohort Study. Nutrients 2022; 14:nu14071394. [PMID: 35406007 PMCID: PMC9002946 DOI: 10.3390/nu14071394] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Revised: 03/18/2022] [Accepted: 03/24/2022] [Indexed: 11/16/2022] Open
Abstract
Background: Spermidine, a natural polyamine, was found critically involved in cardioprotection and lifespan extension from both animal experiments and human studies. Aims: This study aimed to evaluate the effect of serum spermidine levels on the prognosis in patients with acute myocardial infarction (AMI) and investigate the potential mediation effect of oxidative stress in the above relationship. Methods: We included 377 patients with AMI in a prospective cohort study and measured serum spermidine and oxidative stress indexes (superoxide dismutase enzymes, glutathione peroxidase, and Malondialdehyde) using high-performance liquid chromatography with fluorescence detector and enzyme-linked immunosorbent assay, respectively. The associations of spermidine with AMI outcomes were evaluated using Cox proportional hazards models. Results: 84 (22.3%) major adverse cardiac events (MACE) were documented during a mean follow-up of 12.3 ± 4.2 months. After multivariable adjustment, participants with serum spermidine levels of ≥15.38 ng/mL (T3) and 7.59–5.38 ng/mL (T2) had hazard ratio (HR) for recurrent AMI of 0.450 [95% confidence interval (CI): 0.213–0.984] and 0.441 (95% CI: 0.215–0.907) compared with the ≤7.59 ng/mL (T1), respectively. Participants in T3 and T2 had HR for MACE of 0.566 (95% CI: 0.329–0.947) and 0.516 (95% CI: 0.298–0.893) compared with T1. A faint J-shaped association was observed between serum spermidine levels and the risk of MACE (p-nonlinearity = 0.036). Comparisons of areas under receiver operator characteristics curves confirmed that a model including serum spermidine levels had greater predictive power than the one without it (0.733 versus 0.701, p = 0.041). A marginal statistically significant mediation effect of superoxide dismutase was shown on the association between spermidine and MACE (p = 0.091). Conclusions: Serum spermidine was associated with an improved prognosis in individuals with AMI, whereas the underlying mechanism mediated by oxidative stress was not found.
Collapse
Affiliation(s)
- Zhecong Yu
- Department of Cardiology, Shengjing Hospital of China Medical University, Shenyang 110004, China; (Z.Y.); (Y.J.); (Q.X.); (J.X.)
- School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Yundi Jiao
- Department of Cardiology, Shengjing Hospital of China Medical University, Shenyang 110004, China; (Z.Y.); (Y.J.); (Q.X.); (J.X.)
| | - Jin Zhang
- Department of Laboratory Medicine, Shengjing Hospital of China Medical University, Shenyang 110004, China;
| | - Qianyi Xu
- Department of Cardiology, Shengjing Hospital of China Medical University, Shenyang 110004, China; (Z.Y.); (Y.J.); (Q.X.); (J.X.)
| | - Jiahui Xu
- Department of Cardiology, Shengjing Hospital of China Medical University, Shenyang 110004, China; (Z.Y.); (Y.J.); (Q.X.); (J.X.)
| | - Ruixue Li
- School of Public Health, China Medical University, Shenyang 110122, China; (R.L.); (W.Y.); (H.G.)
| | - Wei Yuan
- School of Public Health, China Medical University, Shenyang 110122, China; (R.L.); (W.Y.); (H.G.)
| | - Hui Guo
- School of Public Health, China Medical University, Shenyang 110122, China; (R.L.); (W.Y.); (H.G.)
| | - Zhaoqing Sun
- Department of Cardiology, Shengjing Hospital of China Medical University, Shenyang 110004, China; (Z.Y.); (Y.J.); (Q.X.); (J.X.)
- Correspondence: (Z.S.); (L.Z.); Tel.: +86-24-83282688 (Z.S. & L.Z.); Fax: +86-24-83282346 (Z.S. & L.Z.)
| | - Liqiang Zheng
- Department of Cardiology, Shengjing Hospital of China Medical University, Shenyang 110004, China; (Z.Y.); (Y.J.); (Q.X.); (J.X.)
- School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
- Correspondence: (Z.S.); (L.Z.); Tel.: +86-24-83282688 (Z.S. & L.Z.); Fax: +86-24-83282346 (Z.S. & L.Z.)
