1
|
Wang Z, Sun X, Lin Y, Fu Y, Yi Z. Stealth in non-tuberculous mycobacteria: clever challengers to the immune system. Microbiol Res 2025; 292:128039. [PMID: 39752805 DOI: 10.1016/j.micres.2024.128039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 12/18/2024] [Accepted: 12/23/2024] [Indexed: 01/19/2025]
Abstract
Non-tuberculous Mycobacteria (NTM) are found extensively in various environments, yet most are non-pathogenic. Only a limited number of these organisms can cause various infections, including those affecting the lungs, skin, and central nervous system, particularly when the host's autoimmune function is compromised. Among these, Non-tuberculous Mycobacteria Pulmonary Diseases (NTM-PD) are the most prevalent. Currently, there is a lack of effective treatments and preventive measures for NTM infections. This article aims to deepen the comprehension of the pathogenic mechanisms linked to NTM and to formulate new intervention strategies by synthesizing current research and detailing the different tactics used by NTM to avoid elimination by the host's immune response. These intricate mechanisms not only affect the innate immune response but also successfully oppose the adaptive immune response, establishing persistent infections within the host. This includes effects on the functions of macrophages, neutrophils, dendritic cells, and T lymphocytes, as well as modulation of cytokine production. The article particularly emphasizes the survival strategies of NTM within macrophages, such as inhibiting phagosome maturation and acidification, resisting intracellular killing mechanisms, and interfering with autophagy and cell death pathways. This review aims to deepen the understanding of NTM's immune evasion mechanisms, thereby facilitating efforts to inhibit its proliferation and spread within the host, ultimately providing new methods and strategies for NTM-related treatments.
Collapse
Affiliation(s)
- Zhenghao Wang
- School of Clinical Medicine, Shandong Second Medical University, Weifang 261053, China
| | - Xiurong Sun
- School of Clinical Medicine, Shandong Second Medical University, Weifang 261053, China
| | - Yuli Lin
- School of Medical Laboratory, Shandong Second Medical University, Weifang 261053, China
| | - Yurong Fu
- School of Basic Medical Sciences, Shandong Second Medical University, Weifang 261053, China.
| | - Zhengjun Yi
- School of Medical Laboratory, Shandong Second Medical University, Weifang 261053, China.
| |
Collapse
|
2
|
Thomas SS, Abhinand K, Menon AM, Nair BG, Kumar GB, Arun KB, Edison LK, Madhavan A. Epigenetic Mechanisms Induced by Mycobacterium tuberculosis to Promote Its Survival in the Host. Int J Mol Sci 2024; 25:11801. [PMID: 39519352 PMCID: PMC11546203 DOI: 10.3390/ijms252111801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2024] [Revised: 10/02/2024] [Accepted: 10/04/2024] [Indexed: 11/16/2024] Open
Abstract
Tuberculosis caused by the obligate intracellular pathogen, Mycobacterium tuberculosis, is one among the prime causes of death worldwide. An urgent remedy against tuberculosis is of paramount importance in the current scenario. However, the complex nature of this appalling disease contributes to the limitations of existing medications. The quest for better treatment approaches is driving the research in the field of host epigenomics forward in context with tuberculosis. The interplay between various host epigenetic factors and the pathogen is under investigation. A comprehensive understanding of how Mycobacterium tuberculosis orchestrates such epigenetic factors and favors its survival within the host is in increasing demand. The modifications beneficial to the pathogen are reversible and possess the potential to be better targets for various therapeutic approaches. The mechanisms, including histone modifications, DNA methylation, and miRNA modification, are being explored for their impact on pathogenesis. In this article, we are deciphering the role of mycobacterial epigenetic regulators on various strategies like cytokine expression, macrophage polarization, autophagy, and apoptosis, along with a glimpse of the potential of host-directed therapies.
