1
|
Dey Bhowmik A, Shaw P, Gopinatha Pillai MS, Rao G, Dwivedi SKD. Evolving landscape of detection and targeting miRNA/epigenetics for therapeutic strategies in ovarian cancer. Cancer Lett 2024; 611:217357. [PMID: 39615646 DOI: 10.1016/j.canlet.2024.217357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 11/22/2024] [Accepted: 11/25/2024] [Indexed: 12/14/2024]
Abstract
Ovarian cancer (OC) accounts for the highest mortality rates among all gynecologic malignancies. The high mortality of OC is often associated with delayed detection, prolonged latency, enhanced metastatic potential, acquired drug resistance, and frequent recurrence. This review comprehensively explores key aspects of OC, including cancer diagnosis, mechanisms of disease resistance, and the pivotal role of epigenetic regulation, particularly by microRNAs (miRs) in cancer progression. We highlight the intricate regulatory mechanisms governing miR expression within the context of OC and the current status of epigenetic advancement in the therapeutic development and clinical trial progression. Through network analysis we elucidate the regulatory interactions between dysregulated miRs in OC and their targets which are involved in different signaling pathways. By exploring these interconnected facets and critical analysis, we endeavor to provide a nuanced understanding of the molecular dynamics underlying OC, its detection and shedding light on potential avenues for miRs and epigenetics-based therapeutic intervention and management strategies.
Collapse
Affiliation(s)
- Arpan Dey Bhowmik
- Peggy and Charles Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA; Department of Obstetrics and Gynecology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA
| | - Pallab Shaw
- Peggy and Charles Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA; Department of Pathology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA
| | - Mohan Shankar Gopinatha Pillai
- Peggy and Charles Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA; Department of Obstetrics and Gynecology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA
| | - Geeta Rao
- Peggy and Charles Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA; Department of Pathology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA
| | - Shailendra Kumar Dhar Dwivedi
- Peggy and Charles Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA; Department of Obstetrics and Gynecology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA.
| |
Collapse
|
2
|
Yang Q, Vafaei S, Falahati A, Khosh A, Bariani MV, Omran MM, Bai T, Siblini H, Ali M, He C, Boyer TG, Al-Hendy A. Bromodomain-Containing Protein 9 Regulates Signaling Pathways and Reprograms the Epigenome in Immortalized Human Uterine Fibroid Cells. Int J Mol Sci 2024; 25:905. [PMID: 38255982 PMCID: PMC10815284 DOI: 10.3390/ijms25020905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 12/26/2023] [Accepted: 01/03/2024] [Indexed: 01/24/2024] Open
Abstract
Bromodomain-containing proteins (BRDs) are involved in many biological processes, most notably epigenetic regulation of transcription, and BRD dysfunction has been linked to many diseases, including tumorigenesis. However, the role of BRDs in the pathogenesis of uterine fibroids (UFs) is entirely unknown. The present study aimed to determine the expression pattern of BRD9 in UFs and matched myometrium and further assess the impact of a BRD9 inhibitor on UF phenotype and epigenetic/epitranscriptomic changes. Our studies demonstrated that the levels of BRD9 were significantly upregulated in UFs compared to matched myometrium, suggesting that the aberrant BRD expression may contribute to the pathogenesis of UFs. We then evaluated the potential roles of BRD9 using its specific inhibitor, I-BRD9. Targeted inhibition of BRD9 suppressed UF tumorigenesis with increased apoptosis and cell cycle arrest, decreased cell proliferation, and extracellular matrix deposition in UF cells. The latter is the key hallmark of UFs. Unbiased transcriptomic profiling coupled with downstream bioinformatics analysis further and extensively demonstrated that targeted inhibition of BRD9 impacted the cell cycle- and ECM-related biological pathways and reprogrammed the UF cell epigenome and epitranscriptome in UFs. Taken together, our studies support the critical role of BRD9 in UF cells and the strong interconnection between BRD9 and other pathways controlling the UF progression. Targeted inhibition of BRDs might provide a non-hormonal treatment option for this most common benign tumor in women of reproductive age.
Collapse
Affiliation(s)
- Qiwei Yang
- Department of Obstetrics and Gynecology, University of Chicago, 5841 S. Maryland Ave., Chicago, IL 60637, USA; (S.V.); (M.V.B.); (M.M.O.); (H.S.); (M.A.); (A.A.-H.)
| | - Somayeh Vafaei
- Department of Obstetrics and Gynecology, University of Chicago, 5841 S. Maryland Ave., Chicago, IL 60637, USA; (S.V.); (M.V.B.); (M.M.O.); (H.S.); (M.A.); (A.A.-H.)
| | - Ali Falahati
- DNA GTx LAB, Dubai Healthcare City, Dubai 505262, United Arab Emirates;
| | - Azad Khosh
- Department of Molecular Medicine, Institute of Biotechnology, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA; (A.K.); (T.G.B.)
| | - Maria Victoria Bariani
- Department of Obstetrics and Gynecology, University of Chicago, 5841 S. Maryland Ave., Chicago, IL 60637, USA; (S.V.); (M.V.B.); (M.M.O.); (H.S.); (M.A.); (A.A.-H.)
| | - Mervat M. Omran
- Department of Obstetrics and Gynecology, University of Chicago, 5841 S. Maryland Ave., Chicago, IL 60637, USA; (S.V.); (M.V.B.); (M.M.O.); (H.S.); (M.A.); (A.A.-H.)
- Cancer Biology Department, National Cancer Institute, Cairo University, Cairo 11796, Egypt
| | - Tao Bai
- Obstetrics and Gynecology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA;
| | - Hiba Siblini
- Department of Obstetrics and Gynecology, University of Chicago, 5841 S. Maryland Ave., Chicago, IL 60637, USA; (S.V.); (M.V.B.); (M.M.O.); (H.S.); (M.A.); (A.A.-H.)
| | - Mohamed Ali
- Department of Obstetrics and Gynecology, University of Chicago, 5841 S. Maryland Ave., Chicago, IL 60637, USA; (S.V.); (M.V.B.); (M.M.O.); (H.S.); (M.A.); (A.A.-H.)
| | - Chuan He
- Department of Chemistry, University of Chicago, Chicago, IL 60637, USA;
| | - Thomas G. Boyer
- Department of Molecular Medicine, Institute of Biotechnology, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA; (A.K.); (T.G.B.)
| | - Ayman Al-Hendy
- Department of Obstetrics and Gynecology, University of Chicago, 5841 S. Maryland Ave., Chicago, IL 60637, USA; (S.V.); (M.V.B.); (M.M.O.); (H.S.); (M.A.); (A.A.-H.)
| |
Collapse
|
3
|
S, N-doped carbon dots-based cisplatin delivery system in adenocarcinoma cells: Spectroscopical and computational approach. J Colloid Interface Sci 2022; 623:226-237. [PMID: 35576652 DOI: 10.1016/j.jcis.2022.05.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 04/27/2022] [Accepted: 05/01/2022] [Indexed: 11/17/2022]
|
4
|
Horst EN, Bregenzer ME, Mehta P, Snyder CS, Repetto T, Yang-Hartwich Y, Mehta G. Personalized models of heterogeneous 3D epithelial tumor microenvironments: Ovarian cancer as a model. Acta Biomater 2021; 132:401-420. [PMID: 33940195 PMCID: PMC8969826 DOI: 10.1016/j.actbio.2021.04.041] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 04/15/2021] [Accepted: 04/20/2021] [Indexed: 02/07/2023]
Abstract
Intractable human diseases such as cancers, are context dependent, unique to both the individual patient and to the specific tumor microenvironment. However, conventional cancer treatments are often nonspecific, targeting global similarities rather than unique drivers. This limits treatment efficacy across heterogeneous patient populations and even at different tumor locations within the same patient. Ultimately, this poor efficacy can lead to adverse clinical outcomes and the development of treatment-resistant relapse. To prevent this and improve outcomes, it is necessary to be selective when choosing a patient's optimal adjuvant treatment. In this review, we posit the use of personalized, tumor-specific models (TSM) as tools to achieve this remarkable feat. First, using ovarian cancer as a model disease, we outline the heterogeneity and complexity of both the cellular and extracellular components in the tumor microenvironment. Then we examine the advantages and disadvantages of contemporary cancer models and the rationale for personalized TSM. We discuss how to generate precision 3D models through careful and detailed analysis of patient biopsies. Finally, we provide clinically relevant applications of these versatile personalized cancer models to highlight their potential impact. These models are ideal for a myriad of fundamental cancer biology and translational studies. Importantly, these approaches can be extended to other carcinomas, facilitating the discovery of new therapeutics that more effectively target the unique aspects of each individual patient's TME. STATEMENT OF SIGNIFICANCE: In this article, we have presented the case for the application of biomaterials in developing personalized models of complex diseases such as cancers. TSM could bring about breakthroughs in the promise of precision medicine. The critical components of the diverse tumor microenvironments, that lead to treatment failures, include cellular- and extracellular matrix- heterogeneity, and biophysical signals to the cells. Therefore, we have described these dynamic components of the tumor microenvironments, and have highlighted how contemporary biomaterials can be utilized to create personalized in vitro models of cancers. We have also described the application of the TSM to predict the dynamic patterns of disease progression, and predict effective therapies that can produce durable responses, limit relapses, and treat any minimal residual disease.
