1
|
Mao T, Jiang K, Pang Y, Pan Y, Jia W, Gao Q, Lin Q. Hydroxysafflor yellow A for ischemic heart diseases: a systematic review and meta-analysis of animal experiments. Front Pharmacol 2025; 16:1510657. [PMID: 40271057 PMCID: PMC12014549 DOI: 10.3389/fphar.2025.1510657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2024] [Accepted: 03/28/2025] [Indexed: 04/25/2025] Open
Abstract
Background Hydroxysafflor yellow A (HSYA) possesses a variety of pharmacological activities which has been demonstrated to be effective against ischemic heart disease (IHD). This study aimed to comprehensively examine the efficacy and summarize the potential mechanisms of HSYA against IHD in animal models. Methods We conducted electronic searches for preclinical studies on PubMed, Embase, Web of Science, Cochrane Library, CNKI, SinoMed, Wanfang, and Chinese VIP databases from inception to 31 January 2024. The CAMARADES checklist was chosen to assess the quality of evidence. STATA 14.0 software was utilized to analyze the data. The underlying mechanisms were categorized and summarized. Results Twenty-eight studies involving 686 rodents were included and the mean score of methodology quality was 5.04 (range from 4 to 7). Meta-analysis observed that HSYA could decrease myocardial infarction size (SMD: -2.82, 95%CI: -3.56 to -2.08, p < 0.001) and reduce the levels of biomarkers of myocardial injury including cTnI (SMD: -3.82, 95%CI: -5.20 to -2.44, p < 0.001) and CK-MB (SMD: -2.74, 95%CI: -3.58 to -1.91, p < 0.001). HSYA displayed an improvement in cardiac function indicators including LVEF, LVSP, +dp/dt max and -dp/dt max. Furthermore, HSYA was able to reduce the levels of MDA, TNF-α and IL-6, while increasing SOD and NO levels. Mechanistically, the protective effect of HSYA in alleviating myocardial injury after ischemia may be associated with NLRP3 inflammasome, Bcl-2, Bax, caspase-3, eNOS proteins, and TLR/NF-κB, Nrf2/HO-1, JAK/STAT, PI3K/Akt, AMPK/mTOR, VEGFA pathways. Conclusion This study demonstrates that HSYA exerts cardioprotective effects in decreasing infarct size, reducing myocardial enzymes and improving cardiac function, which may be mediated by anti-inflammatory, antioxidant, anti-apoptotic, regulation of autophagy, improvement of microcirculation and promotion of angiogenesis. However, the absence of safety assessment, lack of animal models of co-morbidities, and inconsistency between timing of administration and clinical practice are limitations of preclinical studies. Systematic Review Registration clinicaltrials.gov, Identifier, CRD42023460790.
Collapse
Affiliation(s)
- Tianshi Mao
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Kaixin Jiang
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Yanting Pang
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Yi Pan
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Wenhao Jia
- Department of Cardiology, Beijing University of Chinese Medicine Third Affiliated Hospital, Beijing, China
| | - Qun Gao
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Qian Lin
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
- Dongfang Hospital, Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
2
|
Huang D, Lou CY, Yu YL, Fang L. The RNA-binding protein nucleolin mediates the pro-proliferative effect of angiotensin II for vascular smooth muscle cells through the post-transcriptional regulation of TGF-β1 and VEGF expression. Biochem Biophys Res Commun 2025; 754:151557. [PMID: 40023988 DOI: 10.1016/j.bbrc.2025.151557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Revised: 02/25/2025] [Accepted: 02/26/2025] [Indexed: 03/04/2025]
Abstract
This study aims to investigate the role of nucleolin in the proliferation of vascular smooth muscle cells (VSMCs) and the underlying molecular mechanism, with a focus on protein-mRNA interactions. Various methods, including BrdU labeling, protein quantification, and CCK-8 cell proliferation assay, were employed to assess the effects of VSMCs proliferation induced by angiotensin II (Ang II) as well as the expressions of TGF-β1 and VEGF at the mRNA and protein levels. Gene transfection, RNA interference, and nucleolin mutant (Nucl-309) were utilized to examine the regulatory impact of nucleolin on the expression and the stability of the TGF-β1 and VEGF mRNA. Additionally, immunoprecipitation, RNA-EMSA, and luciferase reporter gene assays were conducted to investigate the binding of nucleolin to the 3' UTR of the TGF-β1 and VEGF mRNA. It was found that Ang II increased the DNA synthesis capacity, total cell protein content, and cell survival rate of VSMCs, and the expressions of TGF-β1 and VEGF gradually increased upon stimulation by Ang II. Nucleolin overexpression and knockdown significantly enhanced and inhibited the expressions of TGF-β1 and VEGF, respectively. The overexpression of the nucleolin mutant showed no regulatory effect on the expressions of TGF-β1 and VEGF. The interaction between nucleolin and the 3' UTR of the TGF-β1 and VEGF mRNA increased their stability and boosted their expressions. Hence, nucleolin plays a key role in promoting Ang II-induced VSMCs proliferation by enhancing the stability of the TGF-β1 and VEGF mRNA through binding to their respective 3' UTR, which ultimately upregulates their protein expression.
Collapse
MESH Headings
- Nucleolin
- RNA-Binding Proteins/metabolism
- RNA-Binding Proteins/genetics
- Angiotensin II/pharmacology
- Transforming Growth Factor beta1/metabolism
- Phosphoproteins/metabolism
- Phosphoproteins/genetics
- Muscle, Smooth, Vascular/metabolism
- Muscle, Smooth, Vascular/cytology
- Muscle, Smooth, Vascular/drug effects
- Cell Proliferation/drug effects
- Vascular Endothelial Growth Factor A/metabolism
- Vascular Endothelial Growth Factor A/genetics
- Animals
- Myocytes, Smooth Muscle/metabolism
- Myocytes, Smooth Muscle/drug effects
- Myocytes, Smooth Muscle/cytology
- Cells, Cultured
- Gene Expression Regulation/drug effects
- 3' Untranslated Regions
- Rats
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Rats, Sprague-Dawley
Collapse
Affiliation(s)
- Dan Huang
- Graduate Collaborative Training Base of the First Hospital of Changsha, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
| | - Cheng-Yu Lou
- Department of Cardiology, The Affiliated Changsha Hospital of Xiangya School of Medicine, Central South University, Changsha, 410008, China
| | - Ya-Lan Yu
- Graduate Collaborative Training Base of the First Hospital of Changsha, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
| | - Li Fang
- Department of Cardiology, The Affiliated Changsha Hospital of Xiangya School of Medicine, Central South University, Changsha, 410008, China.
| |
Collapse
|
3
|
Ruan J, Wang L, Wang N, Huang P, Chang D, Zhou X, Seto S, Li D, Hou J. Hydroxysafflor Yellow A promotes angiogenesis of brain microvascular endothelial cells from ischemia/reperfusion injury via glycolysis pathway in vitro. J Stroke Cerebrovasc Dis 2025; 34:108107. [PMID: 39515547 DOI: 10.1016/j.jstrokecerebrovasdis.2024.108107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 10/31/2024] [Accepted: 10/31/2024] [Indexed: 11/16/2024] Open
Abstract
BACKGROUND Angiogenesis of brain microvascular endothelial cells (BMECs) after cerebral ischemia was conducive to improving the blood supply of ischemia tissues, which was upregulated by glycolysis. Hydroxysafflor Yellow A (HSYA) mends damaged tissues through increasing angiogenesis. METHODS HSYA treated proliferation, migration and angiogenesis of BMECs in vitro in vitro during OGD/R. HSYA regulated the key enzymes of glycolysis, such as hexokinase 2 (HK2) and 6-phosphofructo-2-kinase/fructose-2,6-biphosphatase 3 (PFKFB3), glucose uptake and products (pyruvate, ATP and lactate) were detected by western blot and kits, respectively. Scratch wound assay, transwell, tube formation and spheroid sprouting were used to explore the pathway that HSYA recovered migration and angiogenesis of BMECs. We evaluated the potential target of HSYA promoting glycolysis via molecular docking, drug affinity responsive target stability (DARTS) and cellular thermal shift assay (CETSA). RESULTS HSYA promoted the proliferation, migration, tube formation and spheroid sprouting of BMECs during OGD/R, and stimulated the expression of tip phenotype marker protein (CD34), and the receptor (Notch-1) that regulated the differentiation of endothelial cells into tip/stalk phenotype. In glycolysis, PFKFB3 expression was upregulated by HSYA; HSYA also improved ATP and pyruvate levels, as well as lactate release after OGD/R. Finally, upregulating VEGFA and p-VEGFR2 of HSYA was weakened because of suppressing glycolysis; the HSYA's improvement of BMECs migration and angiogenesis was attenuated under the inhibition of glycolysis, which confirmed that HSYA were upregulating angiogenesis and expression of VEGFA/VEGFR2 by glycolysis pathway. The result about molecular docking, DARTS and CETSA suggested that PFKFB3 was the possible target of HSYA. CONCLUSION HSYA promotes angiogenesis of BMECs in vitro through the glycolysis mediated VEGFA/VEGFR2 pathway, and PFKFB3 is the potential target of HSYA to heighten glycolysis.
Collapse
Affiliation(s)
- Juxuan Ruan
- Anhui Province Key Laboratory of Chinese Medicinal Formula, Anhui University of Chinese Medicine, No. 350, Longzihu Road, Xinzhan District, Hefei, Anhui 230012, China; Institute for Pharmacodynamics and Safety Evaluation of Chinese Medicine, Anhui Academy of Chinese Medicine, Hefei 230012, China
| | - Lei Wang
- Anhui Province Key Laboratory of Chinese Medicinal Formula, Anhui University of Chinese Medicine, No. 350, Longzihu Road, Xinzhan District, Hefei, Anhui 230012, China; Institute for Pharmacodynamics and Safety Evaluation of Chinese Medicine, Anhui Academy of Chinese Medicine, Hefei 230012, China
| | - Ning Wang
- Anhui Province Key Laboratory of Chinese Medicinal Formula, Anhui University of Chinese Medicine, No. 350, Longzihu Road, Xinzhan District, Hefei, Anhui 230012, China; Institute for Pharmacodynamics and Safety Evaluation of Chinese Medicine, Anhui Academy of Chinese Medicine, Hefei 230012, China.
| | - Ping Huang
- Anhui Province Key Laboratory of Chinese Medicinal Formula, Anhui University of Chinese Medicine, No. 350, Longzihu Road, Xinzhan District, Hefei, Anhui 230012, China; Institute for Pharmacodynamics and Safety Evaluation of Chinese Medicine, Anhui Academy of Chinese Medicine, Hefei 230012, China
| | - Dennis Chang
- NICM Health Research Institute, Western Sydney University, Westmead, Sydney, NSW 2145, Australia
| | - Xian Zhou
- NICM Health Research Institute, Western Sydney University, Westmead, Sydney, NSW 2145, Australia
| | - Saiwang Seto
- Department of Applied Biology and Chemical Technology, Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR, China
| | - Dan Li
- Shineway Pharmaceutical Group Co. Ltd. Shijiahzuang 51430, China
| | - Jincai Hou
- Shineway Pharmaceutical Group Co. Ltd. Shijiahzuang 51430, China
| |
Collapse
|
4
|
Dong J, Qian Y, Zhang W, Xu J, Wang L, Fan Z, Jia M, Wei L, Yang H, Luo X, Wang Y, Jiang Y, Huang Z, Wang Y. Tenacissoside H repressed the progression of glioblastoma by inhibiting the PI3K/Akt/mTOR signaling pathway. Eur J Pharmacol 2024; 968:176401. [PMID: 38331340 DOI: 10.1016/j.ejphar.2024.176401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 01/19/2024] [Accepted: 02/06/2024] [Indexed: 02/10/2024]
Abstract
Glioblastoma (GBM) is one of the most common intracranial primary malignancies with the highest mortality rate, and there is a lack of effective treatments. In this study, we examined the anti-GBM activity of Tenacissoside H (TH), an active component isolated from the traditional Chinese medicine Marsdenia tenacissima (Roxb.) Wight & Arn (MT), and investigated the potential mechanism. Firstly, we found that TH decreased the viability of GBM cells by inducing cell cycle arrest and apoptosis, and inhibited the migration of GBM cells. Furthermore, combined with the Gene Expression Omnibus database (GEO) and network pharmacology as well as molecular docking, TH was shown to inhibit GBM progression by directly regulating the PI3K/Akt/mTOR pathway, which was further validated in vitro. In addition, the selective PI3K agonist 740 y-p partially restored the inhibitory effects of TH on GBM cells. Finally, TH inhibited GBM progression in an orthotopic transplantation model by inactivating the PI3K/Akt/mTOR pathway in vivo. Conclusively, our results suggest that TH represses GBM progression by inhibiting the PI3K/Akt/mTOR signaling pathway in vitro and in vivo, and provides new insight for the treatment of GBM patients.
Collapse
Affiliation(s)
- Jianhong Dong
- Department of Clinical Research Center, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, 310053, Zhejiang, China; School of Pharmacy, Hangzhou Normal University, Hangzhou, 311121, Zhejiang, China; Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Hangzhou Normal University, Hangzhou, 311121, Zhejiang, China
| | - Yiming Qian
- Department of Clinical Research Center, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, 310053, Zhejiang, China; School of Pharmacy, Hangzhou Normal University, Hangzhou, 311121, Zhejiang, China; Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Hangzhou Normal University, Hangzhou, 311121, Zhejiang, China
| | - Wei Zhang
- School of Pharmacy, Hangzhou Normal University, Hangzhou, 311121, Zhejiang, China; Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Hangzhou Normal University, Hangzhou, 311121, Zhejiang, China
| | - Jiayun Xu
- School of Pharmacy, Hangzhou Normal University, Hangzhou, 311121, Zhejiang, China; Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Hangzhou Normal University, Hangzhou, 311121, Zhejiang, China
| | - Lipei Wang
- School of Basic Medical Sciences, Hangzhou Normal University, Hangzhou, 310030, Zhejiang, China
| | - Ziwei Fan
- Department of Orthopedics (Spine Surgery), The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China
| | - Mengxian Jia
- Department of Orthopedics (Spine Surgery), The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China
| | - Lijia Wei
- School of Pharmacy, Hangzhou Normal University, Hangzhou, 311121, Zhejiang, China; Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Hangzhou Normal University, Hangzhou, 311121, Zhejiang, China
| | - Hui Yang
- School of Pharmacy, Hangzhou Normal University, Hangzhou, 311121, Zhejiang, China; Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Hangzhou Normal University, Hangzhou, 311121, Zhejiang, China
| | - Xuan Luo
- School of Pharmacy, Hangzhou Normal University, Hangzhou, 311121, Zhejiang, China; Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Hangzhou Normal University, Hangzhou, 311121, Zhejiang, China
| | - Yongjie Wang
- School of Pharmacy, Hangzhou Normal University, Hangzhou, 311121, Zhejiang, China; Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Hangzhou Normal University, Hangzhou, 311121, Zhejiang, China
| | - Yuanyuan Jiang
- School of Pharmacy, Hangzhou Normal University, Hangzhou, 311121, Zhejiang, China; Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Hangzhou Normal University, Hangzhou, 311121, Zhejiang, China
| | - Zhihui Huang
- School of Pharmacy, Hangzhou Normal University, Hangzhou, 311121, Zhejiang, China; Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Hangzhou Normal University, Hangzhou, 311121, Zhejiang, China.
| | - Ying Wang
- Department of Clinical Research Center, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, 310053, Zhejiang, China.
| |
Collapse
|
5
|
Chen XJ, Liu SY, Li SM, Feng JK, Hu Y, Cheng XZ, Hou CZ, Xu Y, Hu M, Feng L, Xiao L. The recent advance and prospect of natural source compounds for the treatment of heart failure. Heliyon 2024; 10:e27110. [PMID: 38444481 PMCID: PMC10912389 DOI: 10.1016/j.heliyon.2024.e27110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 02/15/2024] [Accepted: 02/23/2024] [Indexed: 03/07/2024] Open
Abstract
Heart failure is a continuously developing syndrome of cardiac insufficiency caused by diseases, which becomes a major disease endangering human health as well as one of the main causes of death in patients with cardiovascular diseases. The occurrence of heart failure is related to hemodynamic abnormalities, neuroendocrine hormones, myocardial damage, myocardial remodeling etc, lead to the clinical manifestations including dyspnea, fatigue and fluid retention with complex pathophysiological mechanisms. Currently available drugs such as cardiac glycoside, diuretic, angiotensin-converting enzyme inhibitor, vasodilator and β receptor blocker etc are widely used for the treatment of heart failure. In particular, natural products and related active ingredients have the characteristics of mild efficacy, low toxicity, multi-target comprehensive efficacy, and have obvious advantages in restoring cardiac function, reducing energy disorder and improving quality of life. In this review, we mainly focus on the recent advance including mechanisms and active ingredients of natural products for the treatment of heart failure, which will provide the inspiration for the development of more potent clinical drugs against heart failure.