Collapse
Affiliation(s)
- Shwetha Susan Thomas
- School of Biotechnology, Amrita Vishwa Vidyapeetham, Amritapuri, Kollam 690525, Kerala, India
| | - Kuniyil Abhinand
- School of Biotechnology, Amrita Vishwa Vidyapeetham, Amritapuri, Kollam 690525, Kerala, India
| | - Arjun M. Menon
- School of Biotechnology, Amrita Vishwa Vidyapeetham, Amritapuri, Kollam 690525, Kerala, India
| | - Bipin G. Nair
- School of Biotechnology, Amrita Vishwa Vidyapeetham, Amritapuri, Kollam 690525, Kerala, India
| | - Geetha B. Kumar
- School of Biotechnology, Amrita Vishwa Vidyapeetham, Amritapuri, Kollam 690525, Kerala, India
| | - K. B. Arun
- Department of Life Sciences, CHRIST (Deemed to be University), Bangalore 560029, Karnataka, India
| | - Lekshmi K. Edison
- Department of Comparative, Diagnostic, and Population Medicine, College of Veterinary Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Aravind Madhavan
- School of Biotechnology, Amrita Vishwa Vidyapeetham, Amritapuri, Kollam 690525, Kerala, India
| |
Collapse
|
3
|
Koh J, Kim S, Kim JY, Yim JJ, Kwak N. Immunologic features of nontuberculous mycobacterial pulmonary disease based on spatially resolved whole transcriptomics. BMC Pulm Med 2024; 24:392. [PMID: 39138424 PMCID: PMC11323347 DOI: 10.1186/s12890-024-03207-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Accepted: 08/07/2024] [Indexed: 08/15/2024] Open
Abstract
BACKGROUND The immunologic features of nontuberculous mycobacterial pulmonary disease (NTM-PD) are largely unclear. This study investigated the immunologic features of NTM-PD using digital spatial profiling techniques. METHODS Lung tissues obtained from six patients with NTM-PD between January 1, 2006, and December 31, 2020, at Seoul National University Hospital were subjected to RNA sequencing. Cores from the peribronchial areas were stained with CD3, CD68, and DNASyto13, and gene expression at the whole-transcriptome level was quantified using PCR amplification and Illumina sequencing. Lung tissues from six patients with bronchiectasis collected during the same period were used as controls. The RNA sequencing results were validated using immunohistochemistry (IHC) in another cohort (30 patients with NTM-PD and 15 patients with bronchiectasis). RESULTS NTM-PD exhibited distinct gene expression patterns in T cells and macrophages. Gene set enrichment analysis revealed that pathways related to antigen presentation and processing were upregulated in NTM-PD, particularly in macrophages. Macrophages were more prevalent and the expression of genes associated with the M1 phenotype (CD40 and CD80) was significantly elevated. Although macrophages were activated in the NTM-PD group T cell activity was unaltered. Notably, expression of the costimulatory molecule CD28 was decreased in NTM-PD. IHC analysis showed that T cells expressing Foxp3 or TIM-3, which facilitate the regulatory functions of T cells, were increased. CONCLUSIONS NTM-PD exhibits distinct immunologic signatures characterized by the activation of macrophages without T cell activation.
Collapse
Affiliation(s)
- Jaemoon Koh
- Department of Pathology, Seoul National University Hospital, Seoul, South Korea
- Laboratory of Immune Regulation in Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, South Korea
| | - Sehui Kim
- Department of Pathology, Seoul National University Hospital, Seoul, South Korea
- Department of Pathology, Korea University Guro Hospital, Seoul, Republic of Korea
| | - Joong-Yub Kim
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Seoul National University College of Medicine, 101 Daehak-Ro, Jongno-Gu, Seoul, 110-744, South Korea
| | - Jae-Joon Yim
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Seoul National University College of Medicine, 101 Daehak-Ro, Jongno-Gu, Seoul, 110-744, South Korea
| | - Nakwon Kwak
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Seoul National University College of Medicine, 101 Daehak-Ro, Jongno-Gu, Seoul, 110-744, South Korea.
| |
Collapse
|
4
|
Ding S, Wang X, Ma F, Cai Z, Li X, Gao J, Chen X, Wu L. Effect and Mechanism of Mycobacterium avium MAV-5183 on Apoptosis of Mouse Ana-1 Macrophages. Cell Biochem Biophys 2024; 82:885-894. [PMID: 38430410 DOI: 10.1007/s12013-024-01239-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 02/17/2024] [Indexed: 03/03/2024]
Abstract
To investigate the effects and mechanisms of Mycobacterium avium MAV-5183 protein on apoptosis in mouse Ana-1 macrophages. A pET-21a-MAV-5183 recombinant plasmid was constructed. The recombinant MAV-5183 protein was cloned, expressed, purified, and identified using an anti-His-tagged antibody. Rabbits were immunized to obtain antiserum, and its potency and immunoreactivity were assessed through WB. Mouse Ana-1 macrophages were incubated with varying concentrations of MAV-5183 protein. Flow cytometry, following ANNEXIN V-FITC/PI double staining, detected apoptosis. Western Blot analysis was conducted to identify apoptosis-related molecules Caspase-9/8/3 and vesicle-related molecules ASC, NLRP3, and Cleaved-casp1. ELISA measured TNF-α and IL-6 levels in the culture supernatant. LDH activity and ROS levels were analyzed separately. RT-qPCR measured mRNA levels of Caspase-9/8/3, ASC, NLRP3, Caspase-1, IL-1β, Bax, MAPK-p38, Bcl-2, TNF-α, and IL-6. MAV-5183 protein was successfully cloned, purified, and identified. In in vitro studies on Ana-1 macrophages, MAV-5183 protein increased the expression of Caspase-9/8/3, ASC, NLRP3 (P < 0.01), induced ROS secretion (P < 0.05), and promoted inflammatory cytokine secretion (TNF-α, IL-6, P < 0.0001); however, it did not significantly affect LDH (P > 0.05). MAV-5183 also induced apoptosis in Ana-1 macrophages (P < 0.05). RT-qPCR results indicated a significant increase in mRNA expression of Caspase-9/8/3, ASC, NLRP3, TNF-α, IL-6, MAPK-p38, and pro-apoptotic factor Bax (P < 0.01), with no significant effect on Bcl-2 and IL-1β mRNA (P > 0.05). The data indicate that MAV-5183 induces macrophage apoptosis through a caspase-dependent pathway and promotes inflammatory cytokine secretion via ROS.
