1
|
Pellarin I, Dall'Acqua A, Favero A, Segatto I, Rossi V, Crestan N, Karimbayli J, Belletti B, Baldassarre G. Cyclin-dependent protein kinases and cell cycle regulation in biology and disease. Signal Transduct Target Ther 2025; 10:11. [PMID: 39800748 PMCID: PMC11734941 DOI: 10.1038/s41392-024-02080-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 10/16/2024] [Accepted: 11/13/2024] [Indexed: 01/18/2025] Open
Abstract
Cyclin Dependent Kinases (CDKs) are closely connected to the regulation of cell cycle progression, having been first identified as the kinases able to drive cell division. In reality, the human genome contains 20 different CDKs, which can be divided in at least three different sub-family with different functions, mechanisms of regulation, expression patterns and subcellular localization. Most of these kinases play fundamental roles the normal physiology of eucaryotic cells; therefore, their deregulation is associated with the onset and/or progression of multiple human disease including but not limited to neoplastic and neurodegenerative conditions. Here, we describe the functions of CDKs, categorized into the three main functional groups in which they are classified, highlighting the most relevant pathways that drive their expression and functions. We then discuss the potential roles and deregulation of CDKs in human pathologies, with a particular focus on cancer, the human disease in which CDKs have been most extensively studied and explored as therapeutic targets. Finally, we discuss how CDKs inhibitors have become standard therapies in selected human cancers and propose novel ways of investigation to export their targeting from cancer to other relevant chronic diseases. We hope that the effort we made in collecting all available information on both the prominent and lesser-known CDK family members will help in identify and develop novel areas of research to improve the lives of patients affected by debilitating chronic diseases.
Collapse
Affiliation(s)
- Ilenia Pellarin
- Division of Molecular Oncology, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, National Cancer Institute, Aviano, Italy
| | - Alessandra Dall'Acqua
- Division of Molecular Oncology, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, National Cancer Institute, Aviano, Italy
| | - Andrea Favero
- Division of Molecular Oncology, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, National Cancer Institute, Aviano, Italy
| | - Ilenia Segatto
- Division of Molecular Oncology, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, National Cancer Institute, Aviano, Italy
| | - Valentina Rossi
- Division of Molecular Oncology, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, National Cancer Institute, Aviano, Italy
| | - Nicole Crestan
- Division of Molecular Oncology, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, National Cancer Institute, Aviano, Italy
| | - Javad Karimbayli
- Division of Molecular Oncology, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, National Cancer Institute, Aviano, Italy
| | - Barbara Belletti
- Division of Molecular Oncology, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, National Cancer Institute, Aviano, Italy
| | - Gustavo Baldassarre
- Division of Molecular Oncology, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, National Cancer Institute, Aviano, Italy.
| |
Collapse
|
2
|
Chen X, Shibu G, Sokolsky BA, Soussana TN, Fisher L, Deochand DK, Dacic M, Mantel I, Ramirez DC, Bell RD, Zhang T, Donlin LT, Goodman SM, Gray NS, Chinenov Y, Fisher RP, Rogatsky I. Disrupting the RNA polymerase II transcription cycle through CDK7 inhibition ameliorates inflammatory arthritis. Sci Transl Med 2024; 16:eadq5091. [PMID: 39565872 PMCID: PMC11756345 DOI: 10.1126/scitranslmed.adq5091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Revised: 09/11/2024] [Accepted: 10/21/2024] [Indexed: 11/22/2024]
Abstract
Macrophages are key drivers of inflammation and tissue damage in autoimmune diseases including rheumatoid arthritis. The rate-limiting step for transcription of more than 70% of inducible genes in macrophages is RNA polymerase II (Pol II) promoter-proximal pause release; however, the specific role of Pol II early elongation control in inflammation, and whether it can be modulated therapeutically, is unknown. Genetic ablation of a pause-stabilizing negative elongation factor (NELF) in macrophages did not affect baseline Pol II occupancy but enhanced the transcriptional response of paused anti-inflammatory genes to lipopolysaccharide followed by secondary attenuation of inflammatory signaling in vitro and in the K/BxN serum transfer mouse model of arthritis. To pharmacologically disrupt the Pol II transcription cycle, we used two covalent inhibitors of the transcription factor II H-associated cyclin-dependent kinase 7 (CDK7), THZ1 and YKL-5-124. Both reduced Pol II pausing in murine and human macrophages, broadly suppressed induction of pro- but not anti-inflammatory genes, and rapidly reversed preestablished inflammatory macrophage polarization. In mice, CDK7 inhibition ameliorated both acute and chronic progressive inflammatory arthritis. Lastly, CDK7 inhibition down-regulated a pathogenic gene expression signature in synovial explants from patients with rheumatoid arthritis. We propose that interfering with Pol II early elongation by targeting CDK7 represents a therapeutic opportunity for rheumatoid arthritis and other inflammatory diseases.