Collapse
Affiliation(s)
- Xing-Juan Chen
- China Academy of Chinese Medical Sciences Guang’anmen Hospital, Beijing, 100053, China
| | - Si-Yuan Liu
- Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Si-Ming Li
- China Academy of Chinese Medical Sciences Guang’anmen Hospital, Beijing, 100053, China
| | | | - Ying Hu
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, 300381, China
| | - Xiao-Zhen Cheng
- China Academy of Chinese Medical Sciences Guang’anmen Hospital, Beijing, 100053, China
| | - Cheng-Zhi Hou
- China Academy of Chinese Medical Sciences Guang’anmen Hospital, Beijing, 100053, China
| | - Yun Xu
- China Academy of Chinese Medical Sciences Guang’anmen Hospital, Beijing, 100053, China
| | - Mu Hu
- Peking University International Hospital, Beijing, 102206, China
| | - Ling Feng
- China Academy of Chinese Medical Sciences Guang’anmen Hospital, Beijing, 100053, China
| | - Lu Xiao
- China Academy of Chinese Medical Sciences Guang’anmen Hospital, Beijing, 100053, China
| |
Collapse
|
6
|
Song Q, Ma H, Zhu L, Qi Z, Lan Z, Liu K, Zhang H, Wang K, Wang N. Upregulation of PTPN1 aggravates endotoxemia-induced cardiac dysfunction through inhibiting mitophagy. Int Immunopharmacol 2024; 126:111315. [PMID: 38043267 DOI: 10.1016/j.intimp.2023.111315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 11/26/2023] [Accepted: 11/27/2023] [Indexed: 12/05/2023]
Abstract
OBJECTIVES To investigate the role of protein tyrosine phosphatase non-receptor type 1 (PTPN1) in mitophagy during sepsis and its underlying mechanisms and determine the therapeutic potential of PTPN1 inhibitors in endotoxemia-induced cardiac dysfunction. METHODS A mouse model of endotoxemia was established by administering an intraperitoneal injection of lipopolysaccharide (LPS). The therapeutic effect of targeting PTPN1 was evaluated using its inhibitor Claramine (CLA). Mitochondrial structure and function as well as the expression of mitophagy-related proteins were evaluated. Rat H9c2 cardiomyocytes were exposed to mouse RAW264.7 macrophage-derived conditioned medium. Cryptotanshinone, a specific p-STAT3 (Y705) inhibitor, was used to confirm the role of STAT3 in PTPN1-mediated mitophagy following LPS exposure. Electrophoretic mobility shift and dual luciferase reporter assays were performed to discern the mechanisms by which STAT3 regulated the expression of PINK1 and PRKN. RESULTS CLA alleviated LPS-induced myocardial damage, cardiac dysfunction, and mitochondrial injury and dysfunction in the mouse heart. PTPN1 upregulation exacerbated LPS-induced mitochondrial injury and dysfunction in H9c2 cardiomyocytes, but inhibited LPS-induced mitophagy. LPS promoted the interaction between PTPN1 and STAT3 and reduced STAT3 phosphorylation at Tyr705 (Y705), which was required to inhibit mitophagy by PTPN1. Upon LPS stimulation, PTPN1 negatively regulated the transcription of PINK1 and PRKN through dephosphorylation of STAT3 at Y705. STAT3 regulated the transcription of PINK1 and PRKN by binding to STAT3-responsive elements in their promoters. CONCLUSION PTPN1 upregulation aggravates endotoxemia-induced cardiac dysfunction by impeding mitophagy through dephosphorylation of STAT3 at Y705 and negative regulation of PINK1 and PRKN transcription.
Collapse
Affiliation(s)
- Qixiang Song
- Department of Pathophysiology, School of Basic Medical Science, Central South University, 110 Xiangya Road, Changsha 410083, China; Key Laboratory of Sepsis Translational Medicine of Hunan, Central South University, 110 Xiangya Road, Changsha 410083, China
| | - Heng Ma
- Department of Pathophysiology, School of Basic Medical Science, Central South University, 110 Xiangya Road, Changsha 410083, China; Key Laboratory of Sepsis Translational Medicine of Hunan, Central South University, 110 Xiangya Road, Changsha 410083, China
| | - Lili Zhu
- Department of Pathophysiology, School of Basic Medical Science, Central South University, 110 Xiangya Road, Changsha 410083, China; Key Laboratory of Sepsis Translational Medicine of Hunan, Central South University, 110 Xiangya Road, Changsha 410083, China
| | - Zehong Qi
- Department of Pathophysiology, School of Basic Medical Science, Central South University, 110 Xiangya Road, Changsha 410083, China; Key Laboratory of Sepsis Translational Medicine of Hunan, Central South University, 110 Xiangya Road, Changsha 410083, China
| | - Zijun Lan
- Department of Pathophysiology, School of Basic Medical Science, Central South University, 110 Xiangya Road, Changsha 410083, China; Key Laboratory of Sepsis Translational Medicine of Hunan, Central South University, 110 Xiangya Road, Changsha 410083, China
| | - Ke Liu
- Department of Pathophysiology, School of Basic Medical Science, Central South University, 110 Xiangya Road, Changsha 410083, China; Key Laboratory of Sepsis Translational Medicine of Hunan, Central South University, 110 Xiangya Road, Changsha 410083, China
| | - Huali Zhang
- Department of Pathophysiology, School of Basic Medical Science, Central South University, 110 Xiangya Road, Changsha 410083, China; Key Laboratory of Sepsis Translational Medicine of Hunan, Central South University, 110 Xiangya Road, Changsha 410083, China
| | - KangKai Wang
- Department of Pathophysiology, School of Basic Medical Science, Central South University, 110 Xiangya Road, Changsha 410083, China; Key Laboratory of Sepsis Translational Medicine of Hunan, Central South University, 110 Xiangya Road, Changsha 410083, China.
| | - Nian Wang
- Department of Pathophysiology, School of Basic Medical Science, Central South University, 110 Xiangya Road, Changsha 410083, China; Key Laboratory of Sepsis Translational Medicine of Hunan, Central South University, 110 Xiangya Road, Changsha 410083, China.
| |
Collapse
|
7
|
Sharma T, Kundu N, Kaur S, Shankaraswamy J, Saxena S. Why to target G-quadruplexes using peptides: Next-generation G4-interacting ligands. J Pept Sci 2023; 29:e3491. [PMID: 37009771 DOI: 10.1002/psc.3491] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 03/28/2023] [Accepted: 03/29/2023] [Indexed: 04/04/2023]
Abstract
Guanine-rich oligonucleotides existing in both DNA and RNA are able to fold into four-stranded DNA secondary structures via Hoogsteen type hydrogen-bonding, where four guanines self-assemble into a square planar arrangement, which, when stacked upon each other, results in the formation of higher-order structures called G-quadruplexes. Their distribution is not random; they are more frequently present at telomeres, proto-oncogenic promoters, introns, 5'- and 3'-untranslated regions, stem cell markers, ribosome binding sites and so forth and are associated with various biological functions, all of which play a pivotal role in various incurable diseases like cancer and cellular ageing. Several studies have suggested that G-quadruplexes could not regulate biological processes by themselves; instead, various proteins take part in this regulation and can be important therapeutic targets. There are certain limitations in using whole G4-protein for therapeutics purpose because of its high manufacturing cost, laborious structure prediction, dynamic nature, unavailability for oral administration due to its degradation in the gut and inefficient penetration to reach the target site because of the large size. Hence, biologically active peptides can be the potential candidates for therapeutic intervention instead of the whole G4-protein complex. In this review, we aimed to clarify the biological roles of G4s, how we can identify them throughout the genome via bioinformatics, the proteins interacting with G4s and how G4-interacting peptide molecules may be the potential next-generation ligands for targeting the G4 motifs located in biologically important regions.
Collapse
Affiliation(s)
- Taniya Sharma
- Amity Institute of Biotechnology, Amity University Uttar Pradesh, Noida, India
| | - Nikita Kundu
- Amity Institute of Biotechnology, Amity University Uttar Pradesh, Noida, India
| | - Sarvpreet Kaur
- Amity Institute of Biotechnology, Amity University Uttar Pradesh, Noida, India
| | - Jadala Shankaraswamy
- Department of Fruit Science, College of Horticulture, Mojerla, Sri Konda Laxman Telangana State Horticultural University, Budwel, Telangana, India
| | - Sarika Saxena
- Amity Institute of Biotechnology, Amity University Uttar Pradesh, Noida, India
| |
Collapse
|
8
|
Yin L, Yuan L, Tang Y, Luo Z, Lin X, Wang S, Liang P, Jiang B. NUCLEOLIN PROMOTES AUTOPHAGY THROUGH PGC-1Α IN LPS-INDUCED MYOCARDIAL INJURY. Shock 2023; 60:227-237. [PMID: 37249064 DOI: 10.1097/shk.0000000000002152] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
ABSTRACT As a multifunctional protein, nucleolin can participate in a variety of cellular processes. Nucleolin also has multiple protective effects on heart disease. Previous studies have shown that nucleolin could not only resist oxidative stress damage and inflammatory damage, but also regulate autophagy to play a protective role in cardiac ischemia. However, the specific mechanism has not been fully elucidated in LPS-induced myocardial injury. Therefore, the aim of this study is to explore the underlying mechanism by which nucleolin regulates autophagy to protect against LPS-induced myocardial injury in vivo and in vitro . In our study, we found that nucleolin could bind to PGC-1α, and we predicted that this interaction could promote autophagy and played a role in inhibiting cardiomyocyte apoptosis. Downregulation of nucleolin in H9C2 cells resulted in decreased autophagy and increased cell apoptosis during LPS-induced myocardial injury, while upregulation of PGC-1α had the opposite protective effect. Upregulation of nucleolin expression in cardiomyocytes could increase the level of autophagy during LPS-induced myocardial injury. In contrast, interference with PGC-1α expression resulted in a decrease in the protective effect of nucleolin, leading to reduced autophagy and thus increasing apoptosis. By using tandem fluorescent-tagged LC3 autophagic flux detection system, we observed autophagic flux and determined that PGC-1α interference could block autophagic lysosomal progression. We further tested our hypothesis in the nucleolin cardiac-specific knockout mice. Finally, we also found that inhibition of autophagy can reduce mitochondrial biogenesis as well as increase apoptosis, which demonstrated the importance of autophagy. Therefore, we can speculate that nucleolin can protect LPS-induced myocardial injury by regulating autophagy, and this protective effect may be mediated by the interaction with PGC-1α, which can positively regulate the ULK1, an autophagy-related protein. Our study provides a new clue for the cardioprotective effect of nucleolin, and may provide new evidence for the treatment of LPS-induced myocardial injury through the regulation of autophagy.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Pengfei Liang
- Department of Burns and Plastic Surgery, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | | |
Collapse
|
9
|
Ge C, Peng Y, Li J, Wang L, Zhu X, Wang N, Yang D, Zhou X, Chang D. Hydroxysafflor Yellow A Alleviates Acute Myocardial Ischemia/Reperfusion Injury in Mice by Inhibiting Ferroptosis via the Activation of the HIF-1α/SLC7A11/GPX4 Signaling Pathway. Nutrients 2023; 15:3411. [PMID: 37571350 PMCID: PMC10420812 DOI: 10.3390/nu15153411] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 07/27/2023] [Accepted: 07/28/2023] [Indexed: 08/13/2023] Open
Abstract
Ferroptosis is closely associated with the pathophysiology of myocardial ischemia. Hydroxysafflor yellow A (HSYA), the main active ingredient in the Chinese herbal medicine safflower, exerts significant protective effects against myocardial ischemia/reperfusion injury (MI/RI). The aim of this study was to investigate the protective effects of HSYA against MI/RI and identify the putative underlying mechanisms. An in vivo model of acute MI/RI was established in C57 mice. Subsequently, the effects of HSYA on myocardial tissue injury were evaluated by histology. Lipid peroxidation and myocardial injury marker contents in myocardial tissue and serum and iron contents in myocardial tissue were determined using biochemical assays. Mitochondrial damage was assessed using transmission electron microscopy. H9C2 cardiomyocytes were induced in vitro by oxygen-glucose deprivation/reoxygenation, and ferroptosis inducer erastin was administered to detect ferroptosis-related indicators, oxidative-stress-related indicators, and expressions of ferroptosis-related proteins and HIF-1α. In MI/RI model mice, HSYA reduced myocardial histopathological damage, ameliorated mitochondrial damage in myocardial cells, and decreased total cellular iron and ferrous ion contents in myocardial tissue. HSYA increased the protein levels of SLC7A11, HIF-1α, and GPX4 and mitigated erastin- or HIF-1α siRNA-induced damage in H9C2 cells. In summary, HSYA alleviated MI/RI by activating the HIF-1α/SLC7A11/GPX4 signaling pathway, thereby inhibiting ferroptosis.
Collapse
Affiliation(s)
- Chaowen Ge
- Anhui Province Key Laboratory of Research & Development of Chinese Medicine, Anhui University of Chinese Medicine, Hefei 230012, China; (C.G.); (Y.P.)
- Anhui Province Key Laboratory of Chinese Medicinal Formula, Anhui University of Chinese Medicine, Hefei 230012, China
- Institute for Pharmacodynamics and Safety Evaluation of Chinese Medicine, Anhui Academy of Traditional Chinese Medicine, Hefei 230012, China
| | - Yuqin Peng
- Anhui Province Key Laboratory of Research & Development of Chinese Medicine, Anhui University of Chinese Medicine, Hefei 230012, China; (C.G.); (Y.P.)
- Anhui Province Key Laboratory of Chinese Medicinal Formula, Anhui University of Chinese Medicine, Hefei 230012, China
- Institute for Pharmacodynamics and Safety Evaluation of Chinese Medicine, Anhui Academy of Traditional Chinese Medicine, Hefei 230012, China
| | - Jiacheng Li
- Anhui Province Key Laboratory of Research & Development of Chinese Medicine, Anhui University of Chinese Medicine, Hefei 230012, China; (C.G.); (Y.P.)
- Anhui Province Key Laboratory of Chinese Medicinal Formula, Anhui University of Chinese Medicine, Hefei 230012, China
- Institute for Pharmacodynamics and Safety Evaluation of Chinese Medicine, Anhui Academy of Traditional Chinese Medicine, Hefei 230012, China
| | - Lei Wang
- Anhui Province Key Laboratory of Research & Development of Chinese Medicine, Anhui University of Chinese Medicine, Hefei 230012, China; (C.G.); (Y.P.)
- Anhui Province Key Laboratory of Chinese Medicinal Formula, Anhui University of Chinese Medicine, Hefei 230012, China
- Institute for Pharmacodynamics and Safety Evaluation of Chinese Medicine, Anhui Academy of Traditional Chinese Medicine, Hefei 230012, China
| | - Xiaoyu Zhu
- Anhui Medical College, Hefei 230601, China;
| | - Ning Wang
- Anhui Province Key Laboratory of Research & Development of Chinese Medicine, Anhui University of Chinese Medicine, Hefei 230012, China; (C.G.); (Y.P.)
