1
|
Maragno E, Ricchizzi S, Winter NR, Hellwig SJ, Stummer W, Hahn T, Holling M. Predictive modeling with linear machine learning can estimate glioblastoma survival in months based solely on MGMT-methylation status, age and sex. Acta Neurochir (Wien) 2025; 167:52. [PMID: 39992425 PMCID: PMC11850473 DOI: 10.1007/s00701-025-06441-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2024] [Accepted: 01/21/2025] [Indexed: 02/25/2025]
Abstract
PURPOSE Machine Learning (ML) has become an essential tool for analyzing biomedical data, facilitating the prediction of treatment outcomes and patient survival. However, the effectiveness of ML models heavily relies on both the choice of algorithms and the quality of the input data. In this study, we aimed to develop a novel predictive model to estimate individual survival for patients diagnosed with glioblastoma (GBM), focusing on key variables such as O6-Methylguanine-DNA Methyltransferase (MGMT) methylation status, age, and sex. METHODS To identify the optimal approach, we utilized retrospective data from 218 patients treated at our brain tumor center. The performance of the ML models was evaluated within repeated tenfold regression. The pipeline comprised five regression estimators, including both linear and non-linear algorithms. Permutation feature importance highlighted the feature with the most significant impact on the model. Statistical significance was assessed using a permutation test procedure. RESULTS The best machine learning algorithm achieved a mean absolute error (MAE) of 12.65 (SD = ± 2.18) and an explained variance (EV) of 7% (SD = ± 1.8%) with p < 0.001. Linear algorithms led to more accurate predictions than non-linear estimators. Feature importance testing indicated that age and positive MGMT-methylation influenced the predictions the most. CONCLUSION In summary, here we provide a novel approach allowing to predict GBM patient's survival in months solely based on key parameters such as age, sex and MGMT-methylation status and underscores MGMT-methylation status as key prognostic factor for GBM patients survival.
Collapse
Affiliation(s)
- Emanuele Maragno
- Department of Neurosurgery, University Hospital Münster, Albert-Schweitzer-Campus 1 A, 48149, Münster, Germany
| | - Sarah Ricchizzi
- Department of Neurosurgery, University Hospital Münster, Albert-Schweitzer-Campus 1 A, 48149, Münster, Germany
- Institute for Translational Psychiatry, University of Münster, Münster, Germany
| | - Nils Ralf Winter
- Institute for Translational Psychiatry, University of Münster, Münster, Germany
| | - Sönke Josua Hellwig
- Department of Neurosurgery, University Hospital Münster, Albert-Schweitzer-Campus 1 A, 48149, Münster, Germany
| | - Walter Stummer
- Department of Neurosurgery, University Hospital Münster, Albert-Schweitzer-Campus 1 A, 48149, Münster, Germany
| | - Tim Hahn
- Institute for Translational Psychiatry, University of Münster, Münster, Germany
| | - Markus Holling
- Department of Neurosurgery, University Hospital Münster, Albert-Schweitzer-Campus 1 A, 48149, Münster, Germany.
| |
Collapse
|
2
|
Ghorbian M, Ghorbian S, Ghobaei-arani M. A comprehensive review on machine learning in brain tumor classification: taxonomy, challenges, and future trends. Biomed Signal Process Control 2024; 98:106774. [DOI: 10.1016/j.bspc.2024.106774] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/15/2025]
|
3
|
Habibi MA, Naseri Alavi SA, Soltani Farsani A, Mousavi Nasab MM, Tajabadi Z, Kobets AJ. Predicting the Outcome and Survival of Patients with Spinal Cord Injury Using Machine Learning Algorithms: A Systematic Review. World Neurosurg 2024; 188:150-160. [PMID: 38796146 DOI: 10.1016/j.wneu.2024.05.103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Accepted: 05/16/2024] [Indexed: 05/28/2024]
Abstract
BACKGROUND Spinal cord injury (SCI) is a significant public health issue, leading to physical, psychological, and social complications. Machine learning (ML) algorithms have shown potential in diagnosing and predicting the functional and neurologic outcomes of subjects with SCI. ML algorithms can predict scores for SCI classification systems and accurately predict outcomes by analyzing large amounts of data. This systematic review aimed to examine the performance of ML algorithms for diagnosing and predicting the outcomes of subjects with SCI. METHODS The literature was comprehensively searched for the pertinent studies from inception to May 25, 2023. Therefore, electronic databases of PubMed, Embase, Scopus, and Web of Science were systematically searched with individual search syntax. RESULTS A total of 9424 individuals diagnosed with SCI across multiple studies were analyzed. Among the 21 studies included, 5 specifically aimed to evaluate diagnostic accuracy, while the remaining 16 focused on exploring prognostic factors or management strategies. CONCLUSIONS ML and deep learning (DL) have shown great potential in various aspects of SCI. ML and DL algorithms have been employed multiple times in predicting and diagnosing patients with SCI. While there are studies on diagnosing acute SCI using DL algorithms, further research is required in this area.
Collapse
Affiliation(s)
- Mohammad Amin Habibi
- Skull Base Research Center, Loghman Hakim Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Clinical Research Development Center, Faculty of Medicine, Qom University of Medical Sciences, Qom, Iran
| | | | | | | | - Zohreh Tajabadi
- Digestive Disease Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Andrew J Kobets
- Department of Neurological Surgery, Montefiore Medical, Bronx, NY, USA
| |
Collapse
|
4
|
Lyu Q, Parreno-Centeno M, Papa JP, Öztürk-Isik E, Booth TC, Costen F. SurvNet: A low-complexity convolutional neural network for survival time classification of patients with glioblastoma. Heliyon 2024; 10:e32870. [PMID: 38988550 PMCID: PMC11234028 DOI: 10.1016/j.heliyon.2024.e32870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 06/10/2024] [Accepted: 06/11/2024] [Indexed: 07/12/2024] Open
Abstract
Background and objective Malignant primary brain tumors cause the greatest number of years of life lost than any other cancer. Grade 4 glioma is particularly devastating: The median survival without any treatment is less than six months and with standard-of-care treatment is only 14.6 months. Accurate identification of the overall survival time of patients with brain tumors is of profound importance in many clinical applications. Automated image analytics with magnetic resonance imaging (MRI) can provide insights into the prognosis of patients with brain tumors. Methods In this paper, We propose SurvNet, a low-complexity deep learning architecture based on the convolutional neural network to classify the overall survival time of patients with brain tumors into long-time and short-time survival cohorts. Through the incorporation of diverse MRI modalities as inputs, we facilitate deep feature extraction at various anatomical sites, thereby augmenting the precision of predictive modeling. We compare SurvNet with the Inception V3, VGG 16 and ensemble CNN models on pre-operative magnetic resonance image datasets. We also analyzed the effect of segmented brain tumors and training data on the system performance. Results Several measures, such as accuracy, precision, and recall, are calculated to examine the perfor-mance of SurvNet on three-fold cross-validation. SurvNet with T1 MRI modality achieved a 62.7 % accuracy, compared with 52.9 % accuracy of the Inception V3 model, 58.5 % accuracy of the VGG 16 model, and 54.9 % of the ensemble CNN model. By increasing the MRI input modalities, SurvNet becomes more accurate and achieves 76.5 % accuracy with four MRI modalities. Combining the segmented data, SurvNet achieved the highest accuracy of 82.4 %. Conclusions The research results show that SurvNet achieves higher metrics such as accuracy and f1-score than the comparisons. Our research also proves that by using multiparametric MRI modalities, SurvNet is able to learn more image features and performs a better classification accuracy. We can conclude that SurvNet with the complete scenario, i.e., segmented data and four MRI modalities, achieved the best accuracy, showing the validity of segmentation information during the survival time prediction process.
Collapse
Affiliation(s)
- Qiyuan Lyu
- Electrical and Electronic Engineering Department, The University of Manchester, Oxford Rd, Manchester M13 9PL, United Kingdom
| | | | | | - Esin Öztürk-Isik
- Institute of Biomedical Engineering, Bogazici University, Istanbul, Turkey
| | - Thomas C. Booth
- Biomedical Engineering and Imaging Sciences, St. Thomas' Hospital, King's College London, London, United Kingdom
- Department of Neuroradiology, King's College Hospital NHS Foundation Trust, London, United Kingdom
| | - Fumie Costen
- Electrical and Electronic Engineering Department, The University of Manchester, Oxford Rd, Manchester M13 9PL, United Kingdom
- Image Processing Research Team, Centre for Advanced Photonics, RIKEN, Saitama, Japan
| |
Collapse
|
5
|
Li X, Wu M, Wu M, Liu J, Song L, Wang J, Zhou J, Li S, Yang H, Zhang J, Cui X, Liu Z, Zeng F. A radiomics and genomics-derived model for predicting metastasis and prognosis in colorectal cancer. Carcinogenesis 2024; 45:170-180. [PMID: 38195111 DOI: 10.1093/carcin/bgad098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 12/08/2023] [Accepted: 01/08/2024] [Indexed: 01/11/2024] Open
Abstract
Approximately 50% of colorectal cancer (CRC) patients would develop metastasis with poor prognosis, therefore, it is necessary to effectively predict metastasis in clinical treatment. In this study, we aimed to establish a machine-learning model for predicting metastasis in CRC patients by considering radiomics and transcriptomics simultaneously. Here, 1023 patients with CRC from three centers were collected and divided into five queues (Dazhou Central Hospital n = 517, Nanchong Central Hospital n = 120 and the Cancer Genome Atlas (TCGA) n = 386). A total of 854 radiomics features were extracted from tumor lesions on CT images, and 217 differentially expressed genes were obtained from non-metastasis and metastasis tumor tissues using RNA sequencing. Based on radiotranscriptomic (RT) analysis, a novel RT model was developed and verified through genetic algorithms (GA). Interleukin (IL)-26, a biomarker in RT model, was verified for its biological function in CRC metastasis. Furthermore, 15 radiomics variables were screened through stepwise regression, which was highly correlated with the IL26 expression level. Finally, a radiomics model (RA) was established by combining GA and stepwise regression analysis with radiomics features. The RA model exhibited favorable discriminatory ability and accuracy for metastasis prediction in two independent verification cohorts. We designed multicenter, multi-scale cohorts to construct and verify novel combined radiomics and genomics models for predicting metastasis in CRC. Overall, RT model and RA model might help clinicians in directing personalized diagnosis and therapeutic regimen selection for patients with CRC.
Collapse
Affiliation(s)
- Xue Li
- Department of Clinical Research Center, Dazhou Central Hospital, Dazhou, Sichuan 635000, China
| | - Meng Wu
- Department of Ultrasound, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 430071, China
| | - Min Wu
- Department of Radiology, Huaxi MR Research Center (HMRRC), West China Hospital of Sichuan University, Chengdu 610041, China
| | - Jie Liu
- Department of General Surgery, Dazhou Central Hospital, Dazhou, Sichuan 635000, China
| | - Li Song
- Department of Clinical laboratory, Dazhou Central Hospital, Dazhou, Sichuan 635000, China
| | - Jiasi Wang
- Department of Clinical laboratory, Dazhou Central Hospital, Dazhou, Sichuan 635000, China
| | - Jun Zhou
- Department of Clinical Research Center, Dazhou Central Hospital, Dazhou, Sichuan 635000, China
| | - Shilin Li
- Department of Clinical Research Center, Dazhou Central Hospital, Dazhou, Sichuan 635000, China
| | - Hang Yang
- Department of Clinical Research Center, Dazhou Central Hospital, Dazhou, Sichuan 635000, China
| | - Jun Zhang
- Department of General Surgery, Dazhou Central Hospital, Dazhou, Sichuan 635000, China
| | - Xinwu Cui
- Department of Medical Ultrasound, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Road, Wuhan 430030, China
| | - Zhenyu Liu
- CAS Key Laboratory of Molecular Imaging, Institute of Automation, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100080, China
| | - Fanxin Zeng
- Department of Clinical Research Center, Dazhou Central Hospital, Dazhou, Sichuan 635000, China
| |
Collapse
|
6
|
Ghimire P, Kinnersley B, Karami G, Arumugam P, Houlston R, Ashkan K, Modat M, Booth TC. Radiogenomic biomarkers for immunotherapy in glioblastoma: A systematic review of magnetic resonance imaging studies. Neurooncol Adv 2024; 6:vdae055. [PMID: 38680991 PMCID: PMC11046988 DOI: 10.1093/noajnl/vdae055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/01/2024] Open
Abstract
Background Immunotherapy is an effective "precision medicine" treatment for several cancers. Imaging signatures of the underlying genome (radiogenomics) in glioblastoma patients may serve as preoperative biomarkers of the tumor-host immune apparatus. Validated biomarkers would have the potential to stratify patients during immunotherapy clinical trials, and if trials are beneficial, facilitate personalized neo-adjuvant treatment. The increased use of whole genome sequencing data, and the advances in bioinformatics and machine learning make such developments plausible. We performed a systematic review to determine the extent of development and validation of immune-related radiogenomic biomarkers for glioblastoma. Methods A systematic review was performed following PRISMA guidelines using the PubMed, Medline, and Embase databases. Qualitative analysis was performed by incorporating the QUADAS 2 tool and CLAIM checklist. PROSPERO registered: CRD42022340968. Extracted data were insufficiently homogenous to perform a meta-analysis. Results Nine studies, all retrospective, were included. Biomarkers extracted from magnetic resonance imaging volumes of interest included apparent diffusion coefficient values, relative cerebral blood volume values, and image-derived features. These biomarkers correlated with genomic markers from tumor cells or immune cells or with patient survival. The majority of studies had a high risk of bias and applicability concerns regarding the index test performed. Conclusions Radiogenomic immune biomarkers have the potential to provide early treatment options to patients with glioblastoma. Targeted immunotherapy, stratified by these biomarkers, has the potential to allow individualized neo-adjuvant precision treatment options in clinical trials. However, there are no prospective studies validating these biomarkers, and interpretation is limited due to study bias with little evidence of generalizability.