Collapse
Affiliation(s)
- Shoupeng Ding
- Department of Microbiology and Immunology, School of Basic Medical Sciences, Dali University, Dali, 671000, China
- Department of Laboratory Medicine, Gutian County Hospital, Gutian, 352200, China
| | - Xuan Wang
- Department of Microbiology and Immunology, School of Basic Medical Sciences, Dali University, Dali, 671000, China
- School of Clinical Medicine, Nanchang University Queen Mary School, Nanchang, 330031, China
| | - Fengqian Ma
- Department of Microbiology and Immunology, School of Basic Medical Sciences, Dali University, Dali, 671000, China
| | - Zihan Cai
- Department of Medical Laboratory, Siyang Hospital, Suqian, 237000, China
| | - Xiangfang Li
- Department of Microbiology and Immunology, School of Basic Medical Sciences, Dali University, Dali, 671000, China
| | - Jinghua Gao
- Department of Microbiology and Immunology, School of Basic Medical Sciences, Dali University, Dali, 671000, China
| | - Xiaowen Chen
- Department of Microbiology and Immunology, School of Basic Medical Sciences, Dali University, Dali, 671000, China
| | - Lixian Wu
- Department of Microbiology and Immunology, School of Basic Medical Sciences, Dali University, Dali, 671000, China.
| |
Collapse
|
5
|
Lee JW, Kim HW, Yu AR, Yoon HS, Kang M, Park HW, Lee SK, Whang J, Kim JS. Differential Immune Responses and Underlying Mechanisms of Metabolic Reprogramming in Smooth and Rough Variants of Mycobacterium peregrinum Infections. Pathogens 2023; 12:1446. [PMID: 38133329 PMCID: PMC10747217 DOI: 10.3390/pathogens12121446] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 12/04/2023] [Accepted: 12/11/2023] [Indexed: 12/23/2023] Open
Abstract
Mycobacterium peregrinum (Mpgm) is a rapidly growing mycobacteria that is classified as a nontuberculous mycobacterium (NTM) and is commonly found in environmental sources such as soil, water, and animals. Mpgm is considered an opportunistic pathogen that causes infection in immunocompromised individuals or those with underlying medical conditions. Although there have been clinical reports on Mpgm, reports of the immune response and metabolic reprogramming have not been published. Thus, we studied standard Mpgm-ATCC and two clinical strains (Mpgm-S and Mpgm-R) using macrophages and mouse bone marrow-derived cells. Mpgm has two types of colony morphologies: smooth and rough. We grew all strains on the 7H10 agar medium to visually validate the morphology. Cytokine levels were measured via ELISA and real-time PCR. The changes in mitochondrial function and glycolysis in Mpgm-infected macrophages were measured using an extracellular flux analyzer. Mpgm-S-infected macrophages showed elevated levels of inflammatory cytokines, including interleukin (IL)-6, IL-12p40, and tumor necrosis factor (TNF)-α, compared to Mpgm-ATCC- and Mpgm-R-infected macrophages. Additionally, our findings revealed metabolic changes in Mpgm-ATCC and two clinical strains (Mpgm-S and Mpgm-R) during infection; significant changes were observed in the mitochondrial respiration, extracellular acidification, and the oxygen consumption of BMDMs upon Mpgm-S infection. In summary, within the strains examined, Mpgm-S displayed greater virulence, triggered a heightened immune response, and induced more profound shifts in bioenergetic metabolism than Mpgm-ATCC and Mpgm-R. This study is the first to document distinct immune responses and metabolic reorganization following Mpgm infection. These findings lay a crucial foundation for further investigations into the pathogenesis of Mpgm.
Collapse
Affiliation(s)
- Ji Won Lee
- Myunggok Medical Research Institute, College of Medicine, Konyang University, Daejeon 35365, Republic of Korea; (J.W.L.); (H.W.K.); (A.-R.Y.); (H.S.Y.)
| | - Ho Won Kim
- Myunggok Medical Research Institute, College of Medicine, Konyang University, Daejeon 35365, Republic of Korea; (J.W.L.); (H.W.K.); (A.-R.Y.); (H.S.Y.)
| | - A-Reum Yu
- Myunggok Medical Research Institute, College of Medicine, Konyang University, Daejeon 35365, Republic of Korea; (J.W.L.); (H.W.K.); (A.-R.Y.); (H.S.Y.)
| | - Hoe Sun Yoon
- Myunggok Medical Research Institute, College of Medicine, Konyang University, Daejeon 35365, Republic of Korea; (J.W.L.); (H.W.K.); (A.-R.Y.); (H.S.Y.)