- Anhui Province Key Laboratory of Chinese Medicinal Formula, Anhui University of Chinese Medicine, Hefei 230012, China
- Institute for Pharmacodynamics and Safety Evaluation of Chinese Medicine, Anhui Academy of Traditional Chinese Medicine, Hefei 230012, China
- Anhui Medical College, Hefei 230601, China;
| | | | - Xian Zhou
- NICM Health Research Institute, Western Sydney University, Westmead, Sydney, NSW 2145, Australia
| | - Dennis Chang
- NICM Health Research Institute, Western Sydney University, Westmead, Sydney, NSW 2145, Australia
| |
Collapse
|
10
|
He J, Wang L, Wang Y, Li Z, Chen F, Liu Z. Metabolomics Combined with Network Pharmacology Uncovers Effective Targets of Tao-Hong-Si-Wu Decoction for Its Protection from Sepsis-Associated Acute Lung Injury. JOURNAL OF ANALYSIS AND TESTING 2023; 7:172-186. [DOI: 10.1007/s41664-023-00248-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Accepted: 01/18/2023] [Indexed: 07/14/2024]
|
11
|
Yin L, Tang Y, Luo Z, Yuan L, Lin X, Wang S, Liang P, Jiang B. NUCLEOLIN PROTECTS CARDIOMYOCYTES BY UPREGULATING PGC-1α AND PROMOTING MITOCHONDRIAL BIOGENESIS IN LPS-INDUCED MYOCARDIAL INJURY. Shock 2023; 59:627-636. [PMID: 36680791 DOI: 10.1097/shk.0000000000002084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
ABSTRACT Background: Lipopolysaccride-induced myocardial injury was characterized by frequent mitochondrial dysfunction. Our previous studies found that nucleolin (NCL) played important protective roles in myocardial ischemia-reperfusion injury. Recently, it has been found that NCL has a protective effect on LPS-induced myocardial injury in vivo . However, the exact underlying mechanisms that how NCL protects myocardium against the LPS-induced myocardial injury remains unclear. Objective: The aim of the study is to investigate the protective role of NCL in LPS-induced myocardial injury from the aspect of mitochondrial biogenesis. Methods: The cardiac-specific NCL-knockout (NCL -/- ) or NCL f/f mice were injected with LPS (10 mg/kg) to induce LPS-induced myocardial injury. The supernatant generated after LPS stimulation of macrophages was used as the conditioned medium to stimulate H9C2 and established the injured cell model. Analysis of mRNA stability, RNA-binding protein immunoprecipitation assay, and luciferase reporter assay were performed to detect the mechanism by which NCL regulated the expression of PGC-1α. Results: The expression of NCL and PGC-1α was elevated in cardiac tissue and cardiomyocytes during LPS-induced myocardial injury. The cardiac-specific NCL-knockout decreased PGC-1α expression, inhibited mitochondrial biogenesis, and increased cardiomyocytes death during LPS-induced myocardial injury in vitro and in vivo . In contrast, the overexpression of NCL could improve mitochondrial biogenesis in H9C2 cells. Moreover, the analysis of mRNA stability and luciferase reporter assay revealed that the interaction between NCL and PGC-1α significantly promoted the stability of PGC-1α mRNA, thereby upregulating the expression of PGC-1α and exerting a cardioprotective effect. In addition, the activation of PGC-1α diminished the detrimental effects of NCL knockdown on mitochondrial biogenesis in vitro and in vivo . Conclusions: Nucleolin upregulated the gene expression of PGC-1α by directly binding to the 5'-UTR of PGC-1α mRNA and increasing its mRNA stabilities, then promoted mitochondrial biogenesis, and played protective effect on cardiomyocytes during LPS-induced myocardial injury. Taken together, all these data showed that NCL activated PGC-1α to rescue cardiomyocytes from LPS-induced myocardial injury insult, suggesting that the cardioprotective role of NCL might be a promising prospect for clinical treatment of patients with endotoxemia.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Pengfei Liang
- Department of Burns and Plastic Surgery, Xiangya Hospital, Central South University, Changsha, P.R. China
| | | |
Collapse
|
12
|
Chen J, Wei X, Zhang Q, Wu Y, Xia G, Xia H, Wang L, Shang H, Lin S. The traditional Chinese medicines treat chronic heart failure and their main bioactive constituents and mechanisms. Acta Pharm Sin B 2023; 13:1919-1955. [DOI: 10.1016/j.apsb.2023.02.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Revised: 02/05/2023] [Accepted: 02/06/2023] [Indexed: 02/13/2023] Open
|
13
|
Cattaneo M, Beltrami AP, Thomas AC, Spinetti G, Alvino V, Avolio E, Veneziano C, Rolle IG, Sponga S, Sangalli E, Maciag A, Dal Piaz F, Vecchione C, Alenezi A, Paisey S, Puca AA, Madeddu P. The longevity-associated BPIFB4 gene supports cardiac function and vascularization in aging cardiomyopathy. Cardiovasc Res 2023:6986428. [PMID: 36635236 DOI: 10.1093/cvr/cvad008] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Revised: 10/24/2022] [Accepted: 01/11/2023] [Indexed: 01/14/2023] Open
Abstract
AIMS The aging heart naturally incurs a progressive decline in function and perfusion that available treatments cannot halt. However, some exceptional individuals maintain good health until the very late stage of their life due to favourable gene-environment interaction. We have previously shown that carriers of a longevity-associated variant (LAV) of the BPIFB4 gene enjoy prolonged health spans and lesser cardiovascular complications. Moreover, supplementation of LAV-BPIFB4 via an adeno-associated viral vector improves cardiovascular performance in limb ischemia, atherosclerosis, and diabetes models. Here, we asked if the LAV-BPIFB4 gene could address the unmet therapeutic need to delay the heart's spontaneous aging. METHODS AND RESULTS Immunohistological studies showed a remarkable reduction in vessel coverage by pericytes in failing hearts explanted from elderly patients. This defect was attenuated in patients carrying the homozygous LAV-BPIFB4 genotype. Moreover, pericytes isolated from older hearts showed low levels of BPIFB4, depressed pro-angiogenic activity, and loss of ribosome biogenesis. LAV-BPIFB4 supplementation restored pericyte function and pericyte-endothelial cell interactions through a mechanism involving the nucleolar protein nucleolin. Conversely, BPIFB4 silencing in normal pericytes mimed the heart failure pericytes. Finally, gene therapy with LAV-BPIFB4 prevented cardiac deterioration in middle-aged mice and rescued cardiac function and myocardial perfusion in older mice by improving microvasculature density and pericyte coverage. CONCLUSIONS We report the success of the LAV-BPIFB4 gene/protein in improving homeostatic processes in the heart's aging. These findings open to using LAV-BPIFB4 to reverse the decline of heart performance in older people.
Collapse
Affiliation(s)
| | - Antonio P Beltrami
- Department of Medicine, University of Udine, Academic Hospital of Udine, ASUFC, Udine, Italy
| | - Anita C Thomas
- Translational Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
| | - Gaia Spinetti
- Cardiovascular Department, IRCCS Multimedica, Milan, Italy
| | - Valeria Alvino
- Translational Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
| | - Elisa Avolio
- Translational Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
| | - Claudia Veneziano
- Department of Medicine, University of Udine, Academic Hospital of Udine, ASUFC, Udine, Italy
| | - Irene Giulia Rolle
- Department of Medicine, University of Udine, Academic Hospital of Udine, ASUFC, Udine, Italy
| | - Sandro Sponga
- Department of Medicine, University of Udine, Academic Hospital of Udine, ASUFC, Udine, Italy
| | - Elena Sangalli
- Cardiovascular Department, IRCCS Multimedica, Milan, Italy
| | - Anna Maciag
- Cardiovascular Department, IRCCS Multimedica, Milan, Italy
| | - Fabrizio Dal Piaz
- Department of Medicine, Surgery and Dentistry, University of Salerno, Salerno, Italy
| | - Carmine Vecchione
- Department of Medicine, Surgery and Dentistry, University of Salerno, Salerno, Italy.,Department of Vascular Physiopathology, IRCCS Neuromed, Pozzilli, Italy
| | - Aishah Alenezi
- Wales Research & Diagnostic Positron Emission Tomography Imaging Centre, Cardiff University, UK
| | - Stephen Paisey
- Wales Research & Diagnostic Positron Emission Tomography Imaging Centre, Cardiff University, UK
| | - Annibale A Puca
- Cardiovascular Department, IRCCS Multimedica, Milan, Italy.,Department of Medicine, Surgery and Dentistry, University of Salerno, Salerno, Italy
| | - Paolo Madeddu
- Translational Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
| |
Collapse
|
14
|
Zhou Y, Zhu X, Wang H, Duan C, Cui H, Shi J, Shi S, Yuan G, Hu Y. The Role of VEGF Family in Lipid Metabolism. Curr Pharm Biotechnol 2023; 24:253-265. [PMID: 35524661 DOI: 10.2174/1389201023666220506105026] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 02/05/2022] [Accepted: 03/16/2022] [Indexed: 11/22/2022]
Abstract
The vascular endothelial growth factor (VEGF) family plays a major role in tumors and ophthalmic diseases. However, increasingly more data reported its potential in regulating lipids. With its biological functions mainly expressed in lymphatic vessels, some factors in the families, like VEGF-A and VEGF-C, have been proved to regulate intestinal absorption of lipids by affecting chylous ducts. Other effects, including regulating lipoprotein lipase (LPL), endothelial lipase (EL), and recombinant syndecan 1 (SDC1), have also been confirmed. However, given the scant-related studies, further research should be conducted to examine the concrete mechanisms and provide pragmatic ways to apply them in the clinic. The VEGF family may treat dyslipidemia in specific ways that are different from common methods and concurrently contribute to the treatment of other metabolic diseases, like diabetes and obesity.
Collapse
Affiliation(s)
- Yan Zhou
- Department of Cardiology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China.,Beijing University of Chinese Medicine, Beijing, China
| | - Xueping Zhu
- Department of Cardiology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Huan Wang
- Department of Cardiology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Chenglin Duan
- Department of Cardiology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Hanming Cui
- Department of Cardiology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Jingjing Shi
- Department of Cardiology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Shuai Shi
- Department of Cardiology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Guozhen Yuan
- Department of Cardiology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yuanhui Hu
- Department of Cardiology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
15
|
Febriza A, Kasim VN. Potential effects of hydroxysafflor yellow A on reducing pulmonary inflammation and fibrosis due to SARS-COV2. JOURNAL OF BIOLOGICAL RESEARCH - BOLLETTINO DELLA SOCIETÀ ITALIANA DI BIOLOGIA SPERIMENTALE 2022. [DOI: 10.4081/jbr.2022.10572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Cytokine storm is a condition that is characterized by a massive production of proinflammatory cytokines. Failure in balancing the up-regulation and down-regulation causes excessive production of proinflammatory cytokines in the fight against SARS-CoV2 virus infection, leading to lung damage and acute respiratory distress syndrome; in addition, high levels of IL-6 can activate the clotting pathways and vascular endothelial cells, which can inhibit blood circulation and heart muscle function and cause pulmonary, kidney, and liver fibrosis. Hydroxysafflor Yellow A (HSYA) is a compound that has been shown to reduce tissue lung damage through Toll-Like Receptor (TLR) 4, inhibits phosphorylation of the NF-κB pathway, and plays a role in balancing the up-regulation and down-regulation of inflammatory cytokines. This review of literature discusses the ability of HSYA to reduce inflammation that causes pulmonary cell and tissue damage. HSYA can inhibit the activation of the NF-κB signaling pathway and suppress the binding of the TGF-β1 promoter. This molecular mechanism can reduce lung damage by attenuating the inflammatory response by inhibiting the TLR 4-dependent pathways that can improve the condition of mice affected by pulmonary fibrosis, including inflammation that leads to vascular tissue repair. The molecular mechanism of HSYA can inhibit inflammatory mechanisms in lung injury, vascular tissue damage, and liver and kidney fibrosis. Therefore, this literature review can be used as a reference for in vivo research and clinical trials for further research on the ability to heal patients with cytokine storm that causes cardiovascular tissue damage and lung injury in patients infected with SARS-CoV-19.
Collapse
|
16
|
Sayed AM, Gohar OM, Abd-Alhameed EK, Hassanein EHM, Ali FEM. The importance of natural chalcones in ischemic organ damage: Comprehensive and bioinformatic analysis review. J Food Biochem 2022; 46:e14320. [PMID: 35857486 DOI: 10.1111/jfbc.14320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Revised: 07/01/2022] [Accepted: 07/07/2022] [Indexed: 11/26/2022]
Abstract
Over the last few decades, extensive research has been conducted, yielding a detailed account of thousands of newly discovered compounds of natural origin and their biological activities, all of which have the potential to be used for a wide range of therapeutic purposes. There are multiple research papers denoting the central objective of chalcones, which have been shown to have therapeutic potential against various forms of ischemia. The various aspects of chalcones are discussed in this review regarding molecular mechanisms involved in the promising anti-ischemic potential of these chalcones. The main mechanisms involved in these protective effects are Nrf2/Akt activation and NF-κB/TLR4 suppression. Furthermore, in-silico studies were carried out to discover the probable binding of these chalcones to Keap-1 (an inhibitor of Nrf2), Akt, NF-κB, and TLR4 protein molecules. Besides, network pharmacology analysis was conducted to predict the interacting partners of these signals. The obtained results indicated that Nrf2, Akt, NF-κB, and TLR4 are involved in the beneficial anti-ischemic actions of chalcones. Conclusively, the present findings show that chalcones as anti-ischemic agents have a valid rationale. The discussed studies will provide a comprehensive viewpoint on chalcones and can help to optimize their effects in different ischemia. PRACTICAL APPLICATIONS: Ischemic organ damage is an unavoidable pathological condition with a high worldwide incidence. According to the current research progress, natural chalcones have been proved to treat and/or prevent various types of ischemic organ damage by alleviating oxidative stress, inflammation, and apoptosis by different molecular mechanisms. This article displays the comprehensive research progress and the molecular basis of ischemic organ damage pathophysiology and introduces natural chalcones' mechanism in the ischemic organ condition.
Collapse
Affiliation(s)
- Ahmed M Sayed
- Biochemistry Laboratory, Chemistry Department, Faculty of Science, Assiut University, Assiut, Egypt
| | - Osama M Gohar
- Faculty of Pharmacy, Al-Azhar University, Assiut Branch, Assiut, Egypt
| | - Esraa K Abd-Alhameed
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, Egypt
| | - Emad H M Hassanein
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Al-Azhar University, Assiut, Egypt
| | - Fares E M Ali
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Al-Azhar University, Assiut, Egypt
| |
Collapse
|
17
|
Wang W, Shang W, Zou J, Liu K, Liu M, Qiu X, Zhang H, Wang K, Wang N. ZNF667 facilitates angiogenesis after myocardial ischemia through transcriptional regulation of VASH1 and Wnt signaling pathway. Int J Mol Med 2022; 50:129. [PMID: 36043524 PMCID: PMC9448299 DOI: 10.3892/ijmm.2022.5185] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Accepted: 08/09/2022] [Indexed: 11/24/2022] Open
Abstract
Zinc finger protein 667 (ZNF667, also referred as Mipu1), a widely expressed KRAB/C2H2-type zinc finger transcription factor, can protect against hypoxic-ischemic myocardial injury. Pro-angiogenesis is regarded as a promising strategy for the treatment of acute myocardial infarction (AMI). However, whether ZNF667 is involved in the angiogenesis following AMI remains to be elucidated. The present study reported that the expression of ZNF667 in CD31-positive endothelial cells (ECs) was upregulated in the heart of AMI mice. Hypoxic challenge (1% oxygen) promoted the mRNA and protein expression of ZNF667 in the human umbilical vein endothelial cells (HUVECs) in a time-dependent manner. Moreover, ZNF667 promoted hypoxia-induced invasion and tube formation of HUVECs. Mechanically, ZNF667 could directly bind to the promoter of anti-angiogenic gene VASH1 and inhibit its expression. Consequently, VASH1 overexpression abolished hypoxic challenge or ZNF667 overexpression-induced invasion and tube formation of HUVECs. Further bioinformatic analyses suggested that overexpression of ZNF667 or knockdown of VASH1-induced differentially expressed genes in HUVECs were greatly enriched in the Wnt signaling pathway (DAAM1, LEF1, RAC2, FRAT1, NFATc2 and WNT5A). Together, these data suggested that ZNF667 facilitates myocardial ischemia-driven angiogenesis through transcriptional repression of VASH1 and regulation of Wnt signaling pathway.
