1
|
Saxena S, Volpe MC, Agostinis C, Vodret S, Ring NAR, Colliva A, Vuerich R, Braga L, Cook-Calvete A, Romano F, Zito G, Lorenzo GD, Ura B, Ricci G, Pinamonti M, Bulla R, Zacchigna S. Anti-miRNA therapeutics for uterine fibroids. Biomed Pharmacother 2025; 185:117946. [PMID: 40022993 DOI: 10.1016/j.biopha.2025.117946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2025] [Revised: 02/21/2025] [Accepted: 02/24/2025] [Indexed: 03/04/2025] Open
Abstract
BACKGROUND Uterine leiomyomas arise from altered uterine smooth muscle cell proliferation in the myometrium. Available treatments are limited and fraught with major side effects. Here, we leveraged data from a high-throughput screening using human microRNA mimics and selected miR-148a-3p as a therapeutic target. The study aimed to assess the therapeutic potential of a miR-148a-3p inhibitor in suppressing the proliferation of uterine leiomyoma cells and in a xenograft mouse model. METHODS Clinical samples of uterine leiomyoma were used to isolate primary uterine leiomyoma cells and develop a subcutaneous xenograft mouse model. Cells were transfected with both miR-148a-3p mimic and anti-miR-148a-3p to assess the effect of miR-148a-3p on-cell proliferation. Animals were administered anti-miR-148a-3p-LNA via both local (intra-tumoral) and systemic (intraperitoneal) routes. Tumor volume was measured using ultrasonography, followed by histological and immunofluorescence staining, and target gene expression analysis. RESULTS Transfection of primary cells with miR-148a-3p mimic resulted in increased smooth-muscle cell proliferation, whereas anti-miR-148a-3p LNA reduced their proliferation. Both local and systemic delivery of anti-miR-148a-3p LNA reduced tumor volume and cell proliferation. Anti-miR-148a-3p LNA also led to reduced levels of miR-148a-3p in vivo, paralleled by the up-regulation of its target genes TXNIP and Nrp1. CONCLUSION Anti-miR-148a-3p LNA inhibits the proliferation of patient-derived leiomyoma cells and tumor growth in vivo, by suppressing miR-148a-3p levels and increasing TXNIP and Nrp1 gene expression. The highest therapeutic effect was observed with systemic administration, positioning miR-148a-3p inhibition as a promising therapeutic strategy for uterine leiomyoma in humans.
Collapse
Affiliation(s)
- Sharad Saxena
- Cardiovascular Biology Laboratory, International Centre for Genetic Engineering and Biotechnology (ICGEB), Trieste, Italy
| | - Maria Concetta Volpe
- Cardiovascular Biology Laboratory, International Centre for Genetic Engineering and Biotechnology (ICGEB), Trieste, Italy; Functional Biology Laboratory, International Centre for Genetic Engineering and Biotechnology (ICGEB), Trieste, Italy; Department of Life Sciences, University of Trieste, Trieste, Italy
| | - Chiara Agostinis
- Institute for Maternal and Child Health, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Burlo Garofolo, Trieste, Italy
| | - Simone Vodret
- Cardiovascular Biology Laboratory, International Centre for Genetic Engineering and Biotechnology (ICGEB), Trieste, Italy
| | - Nadja Anneliese Ruth Ring
- Cardiovascular Biology Laboratory, International Centre for Genetic Engineering and Biotechnology (ICGEB), Trieste, Italy
| | - Andrea Colliva
- Cardiovascular Biology Laboratory, International Centre for Genetic Engineering and Biotechnology (ICGEB), Trieste, Italy
| | - Roman Vuerich
- Cardiovascular Biology Laboratory, International Centre for Genetic Engineering and Biotechnology (ICGEB), Trieste, Italy; Department of Life Sciences, University of Trieste, Trieste, Italy
| | - Luca Braga
- Functional Biology Laboratory, International Centre for Genetic Engineering and Biotechnology (ICGEB), Trieste, Italy
| | - A Cook-Calvete
- Cardiovascular Biology Laboratory, International Centre for Genetic Engineering and Biotechnology (ICGEB), Trieste, Italy
| | - Federico Romano
- Institute for Maternal and Child Health, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Burlo Garofolo, Trieste, Italy
| | - Gabriella Zito
- Institute for Maternal and Child Health, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Burlo Garofolo, Trieste, Italy
| | - Giovanni Di Lorenzo
- Institute for Maternal and Child Health, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Burlo Garofolo, Trieste, Italy
| | - Blendi Ura
- Institute for Maternal and Child Health, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Burlo Garofolo, Trieste, Italy
| | - Giuseppe Ricci
- Institute for Maternal and Child Health, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Burlo Garofolo, Trieste, Italy; Department of Medicine, Surgery and Health sciences, University of Trieste, Trieste, Italy
| | | | - Roberta Bulla
- Department of Life Sciences, University of Trieste, Trieste, Italy
| | - Serena Zacchigna
- Cardiovascular Biology Laboratory, International Centre for Genetic Engineering and Biotechnology (ICGEB), Trieste, Italy; Department of Medicine, Surgery and Health sciences, University of Trieste, Trieste, Italy.
| |
Collapse
|
2
|
Peng M, Yao Z, Zhang J, Lin Y, Xu L, Zhang Q, Liao J, Cai X. Discovery and validation of anti-arthritic ingredients and mechanisms of Qingfu Juanbi Tang, a Chinese herbal formulation, on rheumatoid arthritis. JOURNAL OF ETHNOPHARMACOLOGY 2024; 329:118140. [PMID: 38565409 DOI: 10.1016/j.jep.2024.118140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 03/27/2024] [Accepted: 03/30/2024] [Indexed: 04/04/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Qingfu Juanbi Tang (QFJBT), a novel and improved Chinese herbal formulation, has surged in recent years for its potential in the therapy of rheumatoid arthritis (RA). Anti-arthritic effects and underlying molecular mechanisms of QFJBT have increasingly become a focal point in research. AIM OF THE STUDY This study utilized network pharmacology, molecular docking, and experimental validation to elucidate effective ingredients and anti-arthritic mechanisms of QFJBT. MATERIALS AND METHODS Targets associated with QFJBT and RA were identified from relevant databases and standardized using the Uniprot for gene nomenclature. A "QFJBT-ingredient-target network" and a "Venn diagram of QFJBT and RA targets" were created from the data. The overlap in the Venn diagram highlighted potential targets of QFJBT in the treatment of RA. These targets were subjected to PPI network, GO, and KEGG pathway analysis. The findings were subsequently confirmed through molecular docking and pharmacological experiments to propose the mechanism of action of QFJBT. RESULTS The study identified 236 active ingredients in QFJBT, with 120 predicted to be effective against RA. Molecular docking showed high binding affinity of key targets (JUN, PTGS2, and TNF-α) with bioactive compounds (rhein, sinomenine, calycosin, and paeoniflorin) of QFJBT. Pharmacodynamic evaluation demonstrated the effects of QFJBT at the dose of 4.56 g/kg in ameliorating symptoms of AIA rats and in reducing levels of JUN, PTGS2, and TNF-α in synovial tissues. In vitro studies further exhibited that rhein, paeoniflorin, sinomenine, calycosin, and QFJBT-containing serum significantly inhibited abnormal proliferation of RA fibroblast-like synoviocytes. Interestingly, rhein and paeoniflorin specifically decreased p-JUN/JUN expression and TNF-α release, respectively, while sinomenine and calycosin selectively increased PTGS2 expression. Consistently, QFJBT-containing serum demonstrated similar effects as those active ingredients identified in QFJBT did. CONCLUSIONS QFJBT, QFJBT-containing serum, and its active ingredients (rhein, paeoniflorin, sinomenine, and calycosin) suppress inflammatory responses in RA. Anti-arthritic effects of QFJBT and its active ingredients are likely linked to their modulatory impact on identified hub targets.
Collapse
Affiliation(s)
- Muzi Peng
- Department of Rheumatology of First Hospital, Hunan University of Chinese Medicine, Changsha, Hunan, 410007, China; Institute of Innovation and Applied Research in Chinese Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, 410208, China
| | - Zhongliu Yao
- Department of Rheumatology of First Hospital, Hunan University of Chinese Medicine, Changsha, Hunan, 410007, China
| | - Junlan Zhang
- Institute of Innovation and Applied Research in Chinese Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, 410208, China
| | - Ye Lin
- Institute of Innovation and Applied Research in Chinese Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, 410208, China
| | - Li Xu
- Institute of Innovation and Applied Research in Chinese Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, 410208, China
| | - Qin Zhang
- Department of Rheumatology of First Hospital, Hunan University of Chinese Medicine, Changsha, Hunan, 410007, China.
| | - Jing Liao
- Institute of Innovation and Applied Research in Chinese Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, 410208, China.
| | - Xiong Cai
- Department of Rheumatology of First Hospital, Hunan University of Chinese Medicine, Changsha, Hunan, 410007, China; Institute of Innovation and Applied Research in Chinese Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, 410208, China.
| |
Collapse
|
3
|
Sun Y, Xie L, Ren X, Ran L, He H, Kong F, Yang S, Zhang M. miR-148a-3p regulates proliferation and apoptosis of idiopathic gingival fibroma by targeting NPTX1. Oral Dis 2024; 30:2136-2149. [PMID: 37357360 DOI: 10.1111/odi.14655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 05/18/2023] [Accepted: 06/07/2023] [Indexed: 06/27/2023]
Abstract
OBJECTIVE Idiopathic gingival fibromatosis (IGF) is a rare heterogeneous disease that results in the progressive and diffuse hyperplasia of gingival tissues. MicroRNAs are implicated in the development and progression of various tumors. The present study aimed to explore the potential roles and mechanisms of miR-148a-3p in IGF. METHODS Gingival fibroblasts (GFs) were transfected with miR-148a-3p mimics, miR-148a-3p inhibitors, or siNPTX1, and then, the proliferation and apoptosis of GFs and the expression of related genes were evaluated using Cell Counting Kit-8 assays, 5-ethynyl-2'-deoxyuridine assays, flow cytometry, reverse transcription-quantitative polymerase chain reaction, and western blot analysis, respectively. RESULTS miR-148a-3p was highly expressed in GFs of IGF (IGF-GFs) as compared with normal GFs (N-GFs). Overexpression of miR-148a-3p promoted the proliferation and inhibited the apoptosis of N-GFs, whereas downregulation of miR-148a-3p had the opposite effect in IGF-GFs. Knockdown of NPTX1 reversed miR-148a-3p-mediated effects in IGF-GFs. Dual-luciferase reporter assay confirmed that NPTX1 is a direct target of miR-148a-3p. CONCLUSION These findings identify that miR-148a-3p could regulate cell proliferation and apoptosis by targeting NPTX1, providing new insights for the further study of the molecular mechanism and treatment of IGF.