Collapse
Affiliation(s)
- Prajwal Ghimire
- Department of Neurosurgery, Kings College Hospital NHS Foundation Trust, London, UK
- School of Biomedical Engineering & Imaging Sciences, King’s College London, London, UK
| | - Ben Kinnersley
- Department of Oncology, University College London, London, UK
| | | | | | - Richard Houlston
- Division of Genetics and Epidemiology, The Institute of Cancer Research, Sutton, UK
| | - Keyoumars Ashkan
- Department of Neurosurgery, Kings College Hospital NHS Foundation Trust, London, UK
| | - Marc Modat
- School of Biomedical Engineering & Imaging Sciences, King’s College London, London, UK
| | - Thomas C Booth
- School of Biomedical Engineering & Imaging Sciences, King’s College London, London, UK
| |
Collapse
|
7
|
Abstract
The purpose of this editorial is to consider some of the aspects of the diagnosis and treatment of adult gliomas. These are rare diseases with all their limitations. Innovations in diagnosis and therapy and their constraints are analyzed and compared with the current treatment reality. Aspects affecting these patients' quality of life are highlighted.
Collapse
Affiliation(s)
- Antonio Silvani
- Department of Neuro-oncology, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milano, Italy
| |
Collapse
|
8
|
Qureshi SA, Hussain L, Ibrar U, Alabdulkreem E, Nour MK, Alqahtani MS, Nafie FM, Mohamed A, Mohammed GP, Duong TQ. Radiogenomic classification for MGMT promoter methylation status using multi-omics fused feature space for least invasive diagnosis through mpMRI scans. Sci Rep 2023; 13:3291. [PMID: 36841898 PMCID: PMC9961309 DOI: 10.1038/s41598-023-30309-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 02/21/2023] [Indexed: 02/27/2023] Open
Abstract
Accurate radiogenomic classification of brain tumors is important to improve the standard of diagnosis, prognosis, and treatment planning for patients with glioblastoma. In this study, we propose a novel two-stage MGMT Promoter Methylation Prediction (MGMT-PMP) system that extracts latent features fused with radiomic features predicting the genetic subtype of glioblastoma. A novel fine-tuned deep learning architecture, namely Deep Learning Radiomic Feature Extraction (DLRFE) module, is proposed for latent feature extraction that fuses the quantitative knowledge to the spatial distribution and the size of tumorous structure through radiomic features: (GLCM, HOG, and LBP). The application of the novice rejection algorithm has been found significantly effective in selecting and isolating the negative training instances out of the original dataset. The fused feature vectors are then used for training and testing by k-NN and SVM classifiers. The 2021 RSNA Brain Tumor challenge dataset (BraTS-2021) consists of four structural mpMRIs, viz. fluid-attenuated inversion-recovery, T1-weighted, T1-weighted contrast enhancement, and T2-weighted. We evaluated the classification performance, for the very first time in published form, in terms of measures like accuracy, F1-score, and Matthews correlation coefficient. The Jackknife tenfold cross-validation was used for training and testing BraTS-2021 dataset validation. The highest classification performance is (96.84 ± 0.09)%, (96.08 ± 0.10)%, and (97.44 ± 0.14)% as accuracy, sensitivity, and specificity respectively to detect MGMT methylation status for patients suffering from glioblastoma. Deep learning feature extraction with radiogenomic features, fusing imaging phenotypes and molecular structure, using rejection algorithm has been found to perform outclass capable of detecting MGMT methylation status of glioblastoma patients. The approach relates the genomic variation with radiomic features forming a bridge between two areas of research that may prove useful for clinical treatment planning leading to better outcomes.
Collapse
Affiliation(s)
- Shahzad Ahmad Qureshi
- Department of Computer and Information Sciences, Pakistan Institute of Engineering and Applied Sciences, Islamabad, Pakistan.
| | - Lal Hussain
- Department of Computer Science and IT, Neelum Campus, The University of Azad Jammu and Kashmir, Muzaffarabad, Azad Kashmir, Pakistan. .,Department of Computer Science and IT, King Abdullah Campus, The University of Azad Jammu and Kashmir, Muzaffarabad, Azad Kashmir, Pakistan. .,Department of Radiology, Albert Einstein College of Medicine and Montefiore Medical Center, 111 East 210th Street, Bronx, NY, 10467, USA.
| | - Usama Ibrar
- grid.461150.7Farooq Hospital, Lahore, Pakistan
| | - Eatedal Alabdulkreem
- grid.449346.80000 0004 0501 7602Department of Computer Sciences, College of Computer and Information Sciences, Princess Nourah Bint Abdulrahman University, P.O. Box 84428, Riyadh, 11671 Saudi Arabia
| | - Mohamed K. Nour
- grid.412832.e0000 0000 9137 6644Department of Computer Sciences, College of Computing and Information System, Umm Al-Qura University, Mecca, Saudi Arabia
| | - Mohammed S. Alqahtani
- grid.412144.60000 0004 1790 7100Radiological Sciences Department, College of Applied Medical Sciences, King Khalid University, Abha, 61421 Saudi Arabia
| | - Faisal Mohammed Nafie
- grid.449051.d0000 0004 0441 5633Department of Computer Science, College of Science and Humanities at Alghat, Majmaah University, Al-Majmaah, 11952 Saudi Arabia
| | - Abdullah Mohamed
- grid.440865.b0000 0004 0377 3762Research Centre, Future University in Egypt, New Cairo, 11845 Egypt
| | - Gouse Pasha Mohammed
- grid.449553.a0000 0004 0441 5588Department of Computer and Self Development, Preparatory Year Deanship, Prince Sattam Bin Abdulaziz University, AlKharj, Saudi Arabia
| | - Tim Q. Duong
- grid.240283.f0000 0001 2152 0791Department of Radiology, Albert Einstein College of Medicine and Montefiore Medical Center, 111 East 210th Street, Bronx, NY 10467 USA
| |
Collapse
|
9
|
Zhou Y, Xiao D, Jiang X, Nie C. EREG is the core onco-immunological biomarker of cuproptosis and mediates the cross-talk between VEGF and CD99 signaling in glioblastoma. J Transl Med 2023; 21:28. [PMID: 36647156 PMCID: PMC9843967 DOI: 10.1186/s12967-023-03883-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Accepted: 01/09/2023] [Indexed: 01/18/2023] Open
Abstract
BACKGROUND Glioma is the most prevalent primary tumor of the central nervous system. Glioblastoma multiforme (GBM) is the most malignant form of glioma with an extremely poor prognosis. A novel, regulated cell death form of copper-induced cell death called "cuproptosis" provides a new prospect for cancer treatment by regulating cuproptosis. METHODS Data from bulk RNA sequencing (RNA-seq) analysis (The Cancer Genome Atlas cohort and Chinese Glioma Genome Atlas cohort) and single cell RNA-seq (scRNA-seq) analysis were integrated to reveal their relationships. A scoring system was constructed according to the cuproptosis-related gene expression, and core genes were experimentally verified using real-time quantitative reverse transcription polymerase chain reaction (qRT-PCR), Western blot (WB), immunohistochemistry (IHC), and immunofluorescence (IF). Moreover, cell counting kit-8 (CCK8), colony formation, 5-ethynyl-2'-deoxyuridine (EdU) incorporation, transwell, and flow cytometry cell cycle were performed to evaluate cell proliferation, invasion, and migration. RESULTS The Cuproptosis Activation Scoring (CuAS) Model has stable and independent prognostic efficacy, as verified by two CGGA datasets. Epiregulin (EREG), the gene of the model has the most contributions in the principal component analysis (PCA), is an onco-immunological gene that can affect immunity by influencing the expression of programmed death-ligand 1 (PD-L1) and mediate the process of cuproptosis by influencing the expression of ferredoxin 1 (FDX1). Single cell transcriptome analysis revealed that high CuAS GBM cells are found in vascular endothelial growth factor A (VEGFA) + malignant cells. Oligodendrocyte transcription factor 1 (OLIG1) + malignant is the original clone, and VEGF and CD99 are the differential pathways of specific cell communication between the high and low CuAS groups. This was also demonstrated by immunofluorescence in the tissue sections. Furthermore, CuAS has therapeutic potential for immunotherapy, and we predict that many drugs (methotrexate, NU7441, KU -0063794, GDC-0941, cabozantinib, and NVP-BEZ235) may be used in patients with high CuAS. CONCLUSION EREG is the core onco-immunological biomarker of CuAS and modulates the cross-talk between VEGF and CD99 signaling in glioblastoma, and CuAS may provide support for immunotherapy and chemotherapy.
Collapse
Affiliation(s)
- Yujie Zhou
- grid.33199.310000 0004 0368 7223Department of Neurosurgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022 Hubei China
| | - Dongdong Xiao
- grid.33199.310000 0004 0368 7223Department of Neurosurgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022 Hubei China
| | - Xiaobing Jiang
- grid.33199.310000 0004 0368 7223Department of Neurosurgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022 Hubei China
| | - Chuansheng Nie
- grid.33199.310000 0004 0368 7223Department of Neurosurgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022 Hubei China
| |
Collapse
|
10
|
Huang W, Tan K, Zhang Z, Hu J, Dong S. A Review of Fusion Methods for Omics and Imaging Data. IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS 2023; 20:74-93. [PMID: 35044920 DOI: 10.1109/tcbb.2022.3143900] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
The development of omics data and biomedical images has greatly advanced the progress of precision medicine in diagnosis, treatment, and prognosis. The fusion of omics and imaging data, i.e., omics-imaging fusion, offers a new strategy for understanding complex diseases. However, due to a variety of issues such as the limited number of samples, high dimensionality of features, and heterogeneity of different data types, efficiently learning complementary or associated discriminative fusion information from omics and imaging data remains a challenge. Recently, numerous machine learning methods have been proposed to alleviate these problems. In this review, from the perspective of fusion levels and fusion methods, we first provide an overview of preprocessing and feature extraction methods for omics and imaging data, and comprehensively analyze and summarize the basic forms and variations of commonly used and newly emerging fusion methods, along with their advantages, disadvantages and the applicable scope. We then describe public datasets and compare experimental results of various fusion methods on the ADNI and TCGA datasets. Finally, we discuss future prospects and highlight remaining challenges in the field.
Collapse
|
11
|
Li Z, Holzgreve A, Unterrainer LM, Ruf VC, Quach S, Bartos LM, Suchorska B, Niyazi M, Wenter V, Herms J, Bartenstein P, Tonn JC, Unterrainer M, Albert NL, Kaiser L. Combination of pre-treatment dynamic [ 18F]FET PET radiomics and conventional clinical parameters for the survival stratification in patients with IDH-wildtype glioblastoma. Eur J Nucl Med Mol Imaging 2023; 50:535-545. [PMID: 36227357 PMCID: PMC9816231 DOI: 10.1007/s00259-022-05988-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 10/03/2022] [Indexed: 01/11/2023]
Abstract
PURPOSE The aim of this study was to build and evaluate a prediction model which incorporates clinical parameters and radiomic features extracted from static as well as dynamic [18F]FET PET for the survival stratification in patients with newly diagnosed IDH-wildtype glioblastoma. METHODS A total of 141 patients with newly diagnosed IDH-wildtype glioblastoma and dynamic [18F]FET PET prior to surgical intervention were included. Patients with a survival time ≤ 12 months were classified as short-term survivors. First order, shape, and texture radiomic features were extracted from pre-treatment static (tumor-to-background ratio; TBR) and dynamic (time-to-peak; TTP) images, respectively, and randomly divided into a training (n = 99) and a testing cohort (n = 42). After feature normalization, recursive feature elimination was applied for feature selection using 5-fold cross-validation on the training cohort, and a machine learning model was constructed to compare radiomic models and combined clinical-radiomic models with selected radiomic features and clinical parameters. The area under the ROC curve (AUC), accuracy, sensitivity, specificity, and positive and negative predictive values were calculated to assess the predictive performance for identifying short-term survivors in both the training and testing cohort. RESULTS A combined clinical-radiomic model comprising six clinical parameters and six selected dynamic radiomic features achieved highest predictability of short-term survival with an AUC of 0.74 (95% confidence interval, 0.60-0.88) in the independent testing cohort. CONCLUSIONS This study successfully built and evaluated prediction models using [18F]FET PET-based radiomic features and clinical parameters for the individualized assessment of short-term survival in patients with a newly diagnosed IDH-wildtype glioblastoma. The combination of both clinical parameters and dynamic [18F]FET PET-based radiomic features reached highest accuracy in identifying patients at risk. Although the achieved accuracy level remained moderate, our data shows that the integration of dynamic [18F]FET PET radiomic data into clinical prediction models may improve patient stratification beyond established prognostic markers.