Collapse
Affiliation(s)
- Wenmei Wang
- Department of Pathophysiology, School of Basic Medical Science, Central South University, Changsha, Hunan 410008, P.R. China
| | - Weite Shang
- Department of Pathophysiology, School of Basic Medical Science, Central South University, Changsha, Hunan 410008, P.R. China
| | - Jiang Zou
- Department of Pathophysiology, School of Basic Medical Science, Central South University, Changsha, Hunan 410008, P.R. China
| | - Ke Liu
- Department of Pathophysiology, School of Basic Medical Science, Central South University, Changsha, Hunan 410008, P.R. China
| | - Meidong Liu
- Department of Pathophysiology, School of Basic Medical Science, Central South University, Changsha, Hunan 410008, P.R. China
| | - Xiaoqin Qiu
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| | - Huali Zhang
- Department of Pathophysiology, School of Basic Medical Science, Central South University, Changsha, Hunan 410008, P.R. China
| | - Kangkai Wang
- Department of Pathophysiology, School of Basic Medical Science, Central South University, Changsha, Hunan 410008, P.R. China
| | - Nian Wang
- Department of Pathophysiology, School of Basic Medical Science, Central South University, Changsha, Hunan 410008, P.R. China
| |
Collapse
|
18
|
Hou X, Zhang Z, Ma Y, Jin R, Yi B, Yang D, Ma L. Mechanism of hydroxysafflor yellow A on acute liver injury based on transcriptomics. Front Pharmacol 2022; 13:966759. [PMID: 36120318 PMCID: PMC9478418 DOI: 10.3389/fphar.2022.966759] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Accepted: 07/29/2022] [Indexed: 11/13/2022] Open
Abstract
Objective: To investigate how Hydroxysafflor yellow A (HSYA) effects acute liver injury (ALI) and what transcriptional regulatory mechanisms it may employ.Methods: Rats were randomly divided into five groups (n = 10): Control, Model, HSYA-L, HSYA-M, and HSYA-H. In the control and model groups, rats were intraperitoneally injected with equivalent normal saline, while in the HSYA groups, they were also injected with different amounts of HSYA (10, 20, and 40 mg/kg/day) once daily for eight consecutive days. One hour following the last injection, the control group was injected into the abdominal cavity with 0.1 ml/100 g of peanut oil, and the other four groups got the same amount of a peanut oil solution containing 50% CCl4. Liver indexes were detected in rats after dissection, and hematoxylin and eosin (HE) dyeing was utilized to determine HSYA’s impact on the liver of model rats. In addition, with RNA-Sequencing (RNA-Seq) technology and quantitative real-time PCR (qRT-PCR), differentially expressed genes (DEGs) were discovered and validated. Furthermore, we detected the contents of anti-superoxide anion (anti-O2−) and hydrogen peroxide (H2O2), and verified three inflammatory genes (Icam1, Bcl2a1, and Ptgs2) in the NF-kB pathway by qRT-PCR.Results: Relative to the control and HSYA groups, in the model group, we found 1111 DEGs that were up-/down-regulated, six of these genes were verified by qRT-PCR, including Tymp, Fabp7, Serpina3c, Gpnmb, Il1r1, and Creld2, indicated that these genes were obviously involved in the regulation of HSYA in ALI model. Membrane rafts, membrane microdomains, inflammatory response, regulation of cytokine production, monooxygenase activity, and iron ion binding were significantly enriched in GO analysis. KEGG analysis revealed that DEGs were primarily enriched for PPAR, retinol metabolism, NF-kB signaling pathways, etc. Last but not least, compared with the control group, the anti-O2− content was substantially decreased, the H2O2 content and inflammatory genes (Icam1, Bcl2a1, and Ptgs2) levels were considerably elevated in the model group. Compared with the model group, the anti-O2− content was substantially increased, the H2O2 content and inflammatory genes (Icam1, Bcl2a1, and Ptgs2) levels were substantially decreased in the HSYA group (p < 0.05).Conclusion: HSYA could improve liver function, inhibit oxidative stress and inflammation, and improve the degree of liver tissue damage. The RNA-Seq results further verified that HSYA has the typical characteristics of numerous targets and multiple pathway. Protecting the liver from damage by regulating the expression of Tymp, Fabp7, Serpina3c, Gpnmb, Il1r1, Creld2, and the PPAR, retinol metabolism, NF-kappa B signaling pathways.
Collapse
|
19
|
Therapeutic Effect and Mechanism of Negative Pressure Wound Therapy with Huoxue Shengji Decoction Instillation for Chronic Skin Ulcers. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:5183809. [PMID: 35783525 PMCID: PMC9242787 DOI: 10.1155/2022/5183809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Accepted: 05/25/2022] [Indexed: 12/02/2022]
Abstract
Background Negative pressure wound therapy (NPWT) with instillation (NPWTi) is a new treatment for chronic skin ulcers (CSUs), but the choice of perfusate is still investigated. The clinical application of Huoxue Shengji (HXSJ) decoction has been proved to promote the formation of granulation. The formation of fresh granulation, angiogenesis, and proliferation of vascular endothelial cells are closely related. The purpose of this study was to observe the clinical efficacy of NWPT with HXSJ decoction instillation in the treatment of CSUs and to explore the potential mechanism by which HXSJ decoction promotes proliferation of vascular endothelial cells at the cellular level. Methods In the clinical study, the random number table was used to divide the patients into three groups (patients were numbered by visit time and assigned a random number and grouped by the remainder after the random number was divided by 3, and when the number of patients in one group reached 20, the enrolment of this group is stopped), including NPWT combined with HXSJ decoction instillation (group A), NPWT combined with normal saline instillation (group B), and NPWT (group C). Related indexes were examined, including the wound cavity volume, bacterial culture, histopathology examination, time periods of debridement, repair methods, and the time of ulcer healing. In the basic research, the effect of HXSJ decoction on the proliferation of HUVECs was analysed by CCK-8 assay and RT-PCR and western blot were used to quantify the VEGF and VEGFR-2 expression in the relevant signalling pathway. Results There was no significant difference in the improvement rate of invasive cavity volume (P > 0.05) between groups A and B, but a significant difference was observed between groups A and C (P < 0.05). There was no significant difference in microbial reduction among groups (all P > 0.05). Histopathological examination showed that the microvascular count in group A was significantly higher than that in groups B and C (both P < 0.01) and there was no statistical difference between groups B and C (P > 0.05). There were no significant differences in the number of invasive lesions and repair methods among the groups (all P > 0.05). The healing time of group A was significantly faster than those of groups B and C (compared to group B, P < 0.05; compared to group C, P < 0.01), and there was no statistical difference between groups B and C (P > 0.05). In the cellular experiments, concentration screening was performed and 125 μg/mL HXSJ decoction showed the most significant effect on the proliferation of HUVECs and also enhanced the expression of VEGF and VEGFR-2. Conclusion HXSJ decoction can enhance the expression of VEGF and VEGFR-2 and promote the proliferation of HUVECs. Treatment with NWPT with HXSJ decoction instillation can further reduce the wound cavity volume; meanwhile, it can promote blood vessel formation in ulcer wounds, thus accelerating the healing of CSUs.
Collapse
|
20
|
Zhang MX, Song Y, Xu WL, Zhang LX, Li C, Li YL. Natural Herbal Medicine as a Treatment Strategy for Myocardial Infarction through the Regulation of Angiogenesis. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2022; 2022:8831750. [PMID: 35600953 PMCID: PMC9119779 DOI: 10.1155/2022/8831750] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Accepted: 04/25/2022] [Indexed: 11/18/2022]
Abstract
Methods We conducted a literature search on the bioactive components of medicinal plants and their effects on angiogenesis after MI. We searched for articles in Web of Science, MEDLINE, PubMed, Scopus, Google Scholar, and China National Knowledge Infrastructure databases before April 2021. Results In this article, we summarized the mechanisms by which copper ions, microRNA, Akt1, inflammation, oxidative stress, mitochondria, and pericytes are involved in angiogenesis after myocardial infarction. In addition, we reviewed the angiogenic effects of natural herbal medicines such as Salvia miltiorrhiza Bunge Bunge, Carthamus tinctorius L., Pueraria lobata, Astragalus, Panax ginseng C.A. Mey., Panax notoginseng (Burkill) F.H. Chen, Cinnamomum cassia (L.) J. Presl, Rehmannia glutinosa (Gaertn.) DC., Leonurus japonicus Houtt, Scutellaria baicalensis Georgi., and Geum macrophyllum Willd. Conclusions Some herbs have the effect of promoting angiogenesis. In the future, natural proangiogenic drugs may become candidates for the treatment of cardiovascular diseases.
Collapse
Affiliation(s)
- Mu-xin Zhang
- First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Yu Song
- Innovation Research Institute of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Wan-li Xu
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Ling-xiao Zhang
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Chao Li
- Innovation Research Institute of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Yun-lun Li
- Innovation Research Institute of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
- Department of Cardiology, The Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan 250014, China
| |
Collapse
|
21
|
Deng HF, Zou J, Wang N, Ma H, Zhu LL, Liu K, Liu MD, Wang KK, Xiao XZ. Nicorandil alleviates cardiac remodeling and dysfunction post -infarction by up-regulating the nucleolin/autophagy axis. Cell Signal 2022; 92:110272. [PMID: 35122988 DOI: 10.1016/j.cellsig.2022.110272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 01/14/2022] [Accepted: 01/28/2022] [Indexed: 11/26/2022]
Abstract
OBJECTIVE The present study aimed to investigate whether the drug nicorandil can improve cardiac remodeling after myocardial infarction (MI) and the underlying mechanisms. METHODS Mouse MI was established by the ligation of the left anterior descending coronary artery and H9C2 cells were cultured to investigate the underlying molecular mechanisms. The degree of myocardial collagen (Col) deposition was evaluated by Masson's staining. The expressions of nucleolin, autophagy and myocardial remodeling-associated genes were measured by Western blotting, qPCR, and immunofluorescence. The apoptosis of myocardial tissue cells and H9C2 cells were detected by TUNEL staining and flow cytometry, respectively. Autophagosomes were observed by transmission electron microscopy. RESULTS Treatment with nicorandil mitigated left ventricular enlargement, improved the capacity of myocardial diastolic-contractility, decreased cardiomyocyte apoptosis, and inhibited myocardial fibrosis development post-MI. Nicorandil up-regulated the expression of nucleolin, promoted autophagic flux, and decreased the expressions of TGF-β1 and phosphorylated Smad2/3, while enhanced the expression of BMP-7 and phosphorylated Smad1 in myocardium. Nicorandil decreased apoptosis and promoted autophagic flux in H2O2-treated H9C2 cells. Autophagy inhibitors 3-methyladenine (3MA) and chloroquine diphosphate salt (CDS) alleviated the effects of nicorandil on apoptosis. Knockdown of nucleolin decreased the effects of nicorandil on apoptosis and nicorandil-promoted autophagic flux of cardiomyocytes treated with H2O2. CONCLUSIONS Treatment with nicorandil alleviated myocardial remodeling post-MI through up-regulating the expression of nucleolin, and subsequently promoting autophagy, followed by regulating TGF-β/Smad signaling pathway.
Collapse
Affiliation(s)
- Hua-Fei Deng
- Department of Pathophysiology, School of Basic Medical Science, Central South University, Changsha, Hunan, China; Key Laboratory of Sepsis Translational Medicine of Hunan, Central South University, Changsha, Hunan, China; Department of Pathophysiology, School of Basic Medical Science, Xiangnan University, Chenzhou, Hunan 423000, China
| | - Jiang Zou
- Department of Pathophysiology, School of Basic Medical Science, Central South University, Changsha, Hunan, China; Key Laboratory of Sepsis Translational Medicine of Hunan, Central South University, Changsha, Hunan, China
| | - Nian Wang
- Department of Pathophysiology, School of Basic Medical Science, Central South University, Changsha, Hunan, China; Key Laboratory of Sepsis Translational Medicine of Hunan, Central South University, Changsha, Hunan, China
| | - Heng Ma
- Department of Pathophysiology, School of Basic Medical Science, Central South University, Changsha, Hunan, China; Key Laboratory of Sepsis Translational Medicine of Hunan, Central South University, Changsha, Hunan, China
| | - Li-Li Zhu
- Department of Pathophysiology, School of Basic Medical Science, Central South University, Changsha, Hunan, China; Key Laboratory of Sepsis Translational Medicine of Hunan, Central South University, Changsha, Hunan, China
| | - Ke Liu
- Department of Pathophysiology, School of Basic Medical Science, Central South University, Changsha, Hunan, China; Key Laboratory of Sepsis Translational Medicine of Hunan, Central South University, Changsha, Hunan, China
| | - Mei-Dong Liu
- Department of Pathophysiology, School of Basic Medical Science, Central South University, Changsha, Hunan, China; Key Laboratory of Sepsis Translational Medicine of Hunan, Central South University, Changsha, Hunan, China
| | - Kang-Kai Wang
- Department of Pathophysiology, School of Basic Medical Science, Central South University, Changsha, Hunan, China; Key Laboratory of Sepsis Translational Medicine of Hunan, Central South University, Changsha, Hunan, China.
| | - Xian-Zhong Xiao
- Department of Pathophysiology, School of Basic Medical Science, Central South University, Changsha, Hunan, China; Key Laboratory of Sepsis Translational Medicine of Hunan, Central South University, Changsha, Hunan, China.
| |
Collapse
|
22
|
Hosseini M, Baghaei K, Hajivalili M, Zali MR, Ebtekar M, Amani D. The anti-tumor effects of CT-26 derived exosomes enriched by MicroRNA-34a on murine model of colorectal cancer. Life Sci 2022; 290:120234. [PMID: 34953890 DOI: 10.1016/j.lfs.2021.120234] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2021] [Revised: 12/01/2021] [Accepted: 12/09/2021] [Indexed: 12/19/2022]
Abstract
AIMS As conventional therapeutics failed to provide satisfied outcomes against one of the most prevalent cancers, colorectal cancer (CRC), we purposed to implicate MicroRNA (miR)-34a, as a major tumor suppressor, to be delivered by tumor-derived exosomes (TEXs) and investigated its anti-tumor functions in-vivo. MAIN METHODS TEXs were isolated from CT-26 cell line and loaded with miR-34a mimic. Then, mice bearing CRC were treated with miR-34a-enriched TEX (TEX-miR-34a) and then examined for the relative tumor-suppressive impacts of the TEX as well as its potential in promoting an anti-tumor immune response. KEY FINDINGS TEX-miR-34a significantly reduced tumor size and prolonged survival of mice bearing CRC. TEX-miR-34a was able to diminish gene expressions related to invasion, angiogenesis and immune evasion. It was also capable of inducing T cell polarization toward CD8+ T subsets among tumor-infiltrating lymphocytes, draining lymph nodes (DLNs) and spleen cells. Moreover, cytotoxic T cells were professionally induced in mice receiving TEX-miR-34a and the secretion of interleukin (IL)-6, IL-17A and tumor necrosis factor (TGF)-β was reduced in DLNs. However, the enhanced levels of interferon-γ were evaluated in DLN and spleen displaying the polarization of anti-tumor immune responses. Interestingly, mice receiving TEX alone showed a noticeable reduction in certain oncogenic gene expressions as well as IL-17A secretion in DLNs. SIGNIFICANCE TEX-miR-34a demonstrated the potential to induce beneficial anti-tumor immune responses and TEXs, aside from the delivery function of miRNA, revealed certain anti-tumor beneficial characteristics which could introduce TEX-miR-34a as a promising approach in CRC combination therapies.