Collapse
Affiliation(s)
- Yuyang Sun
- Kunming Medical University Affiliated Stomatology Hospital, Kunming, China
- Yunnan Key Laboratory of Stomatology, Kunming, China
- Department of Stomatology, Taihe Affiliated Hospital of Hubei University of Medicine, Shiyan, China
| | - Liangkun Xie
- Kunming Medical University Affiliated Stomatology Hospital, Kunming, China
| | - Xiaobin Ren
- Kunming Medical University Affiliated Stomatology Hospital, Kunming, China
| | - Liquan Ran
- Kunming Medical University Affiliated Stomatology Hospital, Kunming, China
| | - Hongbing He
- Kunming Medical University Affiliated Stomatology Hospital, Kunming, China
| | - Fanying Kong
- Kunming Medical University Affiliated Stomatology Hospital, Kunming, China
- Yunnan Key Laboratory of Stomatology, Kunming, China
| | - Shuran Yang
- Kunming Medical University Affiliated Stomatology Hospital, Kunming, China
- Yunnan Key Laboratory of Stomatology, Kunming, China
| | - Mingzhu Zhang
- Kunming Medical University Affiliated Stomatology Hospital, Kunming, China
| |
Collapse
|
4
|
Yang J, Zhang Z, Liu H, Wang J, Xie S, Li P, Wen J, Wei S, Li R, Ma X, Zhao Y. Network Pharmacology and Experimental Validation of Qingwen Baidu Decoction Therapeutic Potential in COVID-19-related Lung Injury. Comb Chem High Throughput Screen 2024; 27:1286-1302. [PMID: 37957903 DOI: 10.2174/0113862073236899230919062725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 07/15/2023] [Accepted: 08/04/2023] [Indexed: 11/15/2023]
Abstract
BACKGROUND AND PURPOSE Coronavirus disease 2019 (COVID-19) is a lifethreatening disease worldwide due to its high infection and serious outcomes resulting from acute lung injury. Qingwen Baidu decoction (QBD), a well-known herbal prescription, has shown significant efficacy in patients with Coronavirus disease 2019. Hence, this study aims to uncover the molecular mechanism of QBD in treating COVID-19-related lung injury. METHODS Traditional Chinese Medicine Systems Pharmacology database (TCMSP), DrugBanks database, and Chinese Knowledge Infrastructure Project (CNKI) were used to retrieve the active ingredients of QBD. Drug and disease targets were collected using UniProt and Online Mendelian Inheritance in Man databases (OMIM). The core targets of QBD for pneumonia were analyzed by the Protein-Protein Interaction Network (PPI), Gene Ontology (GO), and Kyoto Encyclopedia of Genes and Genomes (KEGG) to reveal the underlying molecular mechanisms. The analysis of key targets using molecular docking and animal experiments was also validated. RESULTS A compound-direct-acting target network mainly containing 171 compounds and 110 corresponding direct targets was constructed. The key targets included STAT3, c-JUN, TNF-α, MAPK3, MAPK1, FOS, PPARG, MAPK8, IFNG, NFκB1, etc. Moreover, 117 signaling pathways mainly involved in cytokine storm, inflammatory response, immune stress, oxidative stress and glucose metabolism were found by KEGG. The molecular docking results showed that the quercetin, alanine, and kaempferol in QBD demonstrated the strongest affinity to STAT3, c- JUN, and TNF-α. Experimental results displayed that QBD could effectively reduce the pathological damage to lung tissue by LPS and significantly alleviate the expression levels of the three key targets, thus playing a potential therapeutic role in COVID-19. CONCLUSION QBD might be a promising therapeutic agent for COVID-19 via ameliorating STAT3-related signals.
Collapse
Affiliation(s)
- Ju Yang
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
- Department of Pharmacy, 302 Military Hospital of China, Beijing, 100039, China
| | - Zhao Zhang
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
- Department of Pharmacy, 302 Military Hospital of China, Beijing, 100039, China
| | - Honghong Liu
- Department of Pharmacy, 302 Military Hospital of China, Beijing, 100039, China
| | - Jiawei Wang
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
- Department of Pharmacy, 302 Military Hospital of China, Beijing, 100039, China
| | - Shuying Xie
- Department of Pharmacy, 302 Military Hospital of China, Beijing, 100039, China
| | - Pengyan Li
- Department of Pharmacy, 302 Military Hospital of China, Beijing, 100039, China
| | - Jianxia Wen
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
- Department of Pharmacy, 302 Military Hospital of China, Beijing, 100039, China
| | - Shizhang Wei
- Department of Pharmacy, 302 Military Hospital of China, Beijing, 100039, China
| | - Ruisheng Li
- Department of Pharmacy, 302 Military Hospital of China, Beijing, 100039, China
| | - Xiao Ma
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Yanling Zhao
- Department of Pharmacy, 302 Military Hospital of China, Beijing, 100039, China
| |
Collapse
|
5
|
Vu TH, Hong Y, Heo J, Kang S, Lillehoj HS, Hong YH. Chicken miR-148a-3p regulates immune responses against AIV by targeting the MAPK signalling pathway and IFN-γ. Vet Res 2023; 54:110. [PMID: 37993949 PMCID: PMC10664352 DOI: 10.1186/s13567-023-01240-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 09/17/2023] [Indexed: 11/24/2023] Open
Abstract
MicroRNAs are involved in the immune systems of host animals and play essential roles in several immune-related pathways. In the current study, we investigated the systemic biological function of the chicken miRNA gga-miR-148a-3p on immune responses in chicken lines resistant and susceptible to HPAIV-H5N1. We found that gga-miR-148a expression in the lung tissue of H5N1-resistant chickens was significantly downregulated during HPAIV-H5N1 infection. Overexpression of gga-miR-148a and a reporter construct with wild type or mutant IFN-γ, MAPK11, and TGF-β2 3' untranslated region (3' UTR)-luciferase in chicken fibroblasts showed that gga-miR-148a acted as a direct translational repressor of IFN-γ, MAPK11, and TGF-β2 by targeting their 3' UTRs. Furthermore, miR-148a directly and negatively influenced the expression of signalling molecules related to the MAPK signalling pathway, including MAPK11, TGF-β2, and Jun, and regulated antiviral responses through interferon-stimulated genes and MHC class I and class II genes by targeting IFN-γ. Downstream of the MAPK signalling pathway, several proinflammatory cytokines such as IL-1β, IFN-γ, IL-6, TNF-α, IFN-β, and interferon-stimulated genes were downregulated by the overexpression of gga-miR-148a. Our data suggest that gga-miR-148a-3p is an important regulator of the MAPK signalling pathway and antiviral response. These findings improve our understanding of the biological functions of gga-miR-148a-3p, the mechanisms underlying the MAPK signalling pathway, and the antiviral response to HPAIV-H5N1 infection in chickens as well as the role of gga-miR-148a-3p in improving the overall performance of chicken immune responses for breeding disease-resistant chickens.
Collapse
Affiliation(s)
- Thi Hao Vu
- Department of Animal Science and Technology, Chung-Ang University, Anseong, 17546, Republic of Korea
- Department of Biochemistry and Immunology, National Institute of Veterinary Research, Hanoi, 100000, Vietnam
| | - Yeojin Hong
- Department of Animal Science and Technology, Chung-Ang University, Anseong, 17546, Republic of Korea
| | - Jubi Heo
- Department of Animal Science and Technology, Chung-Ang University, Anseong, 17546, Republic of Korea
| | - Suyeon Kang
- Department of Animal Science and Technology, Chung-Ang University, Anseong, 17546, Republic of Korea
| | - Hyun S Lillehoj
- Animal Biosciences and Biotechnology Laboratory, Agricultural Research Services, United States Department of Agriculture, Beltsville, MD, 20705, USA
| | - Yeong Ho Hong
- Department of Animal Science and Technology, Chung-Ang University, Anseong, 17546, Republic of Korea.
| |
Collapse
|
6
|
Qin YF, Zhou ZY, Fu HW, Lin HM, Xu LB, Wu WR, Liu C, Xu XL, Zhang R. Hepatitis B Virus Surface Antigen Promotes Stemness of Hepatocellular Carcinoma through Regulating MicroRNA-203a. J Clin Transl Hepatol 2023; 11:118-129. [PMID: 36406317 PMCID: PMC9647105 DOI: 10.14218/jcth.2021.00373] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 11/26/2021] [Accepted: 03/21/2022] [Indexed: 12/04/2022] Open
Abstract
BACKGROUND AND AIMS Patients with persistent positive hepatitis B surface antigen (HBsAg), even with a low HBV-DNA load, have a higher risk of hepatocellular carcinoma (HCC) than those without HBV infection. Given that tumor stemness has a critical role in the occurrence and maintenance of neoplasms, this study aimed to explore whether HBsAg affects biological function and stemness of HCC by regulating microRNA, and to explore underlying mechanisms. METHODS We screened out miR-203a, the most significant down-regulated microRNA in the microarray analysis of HBsAg-positive samples and focused on that miRNA in the ensuing study. In vitro and in vivo functional experiments were performed to assess its regulatory function. The effect of miR-203a on stemness and the possible correlation with BMI1 were analyzed in this study. RESULTS MiR-203a was significantly down-regulated in HBsAg-positive HCC with the sharpest decrease shown in microarray analysis. The negative correlation between miR-203a and HBsAg expression was confirmed by quantitative real-time PCR after stimulation or overexpression/knockdown of HBsAg in cells. We demonstrated the function of miR-203a in inhibiting HCC cell proliferation, migration, clonogenic capacity, and tumor development in vivo. Furthermore, the overexpression of miR-203a remarkably increases the sensitivity of tumor cells to 5-FU treatment and decreases the proportion of HCC cells with stem markers. In concordance with our study, the survival analysis of both The Cancer Genome Atlas database and samples in our center indicated a worse prognosis in patients with low level of miR-203a. We also found that BMI1, a gene maintains the self-renewal capacity of stem cells, showed a significant negative correlation with miR-203a in HCC specimen (p<0.001). Similarly, opposite BMI1 changes after overexpression/knockdown of miR-203a were also confirmed in vitro. Dual luciferase reporting assay suggested that miR-203a may regulate BMI1 expression by direct binding. CONCLUSIONS HBsAg may promote the development of HCC and tumor stemness by inhibiting miR-203a, resulting in poor prognosis. miR-203a may serve as a crucial treatment target in HBsAg-positive HCC. More explicit mechanistic studies and animal experiments need to be conducted as a next step.
Collapse
Affiliation(s)
- Yu-Fei Qin
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation and Department of Biliary-Pancreatic Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Zi-Yu Zhou
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation and Department of Biliary-Pancreatic Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Hou-Wei Fu
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation and Department of Biliary-Pancreatic Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Hao-Ming Lin
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation and Department of Biliary-Pancreatic Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Lei-Bo Xu
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation and Department of Biliary-Pancreatic Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Wen-Rui Wu
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation and Department of Biliary-Pancreatic Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Chao Liu
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation and Department of Biliary-Pancreatic Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Xiao-Lin Xu
- Department of Ultrasound, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
- Correspondence to: Xiao-Lin Xu, Department of Ultrasound, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510120, China. E-mail: . Rui Zhang, Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation and Department of Biliary-Pancreatic Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510120, China. ORCID: https://orcid.org/0000-0003-3335-093. Tel: +86-20-34070133, Fax: +86-20-3407109, E-mail:
| | - Rui Zhang
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation and Department of Biliary-Pancreatic Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
- Correspondence to: Xiao-Lin Xu, Department of Ultrasound, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510120, China. E-mail: . Rui Zhang, Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation and Department of Biliary-Pancreatic Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510120, China. ORCID: https://orcid.org/0000-0003-3335-093. Tel: +86-20-34070133, Fax: +86-20-3407109, E-mail:
| |
Collapse
|
7
|
Wong VCL, Wong MI, Lee VHF, Man K, Ng KTP, Cheung TT. Prognostic MicroRNA Fingerprints Predict Recurrence of Early-Stage Hepatocellular Carcinoma Following Hepatectomy. J Cancer 2023; 14:480-489. [PMID: 36860918 PMCID: PMC9969587 DOI: 10.7150/jca.79593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Accepted: 12/24/2022] [Indexed: 02/15/2023] Open
Abstract
Purpose: This study aims to develop liquid biopsy assays for early HCC diagnosis and prognosis. Methods: Twenty-three microRNAs were first consolidated as a panel (HCCseek-23 panel) based on their reported functions in HCC development. Serum samples were collected from 103 early-stage HCC patients before and after hepatectomy. Quantitative PCR and machine learning random forest models were applied to develop diagnostic and prognostic models. Results: For HCC diagnosis, HCCseek-23 panel demonstrated 81% sensitivity and 83% specificity for identifying HCC in the early-stage; it showed 93% sensitivity for identifying alpha-fetoprotein (AFP)-negative HCC. For HCC prognosis, the differential expressions of 8 microRNAs (HCCseek-8 panel: miR-145, miR-148a, miR-150, miR-221, miR-223, miR-23a, miR-374a, and miR-424) were significantly associated with disease-free survival (DFS) (Log-rank test p-value = 0.001). Further model improvement using these HCCseek-8 panel in combination with serum biomarkers (i.e. AFP, ALT, and AST) demonstrated a significant association with DFS (Log-rank p-value = 0.011 and Cox proportional hazards analyses p-value = 0.002). Conclusion: To the best of our knowledge, this is the first report to integrate circulating miRNAs, AST, ALT, AFP, and machine learning for predicting DFS in early HCC patients undergoing hepatectomy. In this setting, HCCSeek-23 panel is a promising circulating microRNA assay for diagnosis, while HCCSeek-8 panel is promising for prognosis to identify early HCC recurrence.