| | - Minji Kang
- Korea Mycobacterium Resource Center (KMRC), Department of Research and Development, The Korean Institute of Tuberculosis, Osong 28158, Republic of Korea;
| | - Hwan-Woo Park
- Department of Cell Biology, College of Medicine, Konyang University, Daejeon 35365, Republic of Korea;
| | - Sung Ki Lee
- Department of Obstetrics and Gynecology, Konyang University Hospital, Daejeon 35365, Republic of Korea;
| | - Jake Whang
- Korea Mycobacterium Resource Center (KMRC), Department of Research and Development, The Korean Institute of Tuberculosis, Osong 28158, Republic of Korea;
| | - Jong-Seok Kim
- Myunggok Medical Research Institute, College of Medicine, Konyang University, Daejeon 35365, Republic of Korea; (J.W.L.); (H.W.K.); (A.-R.Y.); (H.S.Y.)
| |
Collapse
|
6
|
Jeon SM, Kim YJ, Nguyen TQ, Cui J, Thi Bich Hanh B, Silwal P, Kim JK, Kim JM, Oh DC, Jang J, Jo EK. Ohmyungsamycin Promotes M1-like Inflammatory Responses to Enhance Host Defense against Mycobacteroides abscessus Infections. Virulence 2022; 13:1966-1984. [PMID: 36271707 DOI: 10.1080/21505594.2022.2138009] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022] Open
Abstract
Ohmyungsamycin A (OMS) is a newly identified cyclic peptide that exerts antimicrobial effects against Mycobacterium tuberculosis. However, its role in nontuberculous mycobacteria (NTMs) infections has not been clarified. Mycobacteroides abscessus (Mabc) is a rapidly growing NTM that has emerged as a human pathogen in both immunocompetent and immunosuppressed individuals. In this study, we demonstrated that OMS had significant antimicrobial effects against Mabc infection in both immunocompetent and immunodeficient mice, and in macrophages. OMS treatment amplified Mabc-induced expression of M1-related proinflammatory cytokines and inducible nitric oxide synthase, and significantly downregulated arginase-1 expression in murine macrophages. In addition, OMS augmented Mabc-mediated production of mitochondrial reactive oxygen species (mtROS), which promoted M1-like proinflammatory responses in Mabc-infected macrophages. OMS-induced production of mtROS and nitric oxide was critical for OMS-mediated antimicrobial responses during Mabc infections. Notably, the combination of OMS and rifabutin had a synergistic effect on the antimicrobial responses against Mabc infections in vitro, in murine macrophages, and in zebrafish models in vivo. Collectively, these data strongly suggest that OMS may be an effective M1-like adjunctive therapeutic against Mabc infections, either alone or in combination with antibiotics.
Collapse
Affiliation(s)
- Sang Min Jeon
- Department of Microbiology, Chungnam National University School of Medicine, Daejeon, South Korea.,Infection Control Convergence Research Center, Chungnam National University School of Medicine, Daejeon, South Korea.,Department of Medical Science, Chungnam National University School of Medicine, Daejeon, South Korea.,Brain Korea 21 FOUR Project for Medical Science, Chungnam National University School of Medicine, Daejeon, South Korea
| | - Young Jae Kim
- Department of Microbiology, Chungnam National University School of Medicine, Daejeon, South Korea.,Infection Control Convergence Research Center, Chungnam National University School of Medicine, Daejeon, South Korea.,Department of Medical Science, Chungnam National University School of Medicine, Daejeon, South Korea.,Brain Korea 21 FOUR Project for Medical Science, Chungnam National University School of Medicine, Daejeon, South Korea
| | - Thanh Quang Nguyen
- Division of Applied Life Science (BK21 Four Program), Research Institute of Life Science, Gyeongsang National University, Jinju, South Korea
| | - Jinsheng Cui
- Department of Microbiology, Keimyung University School of Medicine, Daegu, South Korea
| | - Bui Thi Bich Hanh
- Division of Applied Life Science (BK21 Four Program), Research Institute of Life Science, Gyeongsang National University, Jinju, South Korea
| | - Prashanta Silwal
- Department of Microbiology, Chungnam National University School of Medicine, Daejeon, South Korea.,Infection Control Convergence Research Center, Chungnam National University School of Medicine, Daejeon, South Korea
| | - Jin Kyung Kim
- Department of Microbiology, Keimyung University School of Medicine, Daegu, South Korea
| | - Jin-Man Kim
- Infection Control Convergence Research Center, Chungnam National University School of Medicine, Daejeon, South Korea.,Department of Medical Science, Chungnam National University School of Medicine, Daejeon, South Korea.,Department of Pathology, Chungnam National University School of Medicine, Daejeon, South Korea