Collapse
Affiliation(s)
- Eric N Horst
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109, United States
| | - Michael E Bregenzer
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109, United States
| | - Pooja Mehta
- Department of Materials Science and Engineering, University of Michigan, Ann Arbor, MI 48109, United States
| | - Catherine S Snyder
- Department of Materials Science and Engineering, University of Michigan, Ann Arbor, MI 48109, United States
| | - Taylor Repetto
- Department of Materials Science and Engineering, University of Michigan, Ann Arbor, MI 48109, United States
| | - Yang Yang-Hartwich
- Department of Obstetrics, Gynecology & Reproductive Sciences, Yale School of Medicine, Yale University, New Haven, CT 06510, United States
| | - Geeta Mehta
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109, United States; Department of Materials Science and Engineering, University of Michigan, Ann Arbor, MI 48109, United States; Macromolecular Science and Engineering, University of Michigan, Ann Arbor, MI 48109, United States; Rogel Cancer Center, University of Michigan, Ann Arbor, MI 48109, United States; Precision Health, University of Michigan, Ann Arbor, MI 48109, United States.
| |
Collapse
|
5
|
Su KM, Gao HW, Chang CM, Lu KH, Yu MH, Lin YH, Liu LC, Chang CC, Li YF, Chang CC. Synergistic AHR Binding Pathway with EMT Effects on Serous Ovarian Tumors Recognized by Multidisciplinary Integrated Analysis. Biomedicines 2021; 9:866. [PMID: 34440070 PMCID: PMC8389648 DOI: 10.3390/biomedicines9080866] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2021] [Revised: 07/12/2021] [Accepted: 07/20/2021] [Indexed: 12/11/2022] Open
Abstract
Epithelial ovarian cancers (EOCs) are fatal and obstinate among gynecological malignancies in advanced stage or relapsed status, with serous carcinomas accounting for the vast majority. Unlike EOCs, borderline ovarian tumors (BOTs), including serous BOTs, maintain a semimalignant appearance. Using gene ontology (GO)-based integrative analysis, we analyzed gene set databases of serous BOTs and serous ovarian carcinomas for dysregulated GO terms and pathways and identified multiple differentially expressed genes (DEGs) in various aspects. The SRC (SRC proto-oncogene, non-receptor tyrosine kinase) gene and dysfunctional aryl hydrocarbon receptor (AHR) binding pathway consistently influenced progression-free survival and overall survival, and immunohistochemical staining revealed elevated expression of related biomarkers (SRC, ARNT, and TBP) in serous BOT and ovarian carcinoma samples. Epithelial-mesenchymal transition (EMT) is important during tumorigenesis, and we confirmed the SNAI2 (Snail family transcriptional repressor 2, SLUG) gene showing significantly high performance by immunohistochemistry. During serous ovarian tumor formation, activated AHR in the cytoplasm could cooperate with SRC, enter cell nuclei, bind to AHR nuclear translocator (ARNT) together with TATA-Box Binding Protein (TBP), and act on DNA to initiate AHR-responsive genes to cause tumor or cancer initiation. Additionally, SNAI2 in the tumor microenvironment can facilitate EMT accompanied by tumorigenesis. Although it has not been possible to classify serous BOTs and serous ovarian carcinomas as the same EOC subtype, the key determinants of relevant DEGs (SRC, ARNT, TBP, and SNAI2) found here had a crucial role in the pathogenetic mechanism of both tumor types, implying gradual evolutionary tendencies from serous BOTs to ovarian carcinomas. In the future, targeted therapy could focus on these revealed targets together with precise detection to improve therapeutic effects and patient survival rates.
Collapse
Affiliation(s)
- Kuo-Min Su
- Graduate Institute of Medical Sciences, National Defense Medical Center, Taipei 114, Taiwan; (K.-M.S.); (M.-H.Y.)
- Department of Obstetrics and Gynecology, Tri-Service General Hospital, National Defense Medical Center, Taipei 114, Taiwan; (Y.-H.L.); (L.-C.L.); (C.-C.C.)
| | - Hong-Wei Gao
- Department of Pathology, Tri-Service General Hospital, National Defense Medical Center, Taipei 114, Taiwan;
| | - Chia-Ming Chang
- School of Medicine, National Yang Ming Chiao Tung University, Taipei 112, Taiwan;
- Department of Obstetrics and Gynecology, Taipei Veterans General Hospital, Taipei 112, Taiwan
| | - Kai-Hsi Lu
- Department of Medical Research and Education, Cheng-Hsin General Hospital, Taipei 112, Taiwan;
| | - Mu-Hsien Yu
- Graduate Institute of Medical Sciences, National Defense Medical Center, Taipei 114, Taiwan; (K.-M.S.); (M.-H.Y.)
- Department of Obstetrics and Gynecology, Tri-Service General Hospital, National Defense Medical Center, Taipei 114, Taiwan; (Y.-H.L.); (L.-C.L.); (C.-C.C.)
| | - Yi-Hsin Lin
- Department of Obstetrics and Gynecology, Tri-Service General Hospital, National Defense Medical Center, Taipei 114, Taiwan; (Y.-H.L.); (L.-C.L.); (C.-C.C.)
| | - Li-Chun Liu
- Department of Obstetrics and Gynecology, Tri-Service General Hospital, National Defense Medical Center, Taipei 114, Taiwan; (Y.-H.L.); (L.-C.L.); (C.-C.C.)
- Division of Obstetrics and Gynecology, Tri-Service General Hospital Songshan Branch, National Defense Medical Center, Taipei 105, Taiwan
| | - Chia-Ching Chang
- Department of Obstetrics and Gynecology, Tri-Service General Hospital, National Defense Medical Center, Taipei 114, Taiwan; (Y.-H.L.); (L.-C.L.); (C.-C.C.)
| | - Yao-Feng Li
- Department of Pathology, Tri-Service General Hospital, National Defense Medical Center, Taipei 114, Taiwan;
| | - Cheng-Chang Chang
- Graduate Institute of Medical Sciences, National Defense Medical Center, Taipei 114, Taiwan; (K.-M.S.); (M.-H.Y.)
- Department of Obstetrics and Gynecology, Tri-Service General Hospital, National Defense Medical Center, Taipei 114, Taiwan; (Y.-H.L.); (L.-C.L.); (C.-C.C.)
| |
Collapse
|
6
|
Dysregulated Immunological Functionome and Dysfunctional Metabolic Pathway Recognized for the Pathogenesis of Borderline Ovarian Tumors by Integrative Polygenic Analytics. Int J Mol Sci 2021; 22:ijms22084105. [PMID: 33921111 PMCID: PMC8071470 DOI: 10.3390/ijms22084105] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 04/09/2021] [Accepted: 04/13/2021] [Indexed: 12/20/2022] Open
Abstract
The pathogenesis and molecular mechanisms of ovarian low malignant potential (LMP) tumors or borderline ovarian tumors (BOTs) have not been fully elucidated to date. Surgery remains the cornerstone of treatment for this disease, and diagnosis is mainly made by histopathology to date. However, there is no integrated analysis investigating the tumorigenesis of BOTs with open experimental data. Therefore, we first utilized a functionome-based speculative model from the aggregated obtainable datasets to explore the expression profiling data among all BOTs and two major subtypes of BOTs, serous BOTs (SBOTs) and mucinous BOTs (MBOTs), by analyzing the functional regularity patterns and clustering the separate gene sets. We next prospected and assembled the association between these targeted biomolecular functions and their related genes. Our research found that BOTs can be accurately recognized by gene expression profiles by means of integrative polygenic analytics among all BOTs, SBOTs, and MBOTs; the results exhibited the top 41 common dysregulated biomolecular functions, which were sorted into four major categories: immune and inflammatory response-related functions, cell membrane- and transporter-related functions, cell cycle- and signaling-related functions, and cell metabolism-related functions, which were the key elements involved in its pathogenesis. In contrast to previous research, we identified 19 representative genes from the above classified categories (IL6, CCR2 for immune and inflammatory response-related functions; IFNG, ATP1B1, GAS6, and PSEN1 for cell membrane- and transporter-related functions; CTNNB1, GATA3, and IL1B for cell cycle- and signaling-related functions; and AKT1, SIRT1, IL4, PDGFB, MAPK3, SRC, TWIST1, TGFB1, ADIPOQ, and PPARGC1A for cell metabolism-related functions) that were relevant in the cause and development of BOTs. We also noticed that a dysfunctional pathway of galactose catabolism had taken place among all BOTs, SBOTs, and MBOTs from the analyzed gene set databases of canonical pathways. With the help of immunostaining, we verified significantly higher performance of interleukin 6 (IL6) and galactose-1-phosphate uridylyltransferase (GALT) among BOTs than the controls. In conclusion, a bioinformatic platform of gene-set integrative molecular functionomes and biophysiological pathways was constructed in this study to interpret the complicated pathogenic pathways of BOTs, and these important findings demonstrated the dysregulated immunological functionome and dysfunctional metabolic pathway as potential roles during the tumorigenesis of BOTs and may be helpful for the diagnosis and therapy of BOTs in the future.
Collapse
|
7
|
Mota A, S Oltra S, Moreno-Bueno G. Insight updating of the molecular hallmarks in ovarian carcinoma. EJC Suppl 2020; 15:16-26. [PMID: 33240439 PMCID: PMC7573468 DOI: 10.1016/j.ejcsup.2019.11.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Revised: 10/17/2019] [Accepted: 11/16/2019] [Indexed: 12/31/2022] Open
Abstract
Background and purpose Ovarian cancer (OC) is the deadliest gynaecologic cancer characterised by a high heterogeneity not only at the clinical point of view but also at the molecular level. This review focuses on the new insights about the OC molecular classification. Materials and methods We performed a bibliographic search for different indexed articles focused on the new molecular classification of OC. All of them have been published in PubMed and included information about the most frequent molecular alterations in OC confirmed by omics approaches. In addition, we have extracted information about the role of liquid biopsy in the OC diagnosis and prognosis. Results New molecular insights into OC have allowed novel clinical entities to be defined. Among OC, high-grade serous ovarian carcinoma (HGSOC) which is the most common OC is characterised by omics approaches, mutations in TP53 and in other genes involved in the homologous recombination repair, especially BRCA1/2. Recent studies in HGSOC have allowed a new molecular classification in subgroups according to their mutational, transcriptional, methylation and copy number variation signatures with a real impact in the characterisation of new therapeutic targets for OC to be defined. Furthermore, despite the intrinsic intra-tumour heterogeneity, the advances in next generation sequencing (NGS) analyses of ascetic liquid from OC have opened new ways for its characterisation and treatment. Conclusions The advances in genomic approaches have been used for the identification of new molecular profiling techniques which define OC subgroups and has supposed advances in the diagnosis and in the personalised treatment of OC. Classification of ovarian cancer regarding to widespread genetic and genomic data. Highlighted role of p53 and BRCA1/2 in ovarian cancer for diagnosis and treatment. Intra-tumour genetic heterogeneity in ovarian cancer. Useful of liquid biopsy study in ovarian cancer diagnosis.