Collapse
Affiliation(s)
- Xi Chen
- Research Institute, Hospital for Special Surgery, New York, NY 10021, USA
- Immunology and Microbial Pathogenesis Graduate Program, Weill Cornell Medicine, New York, NY 10065, USA
| | - Gayathri Shibu
- Research Institute, Hospital for Special Surgery, New York, NY 10021, USA
- Immunology and Microbial Pathogenesis Graduate Program, Weill Cornell Medicine, New York, NY 10065, USA
| | - Baila A. Sokolsky
- Research Institute, Hospital for Special Surgery, New York, NY 10021, USA
- Immunology and Microbial Pathogenesis Graduate Program, Weill Cornell Medicine, New York, NY 10065, USA
| | | | - Logan Fisher
- Research Institute, Hospital for Special Surgery, New York, NY 10021, USA
- Immunology and Microbial Pathogenesis Graduate Program, Weill Cornell Medicine, New York, NY 10065, USA
| | - Dinesh K. Deochand
- Research Institute, Hospital for Special Surgery, New York, NY 10021, USA
- Department of Microbiology and Immunology, Weill Cornell Medicine, New York, NY 10065, USA
| | - Marija Dacic
- Research Institute, Hospital for Special Surgery, New York, NY 10021, USA
- Physiology, Biophysics and Systems Biology Graduate Program, Weill Cornell Medicine, New York, NY 10065, USA
| | - Ian Mantel
- Research Institute, Hospital for Special Surgery, New York, NY 10021, USA
- Immunology and Microbial Pathogenesis Graduate Program, Weill Cornell Medicine, New York, NY 10065, USA
| | - Daniel C. Ramirez
- Department of Pathology and Laboratory Medicine, Hospital for Special Surgery, New York, NY 10021, USA
| | - Richard D. Bell
- Research Institute, Hospital for Special Surgery, New York, NY 10021, USA
- David Z. Rosensweig Genomics Center, Hospital for Special Surgery, New York, NY 10021, USA
| | - Tinghu Zhang
- Department of Chemical and Systems Biology, Chem-H and Stanford Cancer Institute, Stanford School of Medicine, Stanford University, Stanford, CA 94305, USA
| | - Laura T. Donlin
- Research Institute, Hospital for Special Surgery, New York, NY 10021, USA
- Immunology and Microbial Pathogenesis Graduate Program, Weill Cornell Medicine, New York, NY 10065, USA
- Physiology, Biophysics and Systems Biology Graduate Program, Weill Cornell Medicine, New York, NY 10065, USA
| | - Susan M. Goodman
- Division of Rheumatology, Hospital for Special Surgery, New York, NY 10021, USA
| | - Nathanael S. Gray
- Department of Chemical and Systems Biology, Chem-H and Stanford Cancer Institute, Stanford School of Medicine, Stanford University, Stanford, CA 94305, USA
| | - Yurii Chinenov
- Research Institute, Hospital for Special Surgery, New York, NY 10021, USA
- David Z. Rosensweig Genomics Center, Hospital for Special Surgery, New York, NY 10021, USA
| | - Robert P. Fisher
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10021, USA
| | - Inez Rogatsky
- Research Institute, Hospital for Special Surgery, New York, NY 10021, USA
- Immunology and Microbial Pathogenesis Graduate Program, Weill Cornell Medicine, New York, NY 10065, USA
- David Z. Rosensweig Genomics Center, Hospital for Special Surgery, New York, NY 10021, USA
| |
Collapse
|
3
|
Whisnant AW, Dyck Dionisi O, Salazar Sanchez V, Rappold JM, Djakovic L, Grothey A, Marante AL, Fischer P, Peng S, Wolf K, Hennig T, Dölken L. Herpes simplex virus 1 inhibits phosphorylation of RNA polymerase II CTD serine-7. J Virol 2024; 98:e0117824. [PMID: 39316591 PMCID: PMC11494995 DOI: 10.1128/jvi.01178-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Accepted: 08/28/2024] [Indexed: 09/26/2024] Open
Abstract
Transcriptional activity of RNA polymerase II (Pol II) is influenced by post-translational modifications of the C-terminal domain (CTD) of the largest Pol II subunit, RPB1. Herpes simplex virus type 1 (HSV-1) usurps the cellular transcriptional machinery during lytic infection to efficiently express viral mRNA and shut down host gene expression. The viral immediate-early protein ICP22 interferes with serine 2 phosphorylation (pS2) by targeting CDK9 and other CDKs, but the full functional implications of this are not well understood. Using Western blotting, we report that HSV-1 also induces a loss of serine 7 phosphorylation (pS7) of the CTD during lytic infection, requiring expression of the two immediate-early proteins ICP22 and ICP27. ICP27 has also been proposed to target RPB1 for degradation, but we show that pS2/S7 loss precedes the drop in total protein levels. Cells with the RPB1 polyubiquitination site mutation K1268R, preventing proteasomal degradation during transcription-coupled DNA repair, displayed loss of pS2/S7 but retained higher overall RPB1 protein levels later in infection, indicating this pathway is not involved in early CTD dysregulation but may mediate bulk protein loss later. Using α-amanitin-resistant CTD mutants, we observed differential requirements for Ser2 and Ser7 for the production of viral proteins, with Ser2 facilitating viral immediate-early genes and Ser7 appearing dispensable. Despite dysregulation of CTD phosphorylation and different requirements for Ser2/7, all CTD modifications tested could be visualized in viral replication compartments with immunofluorescence. These data expand the known means that HSV employs to create pro-viral transcriptional environments at the expense of host responses.IMPORTANCECells rapidly induce changes in the transcription of RNA in response to stress and pathogens. Herpes simplex virus (HSV) disrupts many processes of host mRNA transcription, and it is necessary to separate the actions of viral proteins from cellular responses. Here, we demonstrate that viral proteins inhibit two key phosphorylation patterns on the C-terminal domain (CTD) of cellular RNA polymerase II and that this is separate from the degradation of polymerases later in infection. Furthermore, we show that viral genes do not require the full "CTD code." Together, these data distinguish multiple steps in the remodeling of RNA polymerase during infection and suggest that shared transcriptional phenotypes during stress responses do not revolve around a core disruption of CTD modifications.
Collapse
Affiliation(s)
- Adam W Whisnant
- Institute for Virology and Immunobiology, Julius-Maximilians-University Würzburg, Würzburg, Germany
- Hannover Medical School, Institute of Virology, Hannover, Germany
| | - Oliver Dyck Dionisi
- Institute for Virology and Immunobiology, Julius-Maximilians-University Würzburg, Würzburg, Germany
| | - Valeria Salazar Sanchez
- Institute for Virology and Immunobiology, Julius-Maximilians-University Würzburg, Würzburg, Germany
| | - Julia M Rappold
- Institute for Virology and Immunobiology, Julius-Maximilians-University Würzburg, Würzburg, Germany
| | - Lara Djakovic
- Institute for Virology and Immunobiology, Julius-Maximilians-University Würzburg, Würzburg, Germany
| | - Arnhild Grothey
- Institute for Virology and Immunobiology, Julius-Maximilians-University Würzburg, Würzburg, Germany
- Hannover Medical School, Institute of Virology, Hannover, Germany
| | - Ana Luiza Marante
- Institute for Virology and Immunobiology, Julius-Maximilians-University Würzburg, Würzburg, Germany
| | - Patrick Fischer
- Institute for Virology and Immunobiology, Julius-Maximilians-University Würzburg, Würzburg, Germany
| | - Shitao Peng
- Institute for Virology and Immunobiology, Julius-Maximilians-University Würzburg, Würzburg, Germany
| | - Katharina Wolf
- Institute for Virology and Immunobiology, Julius-Maximilians-University Würzburg, Würzburg, Germany
| | - Thomas Hennig
- Institute for Virology and Immunobiology, Julius-Maximilians-University Würzburg, Würzburg, Germany
- Hannover Medical School, Institute of Virology, Hannover, Germany
| | - Lars Dölken
- Institute for Virology and Immunobiology, Julius-Maximilians-University Würzburg, Würzburg, Germany
- Hannover Medical School, Institute of Virology, Hannover, Germany
| |
Collapse
|
4
|
Wang K, Jiang M, Liu H, Meng C, Li M, Lu H. Discovery of novel co-degradation CK1α and CDK7/9 PROTACs with p53 activation for treating acute myeloid leukemia. Bioorg Chem 2024; 147:107319. [PMID: 38593529 DOI: 10.1016/j.bioorg.2024.107319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 03/25/2024] [Accepted: 03/27/2024] [Indexed: 04/11/2024]
Abstract
Reactivating p53 activity to restore its anticancer function is an attractive cancer treatment strategy. In this study, we designed and synthesized a series of novel PROTACs to reactivate p53 via the co-degradation of CK1α and CDK7/9 proteins. Bioactivity studies showed that the selected PROTAC 13i exhibited potency antiproliferative activity in MV4-11 (IC50 = 0.096 ± 0.012 μM) and MOLM-13 (IC50 = 0.072 ± 0.014 μM) cells, and induced apoptosis of MV4-11 cells. Western-blot analysis showed that PROTAC 13i triple CK1α and CDK7/9 protein degradation resulted in the significantly increased expression of p53. At the same time, the transcriptional repression due to the degradation significantly reduced downstream gene expression of MYC, MDM2, BCL-2 and MCL-1, and reduced the inflammatory cytokine levels of TNF-α, IL-1β and IL-6 in PMBCs. These results indicate the beneficial impact of simultaneous CK1α and CDK7/9 degradation for acute myeloid leukemia therapy.