| | - Dong-Chan Oh
- Natural Products Research Institute, College of Pharmacy, Seoul National University, Seoul, South Korea
| | - Jichan Jang
- Division of Life Science, Department of Bio & Medical Big Data (BK21 Four Program), Research Institute of Life Science, Gyeongsang National University,Jinju, South Korea
| | - Eun-Kyeong Jo
- Department of Microbiology, Chungnam National University School of Medicine, Daejeon, South Korea.,Infection Control Convergence Research Center, Chungnam National University School of Medicine, Daejeon, South Korea
| |
Collapse
|
7
|
Boronat-Toscano A, Monfort-Ferré D, Menacho M, Caro A, Bosch R, Espina B, Algaba-Chueca F, Saera-Vila A, Moliné A, Marti M, Espin E, Millan M, Serena C. Anti-TNF Therapies Suppress Adipose Tissue Inflammation in Crohn’s Disease. Int J Mol Sci 2022; 23:ijms231911170. [PMID: 36232469 PMCID: PMC9570367 DOI: 10.3390/ijms231911170] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 09/19/2022] [Accepted: 09/19/2022] [Indexed: 11/16/2022] Open
Abstract
Anti-TNF biologics have been shown to markedly improve the quality of life for patients with Crohn’s disease (CD), yet one-third of patients fail to benefit from this treatment. Patients with CD develop a characteristic wrapping of visceral adipose tissue (VAT) in the inflamed intestinal area, termed creeping fat, and it is known that adipose tissue expansion influences the efficacy of anti-TNF drugs. We questioned whether anti-TNF therapies impact the creeping fat in CD, which might affect the outcome of the disease. Adipose tissue biopsies were obtained from a cohort of 14 patients with CD that received anti-TNF drugs and from 29 non-anti-TNF-treated patients (control group) matched by sex, age, and body mass index undergoing surgical interventions for symptomatic complications. We found that anti-TNF therapies restored adipose tissue morphology and suppressed immune cell infiltration in the creeping fat. Additionally, anti-TNF treatments appeared to markedly improve the pro-inflammatory phenotype of adipose-tissue macrophages and adipose-tissue-derived stem cells. Our study provides evidence that anti-TNF medications influence immune cells and progenitor cells in the creeping of patients with CD, suppressing inflammation. We propose that perilesional VAT should be considered when administering anti-TNF therapy in patients with CD.
Collapse
Affiliation(s)
- Albert Boronat-Toscano
- Institut d’Investigació Sanitària Pere Virgili, Hospital Universitari Joan XXIII, Universitat Rovira i Virgili, 43007 Tarragona, Spain
| | - Diandra Monfort-Ferré
- Institut d’Investigació Sanitària Pere Virgili, Hospital Universitari Joan XXIII, Universitat Rovira i Virgili, 43007 Tarragona, Spain
| | - Margarita Menacho
- Digestive Unit, Hospital Universitari Joan XXIII, 43007 Tarragona, Spain
| | - Aleidis Caro
- Colorectal Surgery Unit, Hospital Universitari Joan XXIII, 43007 Tarragona, Spain
| | - Ramon Bosch
- Department of Pathology, Oncological Pathology and Bioinformatics Research Group, Hospital de Tortosa Verge de la Cinta—IISPV, 43500 Tortosa, Spain
| | - Beatriz Espina
- Colorectal Surgery Unit, Hospital Universitari Joan XXIII, 43007 Tarragona, Spain
| | - Francisco Algaba-Chueca
- Institut d’Investigació Sanitària Pere Virgili, Hospital Universitari Joan XXIII, Universitat Rovira i Virgili, 43007 Tarragona, Spain
| | | | - Alicia Moliné
- Digestive Unit, Hospital Universitari Joan XXIII, 43007 Tarragona, Spain
| | - Marc Marti
- Colorectal Surgery Unit, General Surgery Service, Hospital Valle de Hebron, Universitat Autonoma de Barcelona, 08035 Barcelona, Spain
| | - Eloy Espin
- Colorectal Surgery Unit, General Surgery Service, Hospital Valle de Hebron, Universitat Autonoma de Barcelona, 08035 Barcelona, Spain
| | - Mónica Millan
- Colorectal Surgery Unit, General Surgery Service, Hospital La Fe, 46026 Valencia, Spain
| | - Carolina Serena
- Institut d’Investigació Sanitària Pere Virgili, Hospital Universitari Joan XXIII, Universitat Rovira i Virgili, 43007 Tarragona, Spain
- Correspondence: or
| |
Collapse
|
8
|
Reduced phagocytic activity of human alveolar macrophages infected with Mycobacterium avium complex. J Infect Chemother 2022; 28:1506-1512. [DOI: 10.1016/j.jiac.2022.07.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 07/22/2022] [Accepted: 07/25/2022] [Indexed: 11/22/2022]
|
9
|
Arish M, Naz F. Macrophage plasticity as a therapeutic target in tuberculosis. Eur J Immunol 2022; 52:696-704. [DOI: 10.1002/eji.202149624] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 12/31/2021] [Accepted: 03/01/2022] [Indexed: 11/08/2022]
Affiliation(s)