Collapse
Affiliation(s)
- Maryam Hosseini
- Department of Immunology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran; Pediatric Cell and Gene Therapy Research Center, Gene, Cell & Tissue Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Kaveh Baghaei
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mahsa Hajivalili
- Department of Immunology, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Reza Zali
- Gastroenterology and Liver Disease Research Center, Research Institute for Gastroenterology and Liver Disease, Shahid Beheshti University of Medical Science, Tehran, Iran
| | - Masoumeh Ebtekar
- Department of Immunology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran.
| | - Davar Amani
- Department of Immunology, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
23
|
Wu Q, Yin CH, Li Y, Cai JQ, Yang HY, Huang YY, Zheng YX, Xiong K, Yu HL, Lu AP, Wang KX, Guan DG, Chen YP. Detecting Critical Functional Ingredients Group and Mechanism of Xuebijing Injection in Treating Sepsis. Front Pharmacol 2021; 12:769190. [PMID: 34938184 PMCID: PMC8687625 DOI: 10.3389/fphar.2021.769190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 11/04/2021] [Indexed: 11/13/2022] Open
Abstract
Sepsis is a systemic inflammatory reaction caused by various infectious or noninfectious factors, which can lead to shock, multiple organ dysfunction syndrome, and death. It is one of the common complications and a main cause of death in critically ill patients. At present, the treatments of sepsis are mainly focused on the controlling of inflammatory response and reduction of various organ function damage, including anti-infection, hormones, mechanical ventilation, nutritional support, and traditional Chinese medicine (TCM). Among them, Xuebijing injection (XBJI) is an important derivative of TCM, which is widely used in clinical research. However, the molecular mechanism of XBJI on sepsis is still not clear. The mechanism of treatment of "bacteria, poison and inflammation" and the effects of multi-ingredient, multi-target, and multi-pathway have still not been clarified. For solving this issue, we designed a new systems pharmacology strategy which combines target genes of XBJI and the pathogenetic genes of sepsis to construct functional response space (FRS). The key response proteins in the FRS were determined by using a novel node importance calculation method and were condensed by a dynamic programming strategy to conduct the critical functional ingredients group (CFIG). The results showed that enriched pathways of key response proteins selected from FRS could cover 95.83% of the enriched pathways of reference targets, which were defined as the intersections of ingredient targets and pathogenetic genes. The targets of the optimized CFIG with 60 ingredients could be enriched into 182 pathways which covered 81.58% of 152 pathways of 1,606 pathogenetic genes. The prediction of CFIG targets showed that the CFIG of XBJI could affect sepsis synergistically through genes such as TAK1, TNF-α, IL-1β, and MEK1 in the pathways of MAPK, NF-κB, PI3K-AKT, Toll-like receptor, and tumor necrosis factor signaling. Finally, the effects of apigenin, baicalein, and luteolin were evaluated by in vitro experiments and were proved to be effective in reducing the production of intracellular reactive oxygen species in lipopolysaccharide-stimulated RAW264.7 cells, significantly. These results indicate that the novel integrative model can promote reliability and accuracy on depicting the CFIGs in XBJI and figure out a methodological coordinate for simplicity, mechanism analysis, and secondary development of formulas in TCM.
Collapse
Affiliation(s)
- Qi- Wu
- Department of Burns, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Chuan-Hui Yin
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China.,Guangdong Province Key Laboratory of Single Cell Technology and Application, Southern Medical University, Guangzhou, China
| | - Yi Li
- Department of Radiology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Jie-Qi Cai
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China.,Guangdong Province Key Laboratory of Single Cell Technology and Application, Southern Medical University, Guangzhou, China
| | - Han-Yun Yang
- The First Clinical Medical College of Southern Medical University, Guangzhou, China
| | - Ying-Ying Huang
- Department of Obstetrics and Gynecology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Yi-Xu Zheng
- Department of Ophthalmology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Ke Xiong
- Department of Ophthalmology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Hai-Lang Yu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China.,Guangdong Province Key Laboratory of Single Cell Technology and Application, Southern Medical University, Guangzhou, China
| | - Ai-Ping Lu
- Institute of Integrated Bioinformedicine and Translational Science, Hong Kong Baptist University, Kowloon Tong, Hong Kong China
| | - Ke-Xin Wang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China.,National Key Clinical Specialty/Engineering Technology Research Center of Education Ministry of China, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Department of Neurosurgery, Neurosurgery Institute, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Dao-Gang Guan
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China.,Guangdong Province Key Laboratory of Single Cell Technology and Application, Southern Medical University, Guangzhou, China
| | - Yu-Peng Chen
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China.,Guangdong Province Key Laboratory of Single Cell Technology and Application, Southern Medical University, Guangzhou, China
| |
Collapse
|
24
|
Tang Y, Tang Y, Xiang Y, Yan J, Guo K. AK003290 Protects Myocardial Cells Against Apoptosis and Promotes Cardiac Function Recovery Via miR-539-3p/ ErbB4 Axis in Ischemic-Reperfusion Injury. DNA Cell Biol 2021; 40:1528-1538. [PMID: 34931871 DOI: 10.1089/dna.2021.0323] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Acute myocardial infarction is the leading cause of death and disability worldwide. Reperfusion is the main treatment method. However, ischemia-reperfusion (I/R) injury aggravates tissue and cell damage. In this study, we aim to find a strategy to reduce I/R injury and promote cardiac function recovery. The expression of AK003290 was downregulated in I/R injury both in vitro and in vivo. Overexpression of AK003290 reduced infarction area, oxidative stress, cell apoptosis, and promoted cardiac function recovery. AK003290 was observed to sponge miR-539-3p. Moreover, the expression of miR-539-3p was upregulated in I/R injury. Overexpression of miR-539-3p reversed the beneficial role of AK003290 in I/R injury. The target gene of miR-539-3p was proved to be ErbB4, as identified by database prediction, dual-luciferase reporter assay, and pull-down assay. The expression of ErbB4 was negatively correlated with the expression of miR-539-3p, but positively correlated with the expression of AK003290. Subsequently, the key downstream proteins were determined. AK003290 promoted p-AKT and bcl-2 expression and inhibited p-ERK1/2, Bax, cytoplasmic cyto-c, and c-caspase-3 expression. The application of ErbB4 siRNA significantly reversed the effect of AK003290 on the expression of these proteins. These results suggest that ErbB4 is the key downstream gene, which regulates myocardial cell apoptosis by influencing the miR-539-3p expression. To the best of knowledge, this study is the first to demonstrate that the AK003290/miR-539-3p/ErbB4 axis regulates myocardial cell apoptosis. These findings provide a potential novel target for the treatment of myocardial I/R injury.
Collapse
Affiliation(s)
- Yong Tang
- Department of Cardiology, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yan Tang
- Department of Radiology, Shanghai Ninth People's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yin Xiang
- Department of Cardiology, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Jianhua Yan
- Department of Cardiology, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Kai Guo
- Department of Cardiology, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
25
|
Sun Y, Yanming G, Jinxin L, Lamei X, Fan M, Qian H, Li Y, Wang L. Hydroxysafflor Yellow A - An Important Natural Pigment for Treating Metabolic Diseases. FOOD REVIEWS INTERNATIONAL 2021. [DOI: 10.1080/87559129.2021.2013256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Yujie Sun
- School of Food Science and Technology, State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Guan Yanming
- China National Research Institute of Food and Fermentation Industries Co. Ltd, Beijing, China
| | - Liu Jinxin
- School of Food Science and Technology, State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Xue Lamei
- School of Food Science and Technology, State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Mingcong Fan
- School of Food Science and Technology, State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Haifeng Qian
- School of Food Science and Technology, State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Yan Li
- School of Food Science and Technology, State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Li Wang
- School of Food Science and Technology, State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
| |
Collapse
|
26
|
Li DW, Wang XT, Mu BC, Dou DQ, Kang TG. Effects of hydroxysafflor yellow A on rats with collagen-induced arthritis. Biochem Biophys Res Commun 2021; 570:26-34. [PMID: 34271433 DOI: 10.1016/j.bbrc.2021.07.026] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Accepted: 07/07/2021] [Indexed: 11/29/2022]
Abstract
Hydroxysafflor yellow A (HSYA) from safflower (Carthamus tinctorius L.) possesses several medicinal properties. However, it is unknown whether HSYA is effective in the treatment of rheumatoid arthritis (RA). Hence, we investigated the effects of HSYA on the inflammation and synovial damage in rats with collagen-induced arthritis (CIA) by subjecting them to treatment with different doses of HSYA. Our results revealed that HSYA could significantly reduce paw swelling, pathological manifestations, and serum cytokine levels in rats with CIA. The HSYA-treated groups showed increased antioxidant enzyme activity in the serum and decreased expression of inflammatory mediators in the synovial tissues. Furthermore, HSYA treatment inhibited extracellular signal-regulated kinase (ERK) signalling pathway activation. Notably, the highest dose of HSYA (20 mg/kg) exhibited the best effects against RA symptoms. Therefore, our findings suggest that HSYA alleviates the inflammatory response and synovial damage in rats with CIA by inhibiting the ERK signalling pathway.
Collapse
Affiliation(s)
- Dong-Wei Li
- College of Pharmacy, Liaoning University of Traditional Chinese Medicine, No. 77 Life 1 Road, Dalian, 116600, Liaoning, China
| | - Xiao-Tong Wang
- The First Affiliated Hospital, Liaoning University of Traditional Chinese Medicine, No. 72 Chongshan East Road, Shenyang, 110032, Liaoning, China
| | - Bai-Chen Mu
- The First Affiliated Hospital, Liaoning University of Traditional Chinese Medicine, No. 72 Chongshan East Road, Shenyang, 110032, Liaoning, China
| | - De-Qiang Dou
- College of Pharmacy, Liaoning University of Traditional Chinese Medicine, No. 77 Life 1 Road, Dalian, 116600, Liaoning, China.
| | - Ting-Guo Kang
- College of Pharmacy, Liaoning University of Traditional Chinese Medicine, No. 77 Life 1 Road, Dalian, 116600, Liaoning, China.
| |
Collapse
|
27
|
Zhou Y, Zhu X, Cui H, Shi J, Yuan G, Shi S, Hu Y. The Role of the VEGF Family in Coronary Heart Disease. Front Cardiovasc Med 2021; 8:738325. [PMID: 34504884 PMCID: PMC8421775 DOI: 10.3389/fcvm.2021.738325] [Citation(s) in RCA: 95] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Accepted: 07/27/2021] [Indexed: 01/04/2023] Open
Abstract
The vascular endothelial growth factor (VEGF) family, the regulator of blood and lymphatic vessels, is mostly investigated in the tumor and ophthalmic field. However, the functions it enjoys can also interfere with the development of atherosclerosis (AS) and further diseases like coronary heart disease (CHD). The source, regulating mechanisms including upregulation and downregulation, target cells/tissues, and known functions about VEGF-A, VEGF-B, VEGF-C, and VEGF-D are covered in the review. VEGF-A can regulate angiogenesis, vascular permeability, and inflammation by binding with VEGFR-1 and VEGFR-2. VEGF-B can regulate angiogenesis, redox, and apoptosis by binding with VEGFR-1. VEGF-C can regulate inflammation, lymphangiogenesis, angiogenesis, apoptosis, and fibrogenesis by binding with VEGFR-2 and VEGFR-3. VEGF-D can regulate lymphangiogenesis, angiogenesis, fibrogenesis, and apoptosis by binding with VEGFR-2 and VEGFR-3. These functions present great potential of applying the VEGF family for treating CHD. For instance, angiogenesis can compensate for hypoxia and ischemia by growing novel blood vessels. Lymphangiogenesis can degrade inflammation by providing exits for accumulated inflammatory cytokines. Anti-apoptosis can protect myocardium from impairment after myocardial infarction (MI). Fibrogenesis can promote myocardial fibrosis after MI to benefit cardiac recovery. In addition, all these factors have been confirmed to keep a link with lipid metabolism, the research about which is still in the early stage and exact mechanisms are relatively obscure. Because few reviews have been published about the summarized role of the VEGF family for treating CHD, the aim of this review article is to present an overview of the available evidence supporting it and give hints for further research.
Collapse
Affiliation(s)
- Yan Zhou
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China.,Beijing University of Chinese Medicine, Beijing, China
| | - Xueping Zhu
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Hanming Cui
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Jingjing Shi
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Guozhen Yuan
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Shuai Shi
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yuanhui Hu
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
28
|
Tang Y, Lin X, Chen C, Tong Z, Sun H, Li Y, Liang P, Jiang B. Nucleolin Improves Heart Function During Recovery From Myocardial Infarction by Modulating Macrophage Polarization. J Cardiovasc Pharmacol Ther 2021; 26:386-395. [PMID: 33550832 DOI: 10.1177/1074248421989570] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
BACKGROUND Nucleolin has multiple functions within cell survival and proliferation pathways. Our previous studies have revealed that nucleolin can significantly reduce myocardial ischemia-reperfusion injury by promoting myocardial angiogenesis and reducing myocardial apoptosis. In this study, we attempted to determine the role of nucleolin in myocardial infarction (MI) injury recovery and the underlying mechanism. METHODS Male BALB/c mice aged 6-8 weeks were used to set up MI models by ligating the left anterior descending coronary artery. Nucleolin expression in the heart was downregulated by intramyocardial injection of a lentiviral vector expressing nucleolin-specific small interfering RNA. Macrophage infiltration and polarization were measured by real-time polymerase chain reaction, flow cytometry, and immunofluorescence. Cytokines were detected by enzyme-linked immunosorbent assay. RESULTS Nucleolin expression in myocardium after MI induction decreased a lot at early phase and elevated at late phase. Nucleolin knockdown impaired heart systolic and diastolic functions and decreased the survival rate after MI. Macrophage infiltration increased in the myocardium after MI. Most macrophages belonged to the M1 phenotype at early phase (2 days) and the M2 phenotype increased greatly at late phase after MI. Nucleolin knockdown in the myocardium led to a decrease in M2 macrophage polarization with no effect on macrophage infiltration after MI. Furthermore, Notch3 and STAT6, key regulators of M2 macrophage polarization, were upregulated by nucleolin in RAW 264.7 macrophages. CONCLUSIONS Lack of nucleolin impaired heart function during recovery after MI by reducing M2 macrophage polarization. This finding probably points to a new therapeutic option for ischemic heart disease.
Collapse
Affiliation(s)
- Yuting Tang
- Department of Pathophysiology, Xiangya School of Medicine, 12570Central South University, Changsha, Hunan, China
- Sepsis Translational Medicine Key Laboratory of Hunan Province, Xiangya School of Medicine, 12570Central South University, Changsha, Hunan, China
| | - Xiaofang Lin
- Department of Pathophysiology, Xiangya School of Medicine, 12570Central South University, Changsha, Hunan, China
- Sepsis Translational Medicine Key Laboratory of Hunan Province, Xiangya School of Medicine, 12570Central South University, Changsha, Hunan, China
| | - Cheng Chen
- Department of Pathophysiology, Xiangya School of Medicine, 12570Central South University, Changsha, Hunan, China
- Sepsis Translational Medicine Key Laboratory of Hunan Province, Xiangya School of Medicine, 12570Central South University, Changsha, Hunan, China
| | - Zhongyi Tong
- Department of Pathology, The Second Xiangya Hospital of 12570Central South University, Changsha, Hunan, China
| | - Hui Sun
- Department of Pathophysiology, Xiangya School of Medicine, 12570Central South University, Changsha, Hunan, China
- Sepsis Translational Medicine Key Laboratory of Hunan Province, Xiangya School of Medicine, 12570Central South University, Changsha, Hunan, China
| | - Yuanbin Li
- Department of Pathophysiology, Xiangya School of Medicine, 12570Central South University, Changsha, Hunan, China
- Sepsis Translational Medicine Key Laboratory of Hunan Province, Xiangya School of Medicine, 12570Central South University, Changsha, Hunan, China
| | - Pengfei Liang
- Department of Burns and Plastic Surgery, Xiangya Hospital, 12570Central South University, Changsha, Hunan, China
| | - Bimei Jiang
- Department of Pathophysiology, Xiangya School of Medicine, 12570Central South University, Changsha, Hunan, China
- Sepsis Translational Medicine Key Laboratory of Hunan Province, Xiangya School of Medicine, 12570Central South University, Changsha, Hunan, China
| |
Collapse
|
29
|
Role of Herbal Teas in Regulating Cellular Homeostasis and Autophagy and Their Implications in Regulating Overall Health. Nutrients 2021; 13:nu13072162. [PMID: 34201882 PMCID: PMC8308238 DOI: 10.3390/nu13072162] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 06/19/2021] [Accepted: 06/20/2021] [Indexed: 02/06/2023] Open
Abstract
Tea is one of the most popular and widely consumed beverages worldwide, and possesses numerous potential health benefits. Herbal teas are well-known to contain an abundance of polyphenol antioxidants and other ingredients, thereby implicating protection and treatment against various ailments, and maintaining overall health in humans, although their mechanisms of action have not yet been fully identified. Autophagy is a conserved mechanism present in organisms that maintains basal cellular homeostasis and is essential in mediating the pathogenesis of several diseases, including cancer, type II diabetes, obesity, and Alzheimer’s disease. The increasing prevalence of these diseases, which could be attributed to the imbalance in the level of autophagy, presents a considerable challenge in the healthcare industry. Natural medicine stands as an effective, safe, and economical alternative in balancing autophagy and maintaining homeostasis. Tea is a part of the diet for many people, and it could mediate autophagy as well. Here, we aim to provide an updated overview of popular herbal teas’ health-promoting and disease healing properties and in-depth information on their relation to autophagy and its related signaling molecules. The present review sheds more light on the significance of herbal teas in regulating autophagy, thereby improving overall health.