Collapse
Affiliation(s)
- Zhicong Li
- Department of Nuclear Medicine, University Hospital, LMU Munich, Marchioninistr. 15, 81377, Munich, Germany.
| | - Adrien Holzgreve
- Department of Nuclear Medicine, University Hospital, LMU Munich, Marchioninistr. 15, 81377, Munich, Germany
| | - Lena M Unterrainer
- Department of Nuclear Medicine, University Hospital, LMU Munich, Marchioninistr. 15, 81377, Munich, Germany
| | - Viktoria C Ruf
- Center for Neuropathology and Prion Research, LMU Munich, Munich, Germany
| | - Stefanie Quach
- Department of Neurosurgery, University Hospital, LMU Munich, Munich, Germany
| | - Laura M Bartos
- Department of Nuclear Medicine, University Hospital, LMU Munich, Marchioninistr. 15, 81377, Munich, Germany
| | - Bogdana Suchorska
- Department of Neurosurgery, University Hospital, LMU Munich, Munich, Germany
- Department of Neurosurgery, Sana Hospital, Duisburg, Germany
| | - Maximilian Niyazi
- Department of Radiotherapy, University Hospital, LMU Munich, Munich, Germany
- German Cancer Consortium (DKTK), Partner Site Munich, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Vera Wenter
- Department of Nuclear Medicine, University Hospital, LMU Munich, Marchioninistr. 15, 81377, Munich, Germany
| | - Jochen Herms
- Center for Neuropathology and Prion Research, LMU Munich, Munich, Germany
| | - Peter Bartenstein
- Department of Nuclear Medicine, University Hospital, LMU Munich, Marchioninistr. 15, 81377, Munich, Germany
- German Cancer Consortium (DKTK), Partner Site Munich, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Joerg-Christian Tonn
- Department of Neurosurgery, University Hospital, LMU Munich, Munich, Germany
- German Cancer Consortium (DKTK), Partner Site Munich, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Marcus Unterrainer
- Department of Radiology, University Hospital, LMU Munich, Munich, Germany
| | - Nathalie L Albert
- Department of Nuclear Medicine, University Hospital, LMU Munich, Marchioninistr. 15, 81377, Munich, Germany
- German Cancer Consortium (DKTK), Partner Site Munich, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Lena Kaiser
- Department of Nuclear Medicine, University Hospital, LMU Munich, Marchioninistr. 15, 81377, Munich, Germany
| |
Collapse
|
12
|
García-García S, García-Galindo M, Arrese I, Sarabia R, Cepeda S. Current Evidence, Limitations and Future Challenges of Survival Prediction for Glioblastoma Based on Advanced Noninvasive Methods: A Narrative Review. MEDICINA (KAUNAS, LITHUANIA) 2022; 58:medicina58121746. [PMID: 36556948 PMCID: PMC9786785 DOI: 10.3390/medicina58121746] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 11/16/2022] [Accepted: 11/28/2022] [Indexed: 12/03/2022]
Abstract
Background and Objectives: Survival estimation for patients diagnosed with Glioblastoma (GBM) is an important information to consider in patient management and communication. Despite some known risk factors, survival estimation remains a major challenge. Novel non-invasive technologies such as radiomics and artificial intelligence (AI) have been implemented to increase the accuracy of these predictions. In this article, we reviewed and discussed the most significant available research on survival estimation for GBM through advanced non-invasive methods. Materials and Methods: PubMed database was queried for articles reporting on survival prognosis for GBM through advanced image and data management methods. Articles including in their title or abstract the following terms were initially screened: ((glioma) AND (survival)) AND ((artificial intelligence) OR (radiomics)). Exclusively English full-text articles, reporting on humans, published as of 1 September 2022 were considered. Articles not reporting on overall survival, evaluating the effects of new therapies or including other tumors were excluded. Research with a radiomics-based methodology were evaluated using the radiomics quality score (RQS). Results: 382 articles were identified. After applying the inclusion criteria, 46 articles remained for further analysis. These articles were thoroughly assessed, summarized and discussed. The results of the RQS revealed some of the limitations of current radiomics investigation on this field. Limitations of analyzed studies included data availability, patient selection and heterogeneity of methodologies. Future challenges on this field are increasing data availability, improving the general understanding of how AI handles data and establishing solid correlations between image features and tumor's biology. Conclusions: Radiomics and AI methods of data processing offer a new paradigm of possibilities to tackle the question of survival prognosis in GBM.
Collapse
Affiliation(s)
- Sergio García-García
- Department of Neurosurgery, University Hospital Río Hortega, Dulzaina 2, 47012 Valladolid, Spain
- Correspondence:
| | - Manuel García-Galindo
- Faculty of Medicine, University of Valladolid, Avenida Ramón y Cajal 7, 47003 Valladolid, Spain
| | - Ignacio Arrese
- Department of Neurosurgery, University Hospital Río Hortega, Dulzaina 2, 47012 Valladolid, Spain
| | - Rosario Sarabia
- Department of Neurosurgery, University Hospital Río Hortega, Dulzaina 2, 47012 Valladolid, Spain
| | - Santiago Cepeda
- Department of Neurosurgery, University Hospital Río Hortega, Dulzaina 2, 47012 Valladolid, Spain
| |
Collapse
|
13
|
Kihira S, Mei X, Mahmoudi K, Liu Z, Dogra S, Belani P, Tsankova N, Hormigo A, Fayad ZA, Doshi A, Nael K. U-Net Based Segmentation and Characterization of Gliomas. Cancers (Basel) 2022; 14:4457. [PMID: 36139616 PMCID: PMC9496685 DOI: 10.3390/cancers14184457] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Revised: 09/12/2022] [Accepted: 09/13/2022] [Indexed: 11/18/2022] Open
Abstract
(1) Background: Gliomas are the most common primary brain neoplasms accounting for roughly 40−50% of all malignant primary central nervous system tumors. We aim to develop a deep learning-based framework for automated segmentation and prediction of biomarkers and prognosis in patients with gliomas. (2) Methods: In this retrospective two center study, patients were included if they (1) had a diagnosis of glioma with known surgical histopathology and (2) had preoperative MRI with FLAIR sequence. The entire tumor volume including FLAIR hyperintense infiltrative component and necrotic and cystic components was segmented. Deep learning-based U-Net framework was developed based on symmetric architecture from the 512 × 512 segmented maps from FLAIR as the ground truth mask. (3) Results: The final cohort consisted of 208 patients with mean ± standard deviation of age (years) of 56 ± 15 with M/F of 130/78. DSC of the generated mask was 0.93. Prediction for IDH-1 and MGMT status had a performance of AUC 0.88 and 0.62, respectively. Survival prediction of <18 months demonstrated AUC of 0.75. (4) Conclusions: Our deep learning-based framework can detect and segment gliomas with excellent performance for the prediction of IDH-1 biomarker status and survival.
Collapse
Affiliation(s)
- Shingo Kihira
- Department of Radiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Department of Radiological Sciences, David Geffen School of Medicine at University of California Los Angeles, Los Angeles, CA 90033, USA
| | - Xueyan Mei
- Biomedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Keon Mahmoudi
- Department of Radiological Sciences, David Geffen School of Medicine at University of California Los Angeles, Los Angeles, CA 90033, USA
| | - Zelong Liu
- Biomedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Siddhant Dogra
- Department of Radiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Puneet Belani
- Department of Radiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Nadejda Tsankova
- Department of Pathology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Adilia Hormigo
- Department of Pathology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Zahi A. Fayad
- Department of Radiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Biomedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Amish Doshi
- Department of Radiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Kambiz Nael
- Department of Radiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Department of Radiological Sciences, David Geffen School of Medicine at University of California Los Angeles, Los Angeles, CA 90033, USA
| |
Collapse
|
14
|
Sahu M, Gupta R, Ambasta RK, Kumar P. Artificial intelligence and machine learning in precision medicine: A paradigm shift in big data analysis. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2022; 190:57-100. [PMID: 36008002 DOI: 10.1016/bs.pmbts.2022.03.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
The integration of artificial intelligence in precision medicine has revolutionized healthcare delivery. Precision medicine identifies the phenotype of particular patients with less-common responses to treatment. Recent studies have demonstrated that translational research exploring the convergence between artificial intelligence and precision medicine will help solve the most difficult challenges facing precision medicine. Here, we discuss different aspects of artificial intelligence in precision medicine that improve healthcare delivery. First, we discuss how artificial intelligence changes the landscape of precision medicine and the evolution of artificial intelligence in precision medicine. Second, we highlight the synergies between artificial intelligence and precision medicine and promises of artificial intelligence and precision medicine in healthcare delivery. Third, we briefly explain the promise of big data analytics and the integration of nanomaterials in precision medicine. Last, we highlight the challenges and opportunities of artificial intelligence in precision medicine.
Collapse
Affiliation(s)
- Mehar Sahu
- Molecular Neuroscience and Functional Genomics Laboratory, Delhi Technological University (Formerly Delhi College of Engineering), Shahbad Daulatpur, Delhi, India
| | - Rohan Gupta
- Molecular Neuroscience and Functional Genomics Laboratory, Delhi Technological University (Formerly Delhi College of Engineering), Shahbad Daulatpur, Delhi, India
| | - Rashmi K Ambasta
- Molecular Neuroscience and Functional Genomics Laboratory, Delhi Technological University (Formerly Delhi College of Engineering), Shahbad Daulatpur, Delhi, India
| | - Pravir Kumar
- Molecular Neuroscience and Functional Genomics Laboratory, Delhi Technological University (Formerly Delhi College of Engineering), Shahbad Daulatpur, Delhi, India.
| |
Collapse
|
15
|
Wu C, Yu S, Zhang Y, Zhu L, Chen S, Liu Y. CT-Based Radiomics Nomogram Improves Risk Stratification and Prediction of Early Recurrence in Hepatocellular Carcinoma After Partial Hepatectomy. Front Oncol 2022; 12:896002. [PMID: 35875140 PMCID: PMC9302642 DOI: 10.3389/fonc.2022.896002] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 06/17/2022] [Indexed: 01/27/2023] Open
Abstract
Objectives To develop and validate an intuitive computed tomography (CT)-based radiomics nomogram for the prediction and risk stratification of early recurrence (ER) in hepatocellular carcinoma (HCC) patients after partial hepatectomy. Methods A total of 132 HCC patients treated with partial hepatectomy were retrospectively enrolled and assigned to training and test sets. Least absolute shrinkage and selection operator and gradient boosting decision tree were used to extract quantitative radiomics features from preoperative contrast-enhanced CT images of the HCC patients. The radiomics features with predictive value for ER were used, either alone or in combination with other predictive features, to construct predictive models. The best performing model was then selected to develop an intuitive, simple-to-use nomogram, and its performance in the prediction and risk stratification of ER was evaluated using the area under the receiver operating characteristic curve (AUC), calibration curve, and decision curve analysis (DCA). Results The radiomics model based on the radiomics score (Rad-score) achieved AUCs of 0.870 and 0.890 in the training and test sets, respectively. Among the six predictive models, the combined model based on the Rad-score, Edmondson grade, and tumor size had the highest AUCs of 0.907 in the training set and 0.948 in the test set and was used to develop an intuitive nomogram. Notably, the calibration curve and DCA for the nomogram showed good calibration and clinical application. Moreover, the risk of ER was significantly different between the high- and low-risk groups stratified by the nomogram (p <0.001). Conclusions The CT-based radiomics nomogram developed in this study exhibits outstanding performance for ER prediction and risk stratification. As such, this intuitive nomogram holds promise as a more effective and user-friendly tool in predicting ER for HCC patients after partial hepatectomy.