Collapse
Affiliation(s)
- Victor Chun-Lam Wong
- OncoSeek Limited, Hong Kong Science and Technology Parks, Hong Kong Special Administrative Region, People's Republic of China,✉ Corresponding author: Department of Surgery, The University of Hong Kong, 21 Sassoon Road, Pokfulam, Hong Kong Special Administrative Region, People's Republic of China; OncoSeek Limited, Hong Kong Science and Technology Parks, Hong Kong Special Administrative Region, People's Republic of China. E-mail addresses: (TC), (VW); Phone: (+852) 2255 3025 (TC); (+852) 3188 9335 (VW)
| | - Ming-In Wong
- OncoSeek Limited, Hong Kong Science and Technology Parks, Hong Kong Special Administrative Region, People's Republic of China
| | - Victor Ho-Fun Lee
- Department of Clinical Oncology, Queen Mary Hospital, LKS Faculty of Medicine, The Hong Kong Special Administrative Region, People's Republic of China
| | - Kwan Man
- Department of Surgery, Queen Mary Hospital, LKS Faculty of Medicine, The Hong Kong Special Administrative Region, People's Republic of China
| | - Kevin Tak-Pan Ng
- Department of Surgery, Queen Mary Hospital, LKS Faculty of Medicine, The Hong Kong Special Administrative Region, People's Republic of China
| | - Tan To Cheung
- Department of Surgery, Queen Mary Hospital, LKS Faculty of Medicine, The Hong Kong Special Administrative Region, People's Republic of China,✉ Corresponding author: Department of Surgery, The University of Hong Kong, 21 Sassoon Road, Pokfulam, Hong Kong Special Administrative Region, People's Republic of China; OncoSeek Limited, Hong Kong Science and Technology Parks, Hong Kong Special Administrative Region, People's Republic of China. E-mail addresses: (TC), (VW); Phone: (+852) 2255 3025 (TC); (+852) 3188 9335 (VW)
| |
Collapse
|
8
|
Cao L, Zhu L, Cheng L. ncRNA-Regulated LAYN Serves as a Prognostic Biomarker and Correlates with Immune Cell Infiltration in Hepatocellular Carcinoma: A Bioinformatics Analysis. BIOMED RESEARCH INTERNATIONAL 2022; 2022:5357114. [PMID: 36398067 PMCID: PMC9666023 DOI: 10.1155/2022/5357114] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 10/05/2022] [Accepted: 10/17/2022] [Indexed: 10/27/2024]
Abstract
Liver hepatocellular carcinoma (LIHC) remains a lethal disease for humans. Immune checkpoint inhibitors (ICIs) targeting PD1/PD-L1 and CTLA4 offered new hopes for advanced-stage patients. Novel immune biomarkers and therapeutic targets are urgently needed. For the first time, we evaluated the expression and prognostic value of Layilin (LAYN) using in silico analyses and uncovered the carcinogenic role of LAYN in LIHC. The HCG18/hsa-mir-148a/LAYN axis was predicted as the upstream mechanism. Moreover, gene set enrichment analysis (GSEA) revealed that LAYN and its coexpressed genes primarily participated in immune response pathways, and LAYN expression was found significantly correlated with tumor immune cell infiltration in LIHC tissues. In general, our data provided evidence that HCG18/hsa-mir-148a-regulated high expression of LAYN is associated with immune cell infiltration and unfavorable prognosis of LIHC patients.
Collapse
Affiliation(s)
- Liangbin Cao
- Department of Anaesthesiology, The First Affiliated Hospital of Wannan Medical College (Yijishan Hospital of Wannan Medical College), Wuhu, Anhui Province, China
| | - Lingling Zhu
- NHC Key Laboratory of Hormones and Development, Tianjin Key Laboratory of Metabolic Diseases, Chu Hsien-I Memorial Hospital & Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin, China
| | - Li Cheng
- Department of Urology, The First Affiliated Hospital of Wannan Medical College (Yijishan Hospital of Wannan Medical College), Wuhu, Anhui Province, China
| |
Collapse
|
9
|
Guan J, Liu X, Wang K, Jia Y, Yang B. Identification of a novel necroptosis-associated miRNA signature for predicting the prognosis in head and neck squamous cell carcinoma. Open Med (Wars) 2022; 17:1682-1698. [PMID: 36349193 PMCID: PMC9601379 DOI: 10.1515/med-2022-0575] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 08/31/2022] [Accepted: 09/02/2022] [Indexed: 09/23/2023] Open
Abstract
Head and neck squamous cell carcinoma (HNSCC) is one of the most aggressive malignancies that have a poor prognosis. Necroptosis has been demonstrated in recent years to be a form of inflammatory cell death occurring in multicellular organism, which plays complex roles in cancer. However, the expression of necroptosis-related miRNAs and genes in HNSCC and their correlations with prognosis remain unclear. In this study, R software was used to screen differentially expressed miRNAs downloaded from The Cancer Genome Atlas. A prognostic model containing six necroptosis-related miRNAs (miR-141-3p, miR-148a-3p, miR-331-3p, miR-543, miR-425-5p, and miR-7-5p) was generated, whose risk score was validated as an independent prognostic factor for HNSCC. Target genes of the key miRNAs were obtained from TargetScan, miRDB, and miRTarBase, and 193 genes in the intersection of the three databases were defined as consensus genes. Kyoto Encyclopedia of Genes and Genomes and Gene Ontology analyses indicated that the composition of the tumor microenvironment as well as specific pathways may be closely related to necroptosis in HNSCC. Nine key genes were also obtained by the MCODE and cytoHubba plug-ins of Cytoscape: PIK3CD, NRAS, PTK2, IRS2, IRS1, PARP1, KLF4, SMAD2, and DNMT1. A prognostic model formed by the key gene was also established, which can efficiently predict the overall survival of HNSCC patients. In conclusion, necroptosis-related miRNAs and genes play important roles in tumor development and metastasis and can be used to predict the prognosis of HNSCC.
Collapse
Affiliation(s)
- Jiezhong Guan
- Department of Prosthodontics, Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, Guangdong, China
| | - Xinyu Liu
- Department of Prosthodontics, Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, Guangdong, China
| | - Kang Wang
- Department of Prosthodontics, Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, Guangdong, China
| | - Yiqun Jia
- Stomatology Center, Shenzhen People’s Hospital, The Second Clinical Medical College of Jinan University, The First Affiliated Hospital of Southern University of Science and Technology, Shenzhen, Guangdong, China
| | - Bo Yang
- Department of Prosthodontics, Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, Guangdong, China
| |
Collapse
|
10
|
Wang Q, Feng J, Tang L. Non-Coding RNA Related to MAPK Signaling Pathway in Liver Cancer. Int J Mol Sci 2022; 23:11908. [PMID: 36233210 PMCID: PMC9570382 DOI: 10.3390/ijms231911908] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Revised: 10/03/2022] [Accepted: 10/04/2022] [Indexed: 11/16/2022] Open
Abstract
The advancement in high-throughput sequencing analysis and the evaluation of chromatin state maps have revealed that eukaryotic cells produce many non-coding transcripts/RNAs. Further, a strong association was observed between some non-coding RNAs and cancer development. The mitogen-activated protein kinases (MAPK) belong to the serine-threonine kinase family and are the primary signaling pathways involved in cell proliferation from the cell surface to the nucleus. They play an important role in various human diseases. A few non-coding RNAs associated with the MAPK signaling pathway play a significant role in the development of several malignancies, including liver cancer. In this review, we summarize the molecular mechanisms and interactions of microRNA, lncRNA, and other non-coding RNAs in the development of liver cancer that are associated with the MAPK signaling pathway. Further, we briefly discuss the therapeutic strategies for liver cancer related to ncRNA and the MAPK signaling pathway.
Collapse
Affiliation(s)
- Qiuxia Wang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, China
| | - Jianguo Feng
- Department of Anesthesiology, The Affiliated Hospital of Southwest Medical University, Luzhou 646000, China
- Laboratory of Anesthesiology, Southwest Medical University, Luzhou 646000, China
| | - Liling Tang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, China
| |
Collapse
|
11
|
Identification of the Hub Genes and Potential Regulation Network in Chronic Hepatitis B via Bioinformatics Analysis. DISEASE MARKERS 2022; 2022:6113807. [PMID: 36193503 PMCID: PMC9525735 DOI: 10.1155/2022/6113807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 08/19/2022] [Accepted: 08/29/2022] [Indexed: 12/02/2022]
Abstract
Background Chronic hepatitis B (CHB) is a serious infectious disease which is induced by hepatitis B virus (HBV) infection. This project was conducted to reveal the potential mechanism in CHB development via analyzing the public clinical data. Methods GSE33857 and GSE110217, obtained from the GEO database, were used for bioinformatics excavation. Briefly, the raw data of GSE33857 and GSE110217 were analyzed with the GEO2R, and then the expressed matrix files were generated. The matrix files was visualized as heat map with R software. The targets of the miRNAs were analyzed with the miRDIP database. The functional annotation and pathway enrichment were performed using “clusterProfiler” package in R software. The STRING database was utilized to analyze the interaction of the DEGs, and the PPI and miRNA-mRNA network were established according to the related results. Results 93 downregulated genes and 17 upregulated genes in GES33857, and 111 downregulated and 40 upregulated genes in GSE110217 were identified as the hub nodes. The targets of the DEGs in the datasets were enriched in PI3K/AKT and MAPK pathways and associated with transcriptional regulation. Moreover, PPI and miRNA-mRNA networks were also established with the DEGs and related targets in the datasets. miR-122-5p, miR-125b-5p, miR-136-5p, miR-194-5p, miR-139-5p, miR-140-5p, miR-181a-5p, and miR-29b-3p were identified as the potential biomarkers in CHB. Conclusion Eight miRNAs, including miR-122-5p, miR-125b-5p, miR-136-5p, miR-194-5p, miR-139-5p, miR-140-5p, miR-181a-5p, and miR-29b-3p, were identified as the potential biomarkers in CHB, and the PPI and miRNA-mRNA networks were also established.
Collapse
|
12
|
Roles of microRNAs in Hepatitis C Virus Replication and Pathogenesis. Viruses 2022; 14:v14081776. [PMID: 36016398 PMCID: PMC9413378 DOI: 10.3390/v14081776] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Revised: 08/11/2022] [Accepted: 08/13/2022] [Indexed: 12/12/2022] Open
Abstract
Hepatitis C virus (HCV) infection is associated with the development of chronic liver diseases, e.g., fibrosis, cirrhosis, even hepatocellular carcinoma, and/or extra-hepatic diseases such as diabetes. As an obligatory intracellular pathogen, HCV absolutely relies on host cells to propagate and is able to modulate host cellular factors in favor of its replication. Indeed, lots of cellular factors, including microRNAs (miRNAs), have been identified to be dysregulated during HCV infection. MiRNAs are small noncoding RNAs that regulate protein synthesis of their targeting mRNAs at the post-transcriptional level, usually by suppressing their target gene expression. The miRNAs dysregulated during HCV infection could directly or indirectly modulate HCV replication and/or induce liver diseases. Regulatory mechanisms of various miRNAs in HCV replication and pathogenesis have been characterized. Some dysregulated miRNAs have been considered as the biomarkers for the detection of HCV infection and/or HCV-related diseases. In this review, we intend to briefly summarize the identified miRNAs functioning at HCV replication and pathogenesis, focusing on the recent developments.