Collapse
MESH Headings
- Humans
- Tumor Suppressor Protein p53/metabolism
- Leukemia, Myeloid, Acute/drug therapy
- Leukemia, Myeloid, Acute/metabolism
- Leukemia, Myeloid, Acute/pathology
- Antineoplastic Agents/pharmacology
- Antineoplastic Agents/chemistry
- Antineoplastic Agents/chemical synthesis
- Casein Kinase Ialpha/metabolism
- Casein Kinase Ialpha/antagonists & inhibitors
- Cell Proliferation/drug effects
- Drug Screening Assays, Antitumor
- Cyclin-Dependent Kinase 9/antagonists & inhibitors
- Cyclin-Dependent Kinase 9/metabolism
- Structure-Activity Relationship
- Molecular Structure
- Cyclin-Dependent Kinases/antagonists & inhibitors
- Cyclin-Dependent Kinases/metabolism
- Dose-Response Relationship, Drug
- Apoptosis/drug effects
- Drug Discovery
- Cell Line, Tumor
- Proteolysis/drug effects
- Tumor Cells, Cultured
- Proteolysis Targeting Chimera
- Cyclin-Dependent Kinase-Activating Kinase
Collapse
Affiliation(s)
- Kai Wang
- College of Pharmacy, Jilin University, Changchun 130021, China
| | - Meixu Jiang
- College of Pharmacy, Jilin University, Changchun 130021, China
| | - Huimin Liu
- College of Pharmacy, Jilin University, Changchun 130021, China
| | - Chen Meng
- College of Pharmacy, Jilin University, Changchun 130021, China
| | - Mengyuan Li
- College of Pharmacy, Jilin University, Changchun 130021, China
| | - Haibin Lu
- College of Pharmacy, Jilin University, Changchun 130021, China.
| |
Collapse
|
5
|
Song P, Han R, Yang F. Super enhancer lncRNAs: a novel hallmark in cancer. Cell Commun Signal 2024; 22:207. [PMID: 38566153 PMCID: PMC10986047 DOI: 10.1186/s12964-024-01599-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 03/26/2024] [Indexed: 04/04/2024] Open
Abstract
Super enhancers (SEs) consist of clusters of enhancers, harboring an unusually high density of transcription factors, mediator coactivators and epigenetic modifications. SEs play a crucial role in the maintenance of cancer cell identity and promoting oncogenic transcription. Super enhancer lncRNAs (SE-lncRNAs) refer to either transcript from SEs locus or interact with SEs, whose transcriptional activity is highly dependent on SEs. Moreover, these SE-lncRNAs can interact with their associated enhancer regions in cis and modulate the expression of oncogenes or key signal pathways in cancers. Inhibition of SEs would be a promising therapy for cancer. In this review, we summarize the research of SE-lncRNAs in different kinds of cancers so far and decode the mechanism of SE-lncRNAs in carcinogenesis to provide novel ideas for the cancer therapy.
Collapse
Affiliation(s)
- Ping Song
- Department of Gastroenterology, Affiliated Hangzhou First People's Hospital, Westlake University, Hangzhou, 310006, Zhejiang Province, China
- Key Laboratory of Integrated Traditional Chinese and Western Medicine for Biliary and Pancreatic Diseases of Zhejiang Province, Hangzhou, 310006, China
- Hangzhou Institute of Digestive Diseases, Hangzhou, 310006, China
| | - Rongyan Han
- Department of emergency, Affiliated Hangzhou First People's Hospital, Westlake University, Hangzhou, 310006, Zhejiang Province, China
| | - Fan Yang
- Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang Province, Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hangzhou First People's Hospital, School of Medicine, Westlake University, Hangzhou, 310006, Zhejiang Province, China.
| |
Collapse
|
6
|
Pan Q, Yang H, Zhou Z, Li M, Jiang X, Li F, Luo Y, Li M. [ 68 Ga]Ga-FAPI-04 PET/CT may be a predictor for early treatment response in rheumatoid arthritis. EJNMMI Res 2024; 14:2. [PMID: 38175339 PMCID: PMC10766931 DOI: 10.1186/s13550-023-01064-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 12/19/2023] [Indexed: 01/05/2024] Open
Abstract
BACKGROUND The identification of biomarkers predicting the treatment response of rheumatoid arthritis (RA) is important. [68 Ga]Ga-FAPI-04 showed markedly increased uptake in the joints of patients with RA. The purpose of this study is to investigate whether [68 Ga]Ga-FAPI-04 PET/CT can be a predictor of treatment response in RA. RESULTS Nineteen patients diagnosed with RA in the prospective cohort study were finally enrolled. Both total synovitis uptake (TSU) and metabolic synovitis volume (MSV) in [68 Ga]Ga-FAPI-04 and [18F]FDG PET/CT of the responders were significantly higher than those in non-responders according to Clinical Disease Activity Index (CDAI) and Simplified Disease Activity Index (SDAI) response criteria at 3-months' follow-up (P < 0.05). The PET joint count (PJC) detected in [68 Ga]Ga-FAPI-04 and [18F]FDG PET/CT were also significantly higher in CDAI responders than non-responders (P = 0.016 and 0.045, respectively). The clinical characteristics of disease activity at baseline did not show significant difference between the responders and non-responders, except CRP (P = 0.035 and 0.033 in CDAI and SDAI response criteria, respectively). The baseline PJCFAPI, TSUFAPI and MSVFAPI > cutoff values in [68 Ga]Ga-FAPI-04 PET/CT successfully discriminated CDAI and SDAI responders and non-responders at 3-months' follow-up. CONCLUSION [68 Ga]Ga-FAPI-04 uptake at baseline were significantly higher in early responders than those in non-responders. Trial registration ClinicalTrials. NCT04514614. Registered 13 August 2020, https://register. CLINICALTRIALS gov/prs/app/action/SelectProtocol?sid=S000A4PN&selectaction=Edit&uid=U0001JRW&ts=2&cx=-x9t7cp.