Collapse
Affiliation(s)
- Alba Mota
- Departamento de Bioquímica, Universidad Autónoma de Madrid (UAM), Instituto de Investigaciones Biomédicas ‘Alberto Sols’ (CSIC-UAM), IdiPaz, MD Anderson International Foundation Madrid, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Spain
| | - Sara S Oltra
- Departamento de Bioquímica, Universidad Autónoma de Madrid (UAM), Instituto de Investigaciones Biomédicas ‘Alberto Sols’ (CSIC-UAM), IdiPaz, MD Anderson International Foundation Madrid, Spain
| | - Gema Moreno-Bueno
- Departamento de Bioquímica, Universidad Autónoma de Madrid (UAM), Instituto de Investigaciones Biomédicas ‘Alberto Sols’ (CSIC-UAM), IdiPaz, MD Anderson International Foundation Madrid, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Spain
- Corresponding author: Departamento de Bioquímica, Facultad de Medicina (UAM), Instituto de Investigaciones Biomédicas “Alberto Sols” CSIC-UAM, Arzobispo Morcillo 4, Madrid, 28029, Spain. Fax: +34 91-5854401.
| |
Collapse
|
8
|
Taghizadeh H, Mader RM, Müllauer L, Aust S, Polterauer S, Kölbl H, Seebacher V, Grimm C, Reinthaller A, Prager GW. Molecular Guided Treatments in Gynecologic Oncology: Analysis of a Real-World Precision Cancer Medicine Platform. Oncologist 2020; 25:e1060-e1069. [PMID: 32369643 PMCID: PMC7356753 DOI: 10.1634/theoncologist.2019-0904] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2019] [Accepted: 03/30/2020] [Indexed: 12/24/2022] Open
Abstract
INTRODUCTION Advanced gynecologic cancers have a poor prognosis and constitute a major challenge for adequate treatment strategies. By analyzing and targeting molecular alterations, molecular guided treatments may be a viable option for the treatment of advanced gynecologic cancers. PATIENTS AND METHODS In this single-center, real-world retrospective analysis of our platform for precision cancer medicine (PCM), we describe the molecular profiling of 72 patients diagnosed with different types of advanced gynecologic malignancies. Tumor samples of the patients were examined by next-generation sequencing panel and immunohistochemistry (IHC). RESULTS In total, we identified 209 genetic aberrations in 72 patients. The ten most frequent alterations were TP53 (n = 42, 20%), KRAS (n = 14, 6.6%), PIK3CA (n = 11, 5.2%), PIK3R1 (n = 9, 4.3%), ATR (n = 8, 3.8%), PTEN (n = 8, 3.8%), BRCA1 (n = 6, 2.8%), NF1 (n = 4, 1.9%), NOTCH1 (n = 4, 1.9%), and POLE (n = 4, 1.9%), which account for more than half of all molecular alterations (52.6%). In 21 (29.1%) patients only one mutation could be detected, and 44 (61.1%) patients had more than one mutation. No molecular alterations were detected in seven (9.7%) patients. IHC detected expression of phosphorylated mammalian target of rapamycin and epidermal growth factor receptor in 58 (80.6%) and 53 (73.6%) patients, respectively. In over two thirds (n = 49, 68.1%), a targeted therapy was suggested, based on the identified genetic aberrations. The most frequently recommended specific treatment was the combination of everolimus with exemestane (n = 18, 25 %). CONCLUSION Based on our observations, it seems that PCM might be a feasible approach for advanced gynecologic cancers with limited treatment options. IMPLICATIONS FOR PRACTICE Nowadays molecular profiling of advanced gynecologic malignancies is feasible in the clinical routine. A molecular portrait should be done for every patient with an advanced therapy-refractory gynecologic malignancy to offer molecular-based treatment concepts.
Collapse
Affiliation(s)
- Hossein Taghizadeh
- Clinical Division of Oncology, Department of Medicine I, Medical University of ViennaViennaAustria
- Comprehensive Cancer Center ViennaViennaAustria
| | - Robert M. Mader
- Clinical Division of Oncology, Department of Medicine I, Medical University of ViennaViennaAustria
- Comprehensive Cancer Center ViennaViennaAustria
| | - Leonhard Müllauer
- Clinical Institute of Pathology, Medical University of ViennaViennaAustria
| | - Stefanie Aust
- Department of Obstetrics and Gynecology, Medical University of ViennaViennaAustria
- Comprehensive Cancer Center ViennaViennaAustria
| | - Stephan Polterauer
- Department of Obstetrics and Gynecology, Medical University of ViennaViennaAustria
- Comprehensive Cancer Center ViennaViennaAustria
| | - Heinz Kölbl
- Department of Obstetrics and Gynecology, Medical University of ViennaViennaAustria
- Comprehensive Cancer Center ViennaViennaAustria
| | - Veronika Seebacher
- Department of Obstetrics and Gynecology, Medical University of ViennaViennaAustria
- Comprehensive Cancer Center ViennaViennaAustria
| | - Christoph Grimm
- Department of Obstetrics and Gynecology, Medical University of ViennaViennaAustria
- Comprehensive Cancer Center ViennaViennaAustria
| | - Alexander Reinthaller
- Department of Obstetrics and Gynecology, Medical University of ViennaViennaAustria
- Comprehensive Cancer Center ViennaViennaAustria
| | - Gerald W. Prager
- Clinical Division of Oncology, Department of Medicine I, Medical University of ViennaViennaAustria
- Comprehensive Cancer Center ViennaViennaAustria
| |
Collapse
|
9
|
Sun T, Yang Q. Chemoresistance-associated alternative splicing signatures in serous ovarian cancer. Oncol Lett 2020; 20:420-430. [PMID: 32565967 DOI: 10.3892/ol.2020.11562] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Accepted: 02/21/2020] [Indexed: 12/17/2022] Open
Abstract
Primary platinum-based chemoresistance occurs in ~30% of patients with serous ovarian cancer. Chemoresistance is the main cause of disease recurrence, and accurate predictors to identify these patients with chemoresistance are required. Alternative splicing (AS) is a post-transcriptional modification process that is altered in cancer. A possible association between AS and chemoresistance is unclear and needs to be studied comprehensively in ovarian cancer. In the present study, RNA-sequencing data and clinical information for 320 patients with ovarian serous cystadenocarcinoma (OV) were downloaded from The Cancer Genome Atlas (TCGA) database. Splicing events were determined using the TCGA SpliceSeq tool. Seven types of AS events were identified. Univariate and multivariate logistic analyses were performed, and predictive models for OV chemoresistance were established, as well as a splicing network. A total of 22,036 AS events were identified in 7,404 genes, with 915 AS events detected in 677 genes that were significantly associated with chemoresistance in patients with OV. A receiver operating characteristic (ROC) curve was constructed for resistance predictive models composed of the most significant AS events. The area under the ROC curve was 0.931, indicating strong and efficient prediction of chemoresistance. Additionally, the high-risk score was associated with shorter overall survival. The splicing correlation network suggested a potential role of splicing factors in chemoresistance. In summary, the present study created a powerful predictor for primary platinum-based chemoresistance in patients with OV, identified splicing networks that could be involved in potential mechanisms of chemoresistance and provided potential targets to overcome chemoresistance.
Collapse
Affiliation(s)
- Tianshui Sun
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, P.R. China
| | - Qing Yang
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, P.R. China
| |
Collapse
|
10
|
Wahab NA, Othman Z, Nasri NWM, Mokhtar MH, Ibrahim SF, Hamid AA, Raja Ali RA, Mokhtar NM. Inhibition of miR-141 and miR-200a Increase DLC-1 and ZEB2 Expression, Enhance Migration and Invasion in Metastatic Serous Ovarian Cancer. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:ijerph17082766. [PMID: 32316405 PMCID: PMC7215320 DOI: 10.3390/ijerph17082766] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 04/02/2020] [Accepted: 04/04/2020] [Indexed: 12/11/2022]
Abstract
The role of microRNA (miRNA) in ovarian cancer has been extensively studied as a regulator for its targeted genes. However, its specific role in metastatic serous ovarian cancer (SOC) is yet to be explored. This paper aims to investigate the differentially expressed miRNAs in metastatic SOC compared to normal. Locked nucleic acid PCR was performed to profile miRNA expression in 11 snap frozen metastatic SOC and 13 normal ovarian tissues. Functional analysis and regulation of their targeted genes were assessed in vitro. Forty-eight miRNAs were significantly differentially expressed in metastatic SOC as compared to normal. MiR-19a is a novel miRNA to be upregulated in metastatic SOC compared to normal. DLC1 is possibly regulated by miR-141 in SOC. MiR-141 inhibition led to significantly reduced cell viability. Cell migration and invasion were significantly increased following miRNA inhibition. This study showed the aberrantly expressed miRNAs in metastatic SOC and the roles of miRNAs in the regulation of their targeted genes and ovarian carcinogenesis.