Collapse
|
13
|
Zhang N, Zhou J, Zhou Y, Guan F. MicroRNA-148a Inhibits Hepatocellular Carcinoma Cell Growth via Epithelial-to-Mesenchymal Transition and PI3K/AKT Signaling Pathways by Targeting Death Receptor-5. Appl Biochem Biotechnol 2022; 194:2731-2746. [PMID: 35267120 DOI: 10.1007/s12010-022-03863-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Accepted: 02/24/2022] [Indexed: 11/24/2022]
Abstract
The purpose of this study was to investigate the role of microRNA-148a (miR-148a) in hepatocellular carcinoma (HCC) metastasis and explore its potential mechanism in HCC cells. Expression levels of miR-148a were measured using qRT-PCR in 120 HCC tissue samples and two HCC cell lines. Migration and invasion assays were used to determine the role of miR-148a in HCC cells. Flow cytometry was used to access the effect of miR-148a on cell cycle of HCC cells. Western blot was performed to analyze the effect of miR-148a on epithelial-to-mesenchymal transition (EMT) and PI3K/AKT signaling pathways in HCC cells. Luciferase reporter assay was conducted to explore the downstream targets and biological function of miR-148a in HCC cells. The results showed that level of miR-148a was significantly downregulated in both HCC tissue and plasma samples in HCC patients. A higher level of miR-148a was positively correlated with better survival time and prognosis of HCC patients. Transfection of miR-148a inhibited the proliferation, migration and invasion of HCC cell lines. Transfection of miR-148a arrested HCC cells at S phase and promoted apoptosis of HCC cells. Death receptor-5 (DR-5) was identified as a direct target of miR-148a in HCC cell lines. Western blot and qRT-PCR analyses showed that miR-148a upregulated EMT and downregulated PI3K/AKT signaling pathways in HCC cell lines. In conclusion, data in the current study indicate that miR-148a inhibits HCC cells growth via downregulation of EMT and PI3K/AKT signaling pathways by targeting death receptor. These data suggest that miR-148a may serve as a therapeutic target for HCC cancer therapy in the future.
Collapse
Affiliation(s)
- Naipeng Zhang
- Department of General Surgery, Hongqi Hospital affiliated to Mudanjiang Medical University, No.5, Tongxiang Road, Aimin District, Heilongjiang Province, 157000, Mudanjiang City, China
| | - Jian Zhou
- Department of General Surgery, Hongqi Hospital affiliated to Mudanjiang Medical University, No.5, Tongxiang Road, Aimin District, Heilongjiang Province, 157000, Mudanjiang City, China
| | - Yang Zhou
- Department of Stomatology, Hongqi Hospital affiliated to Mudanjiang Medical University, 157000, Mudanjiang City, China
| | - Fulong Guan
- Department of General Surgery, Hongqi Hospital affiliated to Mudanjiang Medical University, No.5, Tongxiang Road, Aimin District, Heilongjiang Province, 157000, Mudanjiang City, China.
| |
Collapse
|
14
|
Zhao J, Wei K, Chang C, Xu L, Jiang P, Guo S, Schrodi SJ, He D. DNA Methylation of T Lymphocytes as a Therapeutic Target: Implications for Rheumatoid Arthritis Etiology. Front Immunol 2022; 13:863703. [PMID: 35309322 PMCID: PMC8927780 DOI: 10.3389/fimmu.2022.863703] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 02/14/2022] [Indexed: 11/28/2022] Open
Abstract
Rheumatoid arthritis (RA) is an autoimmune disease that can cause joint damage and disability. Epigenetic variation, especially DNA methylation, has been shown to be involved in almost all the stages of the pathology of RA, from autoantibody production to various self-effector T cells and the defects of protective T cells that can lead to chronic inflammation and erosion of bones and joints. Given the critical role of T cells in the pathology of RA, the regulatory functions of DNA methylation in T cell biology remain unclear. In this review, we elaborate on the relationship between RA pathogenesis and DNA methylation in the context of different T cell populations. We summarize the relevant methylation events in T cell development, differentiation, and T cell-related genes in disease prediction and drug efficacy. Understanding the epigenetic regulation of T cells has the potential to profoundly translate preclinical results into clinical practice and provide a framework for the development of novel, individualized RA therapeutics.
Collapse
Affiliation(s)
- Jianan Zhao
- Guanghua Clinical Medical College, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Department of Rheumatology, Shanghai Guanghua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Institute of Arthritis Research in Integrative Medicine, Shanghai Academy of Traditional Chinese Medicine, Shanghai, China
| | - Kai Wei
- Guanghua Clinical Medical College, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Department of Rheumatology, Shanghai Guanghua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Institute of Arthritis Research in Integrative Medicine, Shanghai Academy of Traditional Chinese Medicine, Shanghai, China
| | - Cen Chang
- Guanghua Clinical Medical College, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Department of Rheumatology, Shanghai Guanghua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Institute of Arthritis Research in Integrative Medicine, Shanghai Academy of Traditional Chinese Medicine, Shanghai, China
| | - Lingxia Xu
- Guanghua Clinical Medical College, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Department of Rheumatology, Shanghai Guanghua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Institute of Arthritis Research in Integrative Medicine, Shanghai Academy of Traditional Chinese Medicine, Shanghai, China
| | - Ping Jiang
- Guanghua Clinical Medical College, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Department of Rheumatology, Shanghai Guanghua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Institute of Arthritis Research in Integrative Medicine, Shanghai Academy of Traditional Chinese Medicine, Shanghai, China
| | - Shicheng Guo
- Computation and Informatics in Biology and Medicine, University of Wisconsin-Madison, Madison, WI, United States
- Department of Medical Genetics, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, United States
| | - Steven J. Schrodi
- Computation and Informatics in Biology and Medicine, University of Wisconsin-Madison, Madison, WI, United States
- Department of Medical Genetics, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, United States
| | - Dongyi He
- Guanghua Clinical Medical College, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Department of Rheumatology, Shanghai Guanghua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Institute of Arthritis Research in Integrative Medicine, Shanghai Academy of Traditional Chinese Medicine, Shanghai, China
- Arthritis Institute of Integrated Traditional and Western medicine, Shanghai Chinese Medicine Research Institute, Shanghai, China
| |
Collapse
|
15
|
Battaglia R, Alonzo R, Pennisi C, Caponnetto A, Ferrara C, Stella M, Barbagallo C, Barbagallo D, Ragusa M, Purrello M, Di Pietro C. MicroRNA-Mediated Regulation of the Virus Cycle and Pathogenesis in the SARS-CoV-2 Disease. Int J Mol Sci 2021; 22:ijms222413192. [PMID: 34947989 PMCID: PMC8715670 DOI: 10.3390/ijms222413192] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 12/03/2021] [Accepted: 12/04/2021] [Indexed: 12/24/2022] Open
Abstract
In the last few years, microRNA-mediated regulation has been shown to be important in viral infections. In fact, viral microRNAs can alter cell physiology and act on the immune system; moreover, cellular microRNAs can regulate the virus cycle, influencing positively or negatively viral replication. Accordingly, microRNAs can represent diagnostic and prognostic biomarkers of infectious processes and a promising approach for designing targeted therapies. In the past 18 months, the COVID-19 infection from SARS-CoV-2 has engaged many researchers in the search for diagnostic and prognostic markers and the development of therapies. Although some research suggests that the SARS-CoV-2 genome can produce microRNAs and that host microRNAs may be involved in the cellular response to the virus, to date, not enough evidence has been provided. In this paper, using a focused bioinformatic approach exploring the SARS-CoV-2 genome, we propose that SARS-CoV-2 is able to produce microRNAs sharing a strong sequence homology with the human ones and also that human microRNAs may target viral RNA regulating the virus life cycle inside human cells. Interestingly, all viral miRNA sequences and some human miRNA target sites are conserved in more recent SARS-CoV-2 variants of concern (VOCs). Even if experimental evidence will be needed, in silico analysis represents a valuable source of information useful to understand the sophisticated molecular mechanisms of disease and to sustain biomedical applications.
Collapse
|
16
|
Zhao J, Wang Y, Su H, Su L. Non-coding RNAs as biomarkers for hepatocellular carcinoma-A systematic review. Clin Res Hepatol Gastroenterol 2021; 45:101736. [PMID: 34146723 DOI: 10.1016/j.clinre.2021.101736] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Revised: 05/09/2021] [Accepted: 05/21/2021] [Indexed: 02/06/2023]
Abstract
Hepatocellular carcinoma (HCC) is the sixth most common malignancy in the world and the fourth leading cause of cancer-related death, and its incidence is increasing globally. Despite significant advances in treatment strategies for HCC, the prognosis is still poor due to its high recurrence rate. Therefore, there is an urgent need to understand the pathogenesis of HCC and further develop new therapies to improve the prognosis and quality of life of HCC patients. MicroRNAs (miRNAs, miRs) are small non-coding RNAs involved in post-transcriptional regulation of gene expression that is abnormally expressed in cancer-associated genomic regions or vulnerable sites. More and more findings have shown that miRNAs are important regulatory factors of mRNA expression in HCC, and they are receiving more and more attention as a possible key biomarker of HCC. This review mainly summarizes the potential applied value on miRNAs as diagnostic, drug resistant, prognostic, and therapeutic biomarkers in the diagnosis, therapy, and prognosis of HCC. Also, we summarize the research value of long non-coding RNA (lncRNAs), circular RNAs (circRNAs), and miRNAs network in HCC as novel biomarkers, aiming at providing some references for the therapy of HCC.
Collapse
Affiliation(s)
- Jinying Zhao
- The Third-Grade Pharmacological Laboratory on Traditional Chinese Medicine (Approved by State Administration of Traditional Chinese Medicine), China Three Gorges University, Yichang, China
| | - Yanhua Wang
- Department of Morphology, Medical College of China Three Gorges University, Yichang, China.
| | - Huahua Su
- The Third-Grade Pharmacological Laboratory on Traditional Chinese Medicine (Approved by State Administration of Traditional Chinese Medicine), China Three Gorges University, Yichang, China
| | - Lijia Su
- The Third-Grade Pharmacological Laboratory on Traditional Chinese Medicine (Approved by State Administration of Traditional Chinese Medicine), China Three Gorges University, Yichang, China
| |
Collapse
|
17
|
The role of microRNAs in diseases and related signaling pathways. Mol Biol Rep 2021; 49:6789-6801. [PMID: 34718938 DOI: 10.1007/s11033-021-06725-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Accepted: 09/27/2021] [Indexed: 10/19/2022]
Abstract
MicroRNAs (miRNAs) are epigenetic regulators of the gene expression and act through posttranslational modification. They bind to 3'-UTR of target mRNAs to inhibit translation or increase the degradation mRNA in many tissues. Any alteration in the level of miRNA expression in many human diseases indicates their involvement in the pathogenesis of many diseases. On the other hand, the regulation of the signaling pathways is necessary for the maintenance of natural and physiological characteristics of any cell. It is worth mentioning that dysfunction of the signaling pathways manifests itself as a disorder or disease. The significant evidence report that miRNAs regulate the several signaling pathways in many diseases. Base on previous studies, miRNAs can be used for therapeutic or diagnostic purposes. According to the important role of miRNAs on the cell signaling pathways, this article reviews miRNAs involvement in incidence of diseases by changing signaling pathways.