Collapse
Affiliation(s)
- Qingqing Pan
- Department of Nuclear Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College Hospital, No.1 Shuaifuyuan Wangfujing, Dongcheng District, Beijing, 100730, China
- Beijing Key Laboratory of Molecular Targeted Diagnosis and Therapy in Nuclear Medicine, Beijing, 100730, China
| | - Huaxia Yang
- Department of Rheumatology and Clinical Immunology, National Clinical Research Center for Dermatologic and Immunologic Diseases, the Ministry of Education Key Laboratory, Chinese Academy of Medical Sciences and Peking Union Medical College Hospital, Beijing, China
- State Key Laboratory of Difficult, Severe and Rare Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College Hospital, Beijing, China
| | - Ziyue Zhou
- Department of Rheumatology and Clinical Immunology, National Clinical Research Center for Dermatologic and Immunologic Diseases, the Ministry of Education Key Laboratory, Chinese Academy of Medical Sciences and Peking Union Medical College Hospital, Beijing, China
- State Key Laboratory of Difficult, Severe and Rare Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College Hospital, Beijing, China
| | - Min Li
- Department of Rheumatology and Clinical Immunology, National Clinical Research Center for Dermatologic and Immunologic Diseases, the Ministry of Education Key Laboratory, Chinese Academy of Medical Sciences and Peking Union Medical College Hospital, Beijing, China
- Department of Endocrinology and Rheumatology, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei, China
| | - Xu Jiang
- State Key Laboratory of Difficult, Severe and Rare Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College Hospital, Beijing, China
- Medical Research Center, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, China
| | - Fang Li
- Department of Nuclear Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College Hospital, No.1 Shuaifuyuan Wangfujing, Dongcheng District, Beijing, 100730, China
- Beijing Key Laboratory of Molecular Targeted Diagnosis and Therapy in Nuclear Medicine, Beijing, 100730, China
| | - Yaping Luo
- Department of Nuclear Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College Hospital, No.1 Shuaifuyuan Wangfujing, Dongcheng District, Beijing, 100730, China.
- Beijing Key Laboratory of Molecular Targeted Diagnosis and Therapy in Nuclear Medicine, Beijing, 100730, China.
- State Key Laboratory of Common Mechanism Research for Major Diseases, Beijing, China.
| | - Mengtao Li
- Department of Rheumatology and Clinical Immunology, National Clinical Research Center for Dermatologic and Immunologic Diseases, the Ministry of Education Key Laboratory, Chinese Academy of Medical Sciences and Peking Union Medical College Hospital, Beijing, China
- State Key Laboratory of Difficult, Severe and Rare Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College Hospital, Beijing, China
| |
Collapse
|
7
|
Staniszewska M, Kiełbowski K, Rusińska K, Bakinowska E, Gromowska E, Pawlik A. Targeting cyclin-dependent kinases in rheumatoid arthritis and psoriasis - a review of current evidence. Expert Opin Ther Targets 2023; 27:1097-1113. [PMID: 37982244 DOI: 10.1080/14728222.2023.2285784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 11/16/2023] [Indexed: 11/21/2023]
Abstract
INTRODUCTION Rheumatoid arthritis (RA) is a chronic inflammatory disease associated with synovial proliferation and bone erosion, which leads to the structural and functional impairment of the joints. Immune cells, together with synoviocytes, induce a pro-inflammatory environment and novel treatment agents target inflammatory cytokines. Psoriasis is a chronic immune-mediated skin disease, and several cytokines are considered as typical mediators in the progression of the disease, including IL-23, IL-22, and IL-17, among others. AREA COVERED In this review, we try to evaluate whether cyclin-dependent kinases (CDK), enzymes that regulate cell cycle and transcription of various genes, could become novel therapeutic targets in RA and psoriasis. We present the main results of in vitro and in vivo studies, as well as scarce clinical reports. EXPERT OPINION CDK inhibitors seem promising for treating RA and psoriasis because of their multidirectional effects. CDK inhibitors may affect not only the process of osteoclastogenesis, thereby reducing joint destruction in RA, but also the process of apoptosis of neutrophils and macrophages responsible for the development of inflammation in both RA and psoriasis. However, assessing the efficacy of these drugs in clinical practice requires multi-center, long-term clinical trials evaluating the effectiveness and safety of CDK-blocking therapy in RA and psoriasis.
Collapse
Affiliation(s)
| | - Kajetan Kiełbowski
- Department of Physiology, Pomeranian Medical University, Szczecin, Poland
| | - Klaudia Rusińska
- Department of Physiology, Pomeranian Medical University, Szczecin, Poland
| | - Estera Bakinowska
- Department of Physiology, Pomeranian Medical University, Szczecin, Poland
| | - Ewa Gromowska
- Department of Physiology, Pomeranian Medical University, Szczecin, Poland
| | - Andrzej Pawlik
- Department of Physiology, Pomeranian Medical University, Szczecin, Poland
| |
Collapse
|
8
|
Yu L, Li S, Pu L, Yang C, Shi Q, Zhao Q, Meniga S, Liu Y, Zhang Y, Lai X. Traditional Tibetan medicine: therapeutic potential in rheumatoid arthritis. Front Pharmacol 2022; 13:938915. [PMID: 36267280 PMCID: PMC9576941 DOI: 10.3389/fphar.2022.938915] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Accepted: 08/15/2022] [Indexed: 11/13/2022] Open
Abstract
Rheumatoid arthritis (RA) is a severe inflammatory autoimmune disease characterized by the failed spontaneous resolution of inflammation. The induction of immune regulation and resolution of inflammatory pathways are effective in alleviating inflammation in RA. As the oldest medical system in the world, traditional Tibetan medicine (TTM) has a long history of preventing and treating RA. This review provides a comprehensive overview of medicinal plants with anti-RA activity in the TTM system, using classic books of Tibetan medicine, modern research literature, and drug standards. A total of 27 species have been found to be effective in treating RA, including Tinospora sinensis (Lour.) Merr., Terminalia chehula Retz., P. hookeri (C. B. Clarke) Hock.), and Aconitum pendulum Busch. Alkaloids, flavonoids, polyphenols, and terpenoids have turned out to be the major bioactive components for RA treatment. The inhibition of pro-inflammatory cytokine expression by mediating the NF-κB, MAPK, and JAK/STAT pathways is the core mechanism in RA treatment. In conclusion, this review provides key information and research perspectives for further research on the anti-RA effects of TTM.