- Mohd Arish
- JH‐Institute of Molecular Medicine Jamia Hamdard New Delhi India
- Carter Immunology Center University of Virginia United States
| | - Farha Naz
- Centre for Interdisciplinary Research in Basic Sciences (CIRBSc) Jamia Millia Islamia New Delhi India
- Division of Infectious Disease and International Health School of Medicine University of Virginia Health System United States
| |
Collapse
|
10
|
Kang M, Kim HW, Yu AR, Yang JS, Lee SH, Lee JW, Yoon HS, Lee BS, Park HW, Lee SK, Lee S, Whang J, Kim JS. Comparison of Macrophage Immune Responses and Metabolic Reprogramming in Smooth and Rough Variant Infections of Mycobacterium mucogenicum. Int J Mol Sci 2022; 23:ijms23052488. [PMID: 35269631 PMCID: PMC8910348 DOI: 10.3390/ijms23052488] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Revised: 02/20/2022] [Accepted: 02/21/2022] [Indexed: 01/27/2023] Open
Abstract
Mycobacterium mucogenicum (Mmuc), a rapidly growing nontuberculous mycobacterium (NTM), can infect humans (posttraumatic wound infections and catheter-related sepsis). Similar to other NTM species, Mmuc exhibits colony morphologies of rough (Mmuc-R) and smooth (Mmuc-S) types. Although there are several case reports on Mmuc infection, no experimental evidence supports that the R-type is more virulent. In addition, the immune response and metabolic reprogramming of Mmuc have not been studied on the basis of morphological characteristics. Thus, a standard ATCC Mmuc strain and two clinical strains were analyzed, and macrophages were generated from mouse bone marrow. Cytokines and cell death were measured by ELISA and FACS, respectively. Mitochondrial respiration and glycolytic changes were measured by XF seahorse. Higher numbers of intracellular bacteria were found in Mmuc-R-infected macrophages than in Mmuc-S-infected macrophages. Additionally, Mmuc-R induced higher levels of the cytokines TNF-α, IL-6, IL-12p40, and IL-10 and induced more BMDM necrotic death. Furthermore, our metabolic data showed marked glycolytic and respiratory differences between the control and each type of Mmuc infection, and changes in these parameters significantly promoted glucose metabolism, extracellular acidification, and oxygen consumption in BMDMs. In conclusion, at least in the strains we tested, Mmuc-R is more virulent, induces a stronger immune response, and shifts bioenergetic metabolism more extensively than the S-type. This study is the first to report differential immune responses and metabolic reprogramming after Mmuc infection and might provide a fundamental basis for additional studies on Mmuc pathogenesis.
Collapse
Affiliation(s)
- Minji Kang
- Department of Medical Science, Chungnam National University, Daejeon 35365, Korea;
| | - Ho Won Kim
- Myunggok Medical Research Institute, College of Medicine, Konyang University, Daejeon 35365, Korea; (H.W.K.); (A.-R.Y.); (J.W.L.); (H.S.Y.)
| | - A-Reum Yu
- Myunggok Medical Research Institute, College of Medicine, Konyang University, Daejeon 35365, Korea; (H.W.K.); (A.-R.Y.); (J.W.L.); (H.S.Y.)
| | - Jeong Seong Yang
- Korea Mycobacterium Resource Center (KMRC), Department of Research and Development, The Korean Institute of Tuberculosis, Osong 28158, Korea; (J.S.Y.); (S.H.L.)
| | - Seung Heon Lee
- Korea Mycobacterium Resource Center (KMRC), Department of Research and Development, The Korean Institute of Tuberculosis, Osong 28158, Korea; (J.S.Y.); (S.H.L.)
| | - Ji Won Lee
- Myunggok Medical Research Institute, College of Medicine, Konyang University, Daejeon 35365, Korea; (H.W.K.); (A.-R.Y.); (J.W.L.); (H.S.Y.)
| | - Hoe Sun Yoon
- Myunggok Medical Research Institute, College of Medicine, Konyang University, Daejeon 35365, Korea; (H.W.K.); (A.-R.Y.); (J.W.L.); (H.S.Y.)
| | - Byung Soo Lee
- Department of Ophthalmology, Konyang University Hospital and College of Medicine, Daejeon 35365, Korea;
| | - Hwan-Woo Park
- Department of Cell Biology, Konyang University College of Medicine, Daejeon 35365, Korea;
| | - Sung Ki Lee
- Department of Obstetrics and Gynecology, Konyang University Hospital, Daejeon 35365, Korea;
| | - Seungwan Lee
- Department of Medical Science, Konyang University, 158 Gwanjeodong-ro, Daejeon 35365, Korea;
| | - Jake Whang
- Korea Mycobacterium Resource Center (KMRC), Department of Research and Development, The Korean Institute of Tuberculosis, Osong 28158, Korea; (J.S.Y.); (S.H.L.)
- Correspondence: (J.W.); (J.-S.K.); Tel.: +82-43-249-4974 (J.W.); +82-42-600-8648 (J.-S.K.)
| | - Jong-Seok Kim
- Myunggok Medical Research Institute, College of Medicine, Konyang University, Daejeon 35365, Korea; (H.W.K.); (A.-R.Y.); (J.W.L.); (H.S.Y.)