| |
Collapse
|
11
|
Puetz A, Artati A, Adamski J, Schuett K, Romeo F, Stoehr R, Marx N, Federici M, Lehrke M, Kappel BA. Non-targeted metabolomics identify polyamine metabolite acisoga as novel biomarker for reduced left ventricular function. ESC Heart Fail 2022; 9:564-573. [PMID: 34811951 PMCID: PMC8788009 DOI: 10.1002/ehf2.13713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 10/12/2021] [Accepted: 10/31/2021] [Indexed: 11/25/2022] Open
Abstract
AIMS Chronic heart failure with reduced ejection fraction remains a major health issue. To date, no reliable biomarker is available to predict reduced left ventricular ejection fraction (LV-EF). We aimed to identify novel circulating biomarkers for reduced left ventricular function using untargeted serum metabolomics in two independent patient cohorts. METHODS AND RESULTS Echocardiography and non-targeted serum metabolomics were conducted in two patient cohorts with varying left ventricular function: (1) 25 patients with type 2 diabetes with established cardiovascular disease or high cardiovascular risk (LV-EF range 20-66%) (discovery cohort) and (2) 37 patients hospitalized for myocardial infarction (LV-EF range 25-60%) (validation cohort). In the discovery cohort, untargeted metabolomics revealed seven metabolites performing better than N-terminal pro-B-type natriuretic peptide in the prediction of impaired left ventricular function shown by LV-EF. For only one of the metabolites, acisoga, the predictive value for LV-EF could be confirmed in the validation cohort (r = -0.37, P = 0.02). In the discovery cohort, acisoga did not only correlate with LV-EF (r = -60, P = 0.0016), but also with global circumferential strain (r = 0.67, P = 0.0003) and global longitudinal strain (r = 0.68, P = 0.0002). Similar results could be detected in the discovery cohort in a 6 month follow-up proofing stability of these results over time. With an area under the curve of 0.86 in the receiver operating characteristic analysis, acisoga discriminated between patients with normal EF and LV-EF < 40%. Multivariate analysis exposed acisoga as independent marker for impairment of LV-EF (Beta = -0.71, P = 0.004). CONCLUSIONS We found the polyamine metabolite acisoga to be elevated in patients with impaired LV-EF in two independent cohorts. Our analyses suggest that acisoga may be a valuable biomarker to detect patients with heart failure with reduced ejection fraction.
Collapse
Affiliation(s)
- Andreas Puetz
- Department of Internal Medicine 1, University Hospital AachenRWTH Aachen UniversityAachenGermany
| | - Anna Artati
- Metabolomics and Proteomics CoreHelmholtz Zentrum München, German Research Center for Environmental Health (GmbH)NeuherbergGermany
| | - Jerzy Adamski
- Institute of Experimental GeneticsHelmholtz Zentrum München, German Research Center for Environmental HealthNeuherbergGermany
- Institute of Biochemistry, Faculty of MedicineUniversity of LjubljanaLjubljanaSlovenia
- Department of Biochemistry, Yong Loo Lin School of MedicineNational University of SingaporeSingapore
| | - Katharina Schuett
- Department of Internal Medicine 1, University Hospital AachenRWTH Aachen UniversityAachenGermany
| | - Francesco Romeo
- Department of Systems MedicineUniversity of Rome Tor VergataRomeItaly
| | - Robert Stoehr
- Department of Internal Medicine 1, University Hospital AachenRWTH Aachen UniversityAachenGermany
| | - Nikolaus Marx
- Department of Internal Medicine 1, University Hospital AachenRWTH Aachen UniversityAachenGermany
| | - Massimo Federici
- Department of Systems MedicineUniversity of Rome Tor VergataRomeItaly
- Center for AtherosclerosisPoliclinico Tor VergataRomeItaly
| | - Michael Lehrke
- Department of Internal Medicine 1, University Hospital AachenRWTH Aachen UniversityAachenGermany
| | - Ben A. Kappel
- Department of Internal Medicine 1, University Hospital AachenRWTH Aachen UniversityAachenGermany
| |
Collapse
|
12
|
Hautbergue T, Antigny F, Boët A, Haddad F, Masson B, Lambert M, Delaporte A, Menager JB, Savale L, Pavec JL, Fadel E, Humbert M, Junot C, Fenaille F, Colsch B, Mercier O. Right Ventricle Remodeling Metabolic Signature in Experimental Pulmonary Hypertension Models of Chronic Hypoxia and Monocrotaline Exposure. Cells 2021; 10:1559. [PMID: 34205639 PMCID: PMC8235667 DOI: 10.3390/cells10061559] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 06/12/2021] [Accepted: 06/16/2021] [Indexed: 12/17/2022] Open
Abstract
INTRODUCTION Over time and despite optimal medical management of patients with pulmonary hypertension (PH), the right ventricle (RV) function deteriorates from an adaptive to maladaptive phenotype, leading to RV failure (RVF). Although RV function is well recognized as a prognostic factor of PH, no predictive factor of RVF episodes has been elucidated so far. We hypothesized that determining RV metabolic alterations could help to understand the mechanism link to the deterioration of RV function as well as help to identify new biomarkers of RV failure. METHODS In the current study, we aimed to characterize the metabolic reprogramming associated with the RV remodeling phenotype during experimental PH induced by chronic-hypoxia-(CH) exposure or monocrotaline-(MCT) exposure in rats. Three weeks after PH initiation, we hemodynamically characterized PH (echocardiography and RV catheterization), and then we used an untargeted metabolomics approach based on liquid chromatography coupled to high-resolution mass spectrometry to analyze RV and LV tissues in addition to plasma samples from MCT-PH and CH-PH rat models. RESULTS CH exposure induced adaptive RV phenotype as opposed to MCT exposure which induced maladaptive RV phenotype. We found that predominant alterations of arginine, pyrimidine, purine, and tryptophan metabolic pathways were detected on the heart (LV+RV) and plasma samples regardless of the PH model. Acetylspermidine, putrescine, guanidinoacetate RV biopsy levels, and cytosine, deoxycytidine, deoxyuridine, and plasmatic thymidine levels were correlated to RV function in the CH-PH model. It was less likely correlated in the MCT model. These pathways are well described to regulate cell proliferation, cell hypertrophy, and cardioprotection. These findings open novel research perspectives to find biomarkers for early detection of RV failure in PH.