Collapse
Affiliation(s)
- Liqiong Yu
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Shiling Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Lili Pu
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Chunhong Yang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Qian Shi
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Qi Zhao
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Shengbu Meniga
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Ethnic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yue Liu
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Ethnic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- *Correspondence: Yue Liu, ; Yi Zhang, ; Xianrong Lai,
| | - Yi Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Ethnic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- *Correspondence: Yue Liu, ; Yi Zhang, ; Xianrong Lai,
| | - Xianrong Lai
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Ethnic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- *Correspondence: Yue Liu, ; Yi Zhang, ; Xianrong Lai,
| |
Collapse
|
9
|
Zheng C, Tang YD. The emerging roles of the CDK/cyclin complexes in antiviral innate immunity. J Med Virol 2022; 94:2384-2387. [PMID: 34964486 DOI: 10.1002/jmv.27554] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 12/09/2021] [Accepted: 12/25/2021] [Indexed: 11/05/2022]
Abstract
More than 20 members of the human cyclin-dependent kinases (CDKs) family share the feature of being activated by cyclins. CDKs have been involved in diverse biological processes, such as cell cycle, transcription, DNA damage response, and apoptosis. If CDKs are not properly regulated, they can cause diseases like cancer. CDKs are Ser/Thr kinases that work with cyclins to control cell cycle progression. Various CDK-cyclin complexes phosphorylate particular target proteins and drive different cell cycle stages. Accumulating evidence demonstrated that CDKs play an essential role in the cell cycle; however, their roles in antiviral innate immunity are just emerging. This minireview summarizes how CDKs play their roles in antiviral innate immunity. Our goal is to draw attention to the involvement of CDKs in antiviral innate immunity, whether as separate entities or as components of CDK/cyclin complexes that have gotten less attention in the past.
Collapse
Affiliation(s)
- Chunfu Zheng
- Department of Immunology, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
- Department of Microbiology, Immunology and Infectious Diseases, University of Calgary, Calgary, Alberta, Canada
| | - Yan-Dong Tang
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute of Chinese Academy of Agricultural Sciences, Harbin, China
| |
Collapse
|
10
|
HAO F, WANG Q, LIU L, WU L, CAI R, SANG J, HU J, WANG J, YU Q, HE L, SHEN Y, MIAO Y, HU L, WU Z. Effect of moxibustion on autophagy and the inflammatory response of synovial cells in rheumatoid arthritis model rat. J TRADIT CHIN MED 2022; 42:73-82. [PMID: 35294125 PMCID: PMC10164637 DOI: 10.19852/j.cnki.jtcm.20210324.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2020] [Accepted: 02/16/2021] [Indexed: 07/28/2023]
Abstract
OBJECTIVE To investigate the effect of moxibustion on synovitis and the autophagy of synoviocytes in rheumatoid arthritis (RA). METHODS Forty Sprague-Dawley rats were randomly divided into a normal group, model group, moxibustion group, cigarette moxibustion group, and medicine group, with eight rats included in each group. The RA model was established by subcutaneous injection of complete Freund's adjuvant into the left posterior toe. Rats in the model group were not interfered with. In the moxibustion group, rats were treated by moxibustion, where a 1-cm diameter moxa stick was applied at the left Zusanli (ST 36) point. The distance of the moxa stick to the skin was 2 cm and moxibustion was completed for 20 min daily for 15 d total. In the cigarette moxibustion group, the moxa stick was replaced by a common cigarette. In the medicine group, rats were treated with a tripterygium glycoside suspension (8 mg/kg) once a day for 15 d total. In each group, the left hind limb toe volume was measured with a toe volume meter; the synovial cells were observed by hematoxylin and eosin staining; the interleukin (IL)-4, IL-6, IL-10, IL-1β, IL-23, IL-17, and tumor necrosis factor (TNF)-α levels in serum were measured by enzyme-linked immunosorbent assay; the erythrocyte sedimentation rate (ESR) were detected by Westergren sedimentation rate testing; the C-reactive protein (CRP) and rheumatoid factor (RF) levels in serum were detected by rate nephelometry; the expression levels of ULK1, autophagy-associated protein (Atg)3, Atg5, and Atg12 messenger RNA (mRNA) in synovium were detected by real time-quantitative polymerase chain reaction (RT-qPCR); and the protein expression levels of phosphatidylinositol-3-kinase (PI3K), protein kinase B (Akt), mammalian target of rapamycin (mTOR), LC3-II, beclin-1, phosphorylated-PI3K (p-PI3K), p-Akt, p-mTOR in synovium were detected by Western blotting. RESULTS Among the RA model rats, joint swelling, an inflammatory reaction, and the proliferation of synovial tissue were obvious and the signal of the PI3K/Akt/mTOR pathway was active, while autophagy was inhibited. Moxibustion at Zusanli (ST36) or intragastric administration of Tripterygium wilfordii glycosides could alleviate the inflammatory reaction of RA rats; relieve the swelling of the toes; downregulate the levels of ESR, CRF, RF; lower the levels of IL-6, IL-1β, TNF-α, and IL-17; and increase the IL-4 and IL-10. At the same time, the mRNA expression levels of ULK1, Atg3, Atg5, and Atg12 and those of LC3-Ⅱ and beclin-1 were increased, while the PI3K, Akt, mTOR, p-PI3K, p-Akt, p-mTOR were decreased. Cigarette moxibustion did not significantly reduce the swelling of the toe joint in RA rats, and was not as good as that of moxibustion or Tripterygium wilfordii polyglycosides in the effects of inflammation relief and the influences of the levels of ESR, CRF, RF. While cigarette moxibustion has a weak effect to affect the expression of corresponding molecules in autophages and the expression level of the autophagy biomaker in synovial tissue. Moxibustion and tripterygium glycosides can significantly reduce the joint swelling, relieve synovitis and synovial hyperplasia, and inhibit the PI3K/Akt/mTOR signaling pathway to increase autophagy in a manner superior to cigarette moxibustion. CONCLUSION Moxibustion can limit the proliferation of synoviocytes in RA rats by inhibiting the PI3K/Akt/mTOR signaling pathway, promoting autophagy, effectively reducing synovitis, and alleviating joint swelling.