- Correspondence: (J.W.); (J.-S.K.); Tel.: +82-43-249-4974 (J.W.); +82-42-600-8648 (J.-S.K.)
| |
Collapse
|
11
|
Park EJ, Silwal P, Jo EK. Host-Pathogen Interactions Operative during Mycobacteroides abscessus Infection. Immune Netw 2022; 21:e40. [PMID: 35036027 PMCID: PMC8733189 DOI: 10.4110/in.2021.21.e40] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 12/01/2021] [Accepted: 12/09/2021] [Indexed: 12/01/2022] Open
Abstract
Mycobacteroides abscessus (previously Mycobacterium abscessus; Mabc), one of rapidly growing nontuberculous mycobacteria (NTM), is an important pathogen of NTM pulmonary diseases (NTM-PDs) in both immunocompetent and immunocompromised individuals. Mabc infection is chronic and often challenging to treat due to drug resistance, motivating the development of new therapeutics. Despite this, there is a lack of understanding of the relationship between Mabc and the immune system. This review highlights recent progress in the molecular architecture of Mabc and host interactions. We discuss several microbial components that take advantage of host immune defenses, host defense pathways that can overcome Mabc pathogenesis, and how host-pathogen interactions determine the outcomes of Mabc infection. Understanding the molecular mechanisms underlying host-pathogen interactions during Mabc infection will enable the identification of biomarkers and/or drugs to control immune pathogenesis and protect against NTM infection.
Collapse
Affiliation(s)
- Eun-Jin Park
- Department of Microbiology, Chungnam National University College of Medicine, Daejeon 35015, Korea.,Infection Control Convergence Research Center, Chungnam National University College of Medicine, Daejeon 35015, Korea
| | - Prashanta Silwal
- Department of Microbiology, Chungnam National University College of Medicine, Daejeon 35015, Korea.,Infection Control Convergence Research Center, Chungnam National University College of Medicine, Daejeon 35015, Korea
| | - Eun-Kyeong Jo
- Department of Microbiology, Chungnam National University College of Medicine, Daejeon 35015, Korea.,Infection Control Convergence Research Center, Chungnam National University College of Medicine, Daejeon 35015, Korea
| |
Collapse
|
12
|
Ge G, Jiang H, Xiong J, Zhang W, Shi Y, Tao C, Wang H. Progress of the Art of Macrophage Polarization and Different Subtypes in Mycobacterial Infection. Front Immunol 2021; 12:752657. [PMID: 34899703 PMCID: PMC8660122 DOI: 10.3389/fimmu.2021.752657] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Accepted: 10/14/2021] [Indexed: 11/13/2022] Open
Abstract
Mycobacteriosis, mostly resulting from Mycobacterium tuberculosis (MTb), nontuberculous mycobacteria (NTM), and Mycobacterium leprae (M. leprae), is the long-standing granulomatous disease that ravages several organs including skin, lung, and peripheral nerves, and it has a spectrum of clinical-pathologic features based on the interaction of bacilli and host immune response. Histiocytes in infectious granulomas mainly consist of infected and uninfected macrophages (Mφs), multinucleated giant cells (MGCs), epithelioid cells (ECs), and foam cells (FCs), which are commonly discovered in lesions in patients with mycobacteriosis. Granuloma Mφ polarization or reprogramming is the crucial appearance of the host immune response to pathogen aggression, which gets a command of endocellular microbe persistence. Herein, we recapitulate the current gaps and challenges during Mφ polarization and the different subpopulations of mycobacteriosis.
Collapse
Affiliation(s)
- Gai Ge
- Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, China
| | - Haiqin Jiang
- Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, China
| | - Jingshu Xiong
- Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, China
| | - Wenyue Zhang
- Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, China
| | - Ying Shi
- Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, China
| | - Chenyue Tao
- Imperial College London, London, United Kingdom
| | - Hongsheng Wang
- Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, China.,National Center for Sexually Transmitted Disease and Leprosy Control, China Centers for Disease Control and Prevention, Nanjing, China.,Centre for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
| |
Collapse
|
13
|
Ghanavi J, Farnia P, Farnia P, Velayati AA. The role of interferon-gamma and interferon-gamma receptor in tuberculosis and nontuberculous mycobacterial infections. Int J Mycobacteriol 2021; 10:349-357. [PMID: 34916451 DOI: 10.4103/ijmy.ijmy_186_21] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
Mycobacterium tuberculosis (Mtb) and nontuberculous mycobacteria (NTM) remain the leading causes of lung disease and mortality worldwide. Interferon-gamma (IFN-γ) and its receptor (IFN-γR) play a key role in mediating immunity against Mtb and NTM. This study was conducted as a systematic review; all information was collected from databases such as: PubMed, Scopus, Medline, SID, and medical databases. Finally, all the collected data were reviewed, and all content was categorized briefly. There is growing evidence that IFN-γ plays an important role in host defense against these two intracellular pathogens by activating macrophages. In addition, IFN-γ has been shown to be an integral part of various antibacterial methods such as granuloma formation and phagosome-lysosome fusion, both of which lead to the death of intracellular Mycobacterium. As a result, its absence is associated with overgrowth of intracellular pathogens and disease caused by Mtb or Mycobacterium nontuberculosis. We also look at the role of IFN-γR in Mtb or NTM because IFN-γ acts through IFN-γR. Finally, we introduce new approaches to the treatment of M. tuberculosis complex (MTC) and NTM disease, such as cell and gene-based therapies that work by modulating IFN-γ and IFN-γR.