Collapse
Affiliation(s)
- Cuiyun Wu
- Cancer Center, Department of Radiology, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital, Hangzhou Medical College), Hangzhou, China
| | - Shufeng Yu
- Cancer Center, Department of Radiology, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital, Hangzhou Medical College), Hangzhou, China
| | - Yang Zhang
- Cancer Center, Department of Radiology, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital, Hangzhou Medical College), Hangzhou, China
| | - Li Zhu
- Cancer Center, Department of Ultrasound Medicine, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital, Hangzhou Medical College), Hangzhou, China
| | - Shuangxi Chen
- Cancer Center, Department of Ultrasound Medicine, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital, Hangzhou Medical College), Hangzhou, China
| | - Yang Liu
- Cancer Center, Department of Ultrasound Medicine, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital, Hangzhou Medical College), Hangzhou, China
- Key Laboratory of Gastroenterology of Zhejiang Province, Zhejiang Provincial People's Hospital (Affiliated People's Hospital, Hangzhou Medical College), Hangzhou, China
- *Correspondence: Yang Liu,
| |
Collapse
|
16
|
Xie J, Pu X, He J, Qiu Y, Lu C, Gao W, Wang X, Lu H, Shi J, Xu Y, Madabhushi A, Fan X, Chen J, Xu J. Survival prediction on intrahepatic cholangiocarcinoma with histomorphological analysis on the whole slide images. Comput Biol Med 2022; 146:105520. [PMID: 35537220 DOI: 10.1016/j.compbiomed.2022.105520] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 04/07/2022] [Accepted: 04/11/2022] [Indexed: 01/06/2023]
Abstract
Intrahepatic cholangiocarcinoma (ICC) is cancer that originates from the liver's secondary ductal epithelium or branch. Due to the lack of early-stage clinical symptoms and very high mortality, the 5-year postoperative survival rate is only about 35%. A critical step to improve patients' survival is accurately predicting their survival status and giving appropriate treatment. The tumor microenvironment of ICC is the immediate environment on which the tumor cell growth depends. The differentiation of tumor glands, the stroma status, and the tumor-infiltrating lymphocytes in such environments are strictly related to the tumor progress. It is crucial to develop a computerized system for characterizing the tumor environment. This work aims to develop the quantitative histomorphological features that describe lymphocyte density distribution at the cell level and the different components at the tumor's tissue level in H&E-stained whole slide images (WSIs). The goal is to explore whether these features could stratify patients' survival. This study comprised of 127 patients diagnosed with ICC after surgery, where 78 cases were randomly chosen as the modeling set, and the rest of the 49 cases were testing set. Deep learning-based models were developed for tissue segmentation and lymphocyte detection in the WSIs. A total of 107-dimensional features, including different type of graph features on the WSIs were extracted by exploring the histomorphological patterns of these identified tumor tissue and lymphocytes. The top 3 discriminative features were chosen with the mRMR algorithm via 5-fold cross-validation to predict the patient's survival. The model's performance was evaluated on the independent testing set, which achieved an AUC of 0.6818 and the log-rank test p-value of 0.03. The Cox multivariable test was used to control the TNM staging, γ-Glutamytransferase, and the Peritumoral Glisson's Sheath Invasion. It showed that our model could independently predict survival risk with a p-value of 0.048 and HR (95% confidence interval) of 2.90 (1.01-8.32). These results indicated that the composition in tissue-level and global arrangement of lymphocytes in the cell-level could distinguish ICC patients' survival risk.
Collapse
Affiliation(s)
- Jiawei Xie
- Institute for AI in Medicine, School of Artificial Intelligence, Nanjing University of Information Science and Technology, Nanjing, 210044, China
| | - Xiaohong Pu
- Dept. of Pathology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, 210008, China
| | - Jian He
- Dept. of Nuclear Medicine, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, 210008, China
| | - Yudong Qiu
- Dept. of Hepatopancreatobiliary Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, 210008, China
| | - Cheng Lu
- Dept. of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, 44106, USA
| | - Wei Gao
- Institute for AI in Medicine, School of Artificial Intelligence, Nanjing University of Information Science and Technology, Nanjing, 210044, China
| | - Xiangxue Wang
- Institute for AI in Medicine, School of Artificial Intelligence, Nanjing University of Information Science and Technology, Nanjing, 210044, China
| | - Haoda Lu
- Institute for AI in Medicine, School of Artificial Intelligence, Nanjing University of Information Science and Technology, Nanjing, 210044, China
| | - Jiong Shi
- Dept. of Pathology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, 210008, China
| | - Yuemei Xu
- Dept. of Pathology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, 210008, China
| | - Anant Madabhushi
- Dept. of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, 44106, USA; Louis Stokes Cleveland Veterans Administration Medical Center, Cleveland, OH, 44106, USA
| | - Xiangshan Fan
- Dept. of Pathology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, 210008, China
| | - Jun Chen
- Dept. of Pathology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, 210008, China.
| | - Jun Xu
- Institute for AI in Medicine, School of Artificial Intelligence, Nanjing University of Information Science and Technology, Nanjing, 210044, China.
| |
Collapse
|
17
|
Jian A, Liu S, Di Ieva A. Artificial Intelligence for Survival Prediction in Brain Tumors on Neuroimaging. Neurosurgery 2022; 91:8-26. [PMID: 35348129 DOI: 10.1227/neu.0000000000001938] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 01/08/2022] [Indexed: 12/30/2022] Open
Abstract
Survival prediction of patients affected by brain tumors provides essential information to guide surgical planning, adjuvant treatment selection, and patient counseling. Current reliance on clinical factors, such as Karnofsky Performance Status Scale, and simplistic radiological characteristics are, however, inadequate for survival prediction in tumors such as glioma that demonstrate molecular and clinical heterogeneity with variable survival outcomes. Advances in the domain of artificial intelligence have afforded powerful tools to capture a large number of hidden high-dimensional imaging features that reflect abundant information about tumor structure and physiology. Here, we provide an overview of current literature that apply computational analysis tools such as radiomics and machine learning methods to the pipeline of image preprocessing, tumor segmentation, feature extraction, and construction of classifiers to establish survival prediction models based on neuroimaging. We also discuss challenges relating to the development and evaluation of such models and explore ethical issues surrounding the future use of machine learning predictions.
Collapse
Affiliation(s)
- Anne Jian
- Computational NeuroSurgery (CNS) Lab, Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, Australia
- Royal Melbourne Hospital, Melbourne, Australia
| | - Sidong Liu
- Computational NeuroSurgery (CNS) Lab, Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, Australia
- Centre for Health Informatics, Australian Institute of Health Innovation, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, Australia
| | - Antonio Di Ieva
- Computational NeuroSurgery (CNS) Lab, Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, Australia
| |
Collapse
|
18
|
Differentiation of Cerebral Dissecting Aneurysm from Hemorrhagic Saccular Aneurysm by Machine-Learning Based on Vessel Wall MRI: A Multicenter Study. J Clin Med 2022; 11:jcm11133623. [PMID: 35806913 PMCID: PMC9267569 DOI: 10.3390/jcm11133623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 06/17/2022] [Accepted: 06/20/2022] [Indexed: 02/01/2023] Open
Abstract
The differential diagnosis of a cerebral dissecting aneurysm (DA) and a hemorrhagic saccular aneurysm (SA) often depends on the intraoperative findings; thus, improved non-invasive imaging diagnosis before surgery is essential to distinguish between these two aneurysms, in order to provide the correct formulation of surgical procedure. We aimed to build a radiomic model based on high-resolution vessel wall magnetic resonance imaging (VW-MRI) and a machine-learning algorithm. In total, 851 radiomic features from 146 cases were analyzed retrospectively, and the ElasticNet algorithm was used to establish the radiomic model in a training set of 77 cases. A clinico-radiological model using clinical features and MRI features was also built. Then an integrated model was built by combining the radiomic model and clinico-radiological model. The area under the ROC curve (AUC) was used to quantify the performance of models. The models were evaluated using leave-one-out cross-validation in a training set, and further validated in an external test set of 69 cases. The diagnostic performance of experienced radiologists was also assessed for comparison. Eight features were used to establish the radiomic model, and the radiomic model performs better (AUC = 0.831) than the clinico-radiological model (AUC = 0.717), integrated model (AUC = 0.813), and even experienced radiologists (AUC = 0.801). Therefore, a radiomic model based on VW-MRI can reliably be used to distinguish DA and hemorrhagic SA, and, thus, be widely applied in clinical practice.
Collapse
|
19
|
Mirón Mombiela R, Arildskov AR, Bruun FJ, Hasselbalch LH, Holst KB, Rasmussen SH, Borrás C. What Genetics Can Do for Oncological Imaging: A Systematic Review of the Genetic Validation Data Used in Radiomics Studies. Int J Mol Sci 2022; 23:6504. [PMID: 35742947 PMCID: PMC9224495 DOI: 10.3390/ijms23126504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 06/07/2022] [Accepted: 06/08/2022] [Indexed: 02/04/2023] Open
Abstract
(1) Background: Radiogenomics is motivated by the concept that biomedical images contain information that reflects underlying pathophysiology. This review focused on papers that used genetics to validate their radiomics models and outcomes and assess their contribution to this emerging field. (2) Methods: All original research with the words radiomics and genomics in English and performed in humans up to 31 January 2022, were identified on Medline and Embase. The quality of the studies was assessed with Radiomic Quality Score (RQS) and the Cochrane recommendation for diagnostic accuracy study Quality Assessment 2. (3) Results: 45 studies were included in our systematic review, and more than 50% were published in the last two years. The studies had a mean RQS of 12, and the studied tumors were very diverse. Up to 83% investigated the prognosis as the main outcome, with the rest focusing on response to treatment and risk assessment. Most applied either transcriptomics (54%) and/or genetics (35%) for genetic validation. (4) Conclusions: There is enough evidence to state that new science has emerged, focusing on establishing an association between radiological features and genomic/molecular expression to explain underlying disease mechanisms and enhance prognostic, risk assessment, and treatment response radiomics models in cancer patients.
Collapse
Affiliation(s)
- Rebeca Mirón Mombiela
- Radiology Derpartment, Herlev og Gentofte Hospital, Borgmester Ib Juuls Vej 17, Opgang 4, 4.Etage, E2, 2730 Herlev, Denmark; (A.R.A.); (F.J.B.); (L.H.H.); (K.B.H.); (S.H.R.)
| | - Anne Rix Arildskov
- Radiology Derpartment, Herlev og Gentofte Hospital, Borgmester Ib Juuls Vej 17, Opgang 4, 4.Etage, E2, 2730 Herlev, Denmark; (A.R.A.); (F.J.B.); (L.H.H.); (K.B.H.); (S.H.R.)
| | - Frederik Jager Bruun
- Radiology Derpartment, Herlev og Gentofte Hospital, Borgmester Ib Juuls Vej 17, Opgang 4, 4.Etage, E2, 2730 Herlev, Denmark; (A.R.A.); (F.J.B.); (L.H.H.); (K.B.H.); (S.H.R.)
| | - Lotte Harries Hasselbalch
- Radiology Derpartment, Herlev og Gentofte Hospital, Borgmester Ib Juuls Vej 17, Opgang 4, 4.Etage, E2, 2730 Herlev, Denmark; (A.R.A.); (F.J.B.); (L.H.H.); (K.B.H.); (S.H.R.)
| | - Kristine Bærentz Holst
- Radiology Derpartment, Herlev og Gentofte Hospital, Borgmester Ib Juuls Vej 17, Opgang 4, 4.Etage, E2, 2730 Herlev, Denmark; (A.R.A.); (F.J.B.); (L.H.H.); (K.B.H.); (S.H.R.)
| | - Sine Hvid Rasmussen
- Radiology Derpartment, Herlev og Gentofte Hospital, Borgmester Ib Juuls Vej 17, Opgang 4, 4.Etage, E2, 2730 Herlev, Denmark; (A.R.A.); (F.J.B.); (L.H.H.); (K.B.H.); (S.H.R.)
| | - Consuelo Borrás
- Freshage Research Group, Department of Physiology, Faculty of Medicine, University of Valencia, 46010 Valencia, Spain
- CIBERFES, Institute of Health Research-INCLIVA, 46010 Valencia, Spain
| |
Collapse
|
20
|
A Comparative and Summative Study of Radiomics-based Overall Survival Prediction in Glioblastoma Patients. J Comput Assist Tomogr 2022; 46:470-479. [PMID: 35405713 DOI: 10.1097/rct.0000000000001300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
PURPOSE This study aimed to assess different machine learning models based on radiomic features, Visually Accessible Rembrandt Images features and clinical characteristics in overall survival prediction of glioblastoma and to identify the reproducible features. MATERIALS AND METHODS Patients with preoperative magnetic resonance scans were allocated into 3 data sets. The Least Absolute Shrinkage and Selection Operator was used for feature selection. The prediction models were built by random survival forest (RSF) and Cox regression. C-index and integrated Brier scores were calculated to compare model performances. RESULTS Patients with cortical involvement had shorter survival times in the training set (P = 0.006). Random survival forest showed higher C-index than Cox, and the RSF model based on the radiomic features was the best one (testing set: C-index = 0.935 ± 0.023). Ten reproducible radiomic features were summarized. CONCLUSIONS The RSF model based on radiomic features had promising potential in predicting overall survival of glioblastoma. Ten reproducible features were identified.