Collapse
Affiliation(s)
- Norhazlina Abdul Wahab
- Department of Physiology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur 56000, Malaysia; (N.A.W.); (Z.O.)
| | - Zahreena Othman
- Department of Physiology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur 56000, Malaysia; (N.A.W.); (Z.O.)
| | - Noor Wahidah Mohd Nasri
- Department of Physiology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur 56000, Malaysia; (N.A.W.); (Z.O.)
| | - Mohd Helmy Mokhtar
- Department of Physiology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur 56000, Malaysia; (N.A.W.); (Z.O.)
| | - Siti Fatimah Ibrahim
- Department of Physiology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur 56000, Malaysia; (N.A.W.); (Z.O.)
| | - Adila A. Hamid
- Department of Physiology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur 56000, Malaysia; (N.A.W.); (Z.O.)
| | - Raja Affendi Raja Ali
- Department of Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur 56000, Malaysia
| | - Norfilza Mohd Mokhtar
- Department of Physiology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur 56000, Malaysia; (N.A.W.); (Z.O.)
- Correspondence: ; Tel.: +60-3-9145-8610
| |
Collapse
|
11
|
WU X. Expressions of miR-21 and miR-210 in Breast Cancer and Their Predictive Values for Prognosis. IRANIAN JOURNAL OF PUBLIC HEALTH 2020; 49:21-29. [PMID: 32309220 PMCID: PMC7152636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
BACKGROUND We aimed to investigate the expressions of miR-21 and miR-210 in the breast cancer tissue and their correlation with clinicopathological features and prognosis. METHODS A retrospective analysis was performed on 68 patients with breast cancer treated surgically in Wuhan General Hospital of Guangzhou Military in 2014-2015. The breast cancer tissue and the adjacent normal tissue were collected from the patients. Quantitative real-time PCR (qRT-PCR) was used to detect the expression levels of miR-21 and miR-210 in the breast cancer and adjacent normal tissues. RESULTS According to qRT-PCR, the expression levels of miR-210 and miR-21 in the breast cancer tissue were significantly higher than those in the adjacent normal tissue (P<0.05), which were significantly correlated with lymph node metastasis, clinical staging and differentiation of patients (P<0.05). miR-21 and miR-210 were significantly positive correlated in both breast cancer tissues and adjacent normal tissues (r=0.7014, 0.7502, P<0.001). The survival rate in the miR-210 high expression group was significantly lower than that in the miR-210 low expression group (P<0.05), whereas there was no significant difference between the miR-21 high and low expression groups. CONCLUSION miR-21 and miR-210 are highly expressed in the breast cancer tissue and significantly correlated with lymph node metastasis, clinical staging and differentiation. miR-210, the up-regulated expression of which is related to the poor prognosis of patients with breast cancer, may be a potential prognostic indicator for breast cancer, which can be used to judge the prognosis.
Collapse
|
12
|
Wu TI, Huang RL, Su PH, Mao SP, Wu CH, Lai HC. Ovarian cancer detection by DNA methylation in cervical scrapings. Clin Epigenetics 2019; 11:166. [PMID: 31775891 PMCID: PMC6881994 DOI: 10.1186/s13148-019-0773-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Accepted: 10/24/2019] [Indexed: 02/08/2023] Open
Abstract
Background Ovarian cancer (OC) is the most lethal gynecological cancer, worldwide, largely due to its vague and nonspecific early stage symptoms, resulting in most tumors being found at advanced stages. Moreover, due to its relative rarity, there are currently no satisfactory methods for OC screening, which remains a controversial and cost-prohibitive issue. Here, we demonstrate that Papanicolaou test (Pap test) cervical scrapings, instead of blood, can reveal genetic/epigenetic information for OC detection, using specific and sensitive DNA methylation biomarkers. Results We analyzed the methylomes of tissues (50 OC tissues versus 6 normal ovarian epithelia) and cervical scrapings (5 OC patients versus 10 normal controls), and integrated public methylomic datasets, including 79 OC tissues and 6 normal tubal epithelia. Differentially methylated genes were further classified by unsupervised hierarchical clustering, and each candidate biomarker gene was verified in both OC tissues and cervical scrapings by either quantitative methylation-specific polymerase chain reaction (qMSP) or bisulfite pyrosequencing. A risk-score by logistic regression was generated for clinical application. One hundred fifty-one genes were classified into four clusters, and nine candidate hypermethylated genes from these four clusters were selected. Among these, four genes fulfilled our selection criteria and were validated in training and testing set, respectively. The OC detection accuracy was demonstrated by area under the receiver operating characteristic curves (AUCs) in 0.80–0.83 of AMPD3, 0.79–0.85 of AOX1, 0.78–0.88 of NRN1, and 0.82–0.85 of TBX15. From this, we found OC-risk score, equation generated by logistic regression in training set and validated an OC-associated panel comprising AMPD3, NRN1, and TBX15, reaching a sensitivity of 81%, specificity of 84%, and OC detection accuracy of 0.91 (95% CI, 0.82–1) in testing set. Conclusions Ovarian cancer detection from cervical scrapings is feasible, using particularly promising epigenetic biomarkers such as AMPD3/NRN1/TBX15. Further validation is warranted.
Collapse
Affiliation(s)
- Tzu-I Wu
- Department of Obstetrics and Gynecology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan.,Department of Obstetrics and Gynecology, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan
| | - Rui-Lan Huang
- Department of Obstetrics and Gynecology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan.,Department of Obstetrics and Gynecology, Shuang Ho Hospital, Taipei Medical University, New Taipei, Taiwan
| | - Po-Hsuan Su
- Translational Epigenetic Center, Shuang Ho Hospital, Taipei Medical University, New Taipei, Taiwan
| | - Shih-Peng Mao
- Department of Obstetrics and Gynecology, Shuang Ho Hospital, Taipei Medical University, New Taipei, Taiwan
| | - Chen-Hsuan Wu
- Graduate Institute of Clinical Medical Sciences, Chang Gung University College of Medicine, Tao-Yuan, Taiwan.,Department of Obstetrics and Gynecology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Hung-Cheng Lai
- Department of Obstetrics and Gynecology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan. .,Department of Obstetrics and Gynecology, Shuang Ho Hospital, Taipei Medical University, New Taipei, Taiwan. .,Translational Epigenetic Center, Shuang Ho Hospital, Taipei Medical University, New Taipei, Taiwan. .,Department and Graduate Institute of Biochemistry, National Defense Medical Center, No.291, Jhongjheng Rd., Jhonghe, New Taipei, 23561, Taiwan.
| |
Collapse
|
13
|
Przybycinski J, Nalewajska M, Marchelek-Mysliwiec M, Dziedziejko V, Pawlik A. Poly-ADP-ribose polymerases (PARPs) as a therapeutic target in the treatment of selected cancers. Expert Opin Ther Targets 2019; 23:773-785. [PMID: 31394942 DOI: 10.1080/14728222.2019.1654458] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Introduction: The implementation of poly-ADP-ribose polymerase (PARP) inhibitors for therapy has created potential treatments for a wide spectrum of malignancies involving DNA damage repair gene abnormalities. PARPs are a group of enzymes that are responsible for detecting and repairing DNA damage and therefore play a key role in maintaining cell function and integrity. PARP inhibitors are drugs that target DNA repair deficiencies. Inhibiting PARP activity in cancer cells causes cell death. Areas covered: This review summarizes the role of PARP inhibitors in the treatment of cancer. We performed a systematic literature search in February 2019 in the electronic databases PubMed and EMBASE. Our search terms were the following: PARP, PARP inhibitors, PARPi, Poly ADP ribose polymerase, cancer treatment. We discuss PARP inhibitors currently being investigated in cancer clinical trials, their safety profiles, clinical resistance, combined therapeutic approaches and future challenges. Expert Opinion: The future could bring novel PARP inhibitors with greater DNA trapping potential, better safety profiles and improved combined therapies involving hormonal, chemo-, radio- or immunotherapies. Progress may afford wider indications for PARP inhibitors in the treatment of cancer and the utilization for cancer prevention in high-risk mutation carriers. Research efforts should focus on identifying novel drugs that target DNA repair deficiencies.
Collapse
Affiliation(s)
- Jarosław Przybycinski
- Department of Nephrology, Transplantology and Internal Medicine, Pomeranian Medical University , Szczecin , Poland
| | - Magdalena Nalewajska
- Department of Nephrology, Transplantology and Internal Medicine, Pomeranian Medical University , Szczecin , Poland
| | | | - Violetta Dziedziejko
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University , Szczecin , Poland
| | - Andrzej Pawlik
- Department of Physiology, Pomeranian Medical University , Szczecin , Poland
| |
Collapse
|
14
|
Li G, Han L, Ren F, Zhang R, Qin G. Prognostic value of the tumor-specific ceRNA network in epithelial ovarian cancer. J Cell Physiol 2019; 234:22071-22081. [PMID: 31152442 DOI: 10.1002/jcp.28770] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Revised: 04/10/2019] [Accepted: 04/17/2019] [Indexed: 12/17/2022]
Abstract
Epithelial ovarian cancer is one of the leading causes of cancer-related death worldwide. Growing evidence indicates that multiple complex altered pathways play important regulatory roles in the development and progression of a variety of cancers, including epithelial ovarian cancer. However, the underlying mechanisms remain unclear. First, we identified differentially expressed messenger RNAs (mRNAs), long noncoding RNAs (lncRNAs), and microRNAs (miRNAs) in epithelial ovarian cancer by comparing the expression profiles between epithelial ovarian cancer samples and normal tissue samples in different GEO datasets. Then, GO- and KEGG-pathway-enrichment analyses were applied to investigate the primary functions of the overlapped differentially expressed mRNAs. Moreover, the primary enriched genes were used to construct the signal-network with Cytoscape software. In addition, we integrated the relationship among lncRNAs-miRNAs-mRNAs to create a competing endogenous RNA network. Finally, mRNAs that were associated with patient prognosis in epithelial ovarian cancer were selected using univariate Cox regression analysis. A total of 2,225 mRNAs, 336 lncRNAs, and 14 miRNAs were shown to be differentially expressed in epithelial ovarian cancer compared with normal tissues. The dysregulated mRNAs were primarily enriched in cell division and signal transduction, according to Gene Ontology, whereas, according to KEGG, they were primarily enriched in metabolic pathways and pathways in cancer. A total of 10 mRNAs were associated with patient prognosis in ovarian cancer. This study identifies a novel lncRNA-miRNA-mRNA network, which may suggest potential molecular mechanisms underlying the development of epithelial ovarian cancer, providing new insights for survival prediction and interventional strategies for epithelial ovarian cancer.