Collapse
|
18
|
Fang Q, Li T, Chen P, Wu Y, Wang T, Mo L, Ou J, Nandakumar KS. Comparative Analysis on Abnormal Methylome of Differentially Expressed Genes and Disease Pathways in the Immune Cells of RA and SLE. Front Immunol 2021; 12:668007. [PMID: 34079550 PMCID: PMC8165287 DOI: 10.3389/fimmu.2021.668007] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Accepted: 04/26/2021] [Indexed: 12/13/2022] Open
Abstract
We identified abnormally methylated, differentially expressed genes (DEGs) and pathogenic mechanisms in different immune cells of RA and SLE by comprehensive bioinformatics analysis. Six microarray data sets of each immune cell (CD19+ B cells, CD4+ T cells and CD14+ monocytes) were integrated to screen DEGs and differentially methylated genes by using R package “limma.” Gene ontology annotations and KEGG analysis of aberrant methylome of DEGs were done using DAVID online database. Protein-protein interaction (PPI) network was generated to detect the hub genes and their methylation levels were compared using DiseaseMeth 2.0 database. Aberrantly methylated DEGs in CD19+ B cells (173 and 180), CD4+ T cells (184 and 417) and CD14+ monocytes (193 and 392) of RA and SLE patients were identified. We detected 30 hub genes in different immune cells of RA and SLE and confirmed their expression using FACS sorted immune cells by qPCR. Among them, 12 genes (BPTF, PHC2, JUN, KRAS, PTEN, FGFR2, ALB, SERB-1, SKP2, TUBA1A, IMP3, and SMAD4) of RA and 12 genes (OAS1, RSAD2, OASL, IFIT3, OAS2, IFIH1, CENPE, TOP2A, PBK, KIF11, IFIT1, and ISG15) of SLE are proposed as potential biomarker genes based on receiver operating curve analysis. Our study suggests that MAPK signaling pathway could potentially differentiate the mechanisms affecting T- and B- cells in RA, whereas PI3K pathway may be used for exploring common disease pathways between RA and SLE. Compared to individual data analyses, more dependable and precise filtering of results can be achieved by integrating several relevant data sets.
Collapse
Affiliation(s)
- Qinghua Fang
- School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
| | - Tingyue Li
- Laboratory of Experimental Oncology, Department of Pathology, Erasmus Medical Center, Rotterdam, Netherlands
| | - Peiya Chen
- Department of Science and Education, First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Yuzhe Wu
- School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
| | - Tingting Wang
- School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
| | - Lixia Mo
- School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
| | - Jiaxin Ou
- School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
| | | |
Collapse
|
19
|
Diallo I, Ho J, Laffont B, Laugier J, Benmoussa A, Lambert M, Husseini Z, Soule G, Kozak R, Kobinger GP, Provost P. Altered microRNA Transcriptome in Cultured Human Liver Cells upon Infection with Ebola Virus. Int J Mol Sci 2021; 22:ijms22073792. [PMID: 33917562 PMCID: PMC8038836 DOI: 10.3390/ijms22073792] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 03/27/2021] [Accepted: 03/30/2021] [Indexed: 02/07/2023] Open
Abstract
Ebola virus (EBOV) is a virulent pathogen, notorious for inducing life-threatening hemorrhagic fever, that has been responsible for several outbreaks in Africa and remains a public health threat. Yet, its pathogenesis is still not completely understood. Although there have been numerous studies on host transcriptional response to EBOV, with an emphasis on the clinical features, the impact of EBOV infection on post-transcriptional regulatory elements, such as microRNAs (miRNAs), remains largely unexplored. MiRNAs are involved in inflammation and immunity and are believed to be important modulators of the host response to viral infection. Here, we have used small RNA sequencing (sRNA-Seq), qPCR and functional analyses to obtain the first comparative miRNA transcriptome (miRNome) of a human liver cell line (Huh7) infected with one of the following three EBOV strains: Mayinga (responsible for the first Zaire outbreak in 1976), Makona (responsible for the West Africa outbreak in 2013–2016) and the epizootic Reston (presumably innocuous to humans). Our results highlight specific miRNA-based immunity pathways and substantial differences between the strains beyond their clinical manifestation and pathogenicity. These analyses shed new light into the molecular signature of liver cells upon EBOV infection and reveal new insights into miRNA-based virus attack and host defense strategy.
Collapse
Affiliation(s)
- Idrissa Diallo
- CHU de Québec Research Center, Department of Microbiology, Infectious Diseases and Immunology, Faculty of Medicine, Université Laval, Quebec, QC G1V 4G2, Canada; (I.D.); (J.H.); (B.L.); (J.L.); (A.B.); (M.L.); (Z.H.); (G.P.K.)
| | - Jeffrey Ho
- CHU de Québec Research Center, Department of Microbiology, Infectious Diseases and Immunology, Faculty of Medicine, Université Laval, Quebec, QC G1V 4G2, Canada; (I.D.); (J.H.); (B.L.); (J.L.); (A.B.); (M.L.); (Z.H.); (G.P.K.)
| | - Benoit Laffont
- CHU de Québec Research Center, Department of Microbiology, Infectious Diseases and Immunology, Faculty of Medicine, Université Laval, Quebec, QC G1V 4G2, Canada; (I.D.); (J.H.); (B.L.); (J.L.); (A.B.); (M.L.); (Z.H.); (G.P.K.)
| | - Jonathan Laugier
- CHU de Québec Research Center, Department of Microbiology, Infectious Diseases and Immunology, Faculty of Medicine, Université Laval, Quebec, QC G1V 4G2, Canada; (I.D.); (J.H.); (B.L.); (J.L.); (A.B.); (M.L.); (Z.H.); (G.P.K.)
| | - Abderrahim Benmoussa
- CHU de Québec Research Center, Department of Microbiology, Infectious Diseases and Immunology, Faculty of Medicine, Université Laval, Quebec, QC G1V 4G2, Canada; (I.D.); (J.H.); (B.L.); (J.L.); (A.B.); (M.L.); (Z.H.); (G.P.K.)
| | - Marine Lambert
- CHU de Québec Research Center, Department of Microbiology, Infectious Diseases and Immunology, Faculty of Medicine, Université Laval, Quebec, QC G1V 4G2, Canada; (I.D.); (J.H.); (B.L.); (J.L.); (A.B.); (M.L.); (Z.H.); (G.P.K.)
| | - Zeinab Husseini
- CHU de Québec Research Center, Department of Microbiology, Infectious Diseases and Immunology, Faculty of Medicine, Université Laval, Quebec, QC G1V 4G2, Canada; (I.D.); (J.H.); (B.L.); (J.L.); (A.B.); (M.L.); (Z.H.); (G.P.K.)
| | - Geoff Soule
- Special Pathogens Program, National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, MB R3B 3M9, Canada; (G.S.); (R.K.)
| | - Robert Kozak
- Special Pathogens Program, National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, MB R3B 3M9, Canada; (G.S.); (R.K.)
- Division of Microbiology, Department of Laboratory Medicine & Molecular Diagnostics, Sunnybrook Health Sciences Centre, Toronto, ON M4N 3M5, Canada
| | - Gary P. Kobinger
- CHU de Québec Research Center, Department of Microbiology, Infectious Diseases and Immunology, Faculty of Medicine, Université Laval, Quebec, QC G1V 4G2, Canada; (I.D.); (J.H.); (B.L.); (J.L.); (A.B.); (M.L.); (Z.H.); (G.P.K.)
- Special Pathogens Program, National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, MB R3B 3M9, Canada; (G.S.); (R.K.)
- Département de Microbiologie Médicale, Université du Manitoba, Winnipeg, MB R3E 0J9, Canada
| | - Patrick Provost
- CHU de Québec Research Center, Department of Microbiology, Infectious Diseases and Immunology, Faculty of Medicine, Université Laval, Quebec, QC G1V 4G2, Canada; (I.D.); (J.H.); (B.L.); (J.L.); (A.B.); (M.L.); (Z.H.); (G.P.K.)
- CHUQ Research Center/CHUL Pavilion, 2705 Blvd Laurier, Room T1-65, Quebec, QC G1V 4G2, Canada
- Correspondence: ; Tel.: +1-418-525-4444 (ext. 48842)
| |
Collapse
|
20
|
Ghafouri-Fard S, Honarmand Tamizkar K, Hussen BM, Taheri M. MicroRNA signature in liver cancer. Pathol Res Pract 2021; 219:153369. [PMID: 33626406 DOI: 10.1016/j.prp.2021.153369] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 01/31/2021] [Accepted: 02/02/2021] [Indexed: 12/24/2022]
Abstract
Liver cancer is the 7th utmost frequent neoplasm and the 4th principal source of cancer deaths. This malignancy is linked with several environmental and lifestyle-related factors emphasizing the role of epigenetics in its pathogenesis. MicroRNAs (miRNAs) have been regarded as potent epigenetic mechanisms partaking in the pathogenesis of liver cancer. Dysregulation of miRNAs has been related with poor outcome of patients with liver cancer. In the current manuscript, we provide a concise review of the results of recent studies about the role of miRNAs in the progression of liver cancer and their diagnostic and prognostic utility.
Collapse
Affiliation(s)
- Soudeh Ghafouri-Fard
- Department of Medical Genetics, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Bashdar Mahmud Hussen
- Pharmacognosy Department, College of Pharmacy, Hawler Medical University, Erbil, Iraq
| | - Mohammad Taheri
- Urology and Nephrology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
21
|
Colak DK, Egeli U, Eryilmaz IE, Aybastier O, Malyer H, Cecener G, Tunca B. The Anticancer Effect of Inula viscosa Methanol Extract by miRNAs' Re-regulation: An in vitro Study on Human Malignant Melanoma Cells. Nutr Cancer 2021; 74:211-224. [PMID: 33570434 DOI: 10.1080/01635581.2020.1869791] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Alternative and natural therapies are needed for malignant melanoma (MM), the most deadly skin cancer type due to chemotherapy's limited effect. In the present study, we evaluated the anticancer potentials of Inula viscosa methanol and water extracts (IVM and IVW) on MM cells, A2058 and MeWo, and normal fibroblasts. After the chromatographic and antioxidant activity analysis, their antiproliferative effects were determined with the increasing doses for 24-72 h. IVM induced more cell death in a dose and time-dependent manner in MM cells compared to IVW. This effect was probably due to the higher amount of phenolics in it. IVM significantly induced more apoptotic death in MM cells than fibroblasts (p < 0.01), which was also supported morphologically. IVM also caused cell cycle arrest at G0/G1 and G2/M phases in A2058 and MeWo, respectively, and suppressed the migration ability of MM cells (p < 0.01). Additionally, IVM was found to have significant potential in regulating MM-related miRNAs, upregulating miR-579 and miR-524, and downregulating miR-191 and miR-193, in MM cells (p < 0.05, p < 0.01). As a result, the anticancer effect of IVM via regulating miRNAs' expression has been demonstrated for the first time. Thus, IVM, with these potentials, may be a promising candidate for MM treatment.
Collapse
Affiliation(s)
| | - Unal Egeli
- Medical Biology Department, Bursa Uludag University, Bursa, Turkey
| | | | - Onder Aybastier
- Analytical Chemistry Department, Bursa Uludag University, Bursa, Turkey
| | - Hulusi Malyer
- Biology Department, Bursa Uludag University, Bursa, Turkey
| | - Gulsah Cecener
- Medical Biology Department, Bursa Uludag University, Bursa, Turkey
| | - Berrin Tunca
- Medical Biology Department, Bursa Uludag University, Bursa, Turkey
| |
Collapse
|
22
|
Huang W, Huang F, Zhang R, Luo H. LncRNA Neat1 expedites the progression of liver fibrosis in mice through targeting miR-148a-3p and miR-22-3p to upregulate Cyth3. Cell Cycle 2021; 20:490-507. [PMID: 33550894 DOI: 10.1080/15384101.2021.1875665] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Liver fibrosis is a common response to chronic liver injury, ultimately leading to cirrhosis. The activation of hepatic stellate cells (HSCs) plays a dominant role in liver fibrosis. The regulatory roles of long noncoding RNAs (lncRNAs) in multiple human diseases have been observed. This study was dedicated to investigating the regulatory effects of the lncRNA nuclear paraspeckle assembly transcript 1 (Neat1) on liver fibrosis and HSC activation. Upregulation of Neat1 and cytohesin 3 (Cyth3) and downregulation of miR-148a-3p and miR-22-3p were observed in mouse fibrotic liver tissues. Knockdown of Neat1 or Cyth3 attenuated liver fibrosis and collagen deposition in vivo and the activation of HSCs in vitro. An miR-148a-3p and miR-22-3p inhibitor facilitated HSC activation and collagen fiber expression. Neat1 directly targeted miR-148a-3p and miR-22-3p to modulate Cyth3 expression. Knockdown of Neat1 inhibited Cyth3 expression via the competing endogenous RNA (ceRNA) mechanism of sponging miR-148a-3p and miR-22-3p to regulate liver fibrosis and HSC activation. The ceRNA regulatory network may promote a better understanding of liver fibrogenesis, contribute to an original agreement of liver fibrosis etiopathogenesis and provide insights into the development of a novel domain of lncRNA-directed therapy against liver fibrosis.