Collapse
Affiliation(s)
- Thaïs Hautbergue
- Département Médicaments et Technologies pour la Santé (MTS), Université Paris-Saclay, CEA, INRAE, SPI, MetaboHUB, 91191 Gif-sur-Yvette, France; (T.H.); (C.J.); (F.F.); (B.C.)
| | - Fabrice Antigny
- Faculté de Médecine, Université Paris-Saclay, 91191 Gif-sur-Yvette, France; (F.A.); (A.B.); (B.M.); (M.L.); (J.-B.M.); (L.S.); (J.L.P.); (E.F.); (M.H.)
- INSERM UMR_S 999 Hypertension Pulmonaire: Physiopathologie et Nouvelles Thérapies, Hôpital Marie Lannelongue, 92350 Le Plessis-Robinson, France
| | - Angèle Boët
- Faculté de Médecine, Université Paris-Saclay, 91191 Gif-sur-Yvette, France; (F.A.); (A.B.); (B.M.); (M.L.); (J.-B.M.); (L.S.); (J.L.P.); (E.F.); (M.H.)
- INSERM UMR_S 999 Hypertension Pulmonaire: Physiopathologie et Nouvelles Thérapies, Hôpital Marie Lannelongue, 92350 Le Plessis-Robinson, France
- Service de Réanimation des Cardiopathies Congénitales, Hôpital Marie Lannelongue, Groupe Hospitalier Paris Saint Joseph, 92350 Le Plessis-Robinson, France
| | - François Haddad
- Cardiovascular Medicine, Stanford Hospital, Stanford University, Stanford, CA 94305, USA;
| | - Bastien Masson
- Faculté de Médecine, Université Paris-Saclay, 91191 Gif-sur-Yvette, France; (F.A.); (A.B.); (B.M.); (M.L.); (J.-B.M.); (L.S.); (J.L.P.); (E.F.); (M.H.)
- INSERM UMR_S 999 Hypertension Pulmonaire: Physiopathologie et Nouvelles Thérapies, Hôpital Marie Lannelongue, 92350 Le Plessis-Robinson, France
| | - Mélanie Lambert
- Faculté de Médecine, Université Paris-Saclay, 91191 Gif-sur-Yvette, France; (F.A.); (A.B.); (B.M.); (M.L.); (J.-B.M.); (L.S.); (J.L.P.); (E.F.); (M.H.)
- INSERM UMR_S 999 Hypertension Pulmonaire: Physiopathologie et Nouvelles Thérapies, Hôpital Marie Lannelongue, 92350 Le Plessis-Robinson, France
| | - Amélie Delaporte
- Service d’Anesthésie, Hôpital Marie Lannelongue, Groupe Hospitalier Paris Saint Joseph, 92350 Le Plessis-Robinson, France;
| | - Jean-Baptiste Menager
- Faculté de Médecine, Université Paris-Saclay, 91191 Gif-sur-Yvette, France; (F.A.); (A.B.); (B.M.); (M.L.); (J.-B.M.); (L.S.); (J.L.P.); (E.F.); (M.H.)
- INSERM UMR_S 999 Hypertension Pulmonaire: Physiopathologie et Nouvelles Thérapies, Hôpital Marie Lannelongue, 92350 Le Plessis-Robinson, France
- Service de Chirurgie Thoracique, Vasculaire et Transplantation Cardio-Pulmonaire, Hôpital Marie Lannelongue, Groupe Hospitalier Paris Saint Joseph, 92350 Le Plessis-Robinson, France
| | - Laurent Savale
- Faculté de Médecine, Université Paris-Saclay, 91191 Gif-sur-Yvette, France; (F.A.); (A.B.); (B.M.); (M.L.); (J.-B.M.); (L.S.); (J.L.P.); (E.F.); (M.H.)
- INSERM UMR_S 999 Hypertension Pulmonaire: Physiopathologie et Nouvelles Thérapies, Hôpital Marie Lannelongue, 92350 Le Plessis-Robinson, France
- Assistance Publique—Hôpitaux de Paris (AP-HP), Service de Pneumologie et Soins Intensifs Respiratoires, Centre de Référence de l’Hypertension Pulmonaire, Hôpital Bicêtre, 94270 Le Kremlin-Bicêtre, France
| | - Jérôme Le Pavec
- Faculté de Médecine, Université Paris-Saclay, 91191 Gif-sur-Yvette, France; (F.A.); (A.B.); (B.M.); (M.L.); (J.-B.M.); (L.S.); (J.L.P.); (E.F.); (M.H.)