Collapse
|
21
|
Aftab K, Aamir FB, Mallick S, Mubarak F, Pope WB, Mikkelsen T, Rock JP, Enam SA. Radiomics for precision medicine in glioblastoma. J Neurooncol 2022; 156:217-231. [PMID: 35020109 DOI: 10.1007/s11060-021-03933-1] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Accepted: 12/20/2021] [Indexed: 11/26/2022]
Abstract
INTRODUCTION Being the most common primary brain tumor, glioblastoma presents as an extremely challenging malignancy to treat with dismal outcomes despite treatment. Varying molecular epidemiology of glioblastoma between patients and intra-tumoral heterogeneity explains the failure of current one-size-fits-all treatment modalities. Radiomics uses machine learning to identify salient features of the tumor on brain imaging and promises patient-specific management in glioblastoma patients. METHODS We performed a comprehensive review of the available literature on studies investigating the role of radiomics and radiogenomics models for the diagnosis, stratification, prognostication as well as treatment planning and monitoring of glioblastoma. RESULTS Classifiers based on a combination of various MRI sequences, genetic information and clinical data can predict non-invasive tumor diagnosis, overall survival and treatment response with reasonable accuracy. However, the use of radiomics for glioblastoma treatment remains in infancy as larger sample sizes, standardized image acquisition and data extraction techniques are needed to develop machine learning models that can be translated effectively into clinical practice. CONCLUSION Radiomics has the potential to transform the scope of glioblastoma management through personalized medicine.
Collapse
Affiliation(s)
- Kiran Aftab
- Section of Neurosurgery, Department of Surgery, Aga Khan University, Karachi, Pakistan
| | | | - Saad Mallick
- Medical College, Aga Khan University, Karachi, Pakistan
| | - Fatima Mubarak
- Department of Radiology, Aga Khan University, Karachi, Pakistan
| | - Whitney B Pope
- Department of Radiological Sciences, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Tom Mikkelsen
- Departments of Neurology and Neurosurgery, Henry Ford Hospital, Detroit, MI, USA
| | - Jack P Rock
- Department of Neurosurgery, Henry Ford Health System, Detroit, MI, USA
| | - Syed Ather Enam
- Section of Neurosurgery, Department of Surgery, Aga Khan University, Karachi, Pakistan.
| |
Collapse
|
22
|
Zhao Y, Chen R, Zhang T, Chen C, Muhelisa M, Huang J, Xu Y, Ma X. MRI-Based Machine Learning in Differentiation Between Benign and Malignant Breast Lesions. Front Oncol 2021; 11:552634. [PMID: 34733774 PMCID: PMC8558475 DOI: 10.3389/fonc.2021.552634] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Accepted: 09/24/2021] [Indexed: 02/05/2023] Open
Abstract
Background Differential diagnosis between benign and malignant breast lesions is of crucial importance relating to follow-up treatment. Recent development in texture analysis and machine learning may lead to a new solution to this problem. Method This current study enrolled a total number of 265 patients (benign breast lesions:malignant breast lesions = 71:194) diagnosed in our hospital and received magnetic resonance imaging between January 2014 and August 2017. Patients were randomly divided into the training group and validation group (4:1), and two radiologists extracted their texture features from the contrast-enhanced T1-weighted images. We performed five different feature selection methods including Distance correlation, Gradient Boosting Decision Tree (GBDT), least absolute shrinkage and selection operator (LASSO), random forest (RF), eXtreme gradient boosting (Xgboost) and five independent classification models were built based on Linear discriminant analysis (LDA) algorithm. Results All five models showed promising results to discriminate malignant breast lesions from benign breast lesions, and the areas under the curve (AUCs) of receiver operating characteristic (ROC) were all above 0.830 in both training and validation groups. The model with a better discriminating ability was the combination of LDA + gradient boosting decision tree (GBDT). The sensitivity, specificity, AUC, and accuracy in the training group were 0.814, 0.883, 0.922, and 0.868, respectively; LDA + random forest (RF) also suggests promising results with the AUC of 0.906 in the training group. Conclusion The evidence of this study, while preliminary, suggested that a combination of MRI texture analysis and LDA algorithm could discriminate benign breast lesions from malignant breast lesions. Further multicenter researches in this field would be of great help in the validation of the result.
Collapse
Affiliation(s)
- Yanjie Zhao
- Department of Biotherapy, West China Hospital and State Key Laboratory of Biotherapy, Sichuan University, Chengdu, China
| | - Rong Chen
- Department of Radiology, Guiqian International General Hospital, Guiyang, China
| | - Ting Zhang
- Department of Biotherapy, West China Hospital and State Key Laboratory of Biotherapy, Sichuan University, Chengdu, China
| | - Chaoyue Chen
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, China
| | - Muhetaer Muhelisa
- Department of Biotherapy, West China Hospital and State Key Laboratory of Biotherapy, Sichuan University, Chengdu, China
| | - Jingting Huang
- Department of Biotherapy, West China Hospital and State Key Laboratory of Biotherapy, Sichuan University, Chengdu, China
| | - Yan Xu
- Department of Breast and Thyroid Surgery, Daping Hospital, Army Military Medical University, Chongqing, China
| | - Xuelei Ma
- Department of Biotherapy, West China Hospital and State Key Laboratory of Biotherapy, Sichuan University, Chengdu, China
| |
Collapse
|
23
|
MRI-based machine learning for determining quantitative and qualitative characteristics affecting the survival of glioblastoma multiforme. Magn Reson Imaging 2021; 85:222-227. [PMID: 34687850 DOI: 10.1016/j.mri.2021.10.023] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 04/16/2021] [Accepted: 10/17/2021] [Indexed: 11/22/2022]
Abstract
PURPOSE Our current study aims to consider the image biomarkers extracted from the MRI images for exploring their effects on glioblastoma multiforme (GBM) patients' survival. Determining its biomarker helps better manage the disease and evaluate treatments. It has been proven that imaging features could be used as a biomarker. The purpose of this study is to investigate the features in MRI and clinical features as the biomarker association of survival of GBM. METHODS 55 patients were considered with five clinical features, 10 qualities pre-operative MRI image features, and six quantitative features obtained using BraTumIA software. It was run ANN, C5, Bayesian, and Cox models in two phases for determining important variables. In the first phase, we selected the quality features that occur at least in three models and quantitative in two models. In the second phase, models were run with the extracted features, and then the probability value of variables in each model was calculated. RESULTS The mean of accuracy, sensitivity, specificity, and area under curve (AUC) after running four machine learning techniques were 80.47, 82.54, 79.78, and 0.85, respectively. In the second step, the mean of accuracy, sensitivity, specificity, and AUC were 79.55, 78.71, 79.83, and 0.87, respectively. CONCLUSION We found the largest size of the width, the largest size of length, radiotherapy, volume of enhancement, volume of nCET, satellites, enhancing margin, and age feature are important features.
Collapse
|
24
|
Koyuncu H, Barstuğan M. COVID-19 discrimination framework for X-ray images by considering radiomics, selective information, feature ranking, and a novel hybrid classifier. SIGNAL PROCESSING. IMAGE COMMUNICATION 2021; 97:116359. [PMID: 34219966 PMCID: PMC8241421 DOI: 10.1016/j.image.2021.116359] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 06/12/2021] [Accepted: 06/13/2021] [Indexed: 05/17/2023]
Abstract
In medical imaging procedures for the detection of coronavirus, apart from medical tests, approval of diagnosis has special significance. Imaging procedures are also useful for detecting the damage caused by COVID-19. Chest X-ray imaging is frequently used to diagnose COVID-19 and different pneumonias. This paper presents a task-specific framework to detect coronavirus in X-ray images. Binary classification of three different labels (healthy, bacterial pneumonia, and COVID-19) was performed on two differentiated data sets in which corona is stated as positive. First-order statistics, gray level co-occurrence matrix, gray level run length matrix, and gray level size zone matrix were analyzed to form fifteen sub-data sets and to ascertain the necessary radiomics. Two normalization methods are compared to make the data meaningful. Furthermore, five feature ranking approaches (Bhattacharyya, entropy, Roc, t-test, and Wilcoxon) are mentioned to provide necessary information to a state-of-the-art classifier based on Gauss-map-based chaotic particle swarm optimization and neural networks. The proposed framework was designed according to the analyses about radiomics, normalization approaches, and filter-based feature ranking methods. In experiments, seven metrics were evaluated to objectively determine the results: accuracy, area under the receiver operating characteristic (ROC) curve, sensitivity, specificity, g-mean, precision, and f-measure. The proposed framework showed promising scores on two X-ray-based data sets, especially with the accuracy and area under the ROC curve rates exceeding 99% for the classification of coronavirus vs. others.
Collapse
Affiliation(s)
- Hasan Koyuncu
- Konya Technical University, Faculty of Engineering and Natural Sciences, Electrical & Electronics Engineering Department, Konya, Turkey
| | - Mücahid Barstuğan
- Konya Technical University, Faculty of Engineering and Natural Sciences, Electrical & Electronics Engineering Department, Konya, Turkey
| |
Collapse
|
25
|
Wang H, Xue J, Qu T, Bernstein K, Chen T, Barbee D, Silverman JS, Kondziolka D. Predicting local failure of brain metastases after stereotactic radiosurgery with radiomics on planning MR images and dose maps. Med Phys 2021; 48:5522-5530. [PMID: 34287940 DOI: 10.1002/mp.15110] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 05/10/2021] [Accepted: 07/12/2021] [Indexed: 12/24/2022] Open
Abstract
PURPOSE Stereotactic radiosurgery (SRS) has become an important modality in the treatment of brain metastases. The purpose of this study is to investigate the potential of radiomic features from planning magnetic resonance (MR) images and dose maps to predict local failure after SRS for brain metastases. MATERIALS/METHODS Twenty-eight patients who received Gamma Knife (GK) radiosurgery for brain metastases were retrospectively reviewed in this IRB-approved study. 179 irradiated tumors included 42 that locally failed within one-year follow-up. Using SRS tumor volumes, radiomic features were calculated on T1-weighted contrast-enhanced MR images acquired for treatment planning and planned dose maps. 125 radiomic features regarding tumor shape, dose distribution, MR intensities and textures were extracted for each tumor. Logistic regression with automatic feature selection was built to predict tumor progression from local control after SRS. Feature selection and model evaluation using receiver operating characteristic (ROC) curves were performed in a nested cross validation (CV) scheme. The associations between selected radiomic features and treatment outcomes were statistically assessed by univariate analysis. RESULTS The logistic model with feature selection achieved ROC AUC of 0.82 ± 0.09 on 5-fold CV, providing 83% sensitivity and 70% specificity for predicting local failure. A total of 10 radiomic features including 1 shape feature, 6 MR images and 3 dose distribution features were selected. These features were significantly associated with treatment outcomes (p < 0.05). The model was validated on independent holdout data with an AUC of 0.78. CONCLUSIONS Radiomic features from planning MR images and dose maps provided prognostic information in SRS for brain metastases. A model built on the radiomic features shows promise for early prediction of tumor local failure after treatment, potentially aiding in personalized care for brain metastases.
Collapse
Affiliation(s)
- Hesheng Wang
- Department of Radiation Oncology, NYU Langone Medical Center, New York University, New York, New York, USA
| | - Jinyu Xue
- Department of Radiation Oncology, NYU Langone Medical Center, New York University, New York, New York, USA
| | - Tanxia Qu
- Department of Radiation Oncology, NYU Langone Medical Center, New York University, New York, New York, USA
| | - Kenneth Bernstein
- Department of Radiation Oncology, NYU Langone Medical Center, New York University, New York, New York, USA
| | - Ting Chen
- Department of Radiation Oncology, NYU Langone Medical Center, New York University, New York, New York, USA
| | - David Barbee
- Department of Radiation Oncology, NYU Langone Medical Center, New York University, New York, New York, USA
| | - Joshua S Silverman
- Department of Radiation Oncology, NYU Langone Medical Center, New York University, New York, New York, USA
| | - Douglas Kondziolka
- Department of Radiation Oncology, NYU Langone Medical Center, New York University, New York, New York, USA.,Department of Neurosurgery, NYU Langone Medical Center, New York University, New York, New York, USA
| |
Collapse
|
26
|
Chen B, Chen C, Wang J, Teng Y, Ma X, Xu J. Differentiation of Low-Grade Astrocytoma From Anaplastic Astrocytoma Using Radiomics-Based Machine Learning Techniques. Front Oncol 2021; 11:521313. [PMID: 34141605 PMCID: PMC8204041 DOI: 10.3389/fonc.2021.521313] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Accepted: 05/04/2021] [Indexed: 02/05/2023] Open
Abstract
Purpose To investigate the diagnostic ability of radiomics-based machine learning in differentiating atypical low-grade astrocytoma (LGA) from anaplastic astrocytoma (AA). Methods The current study involved 175 patients diagnosed with LGA (n = 95) or AA (n = 80) and treated in the Neurosurgery Department of West China Hospital from April 2010 to December 2019. Radiomics features were extracted from pre-treatment contrast-enhanced T1 weighted imaging (T1C). Nine diagnostic models were established with three selection methods [Distance Correlation, least absolute shrinkage, and selection operator (LASSO), and Gradient Boosting Decision Tree (GBDT)] and three classification algorithms [Linear Discriminant Analysis (LDA), Support Vector Machine (SVM), and random forest (RF)]. The sensitivity, specificity, accuracy, and areas under receiver operating characteristic curve (AUC) of each model were calculated. Diagnostic ability of each model was evaluated based on these indexes. Results Nine radiomics-based machine learning models with promising diagnostic performances were established. For LDA-based models, the optimal one was the combination of LASSO + LDA with AUC of 0.825. For SVM-based modes, Distance Correlation + SVM represented the most promising diagnostic performance with AUC of 0.808. And for RF-based models, Distance Correlation + RF were observed to be the optimal model with AUC of 0.821. Conclusion Radiomic-based machine-learning has the potential to be utilized in differentiating atypical LGA from AA with reliable diagnostic performance.