Collapse
Affiliation(s)
- Wei Huang
- Department of Hepatopancreatobiliary Surgery, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Feizhou Huang
- Department of Hepatopancreatobiliary Surgery, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Rui Zhang
- Department of Hepatopancreatobiliary Surgery, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Hongwu Luo
- Department of Hepatopancreatobiliary Surgery, The Third Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
23
|
Lei Y, Yan W, Lin Z, Liu J, Tian D, Han P. Comprehensive analysis of partial epithelial mesenchymal transition-related genes in hepatocellular carcinoma. J Cell Mol Med 2020; 25:448-462. [PMID: 33215860 PMCID: PMC7810929 DOI: 10.1111/jcmm.16099] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 10/19/2020] [Accepted: 10/25/2020] [Indexed: 12/13/2022] Open
Abstract
Increasing evidence has revealed that cancer cells undergoing an intermediate state, partial epithelial mesenchymal transition (p‐EMT), tend to metastasize rather than complete EMT. We performed a comprehensive analysis of E‐cadherin and 25 p‐EMT‐related genes in HCC to explore the roles and regulatory mechanisms of them in HCC. We analysed E‐cadherin and 25 p‐EMT‐related genes in HCC and constructed an mRNA‐miRNA‐lncRNA ceRNA subnetwork containing p‐EMT‐related genes by bioinformatic approaches. IHC was used to identify the protein expression of key p‐EMT‐related genes, P4HA2, ITGA5, MMP9, MT1X and SPP1. Complete EMT is not necessary for HCC progression. Overexpression of P4HA2, ITGA5, MMP9, SPP1 and down‐regulation of MT1X were found in HCC tissues, which were significantly associated with poor prognosis of HCC patients. By means of stepwise reverse prediction and validation from mRNA to lncRNA, an mRNA‐miRNA‐lncRNA ceRNA subnetwork correlated with HCC prognosis was identified by expression and survival analysis. This study implied that key p‐EMT‐related genes P4HA2, ITGA5, MMP9, MT1X, SPP1 could be prognostic biomarkers and potential targets of therapy for HCC patients. We constructed an mRNA‐miRNA‐lncRNA subnetwork containing p‐EMT‐related genes successfully, among which each component might be utilized as a prognostic biomarker of HCC.
Collapse
Affiliation(s)
- Yu Lei
- Department of Gastroenterology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wei Yan
- Department of Gastroenterology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhuoying Lin
- Department of Gastroenterology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jingmei Liu
- Department of Gastroenterology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Dean Tian
- Department of Gastroenterology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ping Han
- Department of Gastroenterology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
24
|
Wang M, Zhao Y, Yu ZY, Zhang RD, Li SA, Zhang P, Shan TK, Liu XY, Wang ZM, Zhao PC, Sun HW. Glioma exosomal microRNA-148a-3p promotes tumor angiogenesis through activating the EGFR/MAPK signaling pathway via inhibiting ERRFI1. Cancer Cell Int 2020; 20:518. [PMID: 33117083 PMCID: PMC7590612 DOI: 10.1186/s12935-020-01566-4] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Accepted: 09/23/2020] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Glioma is the most frequent and lethal primary brain malignancy. Amounting evidence has highlighted the importance of exosomal microRNAs (miRNAs or miRs) in this malignancy. This study aimed to investigate the regulatory role of exosomal miR-148a-3p in glioma. METHODS Bioinformatics analysis was firstly used to predict the target genes of miR-148a-3p. Exosomes were then extracted from normal human astrocytes and glioma cells. Reverse transcription-quantitative polymerase chain reaction (RT-qPCR) was applied to determine the expression patterns of miR-148a-3p and ERBB receptor feedback inhibitor 1 (ERRFI1). Dual-luciferase reporter gene assay was applied to verify the direct binding between miR-148a-3p and ERRFI1. Cell counting kit-8 and tube formation assays were further conducted to assess the proliferation and angiogenic properties of human umbilical vein endothelial cells (HUVECs) in the co-culture system with exosomes. Lastly, glioma tumor models were established in BALB/c nude mice to study the role of exosomal miR-148a-3p in vivo. RESULTS miR-148a-3p was highly expressed, while ERRFI1 was poorly expressed in glioma. miR-148a-3p was found to be enriched in glioma cells-derived exosomes and could be transferred to HUVECs via exosomes to promote their proliferation and angiogenesis. ERRFI1 was identified as a target gene of miR-148a-3p. In addition, miR-148a-3p activated the epidermal growth factor receptor (EGFR)/mitogen-activated protein kinase (MAPK) signaling pathway by inhibiting ERRFI1. In the co-culture system, our data demonstrated that glioma cells-derived exosomal miR-148a-3p down-regulated ERRFI1 and activated the EGFR/MAPK signaling pathway, so as to promote cell proliferation and angiogenesis. In vivo experimentation further demonstrated that this mechanism was responsible for the promotive role of exosomal miR-148a-3p in tumorigenesis and angiogenesis. CONCLUSION Taken together, glioma-derived exosomal miR-148a-3p promoted tumor angiogenesis through activation of the EGFR/MAPK signaling pathway by ERRFI1 inhibition.
Collapse
Affiliation(s)
- Meng Wang
- Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, No. 1, Jianshe East RoadHenan Province, Zhengzhou, 450052 Henan Province People’s Republic of China
| | - Yi Zhao
- Department of Translational Medicine Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450000 People’s Republic of China
| | - Zhi-Yun Yu
- Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, No. 1, Jianshe East RoadHenan Province, Zhengzhou, 450052 Henan Province People’s Republic of China
| | - Ren-De Zhang
- Department of Medical, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052 China
| | - Shu-Ang Li
- Clinical Systems Biology Laboratories, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450000 People’s Republic of China
| | - Peng Zhang
- Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, No. 1, Jianshe East RoadHenan Province, Zhengzhou, 450052 Henan Province People’s Republic of China
| | - Ti-Kun Shan
- Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, No. 1, Jianshe East RoadHenan Province, Zhengzhou, 450052 Henan Province People’s Republic of China
| | - Xue-You Liu
- Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, No. 1, Jianshe East RoadHenan Province, Zhengzhou, 450052 Henan Province People’s Republic of China
| | - Ze-Ming Wang
- Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, No. 1, Jianshe East RoadHenan Province, Zhengzhou, 450052 Henan Province People’s Republic of China
| | - Pei-Chao Zhao
- Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, No. 1, Jianshe East RoadHenan Province, Zhengzhou, 450052 Henan Province People’s Republic of China
| | - Hong-Wei Sun
- Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, No. 1, Jianshe East RoadHenan Province, Zhengzhou, 450052 Henan Province People’s Republic of China
| |
Collapse
|
25
|
MicroRNAs as regulators of ERK/MAPK pathway: A comprehensive review. Biomed Pharmacother 2020; 132:110853. [PMID: 33068932 DOI: 10.1016/j.biopha.2020.110853] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 09/19/2020] [Accepted: 10/04/2020] [Indexed: 02/07/2023] Open
Abstract
The ERK/MAPK cascade is one the four distinctive MAPK cascades which transmit extracellular signals to intracellular targets. This cascade has an important role in the regulation of several fundamental processes such as proliferation, differentiation and cell response to diverse extrinsic stresses. Moreover, several studies have shown participation of this cascade in the pathogenesis of cancer. Recent investigations have unraveled interaction between microRNAs (miRNAs) and ERK/MAPK cascade. These transcripts reside in both upstream and downstream of this cascade, regulating or being regulated by ERK/MAPK proteins. In the current review, we summarize the role of miRNAs in the regulation of ERK/MAPK and their contribution in the pathogenesis of human disorders with particular focus on cancers.
Collapse
|
26
|
Ma D, Zhang Y, Chen G, Yan J. miR-148a Affects Polarization of THP-1-Derived Macrophages and Reduces Recruitment of Tumor-Associated Macrophages via Targeting SIRPα. Cancer Manag Res 2020; 12:8067-8077. [PMID: 32982404 PMCID: PMC7490441 DOI: 10.2147/cmar.s238317] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Accepted: 08/05/2020] [Indexed: 01/09/2023] Open
Abstract
Purpose The objective of this study was to investigate the effect of miR-148a on the polarization and recruitment of tumor-associated macrophages (TAMs). Methods In human monocyte THP-1 cells, M1 or M2 differentiation was induced by phorbol 12-myristate 13-acetate (PMA) with specific induction supplements and identified using flow cytometry and ELISA. To alter cellular miR-148a expression level, THP-1 cells were transfected with miR-148a mimics or inhibitors. A dual-luciferase assay was used to determine whether miR-148a could directly regulate the expression of signal regulatory protein α (SIRPα). Expression of miR-148a and SIRPα was detected with RT-PCR or Western blot. A co-culture system of THP-1 cells and colorectal cancer SW480 cells was used for TAM induction. The recruitment of macrophage to SW480 cells was measured using chemotaxis assay. In SW480 cells, apoptosis induced by macrophages was detected using flow cytometry and a xenograft assay. Macrophage infiltration was detected by immunofluorescence assay in tumor tissues. Results miR-148a over-expression increased M1-related CD86 expression in THP-1 cells and promoted differentiation to M1-like macrophages. Inhibition of miR-148a increased M2-related CD206 expression and promoted differentiation to M2-like macrophages. In the co-culture system, THP-1 cells were induced to the M2-like state by SW480 cells. The level of miR-148a negatively correlated with the levels of M2-related cytokines. Additionally, miR-148a expression level was negatively associated with macrophage recruitment by colorectal cancer cells. Furthermore, in miR-148a over-expression, the number of macrophages recruited by SW480 cells was reduced. Meanwhile, cancer cell apoptosis induced by macrophages was enhanced. Thus, miR-148a expression was beneficial for the transformation of macrophages, from an immune-suppressive status to an immune-promoting status. These anti-cancer effects of miR-148a were related to the down-regulation of SIRPα in macrophages, directly targeted by miR-148a. A xenograft assay showed that the co-inoculation of macrophages over-expressing miR-148a reduced subcutaneous tumorigenesis and M2 macrophage infiltration. Conclusion miR-148a promoted the differentiation of M0 macrophages into anti-tumor classical activation type M1, and reduced TAM recruitment by targeting SIRPα to inhibit colorectal cancer cell viability.