Collapse
Affiliation(s)
- Feng HAO
- 1 College of Acupuncture-moxibustion and Tuina, Nanjing University of Chinese Medicine, Nanjing 210023, China
- 2 Translational Medicine Research Center of Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Qiang WANG
- 3 Changshu Hospital Affiliated to Nanjing University of Chinese Medicine, Changshu 215500, China
| | - Lei LIU
- 4 College of Acupuncture-moxibustion and Tuina, Anhui University of Chinese Medicine, Hefei 230012, China
| | - Libin WU
- 4 College of Acupuncture-moxibustion and Tuina, Anhui University of Chinese Medicine, Hefei 230012, China
| | - Ronglin CAI
- 4 College of Acupuncture-moxibustion and Tuina, Anhui University of Chinese Medicine, Hefei 230012, China
- 5 Institute of Acupuncture and Meridian, Anhui Academy of Chinese Medicine, Hefei 230038, China
| | - Jiajia SANG
- 6 Affiliate Hospital of Nanjing University of Chinese Medicine/Jiangsu Province of Chinese Medicine, Nanjing 210029, China
| | - Jun HU
- 7 The first clinical medical college of Nanjing University of Chinese Medicine, Nanjing 210029, China
| | - Jie WANG
- 4 College of Acupuncture-moxibustion and Tuina, Anhui University of Chinese Medicine, Hefei 230012, China
- 5 Institute of Acupuncture and Meridian, Anhui Academy of Chinese Medicine, Hefei 230038, China
| | - Qing YU
- 4 College of Acupuncture-moxibustion and Tuina, Anhui University of Chinese Medicine, Hefei 230012, China
- 5 Institute of Acupuncture and Meridian, Anhui Academy of Chinese Medicine, Hefei 230038, China
| | - Lu HE
- 4 College of Acupuncture-moxibustion and Tuina, Anhui University of Chinese Medicine, Hefei 230012, China
- 5 Institute of Acupuncture and Meridian, Anhui Academy of Chinese Medicine, Hefei 230038, China
| | - Yingchao SHEN
- 3 Changshu Hospital Affiliated to Nanjing University of Chinese Medicine, Changshu 215500, China
| | - Yiming MIAO
- 3 Changshu Hospital Affiliated to Nanjing University of Chinese Medicine, Changshu 215500, China
| | - Ling HU
- 4 College of Acupuncture-moxibustion and Tuina, Anhui University of Chinese Medicine, Hefei 230012, China
- 5 Institute of Acupuncture and Meridian, Anhui Academy of Chinese Medicine, Hefei 230038, China
| | - Zijian WU
- 4 College of Acupuncture-moxibustion and Tuina, Anhui University of Chinese Medicine, Hefei 230012, China
- 5 Institute of Acupuncture and Meridian, Anhui Academy of Chinese Medicine, Hefei 230038, China
| |
Collapse
|
11
|
Ma H, Dean DC, Wei R, Hornicek FJ, Duan Z. Cyclin-dependent kinase 7 (CDK7) is an emerging prognostic biomarker and therapeutic target in osteosarcoma. Ther Adv Musculoskelet Dis 2021; 13:1759720X21995069. [PMID: 34104229 PMCID: PMC8164556 DOI: 10.1177/1759720x21995069] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Accepted: 11/10/2020] [Indexed: 11/17/2022] Open
Abstract
Background: Overexpression of cyclin-dependent kinase 7 (CDK7) is a well-known pathogenic feature of various malignancies and a sign of a more dismal prognosis. As relatively little is known about CDK7 in osteosarcoma, we elected to evaluate its expression, prognostic value, and function. Methods: We began by analyzing the publicly available data sets on CDK7 expression, including RNA sequencing data from the Therapeutically Applicable Research to Generate Effective Treatments on Osteosarcoma (TARGET-OS) and the Gene Expression database of Normal and Tumor tissues 2 (GENT2). The correlation between patient tissue CDK7 expression and their clinicopathological features and prognosis was assessed via immunohistochemical staining of a unique tissue microarray constructed from osteosarcoma specimens. Furthermore, we analyzed CDK7 expression in osteosarcoma cell lines and tissues by Western blot. CDK7-specific siRNA and a highly-selective CDK7 inhibitor, BS-181, were applied to determine the function of CDK7 on osteosarcoma cell growth and proliferation. In addition, the effect of CDK7 inhibition on clonogenicity was evaluated using a clonogenic assay, and a 3D cell culture model was used to mimic CDK7 effects in an in vivo environment. Results: Our results demonstrate that higher CDK7 expression significantly correlates with recurrence, metastasis, and shorter overall survival in osteosarcoma patients. Therapeutically, we show that CDK7 knockdown with siRNA or selective inhibition with BS-181 decreases proliferation and induces apoptosis of osteosarcoma cells. Conclusion: This study supports CDK7 overexpression as an independent predictor of poor prognosis and promising therapeutic target for osteosarcoma.
Collapse
Affiliation(s)
- Hangzhan Ma
- Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Dylan C Dean
- Department of Orthopedic Surgery, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Ran Wei
- Department of Orthopedic Surgery, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Francis J Hornicek
- Department of Orthopedic Surgery, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Zhenfeng Duan
- Department of Orthopedic Surgery, David Geffen School of Medicine at UCLA, 615 Charles E. Young Dr. South, Los Angeles, CA 90095, USA
| |
Collapse
|
12
|
Tu J, Chen X, Dai M, Pan A, Liu C, Zhou Y, Xia X, Sun L. Serum levels of 14-3-3η are associated with increased disease risk, activity and duration of rheumatoid arthritis in Chinese patients. Exp Ther Med 2020; 20:754-761. [PMID: 32742321 PMCID: PMC7388387 DOI: 10.3892/etm.2020.8761] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2018] [Accepted: 08/07/2019] [Indexed: 12/13/2022] Open
Abstract
The aim of the present study was to determine the association between serum 14-3-3η expression levels and disease risk, inflammation level and disease duration in Chinese patients with rheumatoid arthritis (RA). A total of 45 Chinese patients with RA, 45 patients with osteoarthritis (OA) and 44 age- and sex-matched (with the RA group) healthy control (HC) subjects were consecutively recruited for the present case-controlled study. In addition, the demographic and clinicopathological characteristics of the patients with RA were collected. Serum samples were obtained from patients with RA, patients with OA and the HCs, and the serum levels of 14-3-3η were determined by ELISA. Compared with that in the OA patients (P=0.006) and HCs (P<0.001), 14-3-3η expression was significantly increased in RA patients, and receiver operating characteristics (ROC) analysis indicated that it served as a potential predictive marker for the risk of RA. In patients with RA, serum levels of 14-3-3η were positively correlated with disease duration (P=0.003), erythrocyte sedimentation rate (P=0.006) and disease activity score in 28 joints (P=0.025). The proportion of rheumatoid factor (RF)-positive patients (P=0.023) and anti-citrullinated protein antibody (ACPA)-positive patients (P=0.002) with RA was increased (when 14-3-3η expression was increased) compared with RF-negative patients or ACPA-negative patients, respectively. Of note, 14-3-3η serum levels were able to distinguish patients with established RA (disease duration, >2 years) from patients with early RA (disease duration, ≤2 years) with an AUC of 0.759 (95% CI, 0.612-0.905), and the sensitivity and the specificity at the best cut-off point (14-3-3η=0.613 ng/ml) were 79.3 and 75.0%, respectively. Furthermore, 14-3-3η was able to differentiate between RF-positive RA patients and RF-negative patients or HCs. In conclusion, circulating 14-3-3η expression may serve as a novel biomarker for disease risk and activity of RA in Chinese patients.