Collapse
Affiliation(s)
- Gailing Li
- Department of Gynecology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Liping Han
- Department of Gynecology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Fang Ren
- Department of Gynecology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Ruitao Zhang
- Department of Gynecology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Guijun Qin
- Department of Endocrinology and Metabolism, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| |
Collapse
|
15
|
Radiomique : mode d’emploi. Méthodologie et exemples d’application en imagerie de la femme. IMAGERIE DE LA FEMME 2019. [DOI: 10.1016/j.femme.2019.01.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
16
|
Tankyrase Promotes Aerobic Glycolysis and Proliferation of Ovarian Cancer through Activation of Wnt/ β-Catenin Signaling. BIOMED RESEARCH INTERNATIONAL 2019; 2019:2686340. [PMID: 30915350 PMCID: PMC6402242 DOI: 10.1155/2019/2686340] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Accepted: 01/28/2019] [Indexed: 01/04/2023]
Abstract
Tankyrase (TNKS) plays important roles in the malignancy of several cancers such as human lung tumor, breast cancer, and hepatocellular cancer. However, its exact functions and molecular mechanisms in ovarian cancer remain unclear. In this study, we found that TNKS was aberrantly overexpressed in human ovarian cancer tissues and associated with poor patient prognosis. TNKS inhibition or knockdown not only reduced ovarian cancer cell proliferation, colony formation, migration, invasion, and tumorigenic potential in nude mice but also enhanced the drug susceptibility of ovarian cancer cells through arresting cell cycle and inducing apoptosis. These phenotypic changes correlated with downregulation of targets (Cyclin D1, MDR, and MMP-9) of Wnt/β-catenin signaling. Furthermore, downregulation of TNKS suppressed the glucose uptake, lactate excretion, and cellular ATP levels and increased cellular O2 consumption rates. Molecular mechanism studies revealed that TNKS promoted aerobic glycolysis at least in part due to upregulation of pyruvate carboxylase (PC) via activation of Wnt/β-catenin/snail signaling. In agreement with these findings, expression of TNKS is positively associated with snail and PC in clinical ovarian cancer samples. Our findings identified TNKS as an oncogenic regulator of ovarian cancer cells proliferation that promotes aerobic glycolysis via activation of Wnt/β-catenin signaling, indicating that the TNKS might serve as a potential molecular target for clinical therapy of Wnt/β-catenin dependent ovarian cancer.
Collapse
|
17
|
Potential clinical applications of circulating cell-free DNA in ovarian cancer patients. Expert Rev Mol Med 2018; 20:e6. [PMID: 30558693 DOI: 10.1017/erm.2018.5] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Circulating cell-free DNA (cfDNA) consists of small fragments of DNA that circulate freely in the bloodstream. In cancer patients, a fraction of cfDNA is derived from tumour cells, therefore containing the same genetic and epigenetic alterations, and is termed circulating cell-free tumour DNA. The potential use of cfDNA, the so-called 'liquid biopsy', as a non-invasive cancer biomarker has recently received a lot of attention. The present review will focus on studies concerning the potential clinical applications of cfDNA in ovarian cancer patients.
Collapse
|
18
|
Wang W, Cao Y, Zhou X, Wei B, Zhang Y, Liu X. PTP1B promotes the malignancy of ovarian cancer cells in a JNK-dependent mechanism. Biochem Biophys Res Commun 2018; 503:903-909. [DOI: 10.1016/j.bbrc.2018.06.094] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Accepted: 06/18/2018] [Indexed: 10/28/2022]
|
19
|
Ruan J, Xu P, Fan W, Deng Q, Yu M. Quantitative assessment of aberrant P16INK4a methylation in ovarian cancer: a meta-analysis based on literature and TCGA datasets. Cancer Manag Res 2018; 10:3033-3046. [PMID: 30214298 PMCID: PMC6124479 DOI: 10.2147/cmar.s170818] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Epigenetic alteration of P16INK4a is conventionally thought to induce the initiation of carcinoma. However, the role of P16INK4a methylation in ovarian cancer still remains controversial. Therefore, we performed a meta-analysis to further elucidate the relationship between P16INK4a promoter methylation and ovarian cancer. A total of 24 studies, including 20 on risk, 10 on clinicopathological features, and 3 on prognosis, were included in our meta-analysis. Our results indicated that the frequency of P16INK4a methylation in cancer tissues was significantly higher than normal tissues and low malignant potential tumor tissues (odds ratio [OR] =5.01, 95% CI=1.55–16.14; OR =1.88, 95% CI=1.10–3.19, respectively), but similar to benign tissues (OR =1.18, 95% CI=0.52–2.65). Furthermore, P16INK4a promoter methylation was not strongly correlated with age, clinical stage, tumor differentiation, or histological subtype in patients with ovarian cancer. Additionally, survival analysis showed that patients with P16INK4a promoter methylation had a shorter progression-free survival in univariate and multivariate Cox regression models (hazard ratio =1.68, 95% CI=1.26–2.24; hazard ratio =1.55, 95% CI=1.15–2.08; respectively). In The Cancer Genome Atlas datasets, the methylation levels of seven out of nine CpG sites were significantly increased in the ovarian tumor tissues compared with the normal tissues. In conclusion, the present meta-analysis suggests that P16INK4a promoter methylation may be useful in distinguishing malignant cancer from healthy ovarian tissues, and it may be a potential predictive marker for prognosis in patients with ovarian cancer.
Collapse
Affiliation(s)
- Jie Ruan
- Key Laboratory for Medical Molecular Diagnostics of Guangdong, Guangdong Medical University, Dongguan, Guangdong, 523808, China
| | - Peipei Xu
- Department of Clinical Laboratory, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450072, China.,Department of Clinical Laboratory, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, 430071, China,
| | - Wei Fan
- Department of Pathology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, 430071, China
| | - Qiaoling Deng
- Department of Clinical Laboratory, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, 430071, China,
| | - Mingxia Yu
- Department of Clinical Laboratory, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, 430071, China,
| |
Collapse
|
20
|
Yousefi H, Momeny M, Ghaffari SH, Parsanejad N, Poursheikhani A, Javadikooshesh S, Zarrinrad G, Esmaeili F, Alishahi Z, Sabourinejad Z, Sankanian G, Shamsaiegahkani S, Bashash D, Shahsavani N, Tavakkoly-Bazzaz J, Alimoghaddam K, Ghavamzadeh A. IL-6/IL-6R pathway is a therapeutic target in chemoresistant ovarian cancer. TUMORI JOURNAL 2018; 105:84-91. [DOI: 10.1177/0300891618784790] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Introduction: Epithelial ovarian cancer (EOC) is the most lethal gynecologic malignancy worldwide and despite an initial response to therapeutic agents, the majority of patients have chemoresistant disease. There is no treatment strategy with proven efficacy against chemoresistant EOC and in this setting, overcoming therapy resistance is the key to successful treatment. Methods: This study aimed to investigate expression of interleukin-6 (IL-6) (IL-6) and IL-6 receptor (IL-6R) in a panel of the EOC cell lines. To achieve this, the expression of IL-6 and its receptor were compared in the EOC cells using quantitative reverse transcription polymerase chain reaction. MTT assay was performed to obtain chemosensitivity of the EOC cells. Results: In this report, we show that expressions of IL6 and IL6R are higher in therapy-resistant EOC cells compared to sensitive ones. Higher expression of IL6 and its receptor correlated with resistance to certain chemotherapeutic agents. Moreover, our findings showed that combination of tocilizumab (Actemra; Roche), an anti-IL-6R monoclonal antibody, with carboplatin synergistically inhibited growth and proliferation of the EOC cells and the most direct axis for IL-6 gene expression was NF-κB pathway. Conclusion: Collectively, our findings suggest that blockade of the IL-6 signaling pathway with anti-IL-6 receptor antibody tocilizumab might resensitize the chemoresistant cells to the current chemotherapeutics.