- INSERM UMR_S 999 Hypertension Pulmonaire: Physiopathologie et Nouvelles Thérapies, Hôpital Marie Lannelongue, 92350 Le Plessis-Robinson, France
- Service de Chirurgie Thoracique, Vasculaire et Transplantation Cardio-Pulmonaire, Hôpital Marie Lannelongue, Groupe Hospitalier Paris Saint Joseph, 92350 Le Plessis-Robinson, France
| | - Elie Fadel
- Faculté de Médecine, Université Paris-Saclay, 91191 Gif-sur-Yvette, France; (F.A.); (A.B.); (B.M.); (M.L.); (J.-B.M.); (L.S.); (J.L.P.); (E.F.); (M.H.)
- INSERM UMR_S 999 Hypertension Pulmonaire: Physiopathologie et Nouvelles Thérapies, Hôpital Marie Lannelongue, 92350 Le Plessis-Robinson, France
- Service de Chirurgie Thoracique, Vasculaire et Transplantation Cardio-Pulmonaire, Hôpital Marie Lannelongue, Groupe Hospitalier Paris Saint Joseph, 92350 Le Plessis-Robinson, France
| | - Marc Humbert
- Faculté de Médecine, Université Paris-Saclay, 91191 Gif-sur-Yvette, France; (F.A.); (A.B.); (B.M.); (M.L.); (J.-B.M.); (L.S.); (J.L.P.); (E.F.); (M.H.)
- INSERM UMR_S 999 Hypertension Pulmonaire: Physiopathologie et Nouvelles Thérapies, Hôpital Marie Lannelongue, 92350 Le Plessis-Robinson, France
- Assistance Publique—Hôpitaux de Paris (AP-HP), Service de Pneumologie et Soins Intensifs Respiratoires, Centre de Référence de l’Hypertension Pulmonaire, Hôpital Bicêtre, 94270 Le Kremlin-Bicêtre, France
| | - Christophe Junot
- Département Médicaments et Technologies pour la Santé (MTS), Université Paris-Saclay, CEA, INRAE, SPI, MetaboHUB, 91191 Gif-sur-Yvette, France; (T.H.); (C.J.); (F.F.); (B.C.)
| | - François Fenaille
- Département Médicaments et Technologies pour la Santé (MTS), Université Paris-Saclay, CEA, INRAE, SPI, MetaboHUB, 91191 Gif-sur-Yvette, France; (T.H.); (C.J.); (F.F.); (B.C.)
| | - Benoit Colsch
- Département Médicaments et Technologies pour la Santé (MTS), Université Paris-Saclay, CEA, INRAE, SPI, MetaboHUB, 91191 Gif-sur-Yvette, France; (T.H.); (C.J.); (F.F.); (B.C.)
| | - Olaf Mercier
- Faculté de Médecine, Université Paris-Saclay, 91191 Gif-sur-Yvette, France; (F.A.); (A.B.); (B.M.); (M.L.); (J.-B.M.); (L.S.); (J.L.P.); (E.F.); (M.H.)
- INSERM UMR_S 999 Hypertension Pulmonaire: Physiopathologie et Nouvelles Thérapies, Hôpital Marie Lannelongue, 92350 Le Plessis-Robinson, France
- Service de Chirurgie Thoracique, Vasculaire et Transplantation Cardio-Pulmonaire, Hôpital Marie Lannelongue, Groupe Hospitalier Paris Saint Joseph, 92350 Le Plessis-Robinson, France
| |
Collapse
|
13
|
Peng YC, Wang SR, Lai YF, Tsai NM, Lin KL, Lin SJ, Yang TP. Isoamylamine Induces B16-F1 Melanoma Cell Autophagy by Upregulating the 5' Adenosine Monophosphate-Activated Protein Pathway. J Med Food 2021; 24:188-196. [PMID: 33617363 DOI: 10.1089/jmf.2020.4777] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Isoamylamine (IA) is an aliphatic monoamine molecule present in cheese, eggs, and wine. It belongs to the family of polyamines and also can be synthesized endogenously. It has been known that regulation of polyamines in cells is related to cell cycle and tumor formation. Malignant melanoma is difficult to treat and easily resistant to chemotherapy/radiotherapy through autophagy. In this study, we aim to clarify whether IA has a growth control effect on melanoma tumor cells and the regulatory mechanism. We treated B16-F1 melanoma cells with IA at concentrations of 0, 200, 400, and 600 ppm for 24 h. The 3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide (MTT) assay was checked for cell viability and results showed that IA has an inhibitory effect on B16-F1 melanoma cells. The signaling molecules, which included Raf/MEK/ERK, were activated, while MSK1 and protein kinase B (AKT) were suppressed. Autophagy was also confirmed to be induced by IA. The acridine orange stain-positive cells were increased and BECN-1/LC3 upregulated. The data also showed that the autophagy regulatory molecule, 5'-adenosine monophosphate-activated protein kinase (AMPK), was induced after IA treatment, so we used dorsomorphin to inhibit AMPK and found that it could suppress autophagy. In conclusion, IA has an effect of inducing autophagy in B16-F1 cells and it is regulated through AMPK.