Collapse
Affiliation(s)
- Donghe Ma
- Digestive Department, University-Town Hospital of Chongqing Medical University, Chongqing 401331, People's Republic of China
| | - Yan Zhang
- Neurology Department, People's Hospital of Hechuan Chongqing, Chongqing 401520, People's Republic of China
| | - Guanghua Chen
- Dermatology Department, Children's Hospital of Chongqing Medical University, Chongqing 400014, People's Republic of China
| | - Jia Yan
- Digestive Department, University-Town Hospital of Chongqing Medical University, Chongqing 401331, People's Republic of China
| |
Collapse
|
27
|
Kawata R, Oda S, Koya Y, Kajiyama H, Yokoi T. Macrophage-derived extracellular vesicles regulate concanavalin A-induced hepatitis by suppressing macrophage cytokine production. Toxicology 2020; 443:152544. [PMID: 32739513 DOI: 10.1016/j.tox.2020.152544] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 07/21/2020] [Accepted: 07/27/2020] [Indexed: 12/18/2022]
Abstract
Acute liver failure is a clinical syndrome of severe hepatic dysfunction. Immune cells play an important role in acute liver failure. In recent years, the immunoregulatory function of extracellular vesicles (EVs) has been reported; therefore, it is inferred that EVs play a role in immune-mediated hepatitis. In this study, we investigated the immunoregulatory function of EVs in concanavalin A (Con A)-induced hepatitis. The mouse model was prepared by a single intravenous administration of 15 mg/kg Con A, in which there was a significant increase in the serum EVs number. In an in vitro study, the number of secreted EVs was also significantly increased in Con A-treated RAW264.7 cells, a mouse macrophage cell line, but not in Hepa1-6 cells, a mouse hepatoma cell line. In an in vitro EVs treatment study, EVs from Con A-treated mouse serum and Con A-treated RAW264.7 cells suppressed inflammatory cytokine production in Con A-stimulated RAW264.7 cells. miRNA sequencing analysis showed that the expression of mmu-miR-122-5p and mmu-miR-148a-3p was commonly increased in these EVs and EVs-treated cells. The pathways enriched in the predicted miRNA target genes included inflammatory response pathways. The mRNA levels of the target genes in these pathways (mitogen-activated protein kinase, phosphoinositide 3-kinase/Akt and Rho/Rho-associated coiled-coil containing protein kinase pathways) were decreased in the EVs-treated cells. In an in vivo RNA interference study, the knockdown of liver RAB27A, an EVs secretion regulator, significantly exacerbated Con A-induced hepatitis. These data suggest that macrophage-derived EVs play an important role in Con A-induced hepatitis through immunoregulation.
Collapse
Affiliation(s)
- Reo Kawata
- Department of Drug Safety Sciences, Division of Clinical Pharmacology, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Japan; Department of Investigative Toxicology, Nonclinical Research Center, Tokushima Research Institute, Otsuka Pharmaceutical Co., Ltd., 463-10 Kagasuno, Kawauchi-cho, Tokushima, Japan.
| | - Shingo Oda
- Department of Drug Safety Sciences, Division of Clinical Pharmacology, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Japan
| | - Yoshihiro Koya
- Bell Research Center Obstetrics and Gynecology, Academic Research & Industrial-Academia Collaboration, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Japan
| | - Hiroaki Kajiyama
- Department of Obstetrics and Gynecology, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Japan
| | - Tsuyoshi Yokoi
- Department of Drug Safety Sciences, Division of Clinical Pharmacology, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Japan
| |
Collapse
|
28
|
Chen Z, Chen H, Yu L, Xin H, Kong J, Bai Y, Zeng W, Zhang J, Wu Q, Fan H. Bioinformatic identification of key pathways, hub genes, and microbiota for therapeutic intervention in Helicobacter pylori infection. J Cell Physiol 2020; 236:1158-1183. [PMID: 32710499 DOI: 10.1002/jcp.29925] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Revised: 06/08/2020] [Accepted: 07/01/2020] [Indexed: 11/11/2022]
Abstract
The pathogenic mechanisms of Helicobacter pylori infection remain to be defined, and potential interventional microbiota are just beginning to be identified. In this study, gene-set enrichment analysis (GSEA) was used to integrate three H. pylori infection microarray data sets from the gene expression omnibus database and identified ten hallmark gene sets and 35 Kyoto encyclopedia of genes and genomes (KEGG) pathways that differed between healthy and Helicobacter pylori-infected individuals. Weighted gene co-expression network analysis (WGCNA) performed on two of the data sets identified three key gene coexpression modules. These modules contained 54 enriched KEGG pathways, 25 of which overlapped with the GSEA analysis, suggesting potentially important roles in H. pylori-infection. We selected 116 hub genes from the three key modules for in vitro validation at the transcriptional level using H. pylori Sydney Strain 1 and verified the upregulation of 80. WGCNA of the microbiomes based on 20 mucosal samples and a sequence read archive data set revealed four microbiota modules correlated with H. pylori infection. The negatively correlated modules contained 11 microbiome families. These findings provide new insight into the pathogenesis of H. pylori infection and systematically identify 25 key pathways, 80 upregulated hub genes, and 11 families of candidate interventional microbiota for further research.
Collapse
Affiliation(s)
- Zhenhui Chen
- Department of Microbiology, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, China
| | - Huijuan Chen
- Department of Microbiology, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, China
| | - Lu Yu
- Department of Radiation Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Hongjie Xin
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Institute of Gastroenterology of Guangdong Province, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Jingjing Kong
- Department of Microbiology, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, China
| | - Yang Bai
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Institute of Gastroenterology of Guangdong Province, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Weisen Zeng
- Department of Cell Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Jumei Zhang
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbiology Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology, Guangdong Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Qingping Wu
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbiology Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology, Guangdong Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Hongying Fan
- Department of Microbiology, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, China
| |
Collapse
|
29
|
Yao Z, Xu R, Yuan L, Xu M, Zhuang H, Li Y, Zhang Y, Lin N. Circ_0001955 facilitates hepatocellular carcinoma (HCC) tumorigenesis by sponging miR-516a-5p to release TRAF6 and MAPK11. Cell Death Dis 2019; 10:945. [PMID: 31822654 PMCID: PMC6904727 DOI: 10.1038/s41419-019-2176-y] [Citation(s) in RCA: 104] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Revised: 10/09/2019] [Accepted: 10/23/2019] [Indexed: 02/06/2023]
Abstract
Circular RNAs (circRNAs) have been increasingly demonstrated to function as novel promising therapeutic RNA molecules for diverse human diseases, including cancer. Although the important role of circRNAs has been well documented in HCC, the complex mechanisms of circRNAs in HCC need to be elucidated. Here, a novel circRNA circ_0001955 was identified from three GSE datasets (GSE7852, GSE94508, and GSE97322) as a differentially expressed circRNA between HCC and normal samples. We revealed that circ_0001955, TRAF6 and MAPK11 levels were increased, while miR-516a-5p levels were decreased in HCC tumor tissues compared to adjacent normal tissues. Knockdown of circ_0001955 repressed HCC tumor growth in vitro and in vivo, while overexpression of circ_0001955 exhibited the opposite effect. Circ_0001955 was identified as a sponge for miR-145-5p and miR-516a-5p, and TRAF6 and MAPK11 were demonstrated to be two target genes of miR-516a-5p. In conclusion, circ_0001955 facilitated HCC tumorigenesis by sponging miR-516a-5p to release TRAF6 and MAPK11 expression.
Collapse
Affiliation(s)
- Zhicheng Yao
- Department of General Surgery, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510630, Guangdong Province, China
| | - Ruiyun Xu
- Department of Hepatobiliary Surgery, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510630, Guangdong Province, China
| | - Lin Yuan
- Department of Hepatobiliary Surgery, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510630, Guangdong Province, China
| | - Mingxing Xu
- Department of Hepatobiliary Surgery, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510630, Guangdong Province, China
| | - Haiyun Zhuang
- Department of Hepatobiliary Surgery, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510630, Guangdong Province, China
| | - Yanjie Li
- Department of Hepatobiliary Surgery, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510630, Guangdong Province, China
| | - Yi Zhang
- Department of Hepatobiliary Surgery, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510630, Guangdong Province, China
| | - Nan Lin
- Department of Hepatobiliary Surgery, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510630, Guangdong Province, China.
| |
Collapse
|
30
|
Hepatitis C Virus Downregulates Core Subunits of Oxidative Phosphorylation, Reminiscent of the Warburg Effect in Cancer Cells. Cells 2019; 8:cells8111410. [PMID: 31717433 PMCID: PMC6912740 DOI: 10.3390/cells8111410] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Revised: 11/05/2019] [Accepted: 11/06/2019] [Indexed: 02/08/2023] Open
Abstract
Hepatitis C Virus (HCV) mainly infects liver hepatocytes and replicates its single-stranded plus strand RNA genome exclusively in the cytoplasm. Viral proteins and RNA interfere with the host cell immune response, allowing the virus to continue replication. Therefore, in about 70% of cases, the viral infection cannot be cleared by the immune system, but a chronic infection is established, often resulting in liver fibrosis, cirrhosis and hepatocellular carcinoma (HCC). Induction of cancer in the host cells can be regarded to provide further advantages for ongoing virus replication. One adaptation in cancer cells is the enhancement of cellular carbohydrate flux in glycolysis with a reduction of the activity of the citric acid cycle and aerobic oxidative phosphorylation. To this end, HCV downregulates the expression of mitochondrial oxidative phosphorylation complex core subunits quite early after infection. This so-called aerobic glycolysis is known as the “Warburg Effect” and serves to provide more anabolic metabolites upstream of the citric acid cycle, such as amino acids, pentoses and NADPH for cancer cell growth. In addition, HCV deregulates signaling pathways like those of TNF-β and MAPK by direct and indirect mechanisms, which can lead to fibrosis and HCC.
Collapse
|
31
|
Lupberger J, Croonenborghs T, Roca Suarez AA, Van Renne N, Jühling F, Oudot MA, Virzì A, Bandiera S, Jamey C, Meszaros G, Brumaru D, Mukherji A, Durand SC, Heydmann L, Verrier ER, El Saghire H, Hamdane N, Bartenschlager R, Fereshetian S, Ramberger E, Sinha R, Nabian M, Everaert C, Jovanovic M, Mertins P, Carr SA, Chayama K, Dali-Youcef N, Ricci R, Bardeesy NM, Fujiwara N, Gevaert O, Zeisel MB, Hoshida Y, Pochet N, Baumert TF. Combined Analysis of Metabolomes, Proteomes, and Transcriptomes of Hepatitis C Virus-Infected Cells and Liver to Identify Pathways Associated With Disease Development. Gastroenterology 2019; 157:537-551.e9. [PMID: 30978357 PMCID: PMC8318381 DOI: 10.1053/j.gastro.2019.04.003] [Citation(s) in RCA: 85] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Revised: 03/01/2019] [Accepted: 04/04/2019] [Indexed: 02/07/2023]
Abstract
BACKGROUND & AIMS The mechanisms of hepatitis C virus (HCV) infection, liver disease progression, and hepatocarcinogenesis are only partially understood. We performed genomic, proteomic, and metabolomic analyses of HCV-infected cells and chimeric mice to learn more about these processes. METHODS Huh7.5.1dif (hepatocyte-like cells) were infected with culture-derived HCV and used in RNA sequencing, proteomic, metabolomic, and integrative genomic analyses. uPA/SCID (urokinase-type plasminogen activator/severe combined immunodeficiency) mice were injected with serum from HCV-infected patients; 8 weeks later, liver tissues were collected and analyzed by RNA sequencing and proteomics. Using differential expression, gene set enrichment analyses, and protein interaction mapping, we identified pathways that changed in response to HCV infection. We validated our findings in studies of liver tissues from 216 patients with HCV infection and early-stage cirrhosis and paired biopsy specimens from 99 patients with hepatocellular carcinoma, including 17 patients with histologic features of steatohepatitis. Cirrhotic liver tissues from patients with HCV infection were classified into 2 groups based on relative peroxisome function; outcomes assessed included Child-Pugh class, development of hepatocellular carcinoma, survival, and steatohepatitis. Hepatocellular carcinomas were classified according to steatohepatitis; the outcome was relative peroxisomal function. RESULTS We quantified 21,950 messenger RNAs (mRNAs) and 8297 proteins in HCV-infected cells. Upon HCV infection of hepatocyte-like cells and chimeric mice, we observed significant changes in levels of mRNAs and proteins involved in metabolism and hepatocarcinogenesis. HCV infection of hepatocyte-like cells significantly increased levels of the mRNAs, but not proteins, that regulate the innate immune response; we believe this was due to the inhibition of translation in these cells. HCV infection of hepatocyte-like cells increased glucose consumption and metabolism and the STAT3 signaling pathway and reduced peroxisome function. Peroxisomes mediate β-oxidation of very long-chain fatty acids; we found intracellular accumulation of very long-chain fatty acids in HCV-infected cells, which is also observed in patients with fatty liver disease. Cells in livers from HCV-infected mice had significant reductions in levels of the mRNAs and proteins associated with peroxisome function, indicating perturbation of peroxisomes. We found that defects in peroxisome function were associated with outcomes and features of HCV-associated cirrhosis, fatty liver disease, and hepatocellular carcinoma in patients. CONCLUSIONS We performed combined transcriptome, proteome, and metabolome analyses of liver tissues from HCV-infected hepatocyte-like cells and HCV-infected mice. We found that HCV infection increases glucose metabolism and the STAT3 signaling pathway and thereby reduces peroxisome function; alterations in the expression levels of peroxisome genes were associated with outcomes of patients with liver diseases. These findings provide insights into liver disease pathogenesis and might be used to identify new therapeutic targets.