Collapse
|
30
|
Hydroxysafflor Yellow A Ameliorates Myocardial Ischemia/Reperfusion Injury by Suppressing Calcium Overload and Apoptosis. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:6643615. [PMID: 34093960 PMCID: PMC8163549 DOI: 10.1155/2021/6643615] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 03/30/2021] [Accepted: 04/20/2021] [Indexed: 12/17/2022]
Abstract
Myocardial ischemia/reperfusion injury (MI/RI) is an urgent problem with a great impact on health globally. However, its pathological mechanisms have not been fully elucidated. Hydroxysafflor yellow A (HSYA) has a protective effect against MI/RI. This study is aimed at further clarifying the relationship between HSYA cardioprotection and calcium overload as well as the underlying mechanisms. We verified the protective effect of HSYA on neonatal rat primary cardiomyocytes (NPCMs) and human-induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) from hypoxia-reoxygenation (HR) injury. To explore the cardioprotective mechanism of HSYA, we employed calcium fluorescence, TUNEL assay, JC-1 staining, and western blotting. Finally, cardio-ECR and patch-clamp experiments were used to explain the regulation of L-type calcium channels (LTCC) in cardioprotection mediated by HSYA. The results showed that HSYA reduced the levels of myocardial enzymes and protected NPCMs from HR injury. HSYA also restored the contractile function of hiPSC-CMs and field potential signal abnormalities caused by HR and exerted a protective effect on cardiac function. Further, we demonstrated that HSYA protects cardiomyocytes from HR injury by decreasing mitochondrial membrane potential and inhibiting apoptosis and calcium overload. Patch-clamp results revealed that MI/RI caused a sharp increase in calcium currents, which was inhibited by pretreatment with HSYA. Furthermore, we found that HSYA restored contraction amplitude, beat rate, and field potential duration of hiPSC-CMs, which were disrupted by the LTCC agonist Bay-K8644. Patch-clamp experiments also showed that HSYA inhibits Bay-K8644-induced calcium current, with an effect similar to that of the LTCC inhibitor nisoldipine. Therefore, our data suggest that HSYA targets LTCC to inhibit calcium overload and apoptosis of cardiomyocytes, thereby exerting a cardioprotective effect and reducing MI/RI injury.
Collapse
|
31
|
Wang XT, Peng Z, An YY, Shang T, Xiao G, He S, Chen X, Zhang H, Wang Y, Wang T, Zhang JH, Gao X, Zhu Y, Feng Y. Paeoniflorin and Hydroxysafflor Yellow A in Xuebijing Injection Attenuate Sepsis-Induced Cardiac Dysfunction and Inhibit Proinflammatory Cytokine Production. Front Pharmacol 2021; 11:614024. [PMID: 33986658 PMCID: PMC8112230 DOI: 10.3389/fphar.2020.614024] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Accepted: 12/07/2020] [Indexed: 12/15/2022] Open
Abstract
Sepsis-induced myocardial dysfunction is a major contributor to the poor outcomes of septic shock. As an add-on with conventional sepsis management for over 15 years, the effect of Xuebijing injection (XBJ) on the sepsis-induced myocardial dysfunction was not well understood. The material basis of Xuebijing injection (XBJ) in managing infections and infection-related complications remains to be defined. A murine cecal ligation and puncture (CLP) model and cardiomyocytes in vitro culture were adopted to study the influence of XBJ on infection-induced cardiac dysfunction. XBJ significantly improved the survival of septic-mice and rescued cardiac dysfunction in vivo. RNA-seq revealed XBJ attenuated the expression of proinflammatory cytokines and related signalings in the heart which was further confirmed on the mRNA and protein levels. Xuebijing also protected cardiomyocytes from LPS-induced mitochondrial calcium ion overload and reduced the LPS-induced ROS production in cardiomyocytes. The therapeutic effect of XBJ was mediated by the combination of paeoniflorin and hydroxysafflor yellow A (HSYA) (C0127-2). C0127-2 improved the survival of septic mice, protected their cardiac function and cardiomyocytes while balancing gene expression in cytokine-storm-related signalings, such as TNF-α and NF-κB. In summary, Paeoniflorin and HSYA are key active compounds in XBJ for managing sepsis, protecting cardiac function, and controlling inflammation in the cardiac tissue partially by limiting the production of IL-6, IL-1β, and CXCL2.
Collapse
Affiliation(s)
- Xin-Tong Wang
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China.,Research and Development Center of TCM, Tianjin International Joint Academy of Biotechnology and Medicine, Tianjin, China
| | - Zhen Peng
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China.,Research and Development Center of TCM, Tianjin International Joint Academy of Biotechnology and Medicine, Tianjin, China
| | - Ying-Ying An
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China.,Research and Development Center of TCM, Tianjin International Joint Academy of Biotechnology and Medicine, Tianjin, China
| | - Ting Shang
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China.,Research and Development Center of TCM, Tianjin International Joint Academy of Biotechnology and Medicine, Tianjin, China
| | - Guangxu Xiao
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China.,Research and Development Center of TCM, Tianjin International Joint Academy of Biotechnology and Medicine, Tianjin, China
| | - Shuang He
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China.,Research and Development Center of TCM, Tianjin International Joint Academy of Biotechnology and Medicine, Tianjin, China
| | - Xi Chen
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Han Zhang
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yuefei Wang
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Tao Wang
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Jun-Hua Zhang
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Xiumei Gao
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yan Zhu
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China.,Research and Development Center of TCM, Tianjin International Joint Academy of Biotechnology and Medicine, Tianjin, China
| | - Yuxin Feng
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China.,Research and Development Center of TCM, Tianjin International Joint Academy of Biotechnology and Medicine, Tianjin, China
| |
Collapse
|
32
|
Zhao F, Wang P, Jiao Y, Zhang X, Chen D, Xu H. Hydroxysafflor Yellow A: A Systematical Review on Botanical Resources, Physicochemical Properties, Drug Delivery System, Pharmacokinetics, and Pharmacological Effects. Front Pharmacol 2020; 11:579332. [PMID: 33536906 PMCID: PMC7849182 DOI: 10.3389/fphar.2020.579332] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Accepted: 10/23/2020] [Indexed: 12/14/2022] Open
Abstract
Hydroxysafflower yellow A (HSYA), as a principal natural ingredient extracted from safflower (Carthamus tinctorius L.), has significant pharmacological activities, such as antioxidant, anti-inflammatory, anticoagulant, and anticancer effects. However, chemical instability and low bioavailability have been severely hampering the clinical applications of HSYA during the treatment of cardiovascular and cerebrovascular disease. Therefore, this present review systematically summarized the materials about HSYA, including acquisition methods, extraction and detection methods, pharmacokinetics, pharmacological effects and molecular mechanism, especially focus on the possible causes and resolutions about the chemical instability and low bioavailability of HSYA, in order to provide relatively comprehensive basic data for the related research of HSYA.
Collapse
Affiliation(s)
- Feng Zhao
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Ping Wang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yuanyuan Jiao
- Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Xiaoxiao Zhang
- Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
- Postdoctoral Management Office, China Academy of Chinese Medical Sciences, Beijing, China
- China Association of Chinese Medicine, Beijing, China
| | - Daquan Chen
- School of Pharmacy, Yantai University, Yantai, China
| | - Haiyu Xu
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
- Shaanxi Institute of International Trade and Commerce, Xianyang, China
| |
Collapse
|
33
|
Bai X, Wang WX, Fu RJ, Yue SJ, Gao H, Chen YY, Tang YP. Therapeutic Potential of Hydroxysafflor Yellow A on Cardio-Cerebrovascular Diseases. Front Pharmacol 2020; 11:01265. [PMID: 33117148 PMCID: PMC7550755 DOI: 10.3389/fphar.2020.01265] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2020] [Accepted: 07/30/2020] [Indexed: 12/15/2022] Open
Abstract
The incidence rate of cardio-cerebrovascular diseases (CCVDs) is increasing worldwide, causing an increasingly serious public health burden. The pursuit of new promising treatment options is thus becoming a pressing issue. Hydroxysafflor yellow A (HSYA) is one of the main active quinochalcone C-glycosides in the florets of Carthamus tinctorius L., a medical and edible dual-purpose plant. HSYA has attracted much interest for its pharmacological actions in treating and/or managing CCVDs, such as myocardial and cerebral ischemia, hypertension, atherosclerosis, vascular dementia, and traumatic brain injury, in massive preclinical studies. In this review, we briefly summarized the mode and mechanism of action of HSYA on CCVDs based on these preclinical studies. The therapeutic effects of HSYA against CCVDs were presumed to reside mostly in its antioxidant, anti-inflammatory, and neuroprotective roles by acting on complex signaling pathways.
Collapse
Affiliation(s)
- Xue Bai
- Key Laboratory of Shaanxi Administration of Traditional Chinese Medicine for TCM Compatibility, and State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation), and Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, and Shaanxi Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Shaanxi University of Chinese Medicine, Xi'an, China
| | - Wen-Xiao Wang
- Key Laboratory of Shaanxi Administration of Traditional Chinese Medicine for TCM Compatibility, and State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation), and Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, and Shaanxi Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Shaanxi University of Chinese Medicine, Xi'an, China
| | - Rui-Jia Fu
- Key Laboratory of Shaanxi Administration of Traditional Chinese Medicine for TCM Compatibility, and State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation), and Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, and Shaanxi Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Shaanxi University of Chinese Medicine, Xi'an, China
| | - Shi-Jun Yue
- Key Laboratory of Shaanxi Administration of Traditional Chinese Medicine for TCM Compatibility, and State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation), and Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, and Shaanxi Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Shaanxi University of Chinese Medicine, Xi'an, China
| | - Huan Gao
- Key Laboratory of Shaanxi Administration of Traditional Chinese Medicine for TCM Compatibility, and State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation), and Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, and Shaanxi Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Shaanxi University of Chinese Medicine, Xi'an, China
| | - Yan-Yan Chen
- Key Laboratory of Shaanxi Administration of Traditional Chinese Medicine for TCM Compatibility, and State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation), and Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, and Shaanxi Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Shaanxi University of Chinese Medicine, Xi'an, China
| | - Yu-Ping Tang
- Key Laboratory of Shaanxi Administration of Traditional Chinese Medicine for TCM Compatibility, and State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation), and Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, and Shaanxi Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Shaanxi University of Chinese Medicine, Xi'an, China
| |
Collapse
|
34
|
Zhang C, Shao Z, Chen Z, Lin C, Hu S, Lou Z, Li J, Zheng X, Lin N, Gao W. Hydroxysafflor yellow A promotes multiterritory perforating flap survival: an experimental study. Am J Transl Res 2020; 12:4781-4794. [PMID: 32913550 PMCID: PMC7476167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Accepted: 07/16/2020] [Indexed: 06/11/2023]
Abstract
The use of perforator flaps is a common surgical technique in wound repair. However, the area surrounding the multiterritory perforating flap often becomes necrotic due to ischemia. Hydroxysafflor yellow A (HSYA), a traditional Chinese medicine extracted from edible safflower, can be used medicinally to promote angiogenesis, inhibit apoptosis, and alleviate oxidative stress and other biological activities. Here, we investigated the effect of HSYA on perforator flap survival and its potential mechanism. Our results demonstrate that HSYA significantly improves the survival area of perforator flaps, increases blood supply, reduces tissue edema, and increases mean vascular density. HSYA treatment promotes angiogenesis and inhibits oxidative stress, apoptosis, and autophagy in perforator flaps, suggesting many potential mechanisms for flap survival.
Collapse
Affiliation(s)
- Chenxi Zhang
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical UniversityWenzhou 325000, Zhejiang, P. R. China
- Zhejiang Provincial Key Laboratory of OrthopaedicsWenzhou 325000, Zhejiang, P. R. China
- The Second Clinical Medical College of Wenzhou Medical UniversityWenzhou 325027, P. R. China
| | - Zhenxuan Shao
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical UniversityWenzhou 325000, Zhejiang, P. R. China
- Zhejiang Provincial Key Laboratory of OrthopaedicsWenzhou 325000, Zhejiang, P. R. China
- The Second Clinical Medical College of Wenzhou Medical UniversityWenzhou 325027, P. R. China
| | - Zhentai Chen
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical UniversityWenzhou 325000, Zhejiang, P. R. China
- Zhejiang Provincial Key Laboratory of OrthopaedicsWenzhou 325000, Zhejiang, P. R. China
- The Second Clinical Medical College of Wenzhou Medical UniversityWenzhou 325027, P. R. China
| | - Chen Lin
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical UniversityWenzhou 325000, Zhejiang, P. R. China
- Zhejiang Provincial Key Laboratory of OrthopaedicsWenzhou 325000, Zhejiang, P. R. China
- The Second Clinical Medical College of Wenzhou Medical UniversityWenzhou 325027, P. R. China
| | - Sunli Hu
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical UniversityWenzhou 325000, Zhejiang, P. R. China
- Zhejiang Provincial Key Laboratory of OrthopaedicsWenzhou 325000, Zhejiang, P. R. China
- The Second Clinical Medical College of Wenzhou Medical UniversityWenzhou 325027, P. R. China
| | - Zhiling Lou
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical UniversityWenzhou 325000, Zhejiang, P. R. China
- Zhejiang Provincial Key Laboratory of OrthopaedicsWenzhou 325000, Zhejiang, P. R. China
- The Second Clinical Medical College of Wenzhou Medical UniversityWenzhou 325027, P. R. China
| | - Jiafeng Li
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical UniversityWenzhou 325000, Zhejiang, P. R. China
- Zhejiang Provincial Key Laboratory of OrthopaedicsWenzhou 325000, Zhejiang, P. R. China
- The Second Clinical Medical College of Wenzhou Medical UniversityWenzhou 325027, P. R. China
| | - Xuanqi Zheng
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical UniversityWenzhou 325000, Zhejiang, P. R. China
- Zhejiang Provincial Key Laboratory of OrthopaedicsWenzhou 325000, Zhejiang, P. R. China
- The Second Clinical Medical College of Wenzhou Medical UniversityWenzhou 325027, P. R. China
| | - Nan Lin
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical UniversityWenzhou 325000, Zhejiang, P. R. China
- Zhejiang Provincial Key Laboratory of OrthopaedicsWenzhou 325000, Zhejiang, P. R. China
- The Second Clinical Medical College of Wenzhou Medical UniversityWenzhou 325027, P. R. China
| | - Weiyang Gao
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical UniversityWenzhou 325000, Zhejiang, P. R. China
- Zhejiang Provincial Key Laboratory of OrthopaedicsWenzhou 325000, Zhejiang, P. R. China
| |
Collapse
|
35
|
Fang L, Wang KK, Huang Q, Cheng F, Huang F, Liu WW. Nucleolin Mediates LPS-induced Expression of Inflammatory Mediators and Activation of Signaling Pathways. Curr Med Sci 2020; 40:646-653. [PMID: 32862374 DOI: 10.1007/s11596-020-2229-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Accepted: 05/05/2020] [Indexed: 12/19/2022]
Abstract
In this study, we investigated the effects of nucleolin on lipopolysaccharide (LPS)-induced activation of MAPK and NF-KappaB (NF-κB) signaling pathways and secretion of TNF-α, IL-1β and HMGB1 in THP-1 monocytes. Immunofluorescence assay and Western blotting were used to identify the nucleolin expression in cell membrane, cytoplasm and nucleus of THP-1 monocytes. Inactivation of nucleolin was induced by neutralizing antibody against nucleolin. THP-1 monocytes were pretreated with anti-nucleolin antibody for 1 h prior to LPS challenge. The irrelevant IgG group was used as control. Secretion of inflammatory mediators (TNF-α, IL-1β and HMGB1) and activation of MAPK and NF-κB/I-κB signaling pathways were examined to assess the effects of nucleolin on LPS-mediated inflammatory response. Nucleolin existed in cell membrane, cytoplasm and nucleus of THP-1 monocytes. Pretreatment of anti-nucleolin antibody significantly inhibited the LPS-induced secretion of TNF-α, IL-1β and HMGB1. P38, JNK, ERK and NF-κB subunit p65 inhibitors could significantly inhibit the secretion of IL-1β, TNF-α and HMGB1 induced by LPS. Moreover, the phosphorylation of p38, JNK, ERK and p65 (or nuclear translocation of p65) was significantly increased after LPS challenge. In contrast, pretreatment of anti-nucleolin antibody could significantly inhibit the LPS-induced phosphorylation of p38, JNK, ERK and p65 (or nuclear translocation of p65). However, the irrelevant IgG, as a negative control, had no effect on LPS-induced secretion of TNF-α and IL-1β and phosphorylation of p38, JNK, ERK and p65 (or nuclear translocation of p65). We demonstrated that nucleolin mediated the LPS-induced activation of MAPK and NF-κB signaling pathways, and regulated the secretion of inflammatory mediators (TNF-α, IL-1β and HMGB1).