Collapse
Affiliation(s)
- Yen-Chun Peng
- Department of Internal Medicine, Chiayi Branch of Taichung Veterans General Hospital, Chiayi, Taiwan.,Division of Gastroenterology, Department of Internal Medicine, Taichung Veterans General Hospital, Taichung, Taiwan.,School of Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Soo-Ray Wang
- Department of Internal Medicine, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Yi-Fang Lai
- Department of Medical Laboratory and Biotechnology, Chung Shan Medical University, Taichung, Taiwan
| | - Nu-Man Tsai
- Department of Medical Laboratory and Biotechnology, Chung Shan Medical University, Taichung, Taiwan
| | - Keh-Liang Lin
- Department of Medical Laboratory and Biotechnology, Chung Shan Medical University, Taichung, Taiwan
| | - Shyh-Jye Lin
- Department of Medical Laboratory and Biotechnology, Chung Shan Medical University, Taichung, Taiwan
| | - Tzi-Peng Yang
- Department of Medical Laboratory and Biotechnology, Chung Shan Medical University, Taichung, Taiwan
| |
Collapse
|
14
|
Zhao R, Liu X, Qi Z, Yao X, Tsang SY. TRPV1 channels regulate the automaticity of embryonic stem cell-derived cardiomyocytes through stimulating the Na + /Ca 2+ exchanger current. J Cell Physiol 2021; 236:6806-6823. [PMID: 33782967 DOI: 10.1002/jcp.30369] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 02/25/2021] [Accepted: 03/09/2021] [Indexed: 12/16/2022]
Abstract
Calcium controls the excitation-contraction coupling in cardiomyocytes. Embryonic stem cell-derived cardiomyocytes (ESC-CMs) are an important cardiomyocyte source for regenerative medicine and drug screening. Transient receptor potential vanilloid 1 (TRPV1) channels are nonselective cation channels that permeate sodium and calcium. This study aimed to investigate whether TRPV1 channels regulate the electrophysiological characteristics of ESC-CMs. If yes, what is the mechanism behind? By immunostaining and subcellular fractionation, followed by western blotting, TRPV1 was found to locate intracellularly. The staining pattern of TRPV1 was found to largely overlap with that of the sarco/endoplasmic reticulum Ca2+ -ATPase, the sarcoplasmic reticulum (SR) marker. By electrophysiology and calcium imaging, pharmacological blocker of TRPV1 and the molecular tool TRPV1β (which could functionally knockdown TRPV1) were found to decrease the rate and diastolic depolarization slope of spontaneous action potentials, and the amplitude and frequency of global calcium transients. By calcium imaging, in the absence of external calcium, TRPV1-specific opener increased intracellular calcium; this increase was abolished by preincubation with caffeine, which could deplete SR calcium store. The results suggest that TRPV1 controls calcium release from the SR. By electrophysiology, TRPV1 blockade and functional knockdown of TRPV1 decreased the Na+ /Ca2+ exchanger (NCX) currents from both the forward and reverse modes, suggesting that sodium and calcium through TRPV1 stimulate the NCX activity. Our novel findings suggest that TRPV1 activity is important for regulating the spontaneous activity of ESC-CMs and reveal a novel interplay between TRPV1 and NCX in regulating the physiological functions of ESC-CMs.
Collapse
Affiliation(s)
- Rui Zhao
- School of Life Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Xianji Liu
- School of Life Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Zenghua Qi
- School of Life Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Xiaoqiang Yao
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Suk Ying Tsang
- School of Life Sciences, The Chinese University of Hong Kong, Hong Kong, China.,State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Hong Kong, China.,Key Laboratory for Regenerative Medicine, Ministry of Education, The Chinese University of Hong Kong, Hong Kong, China
| |
Collapse
|
15
|
Nayak A, Liu C, Mehta A, Ko YA, Tahhan AS, Dhindsa DS, Uppal K, Jones DP, Butler J, Morris AA, Quyyumi AA. N8-Acetylspermidine: A Polyamine Biomarker in Ischemic Cardiomyopathy With Reduced Ejection Fraction. J Am Heart Assoc 2020; 9:e016055. [PMID: 32458724 PMCID: PMC7429012 DOI: 10.1161/jaha.120.016055] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Background Patients with ischemic cardiomyopathy (ICM) have worse outcomes than those with coronary artery disease alone and those with non-ICM. N8-acetylspermidine (N8AS) is a polyamine that regulates ischemic cardiac apoptosis and resultant cardiac dysfunction. We hypothesized that N8AS is a mechanistic biomarker of adverse outcomes in patients with ICM. Methods and Results High-resolution plasma metabolomics profiling and mass spectrometry were used to quantitate N8AS levels in a discovery cohort of 474 patients with coronary artery disease (age: 68±11 years, 12% black, 26% women): 154 with ICM, and 320 without ICM; and in an external validation cohort of 85 patients with ICM (age: 60±12 years, 37% black, 19% women). Patients without heart failure (HF) at baseline were followed for incident HF. The association between N8AS (log2-transformed, standardized) and outcomes of all-cause mortality and incident HF were examined using Cox regression. N8AS was higher (10.39 [interquartile range, 7.21-17.75] versus 8.29 nmol/L [interquartile range, 5.91-11.42]; P<0.001) in patients with ICM compared with patients who had coronary artery disease without ICM. Higher N8AS levels were associated with higher mortality in patients with ICM (hazard ratio [HR], 1.48; 95% CI, 1.19-1.85 per SD increase [P=0.001]), independent of B-type natriuretic peptide, high-sensitivity troponin I, and high-sensitivity C-reactive protein. Findings were validated in the independent cohort. Moreover, higher N8AS level was associated with incident HF in patients without HF at baseline (HR, 4.16; 95% CI, 1.41-12.25 per SD increase [P=0.01]). Conclusions Independent of traditional HF measures, higher N8AS levels are associated with higher mortality in patients with ICM and incident HF in those who have coronary artery disease without HF. N8AS is a novel mechanistic biomarker in ICM.