Collapse
Affiliation(s)
- Jianxin Tu
- Department of Rheumatology and Immunology, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, P.R. China
| | - Xiaowei Chen
- Department of Rheumatology and Immunology, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, P.R. China
| | - Meijie Dai
- Department of Laboratory Medicine, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, P.R. China
| | - Axiao Pan
- Department of Rheumatology and Immunology, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, P.R. China
| | - Cailong Liu
- Department of Orthopaedic Sports Medicine, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, P.R. China
| | - Yan Zhou
- Department of Rheumatology and Immunology, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, P.R. China
| | - Xiaoru Xia
- Department of Rheumatology and Immunology, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, P.R. China
| | - Li Sun
- Department of Rheumatology and Immunology, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, P.R. China
| |
Collapse
|
13
|
Hong H, Mo Y, Li D, Xu Z, Liao Y, Yin P, Liu X, Xia Y, Fang J, Wang Q, Fang S. Aberrant Expression Profiles of lncRNAs and Their Associated Nearby Coding Genes in the Hippocampus of the SAMP8 Mouse Model with AD. MOLECULAR THERAPY. NUCLEIC ACIDS 2020; 20:140-154. [PMID: 32169802 PMCID: PMC7066064 DOI: 10.1016/j.omtn.2020.02.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Revised: 12/04/2019] [Accepted: 02/11/2020] [Indexed: 12/25/2022]
Abstract
The senescence-accelerated mouse prone 8 (SAMP8) mouse model is a useful model for investigating the fundamental mechanisms involved in the age-related learning and memory deficits of Alzheimer’s disease (AD), while the SAM/resistant 1 (SAMR1) mouse model shows normal features. Recent evidence has shown that long non-coding RNAs (lncRNAs) may play an important role in AD pathogenesis. However, a comprehensive and systematic understanding of the function of AD-related lncRNAs and their associated nearby coding genes in AD is still lacking. In this study, we collected the hippocampus, the main area of AD pathological processes, of SAMP8 and SAMR1 animals and performed microarray analysis to identify aberrantly expressed lncRNAs and their associated nearby coding genes, which may contribute to AD pathogenesis. We identified 3,112 differentially expressed lncRNAs and 3,191 differentially expressed mRNAs in SAMP8 mice compared to SAMR1 mice. More than 70% of the deregulated lncRNAs were intergenic and exon sense-overlapping lncRNAs. Gene Ontology (GO) and pathway analyses of the AD-related transcripts were also performed and are described in detail, which imply that metabolic process reprograming was likely related to AD. Furthermore, six lncRNAs and six mRNAs were selected for further validation of the microarray results using quantitative PCR, and the results were consistent with the findings from the microarray. Moreover, we analyzed 780 lincRNAs (also called long “intergenic” non-coding RNAs) and their associated nearby coding genes. Among these lincRNAs, AK158400 had the most genes nearby (n = 13), all of which belonged to the histone cluster 1 family, suggesting regulation of the nucleosome structure of the chromosomal fiber by affecting nearby genes during AD progression. In addition, we also identified 97 aberrant antisense lncRNAs and their associated coding genes. It is likely that these dysregulated lncRNAs and their associated nearby coding genes play a role in the development and/or progression of AD.
Collapse
Affiliation(s)
- Honghai Hong
- Department of Clinical Laboratory, The Third Affiliated Hospital of Guangzhou Medical University, 63 Duobao Road, Guangzhou, Guangdong Province, China; Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Yousheng Mo
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong Province, China
| | - Dongli Li
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong Province, China
| | - Zhiheng Xu
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong Province, China
| | - Yanfang Liao
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong Province, China
| | - Ping Yin
- Department of Clinical Laboratory, The Third Affiliated Hospital of Guangzhou Medical University, 63 Duobao Road, Guangzhou, Guangdong Province, China
| | - Xinning Liu
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong Province, China
| | - Yong Xia
- Department of Clinical Laboratory, The Third Affiliated Hospital of Guangzhou Medical University, 63 Duobao Road, Guangzhou, Guangdong Province, China
| | - Jiansong Fang
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong Province, China; DME Center, Institute of Clinical Pharmacology, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong Province, China.
| | - Qi Wang
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong Province, China; DME Center, Institute of Clinical Pharmacology, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong Province, China.
| | - Shuhuan Fang
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong Province, China; DME Center, Institute of Clinical Pharmacology, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong Province, China; Department of Cardiothoracic Surgery, Stanford University School of Medicine, Stanford, CA, USA.
| |
Collapse
|
14
|
Liu Y, Wu Y, Gu S, Yin Q, Li H, Wang J, Geng D, Xu Y. The P2X7 receptor (P2X7R)-specific antagonist A804598 inhibits inflammatory reaction in human fibroblast-like synoviocytes. Am J Transl Res 2020; 12:45-53. [PMID: 32051736 PMCID: PMC7013224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Accepted: 03/15/2019] [Indexed: 06/10/2023]
Abstract
Activation of the P2X7 receptor (P2X7R) has been found to increase expression of tumor necrosis factor-α (TNF-α) in the joints and synovial lining of patients with rheumatoid arthritis (RA). Increased expression of TNF-α promotes joint destruction through deterioration of type II collagen by matrix metalloproteinases (MMPs), expression of proinflammatory cytokines, oxidative stress, and activation of cellular signaling pathways. In the present study, we exposed fibroblast-like synoviocytes (FLSs) to TNF-α in the presence and absence of the P2X7R antagonist A804598. We then employed real time PCR and western blot analysis to analyze the mRNA and protein expression levels of P2X7R in both control and RA-FLSs. We confirmed that P2X7R is expressed on FLSs and is upregulated in RA-FLSs and FLSs exposed to TNF-α. Importantly, we also demonstrate the ability of P2X7R antagonism using A804598 to suppress oxidative stress, expression of interleukin (IL)-1β, IL-6, MMP-1, MMP-3, MMP-13 as well as activation of the Janus family of tyrosine kinase/signal transducer and activator of transcription (JAK1/STAT3) proinflammatory signaling pathway. These findings implicate a novel role of antagonism of P2X7R as a target for the treatment and prevention of RA.