Collapse
Affiliation(s)
- Hassan Yousefi
- Hematology/Oncology and Stem Cell Transplantation Research Center, Shariati Hospital, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
- Department of Medical Genetics, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Majid Momeny
- Hematology/Oncology and Stem Cell Transplantation Research Center, Shariati Hospital, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Seyed H. Ghaffari
- Hematology/Oncology and Stem Cell Transplantation Research Center, Shariati Hospital, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Arash Poursheikhani
- Department of Medical Genetics, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Sepehr Javadikooshesh
- Department of Medical Genetics, School of Medicine, Shahid Beheshti University of Medical Sciences, Iran
| | - Ghazaleh Zarrinrad
- Hematology/Oncology and Stem Cell Transplantation Research Center, Shariati Hospital, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Fatemeh Esmaeili
- Hematology/Oncology and Stem Cell Transplantation Research Center, Shariati Hospital, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
- Department of Medical Genetics, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Zivar Alishahi
- Hematology/Oncology and Stem Cell Transplantation Research Center, Shariati Hospital, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
- Department of Medical Genetics, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Zahra Sabourinejad
- Hematology/Oncology and Stem Cell Transplantation Research Center, Shariati Hospital, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Ghazaleh Sankanian
- Department of Medical Genetics, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Sahar Shamsaiegahkani
- Hematology/Oncology and Stem Cell Transplantation Research Center, Shariati Hospital, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Davood Bashash
- Department of Hematology and Blood Banking, Faculty of Allied Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Narjes Shahsavani
- Department of Physiology and Pathophysiology, Spinal Cord Research Center, University of Manitoba, Winnipeg, Canada
| | - Javad Tavakkoly-Bazzaz
- Department of Medical Genetics, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Kamran Alimoghaddam
- Hematology/Oncology and Stem Cell Transplantation Research Center, Shariati Hospital, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Ardeshir Ghavamzadeh
- Hematology/Oncology and Stem Cell Transplantation Research Center, Shariati Hospital, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
21
|
ACGH detects distinct genomic alterations of primary intrahepatic cholangiocarcinomas and matched lymph node metastases and identifies a poor prognosis subclass. Sci Rep 2018; 8:10637. [PMID: 30006612 PMCID: PMC6045619 DOI: 10.1038/s41598-018-28941-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Accepted: 07/03/2018] [Indexed: 12/17/2022] Open
Abstract
Lymph node metastases (LNM) are an important prognostic factor for patients with intrahepatic cholangiocarcinoma, but underlying genetic alterations are poorly understood. Whole genome array comparative genomic hybridization (aCGH) was performed in 37 tumors and 14 matched LNM. Genomic analyses of tumors confirmed known and identified new (gains in 19q) copy number alterations (CNA). Tumors with LNM (N1) had more alterations and exclusive gains (3p, 4q, 5p, 13q) and losses (17p and 20p). LNM shared most alterations with their matched tumors (86%), but 79% acquired new isolated gains [12q14 (36%); 1p13, 2p23, 7p22, 7q11, 11q12, 13q13 and 14q12 (>20%)]. Unsupervised clustering revealed a poor prognosis subclass with increased alterations significantly associated to tumor differentiation and survival. TP53 and KRAS mutations occurred in 19% of tumors and 6% of metastases. Pathway analyses revealed association to cancer-associated pathways. Advanced tumor stage, microvascular/perineural invasion, and microscopic positive resection margin (R1) were significantly correlated to metastases, while N1-status, R1-resection, and poor tumor differentiation were significantly correlated to survival. ACGH identified clear differences between N0 (no LNM) and N1 tumors, while N1 tumors and matched LNM displayed high clonality with exclusive gains in the metastases. A novel subclass with increased CNAs and poor tumor differentiation was significantly correlated to survival.
Collapse
|
22
|
PUM1 promotes ovarian cancer proliferation, migration and invasion. Biochem Biophys Res Commun 2018; 497:313-318. [DOI: 10.1016/j.bbrc.2018.02.078] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Accepted: 02/07/2018] [Indexed: 01/30/2023]
|
23
|
Norouzi-Barough L, Sarookhani MR, Sharifi M, Moghbelinejad S, Jangjoo S, Salehi R. Molecular mechanisms of drug resistance in ovarian cancer. J Cell Physiol 2018; 233:4546-4562. [PMID: 29152737 DOI: 10.1002/jcp.26289] [Citation(s) in RCA: 149] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Accepted: 11/14/2017] [Indexed: 12/13/2022]
Abstract
Ovarian cancer is the most lethal malignancy among the gynecological cancers, with a 5-year survival rate, mainly due to being diagnosed at advanced stages, recurrence and resistance to the current chemotherapeutic agents. Drug resistance is a complex phenomenon and the number of known involved genes and cross-talks between signaling pathways in this process is growing rapidly. Thus, discovering and understanding the underlying molecular mechanisms involved in chemo-resistance are crucial for management of treatment and identifying novel and effective drug targets as well as drug discovery to improve therapeutic outcomes. In this review, the major and recently identified molecular mechanisms of drug resistance in ovarian cancer from relevant literature have been investigated. In the final section of the paper, new approaches for studying detailed mechanisms of chemo-resistance have been briefly discussed.
Collapse
Affiliation(s)
- Leyla Norouzi-Barough
- Department of Molecular Medicine, School of Medicine, Qazvin University of Medical Sciences, Qazvin, Iran
| | | | - Mohammadreza Sharifi
- Department of Genetics and Molecular Biology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Sahar Moghbelinejad
- Department of Biochemistry and Genetic, School of Medicine, Qazvin University of Medical Sciences, Qazvin, Iran
| | - Saranaz Jangjoo
- School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Rasoul Salehi
- Department of Genetics and Molecular Biology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
24
|
Kamińska I, Bar JK. The association between p53 protein phosphorylation at serine 15, serine 20 and sensitivity of cells isolated from patients with ovarian cancer and cell lines to chemotherapy in in vitro study. Pharmacol Rep 2017; 70:570-576. [PMID: 29684847 DOI: 10.1016/j.pharep.2017.12.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Revised: 12/06/2017] [Accepted: 12/14/2017] [Indexed: 12/13/2022]
Abstract
BACKGROUND The association between p53 protein phosphorylated at serine 15 (Ser15), serine 20 (Ser20) and ovarian tumor cell sensitivity after chemotherapy was analyzed in order to define the influence of p53 activation on tumor cell sensitivity to chemotherapy. METHODS The study was performed on ovarian cancer cell line (OvBH-1), colon adenocarcinoma metastasis to ovary (SW626) and on cells isolated from ascitic fluids from patients with ovarian cancer: with (p53+) or without (p53-) p53 nuclear protein accumulation. p53 protein, Ser15, Ser20, Bax, Noxa and PgP protein expression was evaluated by means of immunocytochemical staining before and after chemotherapy. Cell viability after treatment was estimated using MTT assay. RESULTS Cell lines and tumor cells p53+, p53- revealed a significant decrease in cell survival after camptothecin, paclitaxel, cisplatin treatment, compared to the control group (p < 0.01). In p53+ group, the expression of Ser20 significantly increased after camptothecin and paclitaxel (p < 0.05). Ser15, Ser20, Bax, Noxa expression correlated with MTT and depended on p53+, p53- tumor cell and the drug used (p < 0.05). Expression of Bax and Noxa were dependent on the type of tumor cells and drug used. The correlation between Ser15, Ser20 and Bax, Noxa expression was found in cell lines and tumor cells (p < 0.05). CONCLUSIONS Our study suggests that the relation between Ser15 or Ser20 and tumor cell viability might reflect their role in tumor sensitivity on chemotherapy in dependent p53 protein status. Revealed association between p53 protein phosphorylated at Ser15, Ser20 and Bax, Noxa protein expression determined the apoptotic activity of tumor cells.
Collapse
Affiliation(s)
- Iwona Kamińska
- Department of Immunopathology and Molecular Biology, Medical University, Wrocław, Poland.
| | - Julia K Bar
- Department of Immunopathology and Molecular Biology, Medical University, Wrocław, Poland.
| |
Collapse
|
25
|
Zhu QN, Wang G, Guo Y, Peng Y, Zhang R, Deng JL, Li ZX, Zhu YS. LncRNA H19 is a major mediator of doxorubicin chemoresistance in breast cancer cells through a cullin4A-MDR1 pathway. Oncotarget 2017; 8:91990-92003. [PMID: 29190892 PMCID: PMC5696158 DOI: 10.18632/oncotarget.21121] [Citation(s) in RCA: 76] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Accepted: 09/04/2017] [Indexed: 12/12/2022] Open
Abstract
Development of chemoresistance is a persistent problem during cancer treatment. Long non-coding RNAs (LncRNAs) are currently emerging as an integral functional component of the human genome and as critical regulators of cancer development and progression. In the present study, we investigated the role and molecular mechanism of H19 lncRNA in chemoresistance development by using doxorubicin (Dox) resistance in breast cancer cells as a model system. H19 lncRNA expression was significantly increased in anthracycline-treated and Dox-resistant MCF-7 breast cancer cells. This H19 overexpression was contributed to cancer cell resistance to anthracyclines and paclitaxel as knockdown of H19 lncRNA by a specific H19 shRNA in Dox-resistant cells significantly improved the cell sensitivity to anthracyclines and paclitaxel. Furthermore, gene expression profiling analysis revealed that a total of 192 genes were associated with H19-mediated Dox resistance. These genes were enriched in multiple KEGG pathways that are related to chemoresistance. Using genetic and pharmacological approaches, we demonstrated that MDR1 and MRP4 were major effectors of H19-regulated Dox resistance in breast cancer cells as MDR1 and MRP4 expression was markedly elevated in Dox-resistant cells while dramatically reduced when H19 was knocked down. Moreover, we found that CUL4A, an ubiquitin ligase component, was a critical factor bridging H19 lncRNA to MDR1 expression, and a high tumor CUL4A expression was associated with low survival in breast cancer patients treated with chemotherapy. These data suggest that H19 lncRNA plays a leading role in breast cancer chemoresistance, mediated mainly through a H19-CUL4A-ABCB1/MDR1 pathway.