Collapse
Affiliation(s)
- Boran Chen
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, China
| | - Chaoyue Chen
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, China.,State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, China
| | - Jian Wang
- School of Computer Science, Nanjing University of Science and Technology, Nanjing, China
| | - Yuen Teng
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, China
| | - Xuelei Ma
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, China.,Department of Biotherapy, Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Jianguo Xu
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
27
|
Buchlak QD, Esmaili N, Leveque JC, Bennett C, Farrokhi F, Piccardi M. Machine learning applications to neuroimaging for glioma detection and classification: An artificial intelligence augmented systematic review. J Clin Neurosci 2021; 89:177-198. [PMID: 34119265 DOI: 10.1016/j.jocn.2021.04.043] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Accepted: 04/30/2021] [Indexed: 12/13/2022]
Abstract
Glioma is the most common primary intraparenchymal tumor of the brain and the 5-year survival rate of high-grade glioma is poor. Magnetic resonance imaging (MRI) is essential for detecting, characterizing and monitoring brain tumors but definitive diagnosis still relies on surgical pathology. Machine learning has been applied to the analysis of MRI data in glioma research and has the potential to change clinical practice and improve patient outcomes. This systematic review synthesizes and analyzes the current state of machine learning applications to glioma MRI data and explores the use of machine learning for systematic review automation. Various datapoints were extracted from the 153 studies that met inclusion criteria and analyzed. Natural language processing (NLP) analysis involved keyword extraction, topic modeling and document classification. Machine learning has been applied to tumor grading and diagnosis, tumor segmentation, non-invasive genomic biomarker identification, detection of progression and patient survival prediction. Model performance was generally strong (AUC = 0.87 ± 0.09; sensitivity = 0.87 ± 0.10; specificity = 0.0.86 ± 0.10; precision = 0.88 ± 0.11). Convolutional neural network, support vector machine and random forest algorithms were top performers. Deep learning document classifiers yielded acceptable performance (mean 5-fold cross-validation AUC = 0.71). Machine learning tools and data resources were synthesized and summarized to facilitate future research. Machine learning has been widely applied to the processing of MRI data in glioma research and has demonstrated substantial utility. NLP and transfer learning resources enabled the successful development of a replicable method for automating the systematic review article screening process, which has potential for shortening the time from discovery to clinical application in medicine.
Collapse
Affiliation(s)
- Quinlan D Buchlak
- School of Medicine, The University of Notre Dame Australia, Sydney, NSW, Australia.
| | - Nazanin Esmaili
- School of Medicine, The University of Notre Dame Australia, Sydney, NSW, Australia; Faculty of Engineering and IT, University of Technology Sydney, Ultimo, NSW, Australia
| | | | - Christine Bennett
- School of Medicine, The University of Notre Dame Australia, Sydney, NSW, Australia
| | - Farrokh Farrokhi
- Neuroscience Institute, Virginia Mason Medical Center, Seattle, WA, USA
| | - Massimo Piccardi
- Faculty of Engineering and IT, University of Technology Sydney, Ultimo, NSW, Australia
| |
Collapse
|
28
|
Dai H, Lu M, Huang B, Tang M, Pang T, Liao B, Cai H, Huang M, Zhou Y, Chen X, Ding H, Feng ST. Considerable effects of imaging sequences, feature extraction, feature selection, and classifiers on radiomics-based prediction of microvascular invasion in hepatocellular carcinoma using magnetic resonance imaging. Quant Imaging Med Surg 2021; 11:1836-1853. [PMID: 33936969 PMCID: PMC8047362 DOI: 10.21037/qims-20-218] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Accepted: 12/02/2020] [Indexed: 12/12/2022]
Abstract
BACKGROUND Microvascular invasion (MVI) has a significant effect on the prognosis of hepatocellular carcinoma (HCC), but its preoperative identification is challenging. Radiomics features extracted from medical images, such as magnetic resonance (MR) images, can be used to predict MVI. In this study, we explored the effects of different imaging sequences, feature extraction and selection methods, and classifiers on the performance of HCC MVI predictive models. METHODS After screening against the inclusion criteria, 69 patients with HCC and preoperative gadoxetic acid-enhanced MR images were enrolled. In total, 167 features were extracted from the MR images of each sequence for each patient. Experiments were designed to investigate the effects of imaging sequence, number of gray levels (Ng), quantization algorithm, feature selection method, and classifiers on the performance of radiomics biomarkers in the prediction of HCC MVI. We trained and tested these models using leave-one-out cross-validation (LOOCV). RESULTS The radiomics model based on the images of the hepatobiliary phase (HBP) had better predictive performance than those based on the arterial phase (AP), portal venous phase (PVP), and pre-enhanced T1-weighted images [area under the receiver operating characteristic (ROC) curve (AUC) =0.792 vs. 0.641/0.634/0.620, P=0.041/0.021/0.010, respectively]. Compared with the equal-probability and Lloyd-Max algorithms, the radiomics features obtained using the Uniform quantization algorithm had a better performance (AUC =0.643/0.666 vs. 0.792, P=0.002/0.003, respectively). Among the values of 8, 16, 32, 64, and 128, the best predictive performance was achieved when the Ng was 64 (AUC =0.792 vs. 0.584/0.697/0.677/0.734, P<0.001/P=0.039/0.001/0.137, respectively). We used a two-stage feature selection method which combined the least absolute shrinkage and selection operator (LASSO) and recursive feature elimination (RFE) gradient boosting decision tree (GBDT), which achieved better stability than and outperformed LASSO, minimum redundancy maximum relevance (mRMR), and support vector machine (SVM)-RFE (stability =0.967 vs. 0.837/0.623/0.390, respectively; AUC =0.850 vs. 0.792/0.713/0.699, P=0.142/0.007/0.003, respectively). The model based on the radiomics features of HBP images using the GBDT classifier showed a better performance for the preoperative prediction of MVI compared with logistic regression (LR), SVM, and random forest (RF) classifiers (AUC =0.895 vs. 0.850/0.834/0.884, P=0.558/0.229/0.058, respectively). With the optimal combination of these factors, we established the best model, which had an AUC of 0.895, accuracy of 87.0%, specificity of 82.5%, and sensitivity of 93.1%. CONCLUSIONS Imaging sequences, feature extraction and selection methods, and classifiers can have a considerable effect on the predictive performance of radiomics models for HCC MVI.
Collapse
Affiliation(s)
- Houjiao Dai
- Medical AI Lab, School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen, China
- Shenzhen University Clinical Research Center for Neurological Diseases, Shenzhen University General Hospital, Shenzhen, China
| | - Minhua Lu
- School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen, China
| | - Bingsheng Huang
- Medical AI Lab, School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen, China
- Shenzhen University Clinical Research Center for Neurological Diseases, Shenzhen University General Hospital, Shenzhen, China
| | - Mimi Tang
- Department of Radiology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Tiantian Pang
- School of Computer Science and Software Engineering, Jilin University, Changchun, China
| | - Bing Liao
- Department of Pathology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Huasong Cai
- Department of Radiology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Mengqi Huang
- Department of Radiology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Yongjin Zhou
- School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen, China
- Marshall Laboratory of Biomedical Engineering, Shenzhen, China
| | - Xin Chen
- School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen, China
| | - Huijun Ding
- School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen, China
| | - Shi-Ting Feng
- Department of Radiology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
29
|
Kihira S, Tsankova NM, Bauer A, Sakai Y, Mahmoudi K, Zubizarreta N, Houldsworth J, Khan F, Salamon N, Hormigo A, Nael K. Multiparametric MRI texture analysis in prediction of glioma biomarker status: added value of MR diffusion. Neurooncol Adv 2021; 3:vdab051. [PMID: 34056604 PMCID: PMC8156980 DOI: 10.1093/noajnl/vdab051] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Background Early identification of glioma molecular phenotypes can lead to understanding of patient prognosis and treatment guidance. We aimed to develop a multiparametric MRI texture analysis model using a combination of conventional and diffusion MRI to predict a wide range of biomarkers in patients with glioma. Methods In this retrospective study, patients were included if they (1) had diagnosis of gliomas with known IDH1, EGFR, MGMT, ATRX, TP53, and PTEN status from surgical pathology and (2) had preoperative MRI including FLAIR, T1c+ and diffusion for radiomic texture analysis. Statistical analysis included logistic regression and receiver-operating characteristic (ROC) curve analysis to determine the optimal model for predicting glioma biomarkers. A comparative analysis between ROCs (conventional only vs conventional + diffusion) was performed. Results From a total of 111 patients included, 91 (82%) were categorized to training and 20 (18%) to test datasets. Constructed cross-validated model using a combination of texture features from conventional and diffusion MRI resulted in overall AUC/accuracy of 1/79% for IDH1, 0.99/80% for ATRX, 0.79/67% for MGMT, and 0.77/66% for EGFR. The addition of diffusion data to conventional MRI features significantly (P < .05) increased predictive performance for IDH1, MGMT, and ATRX. The overall accuracy of the final model in predicting biomarkers in the test group was 80% (IDH1), 70% (ATRX), 70% (MGMT), and 75% (EGFR). Conclusion Addition of MR diffusion to conventional MRI features provides added diagnostic value in preoperative determination of IDH1, MGMT, and ATRX in patients with glioma.
Collapse
Affiliation(s)
- Shingo Kihira
- Department of Diagnostic, Molecular and Interventional Radiology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Nadejda M Tsankova
- Department of Pathology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Adam Bauer
- Department of Radiology, Kaiser Permanente Fontana Medical Center, Fontana, California, USA
| | - Yu Sakai
- Department of Diagnostic, Molecular and Interventional Radiology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Keon Mahmoudi
- Department of Diagnostic, Molecular and Interventional Radiology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Nicole Zubizarreta
- Institute for Health Care Delivery Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Jane Houldsworth
- Department of Pathology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Fahad Khan
- Department of Pathology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Noriko Salamon
- Department of Radiological Sciences, David Geffen School of Medicine at University of California Los Angeles, Los Angeles, California, USA
| | - Adilia Hormigo
- Department of Pathology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Kambiz Nael
- Department of Diagnostic, Molecular and Interventional Radiology, Icahn School of Medicine at Mount Sinai, New York, New York, USA.,Department of Radiological Sciences, David Geffen School of Medicine at University of California Los Angeles, Los Angeles, California, USA
| |
Collapse
|
30
|
Xu Y, He X, Li Y, Pang P, Shu Z, Gong X. The Nomogram of MRI-based Radiomics with Complementary Visual Features by Machine Learning Improves Stratification of Glioblastoma Patients: A Multicenter Study. J Magn Reson Imaging 2021; 54:571-583. [PMID: 33559302 DOI: 10.1002/jmri.27536] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 01/15/2021] [Accepted: 01/16/2021] [Indexed: 11/09/2022] Open
Abstract
BACKGROUND Glioblastomas (GBMs) represent both the most common and the most highly malignant primary brain tumors. The subjective visual imaging features from MRI make it challenging to predict the overall survival (OS) of GBM. Radiomics can quantify image features objectively as an emerging technique. A pragmatic and objective method in the clinic to assess OS is strongly in need. PURPOSE To construct a radiomics nomogram to stratify GBM patients into long- vs. short-term survival. STUDY TYPE Retrospective. POPULATION One-hundred and fifty-eight GBM patients from Brain Tumor Segmentation Challenge 2018 (BRATS2018) were for model construction and 32 GBM patients from the local hospital for external validation. FIELD STRENGTH/SEQUENCE 1.5 T and 3.0 T MRI Scanners, T1 WI, T2 WI, T2 FLAIR, and contrast-enhanced T1 WI sequences ASSESSMENT: All patients were divided into long-term or short-term based on a survival of greater or fewer than 12 months. All BRATS2018 subjects were divided into training and test sets, and images were assessed for ependymal and pia mater involvement (EPI) and multifocality by three experienced neuroradiologists. All tumor tissues from multiparametric MRI were fully automatically segmented into three subregions to calculate the radiomic features. Based on the training set, the most powerful radiomic features were selected to constitute radiomic signature. STATISTICAL TESTS Receiver operating characteristic (ROC) curve, sensitivity, specificity, and the Hosmer-Lemeshow test. RESULTS The nomogram had a survival prediction accuracy of 0.878 and 0.875, a specificity of 0.875 and 0.583, and a sensitivity of 0.704 and 0.833, respectively, in the training and test set. The ROC curve showed the accuracy of the nomogram, radiomic signature, age, and EPI for external validation set were 0.858, 0.826, 0.664, and 0.66 in the validate set, respectively. DATA CONCLUSION Radiomics nomogram integrated with radiomic signature, EPI, and age was found to be robust for the stratification of GBM patients into long- vs. short-term survival. LEVEL OF EVIDENCE 3 TECHNICAL EFFICACY STAGE: 2.