Collapse
Affiliation(s)
- Yu Liu
- Department of Orthopaedics, The First Affiliated Hospital of Soochow UniversitySuzhou 215006, Jiangsu, China
- Department of Orthopaedics, Wuxi No. 9 People’s Hospital Affiliated to Soochow UniversityWuxi 214062, Jiangsu, China
| | - Yongwei Wu
- Department of Orthopaedics, Wuxi No. 9 People’s Hospital Affiliated to Soochow UniversityWuxi 214062, Jiangsu, China
| | - Sanjun Gu
- Department of Orthopaedics, Wuxi No. 9 People’s Hospital Affiliated to Soochow UniversityWuxi 214062, Jiangsu, China
| | - Qudong Yin
- Department of Orthopaedics, Wuxi No. 9 People’s Hospital Affiliated to Soochow UniversityWuxi 214062, Jiangsu, China
| | - Haifeng Li
- Department of Orthopaedics, Wuxi No. 9 People’s Hospital Affiliated to Soochow UniversityWuxi 214062, Jiangsu, China
| | - Jian Wang
- Department of Orthopaedics, Wuxi No. 9 People’s Hospital Affiliated to Soochow UniversityWuxi 214062, Jiangsu, China
| | - Dechun Geng
- Department of Orthopaedics, The First Affiliated Hospital of Soochow UniversitySuzhou 215006, Jiangsu, China
| | - Yaozeng Xu
- Department of Orthopaedics, The First Affiliated Hospital of Soochow UniversitySuzhou 215006, Jiangsu, China
| |
Collapse
|
15
|
Characterizing CDK8/19 Inhibitors through a NFκB-Dependent Cell-Based Assay. Cells 2019; 8:cells8101208. [PMID: 31590445 PMCID: PMC6830309 DOI: 10.3390/cells8101208] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Revised: 10/02/2019] [Accepted: 10/04/2019] [Indexed: 12/30/2022] Open
Abstract
Cell-based assays for CDK8/19 inhibition are not easily defined, since there are no known cellular functions unique to these kinases. To solve this problem, we generated derivatives of 293 cells with CRISPR knockout of one or both of CDK8 and CDK19. Double knockout (dKO) of CDK8 and CDK19 together (but not individually) decreased the induction of transcription by NFκB (a CDK8/19-potentiated transcription factor) and abrogated the effect of CDK8/19 inhibitors on such induction. We generated wild type (WT) and dKO cell lines expressing luciferase from an NFκB-dependent promoter. Inhibitors selective for CDK8/19 over other CDKs decreased TNFα-induced luciferase expression in WT cells by ~80% with no effect on luciferase induction in dKO cells. In contrast, non-selective CDK inhibitors flavopiridol and dinaciclib and a CDK7/12/13 inhibitor THZ1 (but not CDK4/6 inhibitor palbociclib) suppressed luciferase induction in both WT and dKO cells, indicating a distinct role for other CDKs in the NFκB pathway. We used this assay to characterize a series of thienopyridines with in vitro bone anabolic activity, one of which was identified as a selective CDK8/19 inhibitor. Thienopyridines inhibited luciferase induction in the WT but not dKO cells and their IC50 values in the WT reporter assay showed near-perfect correlation (R2 = 0.98) with their reported activities in a bone anabolic activity assay, confirming that the latter function is mediated by CDK8/19 and validating our assay as a robust and quantitative method for CDK8/19 inhibition.
Collapse
|
16
|
Pfänder P, Fidan M, Burret U, Lipinski L, Vettorazzi S. Cdk5 Deletion Enhances the Anti-inflammatory Potential of GC-Mediated GR Activation During Inflammation. Front Immunol 2019; 10:1554. [PMID: 31354714 PMCID: PMC6635475 DOI: 10.3389/fimmu.2019.01554] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Accepted: 06/21/2019] [Indexed: 11/13/2022] Open
Abstract
The suppression of activated pro-inflammatory macrophages during immune response has a major impact on the outcome of many inflammatory diseases including sepsis and rheumatoid arthritis. The pro- and anti-inflammatory functions of macrophages have been widely studied, whereas their regulation under immunosuppressive treatments such as glucocorticoid (GC) therapy is less well-understood. GC-mediated glucocorticoid receptor (GR) activation is crucial to mediate anti-inflammatory effects. In addition, the anti-cancer drug roscovitine, that is currently being tested in clinical trials, was recently described to regulate inflammatory processes by inhibiting different Cdks such as cyclin-dependent kinase 5 (Cdk5). Cdk5 was identified as a modulator of inflammatory processes in different immune cells and furthermore described to influence GR gene expression in the brain. Whether roscovitine can enhance the immunosuppressive effects of GCs and if the inhibition of Cdk5 affects GR gene regulatory function in innate immune cells, such as macrophages, has not yet been investigated. Here, we report that roscovitine enhances the immunosuppressive Dexamethasone (Dex) effect on the inducible nitric oxide synthase (iNos) expression, which is essential for immune regulation. Cdk5 deletion in macrophages prevented iNos protein and nitric oxide (NO) generation after a combinatory treatment with inflammatory stimuli and Dex. Cdk5 deletion in macrophages attenuated the GR phosphorylation on serine 211 after Dex treatment alone and in combination with inflammatory stimuli, but interestingly increased the GR-dependent anti-inflammatory target gene dual-specificity phosphatase 1 (Dusp1, Mkp1). Mkp1 phosphatase activity decreases the activation of its direct target p38Mapk, reduced iNos expression and NO production upon inflammatory stimuli and Dex treatment in the absence of Cdk5. Taken together, we identified Cdk5 as a potential novel regulator of NO generation in inflammatory macrophages under GC treatment. Our data suggest that GC treatment in combination with specific Cdk5 inhibtior(s) provides a stronger suppression of inflammation and could thus replace high-dose GC therapy which has severe side effects in the treatment of inflammatory diseases.
Collapse
Affiliation(s)
- Pauline Pfänder
- Institute of Comparative Molecular Endocrinology (CME), University of Ulm, Ulm, Germany
| | - Miray Fidan
- Institute of Comparative Molecular Endocrinology (CME), University of Ulm, Ulm, Germany
| | - Ute Burret
- Institute of Comparative Molecular Endocrinology (CME), University of Ulm, Ulm, Germany
| | - Lena Lipinski
- Institute of Comparative Molecular Endocrinology (CME), University of Ulm, Ulm, Germany
| | - Sabine Vettorazzi
- Institute of Comparative Molecular Endocrinology (CME), University of Ulm, Ulm, Germany
| |
Collapse
|
17
|
Fisher RP. Cdk7: a kinase at the core of transcription and in the crosshairs of cancer drug discovery. Transcription 2019; 10:47-56. [PMID: 30488763 PMCID: PMC6602562 DOI: 10.1080/21541264.2018.1553483] [Citation(s) in RCA: 97] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Revised: 11/20/2018] [Accepted: 11/20/2018] [Indexed: 12/22/2022] Open
Abstract
The transcription cycle of RNA polymerase II (Pol II) is regulated by a set of cyclin-dependent kinases (CDKs). Cdk7, associated with the transcription initiation factor TFIIH, is both an effector CDK that phosphorylates Pol II and other targets within the transcriptional machinery, and a CDK-activating kinase (CAK) for at least one other essential CDK involved in transcription. Recent studies have illuminated Cdk7 functions that are executed throughout the Pol II transcription cycle, from promoter clearance and promoter-proximal pausing, to co-transcriptional chromatin modification in gene bodies, to mRNA 3´-end formation and termination. Cdk7 has also emerged as a target of small-molecule inhibitors that show promise in the treatment of cancer and inflammation. The challenges now are to identify the relevant targets of Cdk7 at each step of the transcription cycle, and to understand how heightened dependence on an essential CDK emerges in cancer, and might be exploited therapeutically.
Collapse
Affiliation(s)
- Robert P. Fisher
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| |
Collapse
|