Collapse
Affiliation(s)
- Qiong-Ni Zhu
- Department of Clinical Pharmacology, Xiangya Hospital, Institute of Clinical Pharmacology, Central South University, Changsha, P. R. China
| | - Guo Wang
- Department of Clinical Pharmacology, Xiangya Hospital, Institute of Clinical Pharmacology, Central South University, Changsha, P. R. China
| | - Ying Guo
- Department of Clinical Pharmacology, Xiangya Hospital, Institute of Clinical Pharmacology, Central South University, Changsha, P. R. China
| | - Yan Peng
- Department of Clinical Pharmacology, Xiangya Hospital, Institute of Clinical Pharmacology, Central South University, Changsha, P. R. China
| | - Rui Zhang
- Department of Clinical Pharmacology, Xiangya Hospital, Institute of Clinical Pharmacology, Central South University, Changsha, P. R. China
| | - Jun-Li Deng
- Department of Clinical Pharmacology, Xiangya Hospital, Institute of Clinical Pharmacology, Central South University, Changsha, P. R. China
| | - Zhi-Xing Li
- Department of Clinical Pharmacology, Xiangya Hospital, Institute of Clinical Pharmacology, Central South University, Changsha, P. R. China
| | - Yuan-Shan Zhu
- Department of Clinical Pharmacology, Xiangya Hospital, Institute of Clinical Pharmacology, Central South University, Changsha, P. R. China
- Department of Medicine, Weill Cornell Medical College, New York, NY, USA
| |
Collapse
|
26
|
Yang B, Yan X, Liu L, Jiang C, Hou S. Overexpression of the cancer stem cell marker CD117 predicts poor prognosis in epithelial ovarian cancer patients: evidence from meta-analysis. Onco Targets Ther 2017; 10:2951-2961. [PMID: 28652777 PMCID: PMC5476715 DOI: 10.2147/ott.s136549] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Purpose Cancer stem cells have recently been identified as a key driving factor for tumor metastasis and chemoresistance. CD117 is a well-established cancer stem cell marker, but its clinical significance in epithelial ovarian cancer (EOC) remains controversial. Therefore, we aimed to identify correlations between CD117 expression and clinical features and outcomes in EOC patients in this meta-analysis. Materials and methods A literature search was performed in the PubMed, Cochrane Library, Web of Science, EMBASE, and OVID databases to identify eligible studies. Correlations between CD117 expression and clinicopathological parameters and overall survival or disease-free survival were analyzed. A subgroup analysis was then performed, which was classified by patient ethnicity and age at diagnosis, study sample size, and tumor histological type. Results A total of seven studies enrolling 1,247 EOC patients were included in this meta-analysis. Our results demonstrated that CD117 expression was significantly correlated with age (pooled odds ratio [OR] =1.67, 95% confidence interval [CI] =1.05–2.66), International Federation of Gynecology and Obstetrics stage (pooled OR =1.99, 95% CI =1.31–3.02), tumor differentiation grade (pooled OR =2.46, 95% CI =1.48–4.10), and histological type (pooled OR =1.85, 95% CI =1.05–3.26). EOC patients with high CD117 expression had significantly worse OS (hazard ratio [HR] =1.39, 95% CI =1.03–1.90) than patients with low CD117 expression. However, no significant correlation was found between CD117 expression and disease-free survival (HR =1.31, 95% CI =0.79–2.17). In subgroup analysis, CD117 was identified as a significant prognostic factor for overall survival in European patients (HR =1.59, 95% CI =1.13–2.23), younger patients (<60 years) (HR =1.59, 95% CI =1.10–2.30), studies with sample sizes >200 (HR =1.84, 95% CI =1.32–2.56), and the mixed histological types (HR =1.47; 95% CI =1.08–2.00). Conclusion Our meta-analysis suggests that CD117 is associated with EOC progression and can serve as a promising prognostic predictor for EOC patients. However, larger scale multicenter clinical trials are still needed to further validate our results.
Collapse
Affiliation(s)
- Bikang Yang
- Department of Gynecology and Obstetrics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital
| | - Xuebing Yan
- Department of General Surgery, Shanghai Tenth People's Hospital Affiliated to Tongji University
| | | | - Chunyu Jiang
- Deparment of Radiology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, People's Republic of China
| | - Shuping Hou
- Department of Gynecology and Obstetrics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital
| |
Collapse
|
27
|
Yanagida S, Anglesio MS, Nazeran TM, Lum A, Inoue M, Iida Y, Takano H, Nikaido T, Okamoto A, Huntsman DG. Clinical and genetic analysis of recurrent adult-type granulosa cell tumor of the ovary: Persistent preservation of heterozygous c.402C>G FOXL2 mutation. PLoS One 2017; 12:e0178989. [PMID: 28594898 PMCID: PMC5464638 DOI: 10.1371/journal.pone.0178989] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Accepted: 05/22/2017] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND Adult-type granulosa cell tumors of the ovary (aGCTs) are rare tumors that represent 2-5% of ovarian malignancies. The prognosis of this tumor is favorable, and it is characterized by slow progression. 10-30% of these tumors recur after 4-7 years of the primary surgery and the 5-year survival rate from the first recurrence is 55%, for the incompletely resected patients. At this time, complete resection is the only prognostic factor for better outcome, and establishing a novel strategy for identification and/or treatment of recurrent tumors is crucial. After the discovery of heterozygous c.402C>G FOXL2 mutations in 97% of cases of aGCT, much effort has been made to find the role of the mutation on the pathogenesis of aGCT, however, little is known about the role of the mutation in disease progression. METHODS We analyzed the clinical data of 56 aGCT patients to find a marker of recurrence. In particular, we compared the FOXL2 status in 5 matched primary and recurrent samples by immunohistochemistry, and TaqMan allelic discrimination assay to address the role of FOXL2 in potential mechanisms of recurrence. RESULTS The clinical data analysis was consistent with complete resection as an indicator of disease eradication, though the sample size was limited. The genetic analysis showed all the samples, including recurrent tumor samples up to 14 years after the primary surgery, expressed heterozygous c.402C>G FOXL2 mutation and the FOXL2 protein expression. CONCLUSION This report describes the preservation of heterozygous c.402C>G FOXL2 mutation in recurrent aGCTs. This finding adds further credence to the concept that the c.402C>G FOXL2 mutation is oncogenic and integral to this disease.
Collapse
Affiliation(s)
- Satoshi Yanagida
- Department of Obstetrics and Gynecology, University of British Columbia, Vancouver, British Columbia, Canada
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada
- Department of Obstetrics and Gynecology, The Jikei University School of Medicine, Tokyo, Japan
| | - Michael S. Anglesio
- Department of Obstetrics and Gynecology, University of British Columbia, Vancouver, British Columbia, Canada
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Tayyebeh M. Nazeran
- Department of Obstetrics and Gynecology, University of British Columbia, Vancouver, British Columbia, Canada
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Amy Lum
- Department of Molecular Oncology, BC Cancer Agency Research Centre, Vancouver, British Columbia, Canada
| | - Momoko Inoue
- Department of Obstetrics and Gynecology, The Jikei University School of Medicine, Tokyo, Japan
| | - Yasushi Iida
- Department of Obstetrics and Gynecology, The Jikei University School of Medicine, Tokyo, Japan
| | - Hirokuni Takano
- Department of Obstetrics and Gynecology, The Jikei University School of Medicine, Tokyo, Japan
| | - Takashi Nikaido
- Department of Pathology, Kosei General Hospital, Tokyo, Japan
| | - Aikou Okamoto
- Department of Obstetrics and Gynecology, The Jikei University School of Medicine, Tokyo, Japan
| | - David G. Huntsman
- Department of Obstetrics and Gynecology, University of British Columbia, Vancouver, British Columbia, Canada
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada
- Department of Molecular Oncology, BC Cancer Agency Research Centre, Vancouver, British Columbia, Canada
| |
Collapse
|
28
|
Cui Y, She K, Tian D, Zhang P, Xin X. miR-146a Inhibits Proliferation and Enhances Chemosensitivity in Epithelial Ovarian Cancer via Reduction of SOD2. Oncol Res 2017; 23:275-82. [PMID: 27131313 PMCID: PMC7838621 DOI: 10.3727/096504016x14562725373798] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Epithelial ovarian cancer (EOC) is the most lethal gynecological malignancy, accounting for 90% of all ovarian cancer. Dysregulation of miRNAs is associated with several types of EOC. In the current research, we aimed to study the role of abnormal expression of miR-146a in the development of EOC and to elucidate the possible molecular mechanisms. Compared with control samples, mRNA expression of miR-146a was significantly decreased in EOC tissues and cell lines. Overexpression of miR-146a prohibited cell proliferation, enhanced apoptosis, and increased sensitivity to chemotherapy drugs in EOC cells. In contrast, downregulation of miR-146a promoted cell proliferation, suppressed apoptosis, and decreased sensitivity to chemotherapy drugs in EOC cells. Overexpression of miR-146a increased the reactive oxygen species (ROS) level and decreased SOD2 mRNA and protein expression. Downregulation of miR-146a increased SOD2 mRNA and protein expression. Overexpression of SOD2 significantly inhibited miR-146a mimics-induced suppression of cell proliferation and the increase of apoptosis and chemosensitivity. In conclusion, we identify miR-146a as a potential tumor suppressor in patients with EOC. miR-146a downregulates the expression of SOD2 and enhances ROS generation, leading to increased apoptosis, inhibition of proliferation, and enhanced sensitivity to chemotherapy. The data demonstrate that the miR-146a/SOD2/ROS pathway may serve as a novel therapeutic target and prognostic marker in patients with EOC.
Collapse
Affiliation(s)
- YaJie Cui
- Department of Obstetrics and Gynecology, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | | | | | | | | |
Collapse
|
29
|
Cannioto RA, Trabert B, Poole EM, Schildkraut JM. Ovarian cancer epidemiology in the era of collaborative team science. Cancer Causes Control 2017; 28:487-495. [PMID: 28283879 DOI: 10.1007/s10552-017-0862-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2016] [Accepted: 01/29/2017] [Indexed: 01/10/2023]
Abstract
PURPOSE Over the past decade, a number of consortia have formed to further investigate genetic associations, pathogenesis, and epidemiologic risk and prognostic factors for ovarian cancer. Here, we review the benefits that ovarian cancer consortia provide as well as challenges that have arisen. Methods for managing key challenges are also discussed. METHODS We review the structural organization and some of the milestone epidemiologic publications of five consortia dedicated to the study of ovarian cancer, including the Ovarian Cancer Association Consortium (OCAC), the Ovarian Tumor Tissue Analysis (OTTA) Consortium, the Ovarian Cancer Cohort Consortium (OC3), the Collaborative Group on Epidemiological Studies of Ovarian Cancer (The Oxford Collaborative Group), and the Ovarian Cancer in Women of African Ancestry (OCWAA) consortium. RESULTS As ovarian cancer is a rare and heterogeneous disease, consortia have made important contributions in the study of risk factors by improving statistical power beyond what any single study, or even a few studies, would provide. Thus, a major accomplishment of consortial research is enhanced characterization of histotype-specific risk factor associations. In addition, consortia have facilitated impressive synergy between researchers across many institutions, spawning new collaborative research. Importantly, through these efforts, many challenges have been met, including difficulties with data harmonization and analysis, laying a road map for future collaborations. CONCLUSIONS While ovarian cancer consortia have made valuable contributions to the ovarian cancer epidemiological literature over the past decade, additional efforts comprising of new, well-designed case-control studies are needed to further elucidate novel, histotype-specific risk, and prognostic factors which are not consistently available in existing studies.