Collapse
Affiliation(s)
- Yuyun Xu
- Department of Radiology, Zhejiang Provincial People's Hospital, Affiliated People's Hospital of Hangzhou Medical College, Hangzhou, China
| | - Xiaodong He
- Department of Radiology, Zhejiang Provincial People's Hospital, Affiliated People's Hospital of Hangzhou Medical College, Hangzhou, China
| | - Yumei Li
- Department of Radiology, Zhejiang Provincial People's Hospital, Affiliated People's Hospital of Hangzhou Medical College, Hangzhou, China
| | | | - Zhenyu Shu
- Department of Radiology, Zhejiang Provincial People's Hospital, Affiliated People's Hospital of Hangzhou Medical College, Hangzhou, China
| | - Xiangyang Gong
- Department of Radiology, Zhejiang Provincial People's Hospital, Affiliated People's Hospital of Hangzhou Medical College, Hangzhou, China
| |
Collapse
|
31
|
Priya S, Agarwal A, Ward C, Locke T, Monga V, Bathla G. Survival prediction in glioblastoma on post-contrast magnetic resonance imaging using filtration based first-order texture analysis: Comparison of multiple machine learning models. Neuroradiol J 2021; 34:355-362. [PMID: 33533273 DOI: 10.1177/1971400921990766] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
OBJECTIVE Magnetic resonance texture analysis (MRTA) is a relatively new technique that can be a valuable addition to clinical and imaging parameters in predicting prognosis. In the present study, we investigated the efficacy of MRTA for glioblastoma survival using T1 contrast-enhanced (CE) images for texture analysis. METHODS We evaluated the diagnostic performance of multiple machine learning models based on first-order histogram statistical parameters derived from T1-weighted CE images in the survival stratification of glioblastoma multiforme (GBM). Retrospective evaluation of 85 patients with GBM was performed. Thirty-six first-order texture parameters at six spatial scale filters (SSF) were extracted on the T1 CE axial images for the whole tumor using commercially available research software. Several machine learning classification models (in four broad categories: linear, penalized linear, non-linear, and ensemble classifiers) were evaluated to assess the survival prediction performance using optimal features. Principal component analysis was used prior to fitting the linear classifiers in order to reduce the dimensionality of the feature inputs. Fivefold cross-validation was used to partition the data iteratively into training and testing sets. The area under the receiver operating characteristic curve (AUC) was used to assess the diagnostic performance. RESULTS The neural network model was the highest performing model with the highest observed AUC (0.811) and cross-validated AUC (0.71). The most important variable was the age at diagnosis, with mean and mean of positive pixels (MPP) for SSF = 0 being the second and third most important, followed by skewness for SSF = 0 and SSF = 4. CONCLUSIONS First-order texture features, when combined with age at presentation, show good accuracy in predicting GBM survival.
Collapse
Affiliation(s)
- Sarv Priya
- Department of Radiology, University of Iowa Hospitals and Clinics, USA
| | - Amit Agarwal
- Department of Radiology, UT Southwestern Medical Center, USA
| | - Caitlin Ward
- Department of Biostatistics, College of Public Health, University of Iowa Hospitals and Clinics, USA
| | - Thomas Locke
- Department of Radiology, University of Iowa Hospitals and Clinics, USA
| | - Varun Monga
- Division of Hematology, Oncology, Department of Internal Medicine, University of Iowa Hospitals and Clinics, USA
| | - Girish Bathla
- Department of Radiology, University of Iowa Hospitals and Clinics, USA
| |
Collapse
|
32
|
Liu Z, Wu K, Wu B, Tang X, Yuan H, Pang H, Huang Y, Zhu X, Luo H, Qi Y. Imaging genomics for accurate diagnosis and treatment of tumors: A cutting edge overview. Biomed Pharmacother 2020; 135:111173. [PMID: 33383370 DOI: 10.1016/j.biopha.2020.111173] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2020] [Revised: 11/30/2020] [Accepted: 12/14/2020] [Indexed: 02/07/2023] Open
Abstract
Imaging genomics refers to the establishment of the connection between invasive gene expression features and non-invasive imaging features. Tumor imaging genomics can not only understand the macroscopic phenotype of tumor, but also can deeply analyze the cellular and molecular characteristics of tumor tissue. In recent years, tumor imaging genomics has been a key in the field of medicine. The incidence of cancer in China has increased significantly, which is the main reason of disease death of urban residents. With the rapid development of imaging medicine, depending on imaging genomics, many experts have made remarkable achievements in tumor screening and diagnosis, prognosis evaluation, new treatment targets and understanding of tumor biological mechanism. This review analyzes the relationship between tumor radiology and gene expression, which provides a favorable direction for clinical staging, prognosis evaluation and accurate treatment of tumors.
Collapse
Affiliation(s)
- Zhen Liu
- Southern Marine Science and Engineering Guangdong Laboratory (Zhanjiang), Zhanjiang, China; Guangdong Key Laboratory for Research and Development of Natural Drugs, The Marine Biomedical Research Institute, Guangdong Medical University, Zhanjiang, China; The Key Lab of Zhanjiang for R&D Marine Microbial Resources in the Beibu Gulf Rim, Guangdong Medical University, Zhanjiang, China; The Marine Biomedical Research Institute of Guangdong Zhanjiang, Zhanjiang, China
| | - Kefeng Wu
- Southern Marine Science and Engineering Guangdong Laboratory (Zhanjiang), Zhanjiang, China
| | - Binhua Wu
- Southern Marine Science and Engineering Guangdong Laboratory (Zhanjiang), Zhanjiang, China; Guangdong Key Laboratory for Research and Development of Natural Drugs, The Marine Biomedical Research Institute, Guangdong Medical University, Zhanjiang, China; The Key Lab of Zhanjiang for R&D Marine Microbial Resources in the Beibu Gulf Rim, Guangdong Medical University, Zhanjiang, China; The Marine Biomedical Research Institute of Guangdong Zhanjiang, Zhanjiang, China
| | - Xiaoning Tang
- Southern Marine Science and Engineering Guangdong Laboratory (Zhanjiang), Zhanjiang, China; Guangdong Key Laboratory for Research and Development of Natural Drugs, The Marine Biomedical Research Institute, Guangdong Medical University, Zhanjiang, China
| | - Huiqing Yuan
- Southern Marine Science and Engineering Guangdong Laboratory (Zhanjiang), Zhanjiang, China; Guangdong Key Laboratory for Research and Development of Natural Drugs, The Marine Biomedical Research Institute, Guangdong Medical University, Zhanjiang, China; The Key Lab of Zhanjiang for R&D Marine Microbial Resources in the Beibu Gulf Rim, Guangdong Medical University, Zhanjiang, China; The Marine Biomedical Research Institute of Guangdong Zhanjiang, Zhanjiang, China
| | - Hao Pang
- Southern Marine Science and Engineering Guangdong Laboratory (Zhanjiang), Zhanjiang, China
| | - Yongmei Huang
- Southern Marine Science and Engineering Guangdong Laboratory (Zhanjiang), Zhanjiang, China; Guangdong Key Laboratory for Research and Development of Natural Drugs, The Marine Biomedical Research Institute, Guangdong Medical University, Zhanjiang, China; The Key Lab of Zhanjiang for R&D Marine Microbial Resources in the Beibu Gulf Rim, Guangdong Medical University, Zhanjiang, China; The Marine Biomedical Research Institute of Guangdong Zhanjiang, Zhanjiang, China
| | - Xiao Zhu
- Southern Marine Science and Engineering Guangdong Laboratory (Zhanjiang), Zhanjiang, China; Guangdong Key Laboratory for Research and Development of Natural Drugs, The Marine Biomedical Research Institute, Guangdong Medical University, Zhanjiang, China; The Key Lab of Zhanjiang for R&D Marine Microbial Resources in the Beibu Gulf Rim, Guangdong Medical University, Zhanjiang, China; The Marine Biomedical Research Institute of Guangdong Zhanjiang, Zhanjiang, China.
| | - Hui Luo
- Southern Marine Science and Engineering Guangdong Laboratory (Zhanjiang), Zhanjiang, China; Guangdong Key Laboratory for Research and Development of Natural Drugs, The Marine Biomedical Research Institute, Guangdong Medical University, Zhanjiang, China; The Key Lab of Zhanjiang for R&D Marine Microbial Resources in the Beibu Gulf Rim, Guangdong Medical University, Zhanjiang, China; The Marine Biomedical Research Institute of Guangdong Zhanjiang, Zhanjiang, China.
| | - Yi Qi
- Southern Marine Science and Engineering Guangdong Laboratory (Zhanjiang), Zhanjiang, China; Guangdong Key Laboratory for Research and Development of Natural Drugs, The Marine Biomedical Research Institute, Guangdong Medical University, Zhanjiang, China; The Key Lab of Zhanjiang for R&D Marine Microbial Resources in the Beibu Gulf Rim, Guangdong Medical University, Zhanjiang, China; The Marine Biomedical Research Institute of Guangdong Zhanjiang, Zhanjiang, China.
| |
Collapse
|
33
|
MRI Radiomic Features to Predict IDH1 Mutation Status in Gliomas: A Machine Learning Approach using Gradient Tree Boosting. Int J Mol Sci 2020; 21:ijms21218004. [PMID: 33121211 PMCID: PMC7662499 DOI: 10.3390/ijms21218004] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 10/23/2020] [Accepted: 10/25/2020] [Indexed: 12/25/2022] Open
Abstract
Patients with gliomas, isocitrate dehydrogenase 1 (IDH1) mutation status have been studied as a prognostic indicator. Recent advances in machine learning (ML) have demonstrated promise in utilizing radiomic features to study disease processes in the brain. We investigate whether ML analysis of multiparametric radiomic features from preoperative Magnetic Resonance Imaging (MRI) can predict IDH1 mutation status in patients with glioma. This retrospective study included patients with glioma with known IDH1 status and preoperative MRI. Radiomic features were extracted from Fluid-Attenuated Inversion Recovery (FLAIR) and Diffused Weighted Imaging (DWI). The dataset was split into training, validation, and testing sets by stratified sampling. Synthetic Minority Oversampling Technique (SMOTE) was applied to the training sets. eXtreme Gradient Boosting (XGBoost) classifiers were trained, and the hyperparameters were tuned. Receiver operating characteristic curve (ROC), accuracy, and f1-scores were collected. A total of 100 patients (age: 55 ± 15, M/F 60/40); with IDH1 mutant (n = 22) and IDH1 wildtype (n = 78) were included. The best performance was seen with a DWI-trained XGBoost model, which achieved ROC with Area Under the Curve (AUC) of 0.97, accuracy of 0.90, and f1-score of 0.75 on the test set. The FLAIR-trained XGBoost model achieved ROC with AUC of 0.95, accuracy of 0.90, f1-score of 0.75 on the test set. A model that was trained on combined FLAIR-DWI radiomic features did not provide incremental accuracy. The results show that a XGBoost classifier using multiparametric radiomic features derived from preoperative MRI can predict IDH1 mutation status with > 90% accuracy.
Collapse
|
34
|
Hsu JBK, Lee GA, Chang TH, Huang SW, Le NQK, Chen YC, Kuo DP, Li YT, Chen CY. Radiomic Immunophenotyping of GSEA-Assessed Immunophenotypes of Glioblastoma and Its Implications for Prognosis: A Feasibility Study. Cancers (Basel) 2020; 12:cancers12103039. [PMID: 33086550 PMCID: PMC7603270 DOI: 10.3390/cancers12103039] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 10/05/2020] [Accepted: 10/16/2020] [Indexed: 02/07/2023] Open
Abstract
Simple Summary Characterization of immunophenotypes in GBM is important for therapeutic stratification and helps predict treatment response and prognosis. However, identifying immunophenotypes of patients with GBM requires multiple laboratory experiments and is time consuming. We developed a non-invasive method to evaluate enrichment levels of CTL, aDC, Treg, and MDSC immune cells to classify immunophenotypes of GBM tumor microenvironment with radiomic features of MR imaging. Five immunophenotypes (G1–G5) of GBM can be classified with specific gene set enrichment analysis. G2 had the worst prognosis and comprised highly enriched MDSCs and lowly enriched CTLs. G3 had the best prognosis and comprised lowly enriched MDSCs and Tregs and highly enriched CTLs. Moreover, the developed radiomics models can successfully identified these two groups by immune cell subsets enriched levels prediction. Therefore, it is possible to characterize immunophenotypes of GBM and predict patient prognosis with radiomics methods. Abstract Characterization of immunophenotypes in glioblastoma (GBM) is important for therapeutic stratification and helps predict treatment response and prognosis. Radiomics can be used to predict molecular subtypes and gene expression levels. However, whether radiomics aids immunophenotyping prediction is still unknown. In this study, to classify immunophenotypes in patients with GBM, we developed machine learning-based magnetic resonance (MR) radiomic models to evaluate the enrichment levels of four immune subsets: Cytotoxic T lymphocytes (CTLs), activated dendritic cells, regulatory T cells (Tregs), and myeloid-derived suppressor cells (MDSCs). Independent testing data and the leave-one-out cross-validation method were used to evaluate model effectiveness and model performance, respectively. We identified five immunophenotypes (G1 to G5) based on the enrichment level for the four immune subsets. G2 had the worst prognosis and comprised highly enriched MDSCs and lowly enriched CTLs. G3 had the best prognosis and comprised lowly enriched MDSCs and Tregs and highly enriched CTLs. The average accuracy of T1-weighted contrasted MR radiomics models of the enrichment level for the four immune subsets reached 79% and predicted G2, G3, and the “immune-cold” phenotype (G1) according to our radiomics models. Our radiomic immunophenotyping models feasibly characterize the immunophenotypes of GBM and can predict patient prognosis.