Collapse
Affiliation(s)
- Aditi Nayak
- Emory Clinical Cardiovascular Research Institute Division of Cardiology Department of Medicine Emory University School of Medicine Atlanta GA
| | - Chang Liu
- Emory Clinical Cardiovascular Research Institute Division of Cardiology Department of Medicine Emory University School of Medicine Atlanta GA.,Department of Epidemiology Rollins School of Public Health Emory University Atlanta GA
| | - Anurag Mehta
- Emory Clinical Cardiovascular Research Institute Division of Cardiology Department of Medicine Emory University School of Medicine Atlanta GA
| | - Yi-An Ko
- Emory Clinical Cardiovascular Research Institute Division of Cardiology Department of Medicine Emory University School of Medicine Atlanta GA.,Department of Biostatistics and Bioinformatics Rollins School of Public Health Emory University Atlanta GA
| | - Ayman S Tahhan
- Emory Clinical Cardiovascular Research Institute Division of Cardiology Department of Medicine Emory University School of Medicine Atlanta GA
| | - Devinder S Dhindsa
- Emory Clinical Cardiovascular Research Institute Division of Cardiology Department of Medicine Emory University School of Medicine Atlanta GA
| | - Karan Uppal
- Division of Pulmonary Allergy, Critical Care and Sleep Medicine Department of Medicine Emory University School of Medicine Atlanta GA
| | - Dean P Jones
- Division of Pulmonary Allergy, Critical Care and Sleep Medicine Department of Medicine Emory University School of Medicine Atlanta GA
| | - Javed Butler
- Division of Cardiology University of Mississippi Jackson MS
| | - Alanna A Morris
- Emory Clinical Cardiovascular Research Institute Division of Cardiology Department of Medicine Emory University School of Medicine Atlanta GA
| | - Arshed A Quyyumi
- Emory Clinical Cardiovascular Research Institute Division of Cardiology Department of Medicine Emory University School of Medicine Atlanta GA
| |
Collapse
|
16
|
Khomutov MA, Mikhura IV, Kochetkov SN, Khomutov AR. C-Methylated Analogs of Spermine and Spermidine: Synthesis and Biological Activity. RUSSIAN JOURNAL OF BIOORGANIC CHEMISTRY 2019. [DOI: 10.1134/s1068162019060207] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
17
|
Yan J, Yan J, Wang Y, Ling Y, Song X, Wang S, Liu H, Liu Q, Zhang Y, Yang P, Wang X, Chen A. Spermidine-enhanced autophagic flux improves cardiac dysfunction following myocardial infarction by targeting the AMPK/mTOR signalling pathway. Br J Pharmacol 2019; 176:3126-3142. [PMID: 31077347 PMCID: PMC6692641 DOI: 10.1111/bph.14706] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Revised: 04/17/2019] [Accepted: 04/29/2019] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND AND PURPOSE Spermidine, a natural polyamine, is abundant in mammalian cells and is involved in cell growth, proliferation, and regeneration. Recently, oral spermidine supplements were cardioprotective in age-related cardiac dysfunction, through enhancing autophagic flux. However, the effect of spermidine on myocardial injury and cardiac dysfunction following myocardial infarction (MI) remains unknown. EXPERIMENTAL APPROACH We determined the effects of spermidine in a model of MI, Sprague-Dawley rats with permanent ligation of the left anterior descending artery, and in cultured neonatal rat cardiomyocytes (NRCs) exposed to angiotensin II (Ang II). Cardiac function in vivo was assessed with echocardiography. In vivo and in vitro studies used histological and immunohistochemical techniques, along with western blots. KEY RESULTS Spermidine improved cardiomyocyte viability and decreased cell necrosis in NRCs treated with angiotensin II. In rats post-MI, spermidine reduced infarct size, improved cardiac function, and attenuated myocardial hypertrophy. Spermidine also suppressed the oxidative damage and inflammatory cytokines induced by MI. Moreover, spermidine enhanced autophagic flux and decreased apoptosis both in vitro and in vivo. The protective effects of spermidine on cardiomyocyte apoptosis and cardiac dysfunction were abolished by the autophagy inhibitor chloroquine, indicating that spermidine exerted cardioprotective effects at least partly through promoting autophagic flux, by activating the AMPK/mTOR signalling pathway. CONCLUSIONS AND IMPLICATIONS Our findings suggest that spermidine improved MI-induced cardiac dysfunction by promoting AMPK/mTOR-mediated autophagic flux.