Collapse
Affiliation(s)
- Joachim Lupberger
- Institut National de la Santé et de la Recherche Médicale, Institut de Recherche sur les Maladies Virales et Hépatiques, Université de Strasbourg (IVH), Strasbourg, France; Université de Strasbourg, Strasbourg, France.
| | - Tom Croonenborghs
- Department of Neurology, Harvard Medical School, Boston, Massachusetts; Cell Circuits Program, Broad Institute of MIT and Harvard, Cambridge, Massachusetts; Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Boston, Massachusetts
| | - Armando Andres Roca Suarez
- Institut National de la Santé et de la Recherche Médicale, Institut de Recherche sur les Maladies Virales et Hépatiques, Université de Strasbourg (IVH), Strasbourg, France; Université de Strasbourg, Strasbourg, France
| | - Nicolaas Van Renne
- Institut National de la Santé et de la Recherche Médicale, Institut de Recherche sur les Maladies Virales et Hépatiques, Université de Strasbourg (IVH), Strasbourg, France; Université de Strasbourg, Strasbourg, France
| | - Frank Jühling
- Institut National de la Santé et de la Recherche Médicale, Institut de Recherche sur les Maladies Virales et Hépatiques, Université de Strasbourg (IVH), Strasbourg, France; Université de Strasbourg, Strasbourg, France
| | - Marine A Oudot
- Institut National de la Santé et de la Recherche Médicale, Institut de Recherche sur les Maladies Virales et Hépatiques, Université de Strasbourg (IVH), Strasbourg, France; Université de Strasbourg, Strasbourg, France
| | - Alessia Virzì
- Institut National de la Santé et de la Recherche Médicale, Institut de Recherche sur les Maladies Virales et Hépatiques, Université de Strasbourg (IVH), Strasbourg, France; Université de Strasbourg, Strasbourg, France
| | - Simonetta Bandiera
- Institut National de la Santé et de la Recherche Médicale, Institut de Recherche sur les Maladies Virales et Hépatiques, Université de Strasbourg (IVH), Strasbourg, France; Université de Strasbourg, Strasbourg, France
| | - Carole Jamey
- Université de Strasbourg, Strasbourg, France; Laboratoire de Biochimie et de Biologie Moléculaire, Pôle de biologie, Hôpitaux Universitaires de Strasbourg, Strasbourg, France
| | - Gergö Meszaros
- Université de Strasbourg, Strasbourg, France; Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, France; Centre National de la Recherche Scientifique, Illkirch, France; Institut National de la Santé et de la Recherche Médicale, Illkirch, France
| | - Daniel Brumaru
- Université de Strasbourg, Strasbourg, France; Laboratoire de Biochimie et de Biologie Moléculaire, Pôle de biologie, Hôpitaux Universitaires de Strasbourg, Strasbourg, France
| | - Atish Mukherji
- Institut National de la Santé et de la Recherche Médicale, Institut de Recherche sur les Maladies Virales et Hépatiques, Université de Strasbourg (IVH), Strasbourg, France; Université de Strasbourg, Strasbourg, France
| | - Sarah C Durand
- Institut National de la Santé et de la Recherche Médicale, Institut de Recherche sur les Maladies Virales et Hépatiques, Université de Strasbourg (IVH), Strasbourg, France; Université de Strasbourg, Strasbourg, France
| | - Laura Heydmann
- Institut National de la Santé et de la Recherche Médicale, Institut de Recherche sur les Maladies Virales et Hépatiques, Université de Strasbourg (IVH), Strasbourg, France; Université de Strasbourg, Strasbourg, France
| | - Eloi R Verrier
- Institut National de la Santé et de la Recherche Médicale, Institut de Recherche sur les Maladies Virales et Hépatiques, Université de Strasbourg (IVH), Strasbourg, France; Université de Strasbourg, Strasbourg, France
| | - Hussein El Saghire
- Institut National de la Santé et de la Recherche Médicale, Institut de Recherche sur les Maladies Virales et Hépatiques, Université de Strasbourg (IVH), Strasbourg, France; Université de Strasbourg, Strasbourg, France
| | - Nourdine Hamdane
- Institut National de la Santé et de la Recherche Médicale, Institut de Recherche sur les Maladies Virales et Hépatiques, Université de Strasbourg (IVH), Strasbourg, France; Université de Strasbourg, Strasbourg, France
| | - Ralf Bartenschlager
- Department of Infectious Diseases, Molecular Virology, Heidelberg University, Heidelberg, Germany; Division of Virus-Associated Carcinogenesis, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Shaunt Fereshetian
- The Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, Massachusetts
| | - Evelyn Ramberger
- Proteomics Platform, Max Delbrück Center for Molecular Medicine in the Helmholtz Society, Berlin, Germany; Berlin Institute of Health, Berlin, Germany
| | - Rileen Sinha
- Department of Neurology, Harvard Medical School, Boston, Massachusetts; Cell Circuits Program, Broad Institute of MIT and Harvard, Cambridge, Massachusetts; Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Boston, Massachusetts
| | - Mohsen Nabian
- Department of Neurology, Harvard Medical School, Boston, Massachusetts; Cell Circuits Program, Broad Institute of MIT and Harvard, Cambridge, Massachusetts; Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Boston, Massachusetts
| | - Celine Everaert
- Department of Neurology, Harvard Medical School, Boston, Massachusetts; Cell Circuits Program, Broad Institute of MIT and Harvard, Cambridge, Massachusetts; Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Boston, Massachusetts
| | - Marko Jovanovic
- The Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, Massachusetts; Department of Biological Sciences, Columbia University, New York, New York
| | - Philipp Mertins
- The Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, Massachusetts; Proteomics Platform, Max Delbrück Center for Molecular Medicine in the Helmholtz Society, Berlin, Germany; Berlin Institute of Health, Berlin, Germany
| | - Steven A Carr
- The Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, Massachusetts
| | - Kazuaki Chayama
- Department of Gastroenterology and Metabolism, Applied Life Sciences, Institute of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan; Liver Research Project Center, Hiroshima University, Hiroshima, Japan
| | - Nassim Dali-Youcef
- Université de Strasbourg, Strasbourg, France; Laboratoire de Biochimie et de Biologie Moléculaire, Pôle de biologie, Hôpitaux Universitaires de Strasbourg, Strasbourg, France; Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, France; Centre National de la Recherche Scientifique, Illkirch, France; Institut National de la Santé et de la Recherche Médicale, Illkirch, France
| | - Romeo Ricci
- Université de Strasbourg, Strasbourg, France; Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, France; Centre National de la Recherche Scientifique, Illkirch, France; Institut National de la Santé et de la Recherche Médicale, Illkirch, France
| | | | - Naoto Fujiwara
- Liver Tumor Translational Research Program, Simmons Comprehensive Cancer Center, Division of Digestive and Liver Diseases, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Olivier Gevaert
- Cell Circuits Program, Broad Institute of MIT and Harvard, Cambridge, Massachusetts; Stanford Center for Biomedical Informatics Research, Department of Medicine and Biomedical Data Science, Stanford University, Stanford, California
| | - Mirjam B Zeisel
- Institut National de la Santé et de la Recherche Médicale, Institut de Recherche sur les Maladies Virales et Hépatiques, Université de Strasbourg (IVH), Strasbourg, France; Université de Strasbourg, Strasbourg, France
| | - Yujin Hoshida
- Liver Tumor Translational Research Program, Simmons Comprehensive Cancer Center, Division of Digestive and Liver Diseases, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Nathalie Pochet
- Department of Neurology, Harvard Medical School, Boston, Massachusetts; Cell Circuits Program, Broad Institute of MIT and Harvard, Cambridge, Massachusetts; Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Boston, Massachusetts.
| | - Thomas F Baumert
- Institut National de la Santé et de la Recherche Médicale, Institut de Recherche sur les Maladies Virales et Hépatiques, Université de Strasbourg (IVH), Strasbourg, France; Université de Strasbourg, Strasbourg, France; Pôle Hépato-digestif, Institut Hopitalo-Universitaire, Strasbourg, France.
| |
Collapse
|
32
|
Deng Y, Wang J, Huang M, Xu G, Wei W, Qin H. Inhibition of miR-148a-3p resists hepatocellular carcinoma progress of hepatitis C virus infection through suppressing c-Jun and MAPK pathway. J Cell Mol Med 2018; 23:1415-1426. [PMID: 30565389 PMCID: PMC6349179 DOI: 10.1111/jcmm.14045] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2018] [Revised: 10/30/2018] [Accepted: 10/31/2018] [Indexed: 01/27/2023] Open
Abstract
Objectives The present study was committed to investigate the role of miR‐148a‐3p in HCC infected with hepatitis C virus (HCV) and the regulatory mechanism of miR‐148a‐3p/c‐Jun/MAPK signalling pathway. Methods Differential analysis and GSEA analysis were performed with R packages. QRT‐PCR and Western blot were used to detect RNA or protein level, respectively. The targeted relationship between miR‐148a‐3p and c‐Jun was predicted by TargetScan database and determined by double luciferase reporter assay. MTT assay and flow cytometry were used to evaluate cell proliferation, cell cycle and cell apoptosis, respectively. Results C‐Jun was up‐regulated, and MAPK signalling pathway was activated in HCV‐infected HCC cells. C‐Jun expression regulated inflammation‐related gene expression and had an influence on cell proliferation, cell cycle and cell apoptosis. MiR‐148a‐3p, down‐regulated in HCV‐infected HCC cells, could target c‐Jun mRNA to suppress c‐Jun protein expression. Conclusions MiR‐148a‐3p suppressed the proliferation of HCC cells infected with HCV through targeting c‐Jun mRNA.
Collapse
Affiliation(s)
- Yibin Deng
- Clinic Medicine Research Center of Hepatobiliary Diseases, The Affiliated Hospital of Youjiang Medical College for Nationalities, Baise, China.,Department of Infectious Diseases, The Affiliated Hospital of Youjiang Medical College for Nationalities, Baise, China.,Centre for Medical Laboratory Science, The Affiliated Hospital of Youjiang Medical College for Nationalities, Baise, China
| | - Jianchu Wang
- Clinic Medicine Research Center of Hepatobiliary Diseases, The Affiliated Hospital of Youjiang Medical College for Nationalities, Baise, China
| | - Meijin Huang
- Department of Infectious Diseases, The Affiliated Hospital of Youjiang Medical College for Nationalities, Baise, China
| | - Guidan Xu
- Centre for Medical Laboratory Science, The Affiliated Hospital of Youjiang Medical College for Nationalities, Baise, China
| | - Wujun Wei
- Centre for Medical Laboratory Science, The Affiliated Hospital of Youjiang Medical College for Nationalities, Baise, China
| | - Houji Qin
- Department of Infectious Diseases, The Affiliated Hospital of Youjiang Medical College for Nationalities, Baise, China
| |
Collapse
|