Collapse
Affiliation(s)
- Justin Bo-Kai Hsu
- Department of Medical Research, Taipei Medical University Hospital, Taipei 110, Taiwan; (J.B.-K.H.); (G.A.L.); (S.-W.H.)
- Translational Imaging Research Center, Taipei Medical University Hospital, Taipei 110, Taiwan; (Y.-C.C.); (D.-P.K.); (Y.-T.L.)
| | - Gilbert Aaron Lee
- Department of Medical Research, Taipei Medical University Hospital, Taipei 110, Taiwan; (J.B.-K.H.); (G.A.L.); (S.-W.H.)
- Translational Imaging Research Center, Taipei Medical University Hospital, Taipei 110, Taiwan; (Y.-C.C.); (D.-P.K.); (Y.-T.L.)
| | - Tzu-Hao Chang
- Graduate Institute of Biomedical Informatics, Taipei Medical University, Taipei 110, Taiwan;
- Clinical Big Data Research Center, Taipei Medical University Hospital, Taipei 110, Taiwan
| | - Shiu-Wen Huang
- Department of Medical Research, Taipei Medical University Hospital, Taipei 110, Taiwan; (J.B.-K.H.); (G.A.L.); (S.-W.H.)
- Department of Pharmacology, School of Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei 110, Taiwan
| | - Nguyen Quoc Khanh Le
- Professional Master Program in Artificial Intelligence in Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan;
- Research Center for Artificial Intelligence in Medicine, Taipei Medical University, Taipei 110, Taiwan
| | - Yung-Chieh Chen
- Translational Imaging Research Center, Taipei Medical University Hospital, Taipei 110, Taiwan; (Y.-C.C.); (D.-P.K.); (Y.-T.L.)
- Department of Medical Imaging, Taipei Medical University Hospital, Taipei 110, Taiwan
| | - Duen-Pang Kuo
- Translational Imaging Research Center, Taipei Medical University Hospital, Taipei 110, Taiwan; (Y.-C.C.); (D.-P.K.); (Y.-T.L.)
- Department of Medical Imaging, Taipei Medical University Hospital, Taipei 110, Taiwan
| | - Yi-Tien Li
- Translational Imaging Research Center, Taipei Medical University Hospital, Taipei 110, Taiwan; (Y.-C.C.); (D.-P.K.); (Y.-T.L.)
- Neuroscience Research Center, Taipei Medical University, Taipei 110, Taiwan
| | - Cheng-Yu Chen
- Translational Imaging Research Center, Taipei Medical University Hospital, Taipei 110, Taiwan; (Y.-C.C.); (D.-P.K.); (Y.-T.L.)
- Professional Master Program in Artificial Intelligence in Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan;
- Research Center for Artificial Intelligence in Medicine, Taipei Medical University, Taipei 110, Taiwan
- Department of Medical Imaging, Taipei Medical University Hospital, Taipei 110, Taiwan
- Department of Radiology, School of Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan
- Correspondence: ; Tel.: +886-2-2737-2181
| |
Collapse
|
35
|
Zadeh Shirazi A, Fornaciari E, Bagherian NS, Ebert LM, Koszyca B, Gomez GA. DeepSurvNet: deep survival convolutional network for brain cancer survival rate classification based on histopathological images. Med Biol Eng Comput 2020; 58:1031-1045. [PMID: 32124225 PMCID: PMC7188709 DOI: 10.1007/s11517-020-02147-3] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2019] [Accepted: 02/14/2020] [Indexed: 12/14/2022]
Abstract
Histopathological whole slide images of haematoxylin and eosin (H&E)-stained biopsies contain valuable information with relation to cancer disease and its clinical outcomes. Still, there are no highly accurate automated methods to correlate histolopathological images with brain cancer patients' survival, which can help in scheduling patients therapeutic treatment and allocate time for preclinical studies to guide personalized treatments. We now propose a new classifier, namely, DeepSurvNet powered by deep convolutional neural networks, to accurately classify in 4 classes brain cancer patients' survival rate based on histopathological images (class I, 0-6 months; class II, 6-12 months; class III, 12-24 months; and class IV, >24 months survival after diagnosis). After training and testing of DeepSurvNet model on a public brain cancer dataset, The Cancer Genome Atlas, we have generalized it using independent testing on unseen samples. Using DeepSurvNet, we obtained precisions of 0.99 and 0.8 in the testing phases on the mentioned datasets, respectively, which shows DeepSurvNet is a reliable classifier for brain cancer patients' survival rate classification based on histopathological images. Finally, analysis of the frequency of mutations revealed differences in terms of frequency and type of genes associated to each class, supporting the idea of a different genetic fingerprint associated to patient survival. We conclude that DeepSurvNet constitutes a new artificial intelligence tool to assess the survival rate in brain cancer. Graphical abstract A DCNN model was generated to accurately predict survival rates of brain cancer patients (classified in 4 different classes) accurately. After training the model using images from H&E stained tissue biopsies from The Cancer Genome Atlas database (TCGA, left), the model can predict for each patient, based on a histological image (top right), its survival class accurately (bottom right).
Collapse
Affiliation(s)
- Amin Zadeh Shirazi
- Centre for Cancer Biology, SA Pathology and University of South Australia, UniSA CRI Building, North Terrace, Adelaide, SA, 5001, Australia.
| | - Eric Fornaciari
- Department of Mathematics of Computation, University of California, Los Angeles (UCLA), Los Angeles, CA, USA
| | | | - Lisa M Ebert
- Centre for Cancer Biology, SA Pathology and University of South Australia, UniSA CRI Building, North Terrace, Adelaide, SA, 5001, Australia
| | | | - Guillermo A Gomez
- Centre for Cancer Biology, SA Pathology and University of South Australia, UniSA CRI Building, North Terrace, Adelaide, SA, 5001, Australia.
| |
Collapse
|
36
|
Chatterjee A, Vallières M, Seuntjens J. Overlooked pitfalls in multi-class machine learning classification in radiation oncology and how to avoid them. Phys Med 2020; 70:96-100. [PMID: 31991302 DOI: 10.1016/j.ejmp.2020.01.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 01/02/2020] [Accepted: 01/09/2020] [Indexed: 12/14/2022] Open
Abstract
In radiation oncology, Machine Learning classification publications are typically related to two outcome classes, e.g. the presence or absence of distant metastasis. However, multi-class classification problems also have great clinical relevance, e.g., predicting the grade of a treatment complication following lung irradiation. This work comprised two studies aimed at making work in this domain less prone to statistical blindsides. In multi-class classification, AUC is not defined, whereas correlation coefficients are. It may seem like solely quoting the correlation coefficient value (in lieu of the AUC value) is a suitable choice. In the first study, we illustrated using Monte Carlo (MC) models why this choice is misleading. We also considered the special case where the multiple classes are not ordinal, but nominal, and explained why Pearson or Spearman correlation coefficients are not only providing incomplete information but are actually meaningless. The second study concerned surrogate biomarkers for a clinical endpoint, which have purported benefits including potential for early assessment, being inexpensive, and being non-invasive. Using a MC experiment, we showed how conclusions derived from surrogate markers can be misleading. The simulated endpoint was radiation toxicity (scale of 0-5). The surrogate marker was the true toxicity grade plus a noise term. Five patient cohorts were simulated, including one control. Two of the cohorts were designed to have a statistically significant difference in toxicity. Under 1000 repeated experiments using the biomarker, these two cohorts were often found to be statistically indistinguishable, with the fraction of such occurrences rising with the level of noise.
Collapse
Affiliation(s)
| | | | - Jan Seuntjens
- McGill University, Medical Physics Unit, Montreal, QC, Canada
| |
Collapse
|
37
|
TCGA-TCIA Impact on Radiogenomics Cancer Research: A Systematic Review. Int J Mol Sci 2019; 20:ijms20236033. [PMID: 31795520 PMCID: PMC6929079 DOI: 10.3390/ijms20236033] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 11/26/2019] [Accepted: 11/28/2019] [Indexed: 12/11/2022] Open
Abstract
In the last decade, the development of radiogenomics research has produced a significant amount of papers describing relations between imaging features and several molecular 'omic signatures arising from next-generation sequencing technology and their potential role in the integrated diagnostic field. The most vulnerable point of many of these studies lies in the poor number of involved patients. In this scenario, a leading role is played by The Cancer Genome Atlas (TCGA) and The Cancer Imaging Archive (TCIA), which make available, respectively, molecular 'omic data and linked imaging data. In this review, we systematically collected and analyzed radiogenomic studies based on TCGA-TCIA data. We organized literature per tumor type and molecular 'omic data in order to discuss salient imaging genomic associations and limitations of each study. Finally, we outlined the potential clinical impact of radiogenomics to improve the accuracy of diagnosis and the prediction of patient outcomes in oncology.
Collapse
|
38
|
Why imaging data alone is not enough: AI-based integration of imaging, omics, and clinical data. Eur J Nucl Med Mol Imaging 2019; 46:2722-2730. [PMID: 31203421 DOI: 10.1007/s00259-019-04382-9] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2019] [Accepted: 05/28/2019] [Indexed: 12/13/2022]
Abstract
Artificial intelligence (AI) is currently regaining enormous interest due to the success of machine learning (ML), and in particular deep learning (DL). Image analysis, and thus radiomics, strongly benefits from this research. However, effectively and efficiently integrating diverse clinical, imaging, and molecular profile data is necessary to understand complex diseases, and to achieve accurate diagnosis in order to provide the best possible treatment. In addition to the need for sufficient computing resources, suitable algorithms, models, and data infrastructure, three important aspects are often neglected: (1) the need for multiple independent, sufficiently large and, above all, high-quality data sets; (2) the need for domain knowledge and ontologies; and (3) the requirement for multiple networks that provide relevant relationships among biological entities. While one will always get results out of high-dimensional data, all three aspects are essential to provide robust training and validation of ML models, to provide explainable hypotheses and results, and to achieve the necessary trust in AI and confidence for clinical applications.
Collapse
|
39
|
Liao X, Cai B, Tian B, Luo Y, Song W, Li Y. Machine-learning based radiogenomics analysis of MRI features and metagenes in glioblastoma multiforme patients with different survival time. J Cell Mol Med 2019; 23:4375-4385. [PMID: 31001929 PMCID: PMC6533509 DOI: 10.1111/jcmm.14328] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2018] [Accepted: 03/21/2019] [Indexed: 12/11/2022] Open
Abstract
Background This study aimed to examine multi‐dimensional MRI features’ predictability on survival outcome and associations with differentially expressed Genes (RNA Sequencing) in groups of glioblastoma multiforme (GBM) patients. Methods Radiomics features were extracted from segmented lesions of T2‐FLAIR MRI data of 137 GBM patients. Radiomics features include intensity, shape and textural features in seven classes were included in the analysis. Patients were divided into two groups depending on their survival time (shorter or longer than 1‐year survival). Four different machine learning algorithms were implemented to construct the prediction models. Features with top importance (importance >0.04) were selected to construct the prediction model using the model with the best performance. The interactions between image features and genomics were then analysed with Pearson's correlation analysis. Results The GBDT model with 72 features with highest importance had the highest accuracy of 0.81 on both short and long survival time classes, and the area under the curve (AUC) of the receiver operative characteristic (ROC) of the short and long survival time class were 0.79 and 0.81. Six metagenes showed significant interactive effect (P < 0.05), and Pearson's correlation analysis revealed that three of these metagenes (TIMP1,ROS1 EREG) showed moderate (0.3 < |r| < 0.5) or high correlation (|r| > 0.5) with image features. Conclusion Radiogenomics analysis shows that MRI features are predictive of survival outcomes, and image features are highly associated with selective metagenes. Radiogenomics analysis is a useful method for optimizing clinical diagnosis and selecting effective treatments.
Collapse
Affiliation(s)
- Xin Liao
- Department of Medical Imaging, The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, China
| | - Bo Cai
- Department of Medical Imaging, The Third People's Hospital of Guizhou Province, Guiyang, Guizhou, China
| | - Bin Tian
- Department of Medical Imaging, The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, China
| | - Yilin Luo
- Department of Medical Imaging, The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, China
| | - Wen Song
- Department of Medical Imaging, The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, China
| | - Yinglong Li
- Department of Interventional Radiology, Guizhou Provincial People's Hospital, Guiyang, Guizhou, China
| |
Collapse
|