Collapse
Affiliation(s)
- Li Fang
- Department of Cardiology, the First Hospital of Changsha, Changsha, 410008, China.
| | - Kang-Kai Wang
- Department of Pathophysiology, Xiangya School of Medicine, Central South University, Changsha, 410008, China
| | - Qing Huang
- Department of Cardiology, the First Hospital of Changsha, Changsha, 410008, China
| | - Feng Cheng
- Department of Cardiology, the First Hospital of Changsha, Changsha, 410008, China
| | - Fang Huang
- Department of Cardiology, the First Hospital of Changsha, Changsha, 410008, China
| | - Wei-Wei Liu
- Department of Cardiology, the First Hospital of Changsha, Changsha, 410008, China
| |
Collapse
|
36
|
Fei Q, Ma H, Zou J, Wang W, Zhu L, Deng H, Meng M, Tan S, Zhang H, Xiao X, Wang N, Wang K. Metformin protects against ischaemic myocardial injury by alleviating autophagy-ROS-NLRP3-mediated inflammatory response in macrophages. J Mol Cell Cardiol 2020; 145:1-13. [PMID: 32470468 DOI: 10.1016/j.yjmcc.2020.05.016] [Citation(s) in RCA: 74] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 05/18/2020] [Accepted: 05/21/2020] [Indexed: 12/22/2022]
Abstract
Myocardial ischaemia is usually accompanied by inflammatory response which plays a critical role in the myocardial healing and scar formation, while persistent inflammatory response contributes greatly to the myocardial remodeling and consequent heart failure. Metformin (Met), a widely used hypoglycemic drug, has increasingly been shown to exert remarkable cardioprotective effect on ischaemic myocardial injury such as acute myocardial infarction (AMI). However, the underlying mechanisms are still far from being fully understood. In this study, a mouse model of AMI was established through ligating the left anterior descending coronary artery (LAD), 100 mg/kg Met was given immediately after operation once daily for 3 days. It was demonstrated that Met effectively improved the cardiac haemodynamics (LVSP, LVEDP, +dp/dt, -dp/dt), diminished the infarct size, alleviated the disarrangement of myocardial cells and reduced the infiltration of inflammatory cells (macrophages, neutrophils and lymphocytes) in the heart of AMI mice. Mechanistically, Met decreased the expression of NLRP3 and enhanced the accumulation of LC3 puncta in F4/80-positive macrophages in the heart of AMI mice. Single cell suspension of cardiac macrophages was prepared from AMI mice and exhibited increased NLRP3 mRNA and protein expression. In contrast, Met decreased the expression of NLRP3 and p62, whereas increased the ratio of LC3II/LC3I. Additionally, both conditioned medium from H9c2 cardiomyocytes exposed to hydrogen peroxide (H9c2-H2O2-CM) and combination of mtDNA and ATP (mtDNA-ATP) increased the expression of NLRP3 and cleaved caspase-1 (p10) as well as intracellular ROS production in RAW264.7 macrophages, which were abrogated by Met treatment. Strikingly, chloroquine (CQ), 3-methyladenine (3-MA) and knockdown of autophagy-related gene (Atg5) abrogated the inhibitory effects of Met on H9c2-H2O2-CM and mtDNA-ATP-induced NLRP3 expression, release of IL-1β and IL-18 as well as ROS production in RAW264.7 macrophages. Collectively, these findings suggest that Met protects against ischaemic myocardial injury through alleviating autophagy-ROS-NLRP3 axis-mediated inflammatory response in macrophages.
Collapse
Affiliation(s)
- Qin Fei
- Department of Pathophysiology, School of Basic Medical Science, Central South University, Changsha, Hunan 410008, China; Hunan Key Laboratory of Sepsis Translational Medicine, Central South University, Changsha, Hunan 410008, China
| | - Heng Ma
- Department of Pathophysiology, School of Basic Medical Science, Central South University, Changsha, Hunan 410008, China; Hunan Key Laboratory of Sepsis Translational Medicine, Central South University, Changsha, Hunan 410008, China
| | - Jiang Zou
- Department of Pathophysiology, School of Basic Medical Science, Central South University, Changsha, Hunan 410008, China; Hunan Key Laboratory of Sepsis Translational Medicine, Central South University, Changsha, Hunan 410008, China
| | - Wenmei Wang
- Department of Pathophysiology, School of Basic Medical Science, Central South University, Changsha, Hunan 410008, China; Hunan Key Laboratory of Sepsis Translational Medicine, Central South University, Changsha, Hunan 410008, China
| | - Lili Zhu
- Department of Pathophysiology, School of Basic Medical Science, Central South University, Changsha, Hunan 410008, China; Hunan Key Laboratory of Sepsis Translational Medicine, Central South University, Changsha, Hunan 410008, China
| | - Huafei Deng
- Department of Pathophysiology, School of Basic Medical Science, Central South University, Changsha, Hunan 410008, China; Hunan Key Laboratory of Sepsis Translational Medicine, Central South University, Changsha, Hunan 410008, China
| | - Meng Meng
- Department of Pathophysiology, School of Basic Medical Science, Central South University, Changsha, Hunan 410008, China; Hunan Key Laboratory of Sepsis Translational Medicine, Central South University, Changsha, Hunan 410008, China
| | - Sipin Tan
- Department of Pathophysiology, School of Basic Medical Science, Central South University, Changsha, Hunan 410008, China; Hunan Key Laboratory of Sepsis Translational Medicine, Central South University, Changsha, Hunan 410008, China
| | - Huali Zhang
- Department of Pathophysiology, School of Basic Medical Science, Central South University, Changsha, Hunan 410008, China; Hunan Key Laboratory of Sepsis Translational Medicine, Central South University, Changsha, Hunan 410008, China
| | - Xianzhong Xiao
- Department of Pathophysiology, School of Basic Medical Science, Central South University, Changsha, Hunan 410008, China; Hunan Key Laboratory of Sepsis Translational Medicine, Central South University, Changsha, Hunan 410008, China
| | - Nian Wang
- Department of Pathophysiology, School of Basic Medical Science, Central South University, Changsha, Hunan 410008, China; Hunan Key Laboratory of Sepsis Translational Medicine, Central South University, Changsha, Hunan 410008, China; Research Center of China-Africa Infectious Diseases, Xiangya School of Medicine, Central South University, Changsha, Hunan 410008, China.
| | - Kangkai Wang
- Department of Pathophysiology, School of Basic Medical Science, Central South University, Changsha, Hunan 410008, China; Hunan Key Laboratory of Sepsis Translational Medicine, Central South University, Changsha, Hunan 410008, China.
| |
Collapse
|
37
|
Three Ingredients of Safflower Alleviate Acute Lung Injury and Inhibit NET Release Induced by Lipopolysaccharide. Mediators Inflamm 2020; 2020:2720369. [PMID: 32189992 PMCID: PMC7066412 DOI: 10.1155/2020/2720369] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Revised: 01/13/2020] [Accepted: 02/05/2020] [Indexed: 01/28/2023] Open
Abstract
Xuebijing injection is a Chinese herb compound to treat sepsis in China, but it contains many different kinds of components, and each component may have different effects in treating sepsis. The present study was performed to investigate the effect of three ingredients of Xuebijing, safflor yellow A (SYA), hydroxysafflor yellow A (HSYA), and anhydrosafflor yellow B (AHSYB), in lipopolysaccharide- (LPS-) induced acute lung injury (ALI). LPS (10 mg/kg) was injected intratracheally to induce acute lung injury in mice, which were then treated with SYA, HSYA, and AHSYB. The blood, bronchoalveolar lavage fluid (BALF), and lung tissues were collected to detect degree of lung injury, level of inflammation, and neutrophil extracellular traps (NETs). In vitro experiments were performed using HL-60 cells stimulated with phorbol myristate acetate (PMA). Lung injury induced by LPS was alleviated by SYA, HSYA, and AHSYB as demonstrated by the histopathologic test. The three components inhibit LPS-induced elevation of the levels of inflammatory factors and wet-to-dry weight ratio as well as the amount of protein and cells in the BALF. They also induced a remarkably less overlay of myeloperoxidase (MPO) and histone in the immunofluorescence assay and reduced level of MPO-DNA complex in plasma. The in vitro assay showed a similar trend that the three components inhibited PMA-induced NET release in neutrophil-like HL-60 cells. Western blot demonstrated that phosphorylation of c-rapidly accelerated fibrosarcoma (c-Raf), mitogen-activated protein kinase ERK kinase (MEK), and extracellular signal-regulated kinase (ERK) in the lungs of LPS-challenged mice, and PMA-treated HL-60 cells were all significantly reduced by SYA, HSYA, and AHSYB. Therefore, our data demonstrated that three components of XBJ, including SYA, HSYA, and AHSYB, showed a protective effect against LPS-induced lung injury and NET release.
Collapse
|
38
|
Ren C, Wang J, Xian B, Tang X, Liu X, Hu X, Hu Z, Wu Y, Chen C, Wu Q, Chen J, Pei J. Transcriptome analysis of flavonoid biosynthesis in safflower flowers grown under different light intensities. PeerJ 2020; 8:e8671. [PMID: 32117646 PMCID: PMC7039124 DOI: 10.7717/peerj.8671] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Accepted: 01/30/2020] [Indexed: 12/17/2022] Open
Abstract
Background Safflower (Carthamus tinctorius L.) is a domesticated species with a long history of cultivation and widespread distribution across the globe, and light plays an important role in controlling its distribution boundary. Flowers from safflower have been widely used in traditional Chinese medicine because of their ability to improve cerebral blood flow. Flavonoids are the main active compounds in safflower and have many pharmacological effects. In this study, we aimed to explore the relationship between different light intensities and flavonoid biosynthesis in safflower flowers cultivated in greenhouse. Methods The transcriptome of safflower flowers grown under different light intensities were sequenced through BGISEQ-500 platform. After assembled and filtered, Unigenes were annotated by aligning with seven functional databases. Differential expression analysis of two samples was performed with the DEseq2 package. Differentially expressed genes (DEGs) related with flavonoids biosynthesis were analyzed by Real-time PCR (RT-PCR). Flavonoids accumulation in flowers were determined by high performance liquid chromatography and spectrophotometer. Results Transcriptome analysis of safflower flowers cultivated under different light intensities was performed. A total of 99.16 Gb data were obtained, and 78,179 Unigenes were annotated. Among the DEGs, 13 genes were related to flavonoid biosynthesis. The differential expressions of seven key genes were confirmed by RT-PCR. In addition, the levels of some flavonoids were measured in safflower flowers grown under different light intensities. CtHCT3 gene expression showed a significantly negative correlation with kaempferol content in safflower grown under different light intensities. Conclusion Our results strongly suggested that the reduction in light intensity in a suitable range promoted flavonoid biosynthesis in safflower flowers. We suggest that the expressions of HCT genes played an important role in flavonoid accumulation in safflower flowers. Our study lays a foundation for further research on the effects of light on flavonoid biosynthesis in safflower.
Collapse
Affiliation(s)
- Chaoxiang Ren
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China.,Development and Utilization of Chinese Medicine Resources, State Key Laboratory Breeding Base of Systematic Research, Chengdu, China
| | - Jie Wang
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China.,Development and Utilization of Chinese Medicine Resources, State Key Laboratory Breeding Base of Systematic Research, Chengdu, China
| | - Bin Xian
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China.,Development and Utilization of Chinese Medicine Resources, State Key Laboratory Breeding Base of Systematic Research, Chengdu, China
| | - Xiaohui Tang
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China.,Development and Utilization of Chinese Medicine Resources, State Key Laboratory Breeding Base of Systematic Research, Chengdu, China
| | - Xuyun Liu
- Industrial Crop Institute of Yunnan Academy of Agricultural Sciences, Yunnan, China
| | - Xueli Hu
- Industrial Crop Institute of Yunnan Academy of Agricultural Sciences, Yunnan, China
| | - Zunhong Hu
- Industrial Crop Institute of Yunnan Academy of Agricultural Sciences, Yunnan, China
| | - Yiyun Wu
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China.,Development and Utilization of Chinese Medicine Resources, State Key Laboratory Breeding Base of Systematic Research, Chengdu, China
| | - Cuiping Chen
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China.,Development and Utilization of Chinese Medicine Resources, State Key Laboratory Breeding Base of Systematic Research, Chengdu, China
| | - Qinghua Wu
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China.,Development and Utilization of Chinese Medicine Resources, State Key Laboratory Breeding Base of Systematic Research, Chengdu, China
| | - Jiang Chen
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China.,Development and Utilization of Chinese Medicine Resources, State Key Laboratory Breeding Base of Systematic Research, Chengdu, China
| | - Jin Pei
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China.,Development and Utilization of Chinese Medicine Resources, State Key Laboratory Breeding Base of Systematic Research, Chengdu, China
| |
Collapse
|
39
|
Ye JX, Wang M, Wang RY, Liu HT, Qi YD, Fu JH, Zhang Q, Zhang BG, Sun XB. Hydroxysafflor yellow A inhibits hypoxia/reoxygenation-induced cardiomyocyte injury via regulating the AMPK/NLRP3 inflammasome pathway. Int Immunopharmacol 2020; 82:106316. [PMID: 32088642 DOI: 10.1016/j.intimp.2020.106316] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2019] [Revised: 01/23/2020] [Accepted: 02/12/2020] [Indexed: 02/06/2023]
Abstract
Hydroxysafflor yellow A (HSYA) is an effective therapeutic agent that alleviates myocardial ischaemia/reperfusion injury (MIRI), but the exact mechanisms remain elusive. The aim of this study was to investigate the potential protective effect of HSYA against MIRI through mechanisms related to NLRP3 inflammasome regulation. In this study, hypoxia/reoxygenation (H/R)-induced H9c2 cardiomyocytes were treated with HSYA or the AMPK inhibitor, compound C (CC). Our results showed that HSYA pretreatment improved cardiomyocyte viability, maintained mitochondrial membrane potential, reduced apoptotic cardiomyocytes, decreased caspase-3 activity, and inhibited NOD-like receptor 3 (NLRP3) inflammasome activation during H/R injury. Moreover, the inhibition of AMPK activation by the CC inhibitor partially abolished the effects of HSYA treatment, including suppressing the upregulation of NLRP3 inflammasome components (NLRP3, caspase-1 and interleukin-1β) and promoting autophagy (LC3-II/LC3-I and p62). In conclusion, the protective mechanism of HSYA in H/R-induced cardiomyocyte injury is associated with inhibiting NLRP3 inflammasome activation through the AMPK signalling pathway.