Collapse
Affiliation(s)
- Jing Yan
- Laboratory of Heart Center and Department of Cardiology, Heart Center, Zhujiang HospitalSouthern Medical UniversityGuangzhouChina
- Laboratory of Heart Center, Guangdong Provincial Biomedical Engineering Technology Research Center for Cardiovascular DiseaseGuangzhouChina
- Laboratory of Heart Center, Sino‐Japanese Cooperation Platform for Translational Research in Heart FailureGuangzhouChina
| | - Jian‐Yun Yan
- Laboratory of Heart Center and Department of Cardiology, Heart Center, Zhujiang HospitalSouthern Medical UniversityGuangzhouChina
- Laboratory of Heart Center, Guangdong Provincial Biomedical Engineering Technology Research Center for Cardiovascular DiseaseGuangzhouChina
- Laboratory of Heart Center, Sino‐Japanese Cooperation Platform for Translational Research in Heart FailureGuangzhouChina
| | - Yu‐Xi Wang
- Laboratory of Heart Center and Department of Cardiology, Heart Center, Zhujiang HospitalSouthern Medical UniversityGuangzhouChina
- Laboratory of Heart Center, Guangdong Provincial Biomedical Engineering Technology Research Center for Cardiovascular DiseaseGuangzhouChina
- Laboratory of Heart Center, Sino‐Japanese Cooperation Platform for Translational Research in Heart FailureGuangzhouChina
| | - Yuan‐Na Ling
- Laboratory of Heart Center and Department of Cardiology, Heart Center, Zhujiang HospitalSouthern Medical UniversityGuangzhouChina
- Laboratory of Heart Center, Guangdong Provincial Biomedical Engineering Technology Research Center for Cardiovascular DiseaseGuangzhouChina
- Laboratory of Heart Center, Sino‐Japanese Cooperation Platform for Translational Research in Heart FailureGuangzhouChina
| | - Xu‐Dong Song
- Laboratory of Heart Center and Department of Cardiology, Heart Center, Zhujiang HospitalSouthern Medical UniversityGuangzhouChina
- Laboratory of Heart Center, Guangdong Provincial Biomedical Engineering Technology Research Center for Cardiovascular DiseaseGuangzhouChina
- Laboratory of Heart Center, Sino‐Japanese Cooperation Platform for Translational Research in Heart FailureGuangzhouChina
| | - Si‐Yi Wang
- Laboratory of Heart Center and Department of Cardiology, Heart Center, Zhujiang HospitalSouthern Medical UniversityGuangzhouChina
- Laboratory of Heart Center, Guangdong Provincial Biomedical Engineering Technology Research Center for Cardiovascular DiseaseGuangzhouChina
- Laboratory of Heart Center, Sino‐Japanese Cooperation Platform for Translational Research in Heart FailureGuangzhouChina
| | - Hai‐Qiong Liu
- Laboratory of Heart Center and Department of Cardiology, Heart Center, Zhujiang HospitalSouthern Medical UniversityGuangzhouChina
- Laboratory of Heart Center, Guangdong Provincial Biomedical Engineering Technology Research Center for Cardiovascular DiseaseGuangzhouChina
- Laboratory of Heart Center, Sino‐Japanese Cooperation Platform for Translational Research in Heart FailureGuangzhouChina
| | - Qi‐Cai Liu
- Laboratory of Heart Center and Department of Cardiology, Heart Center, Zhujiang HospitalSouthern Medical UniversityGuangzhouChina
- Laboratory of Heart Center, Guangdong Provincial Biomedical Engineering Technology Research Center for Cardiovascular DiseaseGuangzhouChina
- Laboratory of Heart Center, Sino‐Japanese Cooperation Platform for Translational Research in Heart FailureGuangzhouChina
| | - Ya Zhang
- Department of CardiologyXiangdong Affiliated Hospital of Hunan Normal UniversityZhuzhouHunanChina
| | - Ping‐Zhen Yang
- Laboratory of Heart Center and Department of Cardiology, Heart Center, Zhujiang HospitalSouthern Medical UniversityGuangzhouChina
- Laboratory of Heart Center, Guangdong Provincial Biomedical Engineering Technology Research Center for Cardiovascular DiseaseGuangzhouChina
- Laboratory of Heart Center, Sino‐Japanese Cooperation Platform for Translational Research in Heart FailureGuangzhouChina
| | - Xian‐Bao Wang
- Laboratory of Heart Center and Department of Cardiology, Heart Center, Zhujiang HospitalSouthern Medical UniversityGuangzhouChina
- Laboratory of Heart Center, Guangdong Provincial Biomedical Engineering Technology Research Center for Cardiovascular DiseaseGuangzhouChina
- Laboratory of Heart Center, Sino‐Japanese Cooperation Platform for Translational Research in Heart FailureGuangzhouChina
| | - Ai‐Hua Chen
- Laboratory of Heart Center and Department of Cardiology, Heart Center, Zhujiang HospitalSouthern Medical UniversityGuangzhouChina
- Laboratory of Heart Center, Guangdong Provincial Biomedical Engineering Technology Research Center for Cardiovascular DiseaseGuangzhouChina
- Laboratory of Heart Center, Sino‐Japanese Cooperation Platform for Translational Research in Heart FailureGuangzhouChina
| |
Collapse
|
18
|
Abstract