Collapse
Affiliation(s)
- Rikki A Cannioto
- Department of Cancer Prevention and Control, Roswell Park Cancer Institute, Buffalo, NY, USA
| | - Britton Trabert
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
| | - Elizabeth M Poole
- Channing Division of Network Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Joellen M Schildkraut
- Department of Public Health Sciences, School of Medicine, The University of Virginia, Box 800765, Charlottesville, VA, 22903, USA.
| |
Collapse
|
30
|
Hou Z, Gattoc L, O'Connor C, Yang S, Wallace-Povirk A, George C, Orr S, Polin L, White K, Kushner J, Morris RT, Gangjee A, Matherly LH. Dual Targeting of Epithelial Ovarian Cancer Via Folate Receptor α and the Proton-Coupled Folate Transporter with 6-Substituted Pyrrolo[2,3- d]pyrimidine Antifolates. Mol Cancer Ther 2017; 16:819-830. [PMID: 28138029 DOI: 10.1158/1535-7163.mct-16-0444] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Revised: 01/06/2017] [Accepted: 01/19/2017] [Indexed: 02/04/2023]
Abstract
Folate uptake in epithelial ovarian cancer (EOC) involves the reduced folate carrier (RFC) and the proton-coupled folate transporter (PCFT), both facilitative transporters and folate receptor (FR) α. Although in primary EOC specimens, FRα is widely expressed and increases with tumor stage, PCFT was expressed independent of tumor stage (by real-time RT-PCR and IHC). EOC cell line models, including cisplatin sensitive (IGROV1 and A2780) and resistant (SKOV3 and TOV112D) cells, expressed a 17-fold range of FRα and similar amounts (within ∼2-fold) of PCFT. Novel 6-substituted pyrrolo[2,3-d]pyrimidine thienoyl antifolates AGF94 and AGF154 exhibited potent antiproliferative activities toward all of the EOC cell lines, reflecting selective cellular uptake by FRα and/or PCFT over RFC. When IGROV1 cells were pretreated with AGF94 at pH 6.8, clonogenicity was potently inhibited, confirming cell killing. FRα was knocked down in IGROV1 cells with lentiviral shRNAs. Two FRα knockdown clones (KD-4 and KD-10) showed markedly reduced binding and uptake of [3H]folic acid and [3H]AGF154 by FRα, but maintained high levels of [3H]AGF154 uptake by PCFT compared to nontargeted control cells. In proliferation assays, KD-4 and KD-10 cells preserved in vitro inhibition by AGF94 and AGF154, compared to a nontargeted control, attributable to residual FRα- and substantial PCFT-mediated uptake. KD-10 tumor xenografts in severe-compromised immune-deficient mice were likewise sensitive to AGF94 Collectively, our results demonstrate the substantial therapeutic potential of novel 6-substituted pyrrolo[2,3-d]pyrimidine antifolates with dual targeting of PCFT and FRα toward EOCs that express a range of FRα, along with PCFT, as well as cisplatin resistance. Mol Cancer Ther; 16(5); 819-30. ©2017 AACR.
Collapse
Affiliation(s)
- Zhanjun Hou
- Department of Oncology, Wayne State University School of Medicine, Detroit, Michigan. .,Molecular Therapeutics Program, Barbara Ann Karmanos Cancer Institute, Detroit, Michigan
| | - Leda Gattoc
- Department of Oncology, Wayne State University School of Medicine, Detroit, Michigan
| | - Carrie O'Connor
- Department of Oncology, Wayne State University School of Medicine, Detroit, Michigan
| | - Si Yang
- Division of Medicinal Chemistry, Graduate School of Pharmaceutical Science, Duquesne University, Pittsburgh, Pennsylvania
| | | | - Christina George
- Department of Oncology, Wayne State University School of Medicine, Detroit, Michigan
| | - Steve Orr
- Department of Oncology, Wayne State University School of Medicine, Detroit, Michigan
| | - Lisa Polin
- Department of Oncology, Wayne State University School of Medicine, Detroit, Michigan.,Molecular Therapeutics Program, Barbara Ann Karmanos Cancer Institute, Detroit, Michigan
| | - Kathryn White
- Department of Oncology, Wayne State University School of Medicine, Detroit, Michigan
| | - Juiwanna Kushner
- Department of Oncology, Wayne State University School of Medicine, Detroit, Michigan
| | - Robert T Morris
- Department of Oncology, Wayne State University School of Medicine, Detroit, Michigan.,Molecular Therapeutics Program, Barbara Ann Karmanos Cancer Institute, Detroit, Michigan
| | - Aleem Gangjee
- Division of Medicinal Chemistry, Graduate School of Pharmaceutical Science, Duquesne University, Pittsburgh, Pennsylvania.
| | - Larry H Matherly
- Department of Oncology, Wayne State University School of Medicine, Detroit, Michigan. .,Molecular Therapeutics Program, Barbara Ann Karmanos Cancer Institute, Detroit, Michigan.,Department of Pharmacology, Wayne State University School of Medicine, Detroit, Michigan
| |
Collapse
|
31
|
Zhao Q, Gui T, Qian Q, Li L, Shen K. B-cell-specific Moloney murine leukemia virus integration site 1: potential stratification factor and therapeutic target for epithelial ovarian cancer. Onco Targets Ther 2016; 9:5203-8. [PMID: 27578986 PMCID: PMC5001671 DOI: 10.2147/ott.s109443] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Epithelial ovarian cancer, a vexing challenge for clinical management, still lacks biomarkers for early diagnosis, precise stratification, and prognostic evaluation of patients. B-cell-specific Moloney murine leukemia virus integration site 1 (BMI1), a member of the polycomb group of proteins, engages in diverse cellular processes, including proliferation, differentiation, senescence, and stem cell renewal. In addition, BMI1, as a cancer stem-cell marker, participates in tumorigenesis through various pathways. Rewardingly, recent studies have also revealed a relationship between BMI1 expression and the clinical grade/stage, therapy response, and survival outcome in a majority of human malignancies, including epithelial ovarian cancer. Therefore, BMI1 might serve as a potential stratification factor and treatment target for epithelial ovarian cancer, pending evidence from further investigations.
Collapse
Affiliation(s)
- Qianying Zhao
- Department of Obstetrics and Gynecology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing
| | - Ting Gui
- Department of Obstetrics and Gynecology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing
| | - Qiuhong Qian
- Department of Obstetrics and Gynecology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing; Department of Obstetrics and Gynecology, Qilu Hospital of Shandong University, Shandong, People's Republic of China
| | - Lei Li
- Department of Obstetrics and Gynecology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing
| | - Keng Shen
- Department of Obstetrics and Gynecology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing
| |
Collapse
|
32
|
Bruner-Tran KL, Gnecco J, Ding T, Glore DR, Pensabene V, Osteen KG. Exposure to the environmental endocrine disruptor TCDD and human reproductive dysfunction: Translating lessons from murine models. Reprod Toxicol 2016; 68:59-71. [PMID: 27423904 DOI: 10.1016/j.reprotox.2016.07.007] [Citation(s) in RCA: 68] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2016] [Revised: 07/06/2016] [Accepted: 07/09/2016] [Indexed: 12/31/2022]
Abstract
Humans and other animals are exposed to a wide array of man-made toxicants, many of which act as endocrine disruptors that exhibit differential effects across the lifespan. In humans, while the impact of adult exposure is known for some compounds, the potential consequences of developmental exposure to endocrine disrupting chemicals (EDCs) is more difficult to ascertain. Animal studies have revealed that exposure to EDCs prior to puberty can lead to adult reproductive disease and dysfunction. Specifically, in adult female mice with an early life exposure to 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), we demonstrated a transgenerational occurrence of several reproductive diseases that have been linked to endometriosis in women. Herein, we review the evidence for TCDD-associated development of adult reproductive disease as well as known epigenetic alterations associated with TCDD and/or endometriosis. We will also introduce new "Organ-on-Chip" models which, combined with our established murine model, are expected to further enhance our ability to examine alterations in gene-environment interactions that lead to heritable disease.
Collapse
Affiliation(s)
- Kaylon L Bruner-Tran
- Women's Reproductive Health Research Center, Department of Obstetrics & Gynecology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA.
| | - Juan Gnecco
- Women's Reproductive Health Research Center, Department of Obstetrics & Gynecology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Tianbing Ding
- Women's Reproductive Health Research Center, Department of Obstetrics & Gynecology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Dana R Glore
- Women's Reproductive Health Research Center, Department of Obstetrics & Gynecology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Virginia Pensabene
- Women's Reproductive Health Research Center, Department of Obstetrics & Gynecology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Kevin G Osteen
- Women's Reproductive Health Research Center, Department of Obstetrics & Gynecology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA; VA Tennessee Valley Healthcare System, Nashville TN 37212, USA
| |
Collapse
|