Collapse
Affiliation(s)
- Jing-Xue Ye
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, PR China
| | - Min Wang
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, PR China
| | - Rui-Ying Wang
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, PR China
| | - Hai-Tao Liu
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, PR China
| | - Yao-Dong Qi
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, PR China
| | - Jian-Hua Fu
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing 100091, PR China
| | - Qiong Zhang
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing 100091, PR China.
| | - Ben-Gang Zhang
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, PR China.
| | - Xiao-Bo Sun
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, PR China.
| |
Collapse
|
40
|
Chen S, Ma J, Zhu H, Deng S, Gu M, Qu S. Hydroxysafflor yellow A attenuates high glucose-induced human umbilical vein endothelial cell dysfunction. Hum Exp Toxicol 2019; 38:685-693. [PMID: 30873871 DOI: 10.1177/0960327119831065] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
High glucose (HG) induces vascular injury in diabetes. Hydroxysafflor yellow A (HSYA) has been used to ameliorate ischemic cardiovascular diseases in China for many years. In the present study, we assessed whether HSYA has a potential protective role in HG-induced human umbilical vein endothelial cell (HUVEC) injury. Cell viability was determined with an 3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium (MTS) assay. Cell apoptosis was detected by fluorescein isothiocyanate/propidium iodide staining assay. The endothelial cell permeability was measured with a permeability assay. Cell adhesion molecule (CAM) expression, vascular endothelial growth factor, and basic fibroblast growth factor levels were detected with an enzyme-linked immunosorbent assay. Reactive oxygen species (ROS) formation was measured with a DCF-DA assay. Protein expression of NADPH oxidase 4 (NOX4) was measured by Western blotting. Our data indicated that HG increases HUVEC apoptosis, vascular permeability, monocyte adhesion, the level of CAMs, the formation of ROS, and NOX4 expression. Our data revealed that HG increases vascular injury, which is attenuated by HSYA. Because vascular inflammation has a key role in the development of diabetes mellitus, our results implied that HSYA is considered as a potential agent for diabetic vascular injury treatment.
Collapse
Affiliation(s)
- S Chen
- 1 Department of Endocrinology and Metabolism, Shanghai Tenth People's Hospital, Tongji University School of Medicine, 301 Middle Yanchang Road, Shanghai 200072, China
- 2 Department of Endocrinology and Metabolism, Shanghai Gongli Hospital, the Second Military Medical University, Shanghai, China
| | - J Ma
- 2 Department of Endocrinology and Metabolism, Shanghai Gongli Hospital, the Second Military Medical University, Shanghai, China
| | - H Zhu
- 2 Department of Endocrinology and Metabolism, Shanghai Gongli Hospital, the Second Military Medical University, Shanghai, China
| | - S Deng
- 2 Department of Endocrinology and Metabolism, Shanghai Gongli Hospital, the Second Military Medical University, Shanghai, China
| | - M Gu
- 2 Department of Endocrinology and Metabolism, Shanghai Gongli Hospital, the Second Military Medical University, Shanghai, China
| | - S Qu
- 1 Department of Endocrinology and Metabolism, Shanghai Tenth People's Hospital, Tongji University School of Medicine, 301 Middle Yanchang Road, Shanghai 200072, China
| |
Collapse
|
41
|
Zou J, Fei Q, Xiao H, Wang H, Liu K, Liu M, Zhang H, Xiao X, Wang K, Wang N. VEGF-A promotes angiogenesis after acute myocardial infarction through increasing ROS production and enhancing ER stress-mediated autophagy. J Cell Physiol 2019; 234:17690-17703. [PMID: 30793306 DOI: 10.1002/jcp.28395] [Citation(s) in RCA: 128] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Revised: 01/26/2019] [Accepted: 01/30/2019] [Indexed: 12/15/2022]
Abstract
Proangiogenesis is generally regarded as an effective approach for treating ischemic heart disease. Vascular endothelial growth factor (VEGF)-A is a strong and essential proangiogenic factor. Reactive oxygen species (ROS), endoplasmic reticulum (ER) stress, and autophagy are implicated in the process of angiogenesis. This study is designed to clarify the regulatory mechanisms underlying VEGF-A, ROS, ER stress, autophagy, and angiogenesis in acute myocardial infarction (AMI). A mouse model of AMI was successfully established by occluding the left anterior descending coronary artery. Compared with the sham-operated mice, the microvessel density, VEGF-A content, ROS production, expression of vascular endothelial cadherin, positive expression of 78 kDa glucose-regulated protein/binding immunoglobulin protein (GRP78/Bip), and LC3 puncta in CD31-positive endothelial cells of the ischemic myocardium were overtly elevated. Moreover, VEGF-A exposure predominantly increased the expression of beclin-1, autophagy-related gene (ATG) 4, ATG5, inositol-requiring enzyme-1 (IRE-1), GRP78/Bip, and LC3-II/LC3-I as well as ROS production in the human umbilical vein endothelial cells (HUVECs) in a dose and time-dependent manner. Both beclin-1 small interfering RNA and 3-methyladenine treatment predominantly mitigated VEGF-A-induced tube formation and migration of HUVECs, but they failed to elicit any notable effect on VEGF-A-increased expression of GRP78/Bip. Tauroursodeoxycholic acid not only obviously abolished VEGF-A-induced increase of IRE-1, GRP78/Bip, beclin-1 expression, and LC3-II/LC3-I, but also negated VEGF-A-induced tube formation and migration of HUVECs. Furthermore, N-acetyl- l-cysteine markedly abrogated VEGF-A-increased ROS production, IRE-1, GRP78/Bip, beclin-1 expression, and LC3-II/LC3-I in the HUVECs. Taken together, our data demonstrated that increased spontaneous production of VEGF-A may induce angiogenesis after AMI through initiating ROS-ER stress-autophagy axis in the vascular endothelial cells.
Collapse
Affiliation(s)
- Jiang Zou
- Department of Pathophysiology, School of Basic Medical Science, Central South University, Changsha, Hunan, China.,Key Laboratory of Sepsis Translational Medicine of Hunan, Central South University, Changsha, Hunan, China
| | - Qin Fei
- Department of Pathophysiology, School of Basic Medical Science, Central South University, Changsha, Hunan, China.,Key Laboratory of Sepsis Translational Medicine of Hunan, Central South University, Changsha, Hunan, China
| | - Hui Xiao
- Department of Pathophysiology, School of Basic Medical Science, Central South University, Changsha, Hunan, China.,Key Laboratory of Sepsis Translational Medicine of Hunan, Central South University, Changsha, Hunan, China
| | - Hao Wang
- Department of Pathophysiology, School of Basic Medical Science, Central South University, Changsha, Hunan, China.,Key Laboratory of Sepsis Translational Medicine of Hunan, Central South University, Changsha, Hunan, China
| | - Ke Liu
- Department of Pathophysiology, School of Basic Medical Science, Central South University, Changsha, Hunan, China.,Key Laboratory of Sepsis Translational Medicine of Hunan, Central South University, Changsha, Hunan, China
| | - Meidong Liu
- Department of Pathophysiology, School of Basic Medical Science, Central South University, Changsha, Hunan, China.,Key Laboratory of Sepsis Translational Medicine of Hunan, Central South University, Changsha, Hunan, China
| | - Huali Zhang
- Department of Pathophysiology, School of Basic Medical Science, Central South University, Changsha, Hunan, China.,Key Laboratory of Sepsis Translational Medicine of Hunan, Central South University, Changsha, Hunan, China
| | - Xianzhong Xiao
- Department of Pathophysiology, School of Basic Medical Science, Central South University, Changsha, Hunan, China.,Key Laboratory of Sepsis Translational Medicine of Hunan, Central South University, Changsha, Hunan, China
| | - Kangkai Wang
- Department of Pathophysiology, School of Basic Medical Science, Central South University, Changsha, Hunan, China.,Key Laboratory of Sepsis Translational Medicine of Hunan, Central South University, Changsha, Hunan, China.,Department of Laboratory Animals, Hunan Key Laboratory of Animal Models for Human Diseases, Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Nian Wang
- Department of Pathophysiology, School of Basic Medical Science, Central South University, Changsha, Hunan, China.,Key Laboratory of Sepsis Translational Medicine of Hunan, Central South University, Changsha, Hunan, China
| |
Collapse
|
42
|
Wang X, Yan Y, Chen X, Zeng S, Qian L, Ren X, Wei J, Yang X, Zhou Y, Gong Z, Xu Z. The Antitumor Activities of Marsdenia tenacissima. Front Oncol 2018; 8:473. [PMID: 30406035 PMCID: PMC6206208 DOI: 10.3389/fonc.2018.00473] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Accepted: 10/05/2018] [Indexed: 02/05/2023] Open
Abstract
Marsdenia tenacissima (MT), a traditional Chinese herbal medicine, has long been used for thousands of years to treat asthma, tracheitis, rheumatism, etc. An increasing number of recent studies have focused on the antitumor effects of MT. The effects of MT on cancer are the result of various activated signaling pathways and inhibiting factors and the high expression levels of regulatory proteins. MT can inhibit different cancer types including non-small cell lung cancer (NSCLC), malignant tumors, hepatic carcinoma, and so on. This article mainly focuses on the activities and mechanisms of MT. In addition, the efficacy and toxicity of MT are also discussed. Further studies of MT are required for improved medicinal utilization.
Collapse
Affiliation(s)
- Xiang Wang
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Yuanliang Yan
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Xi Chen
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Shuangshuang Zeng
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Long Qian
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Xinxin Ren
- Key Laboratory of Molecular Radiation Oncology of Hunan Province, Center for Molecular Medicine, Xiangya Hospital, Central South University, Changsha, China
| | - Jie Wei
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Xue Yang
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Yangying Zhou
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, China
| | - Zhicheng Gong
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Zhijie Xu
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
43
|
Hydroxysafflor Yellow A: A Promising Therapeutic Agent for a Broad Spectrum of Diseases. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2018; 2018:8259280. [PMID: 30356354 PMCID: PMC6176289 DOI: 10.1155/2018/8259280] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Accepted: 08/12/2018] [Indexed: 01/13/2023]
Abstract
Hydroxysafflor yellow A (HSYA) is one of the major bioactive and water-soluble compounds isolated from Carthami Flos, the flower of safflower (Carthamus tinctorius L.). As a natural pigment with favorable medical use, HSYA has gained extensive attention due to broad and effective pharmacological activities since first isolation in 1993. In clinic, the safflor yellow injection which mainly contains about 80% HSYA was approved by the China State Food and Drug Administration and used to treat cardiac diseases such as angina pectoris. In basic pharmacology, HSYA has been proved to exhibit a broad spectrum of biological effects that include, but not limited to, cardiovascular effect, neuroprotection, liver and lung protection, antitumor activity, metabolism regulation, and endothelium cell protection. Although a great number of studies have been carried out to prove the pharmacological effects and corresponding mechanisms of HYSA, a systemic review of HYSA has not yet been seen. Here, we provide a comprehensive summarization of the pharmacological effects of HYSA. Together with special attention to mechanisms of actions, this review can serve as the basis for further researches and developments of this medicinal compound.
Collapse
|
44
|
Zou J, Wang N, Liu M, Bai Y, Wang H, Liu K, Zhang H, Xiao X, Wang K. Nucleolin mediated pro-angiogenic role of Hydroxysafflor Yellow A in ischaemic cardiac dysfunction: Post-transcriptional regulation of VEGF-A and MMP-9. J Cell Mol Med 2018; 22:2692-2705. [PMID: 29512890 PMCID: PMC5908102 DOI: 10.1111/jcmm.13552] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2017] [Accepted: 01/02/2018] [Indexed: 01/22/2023] Open
Abstract
Hydroxysafflor Yellow A (HSYA), a most representative ingredient of Carthamus tinctorius L., had long been used in treating ischaemic cardiovascular diseases in China and exhibited prominently anticoagulant and pro-angiogenic activities, but the underlying mechanisms remained largely unknown. This study aimed to further elucidate the pro-angiogenic effect and mechanism of HSYA on ischaemic cardiac dysfunction. A C57 mouse model of acute myocardial infarction (AMI) was firstly established, and 25 mg/kg HSYA was intraperitoneally injected immediately after operation and given once, respectively, each morning and evening for 2 weeks. It was found that HSYA significantly improved ischaemia-induced cardiac haemodynamics, enhanced the survival rate, alleviated the myocardial injury and increased the expressions of CD31, vascular endothelial growth factor-A (VEGF-A) and nucleolin in the ischaemic myocardium. In addition, HSYA promoted the migration and tube formation of human umbilical vein endothelial cells (HUVECs), enhanced the expressions of nucleolin, VEGF-A and matrix metalloproteinase-9 (MMP-9) in a dose- and time-dependent manner. However, down-regulation of nucleolin expression sharply abrogated the effect mentioned above of HSYA. Further protein-RNA coimmunoprecipitation and immunoprecipitation-RT-PCR assay showed that nucleolin binded to VEGF-A and MMP-9 mRNA and overexpression of nucleolin up-regulated the mRNA expressions of VEGF-A and MMP-9 in the HUVECs through enhancing the stability of VEGF-A and MMP-9 mRNA. Furthermore, HSYA increased the mRNA expressions of VEGF-A and MMP-9 in the extract of antinucleolin antibody-precipitated protein from the heart of AMI mice. Our data revealed that nucleolin mediated the pro-angiogenic effect of HSYA through post-transcriptional regulation of VEGF-A and MMP-9 expression, which contributed to the protective effect of HSYA on ischaemic cardiac dysfunction.
Collapse
Affiliation(s)
- Jiang Zou
- Department of PathophysiologyXiangya School of MedicineCentral South UniversityChangshaChina
- Translational Medicine Center of SepsisKey Lab of Hunan ProvinceCentral South UniversityChangshaChina
| | - Nian Wang
- Department of PathophysiologyXiangya School of MedicineCentral South UniversityChangshaChina
- Translational Medicine Center of SepsisKey Lab of Hunan ProvinceCentral South UniversityChangshaChina
| | - Manting Liu
- Department of PathophysiologyXiangya School of MedicineCentral South UniversityChangshaChina
- Translational Medicine Center of SepsisKey Lab of Hunan ProvinceCentral South UniversityChangshaChina
| | - Yongping Bai
- Department of Geriatric MedicineXiangya HospitalCentral South UniversityChangshaChina
| | - Hao Wang
- Department of PathophysiologyXiangya School of MedicineCentral South UniversityChangshaChina
- Translational Medicine Center of SepsisKey Lab of Hunan ProvinceCentral South UniversityChangshaChina
| | - Ke Liu
- Department of PathophysiologyXiangya School of MedicineCentral South UniversityChangshaChina
- Translational Medicine Center of SepsisKey Lab of Hunan ProvinceCentral South UniversityChangshaChina
| | - Huali Zhang
- Department of PathophysiologyXiangya School of MedicineCentral South UniversityChangshaChina
- Translational Medicine Center of SepsisKey Lab of Hunan ProvinceCentral South UniversityChangshaChina
| | - Xianzhong Xiao
- Department of PathophysiologyXiangya School of MedicineCentral South UniversityChangshaChina
- Translational Medicine Center of SepsisKey Lab of Hunan ProvinceCentral South UniversityChangshaChina
| | - Kangkai Wang
- Department of PathophysiologyXiangya School of MedicineCentral South UniversityChangshaChina
- Translational Medicine Center of SepsisKey Lab of Hunan ProvinceCentral South UniversityChangshaChina
- Department of Laboratory AnimalsXiangya School of MedicineCentral South UniversityChangshaChina
| |
Collapse
|