Trace amines are endogenous compounds classically regarded as comprising β-phenylethyalmine, p-tyramine, tryptamine, p-octopamine, and some of their metabolites. They are also abundant in common foodstuffs and can be produced and degraded by the constitutive microbiota. The ability to use trace amines has arisen at least twice during evolution, with distinct receptor families present in invertebrates and vertebrates. The term "trace amine" was coined to reflect the low tissue levels in mammals; however, invertebrates have relatively high levels where they function like mammalian adrenergic systems, involved in "fight-or-flight" responses. Vertebrates express a family of receptors termed trace amine-associated receptors (TAARs). Humans possess six functional isoforms (TAAR1, TAAR2, TAAR5, TAAR6, TAAR8, and TAAR9), whereas some fish species express over 100. With the exception of TAAR1, TAARs are expressed in olfactory epithelium neurons, where they detect diverse ethological signals including predators, spoiled food, migratory cues, and pheromones. Outside the olfactory system, TAAR1 is the most thoroughly studied and has both central and peripheral roles. In the brain, TAAR1 acts as a rheostat of dopaminergic, glutamatergic, and serotonergic neurotransmission and has been identified as a novel therapeutic target for schizophrenia, depression, and addiction. In the periphery, TAAR1 regulates nutrient-induced hormone secretion, suggesting its potential as a novel therapeutic target for diabetes and obesity. TAAR1 may also regulate immune responses by regulating leukocyte differentiation and activation. This article provides a comprehensive review of the current state of knowledge of the evolution, physiologic functions, pharmacology, molecular mechanisms, and therapeutic potential of trace amines and their receptors in vertebrates and invertebrates.
Collapse
Affiliation(s)
- Raul R Gainetdinov
- Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg, Russia (R.R.G.); Skolkovo Institute of Science and Technology (Skoltech), Moscow, Russia (R.R.G.); Neuroscience, Ophthalmology, and Rare Diseases Discovery and Translational Area, pRED, Roche Innovation Centre Basel, F. Hoffmann-La Roche Ltd., Basel, Switzerland (M.C.H.); and Department of Biochemistry, Memorial University of Newfoundland, St. John's, Newfoundland and Labrador, Canada (M.D.B.)
| | - Marius C Hoener
- Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg, Russia (R.R.G.); Skolkovo Institute of Science and Technology (Skoltech), Moscow, Russia (R.R.G.); Neuroscience, Ophthalmology, and Rare Diseases Discovery and Translational Area, pRED, Roche Innovation Centre Basel, F. Hoffmann-La Roche Ltd., Basel, Switzerland (M.C.H.); and Department of Biochemistry, Memorial University of Newfoundland, St. John's, Newfoundland and Labrador, Canada (M.D.B.)
| | - Mark D Berry
- Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg, Russia (R.R.G.); Skolkovo Institute of Science and Technology (Skoltech), Moscow, Russia (R.R.G.); Neuroscience, Ophthalmology, and Rare Diseases Discovery and Translational Area, pRED, Roche Innovation Centre Basel, F. Hoffmann-La Roche Ltd., Basel, Switzerland (M.C.H.); and Department of Biochemistry, Memorial University of Newfoundland, St. John's, Newfoundland and Labrador, Canada (M.D.B.)
| |
Collapse
|
19
|
Abstract
Heart failure (HF) following myocardial infarction (MI) is associated with high incidence of cardiac arrhythmias. Development of therapeutic strategy requires detailed understanding of electrophysiological remodeling. However, changes of ionic currents in ischemic HF remain incompletely understood, especially in translational large-animal models. Here, we systematically measure the major ionic currents in ventricular myocytes from the infarct border and remote zones in a porcine model of post-MI HF. We recorded eight ionic currents during the cell's action potential (AP) under physiologically relevant conditions using selfAP-clamp sequential dissection. Compared with healthy controls, HF-remote zone myocytes exhibited increased late Na+ current, Ca2+-activated K+ current, Ca2+-activated Cl- current, decreased rapid delayed rectifier K+ current, and altered Na+/Ca2+ exchange current profile. In HF-border zone myocytes, the above changes also occurred but with additional decrease of L-type Ca2+ current, decrease of inward rectifier K+ current, and Ca2+ release-dependent delayed after-depolarizations. Our data reveal that the changes in any individual current are relatively small, but the integrated impacts shift the balance between the inward and outward currents to shorten AP in the border zone but prolong AP in the remote zone. This differential remodeling in post-MI HF increases the inhomogeneity of AP repolarization, which may enhance the arrhythmogenic substrate. Our comprehensive findings provide a mechanistic framework for understanding why single-channel blockers may fail to suppress arrhythmias, and highlight the need to consider the rich tableau and integration of many ionic currents in designing therapeutic strategies for treating arrhythmias in HF.
Collapse
|