Collapse
Affiliation(s)
- Jalaledin Ghanavi
- Mycobacteriology Research Center, National Research Institute of Tuberculosis and Lung Disease, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Poopak Farnia
- Mycobacteriology Research Center, National Research Institute of Tuberculosis and Lung Disease, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Parissa Farnia
- Mycobacteriology Research Center, National Research Institute of Tuberculosis and Lung Disease, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ali Akbar Velayati
- Mycobacteriology Research Center, National Research Institute of Tuberculosis and Lung Disease, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
14
|
Chen Q, Qi X, Zhang W, Zhang Y, Bi Y, Meng Q, Bian H, Li Y. Catalpol Inhibits Macrophage Polarization and Prevents Postmenopausal Atherosclerosis Through Regulating Estrogen Receptor Alpha. Front Pharmacol 2021; 12:655081. [PMID: 33995075 PMCID: PMC8120111 DOI: 10.3389/fphar.2021.655081] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Accepted: 04/21/2021] [Indexed: 12/19/2022] Open
Abstract
Lacking estrogen increases the risk of atherosclerosis (AS) in postmenopausal women. Inflammation plays a vital role in the pathological process of AS, and macrophages are closely related to inflammation. Catalpol is an iridoid glucoside extracted from the fresh roots of the traditional Chinese herb Rehmanniae radix preparata. In this study, we aimed to evaluate the effects of catalpol on macrophage polarization and postmenopausal AS. In addition, we investigated whether the mechanism of catalpol was dependent on regulating the expression of estrogen receptors (ERs). In vitro, lipopolysaccharides (LPS) and interferon-γ (IFN-γ) were applied to induce M1 macrophage polarization. In vivo, the ApoE-/- mice were fed with a high-fat diet to induce AS, and ovariectomy was operated to mimic the estrogen cessation. We demonstrated catalpol inhibited M1 macrophage polarization induced by LPS and INF-γ, and eliminated lipid accumulation in postmenopausal AS mice. Catalpol not only suppressed the inflammatory response but also reduced the level of oxidative stress. Then, ERs (ERα and ERβ) inhibitors and ERα siRNA were also applied in confirming that the protective effect of catalpol was mediated by ERα, rather than ERβ. In conclusion, catalpol significantly inhibited macrophage polarization and prevented postmenopausal AS by increasing ERα expression.
Collapse
Affiliation(s)
- Qi Chen
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Xu Qi
- School of Medicine and Life Sciences, Nanjing University of Chinese Medicine, Nanjing, China
| | - Weiwei Zhang
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Yuhan Zhang
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Yunhui Bi
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Qinghai Meng
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Huimin Bian
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, China
| | - Yu Li
- Department of Respiratory Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
15
|
Chen M, Zhang Y, Zhou P, Liu X, Zhao H, Zhou X, Gu Q, Li B, Zhu X, Shi Q. Substrate stiffness modulates bone marrow-derived macrophage polarization through NF-κB signaling pathway. Bioact Mater 2020; 5:880-890. [PMID: 32637751 PMCID: PMC7332470 DOI: 10.1016/j.bioactmat.2020.05.004] [Citation(s) in RCA: 112] [Impact Index Per Article: 22.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Revised: 05/06/2020] [Accepted: 05/23/2020] [Indexed: 02/07/2023] Open
Abstract
The stiffness of the extracellular matrix (ECM) plays an important role in regulating the cellular programming. However, the mechanical characteristics of ECM affecting cell differentiation are still under investigated. Herein, we aimed to study the effect of ECM substrate stiffness on macrophage polarization. We prepared polyacrylamide hydrogels with different substrate stiffness, respectively. After the hydrogels were confirmed to have a good biocompatibility, the bone marrow-derived macrophages (BMMs) from mice were incubated on the hydrogels. With simulated by the low substrate stiffness, BMMs displayed an enhanced expression of CD86 on the cell surface and production of reactive oxygen species (ROS) in cells, and secreted more IL-1β and TNF-α in the supernatant. On the contrary, stressed by the medium stiffness, BMMs expressed more CD206, produced less ROS, and secreted more IL-4 and TGF-β. In vivo study by delivered the hydrogels subcutaneously in mice, more CD68+CD86+ cells around the hydrogels with the low substrate stiffness were observed while more CD68+CD206+ cells near by the middle stiffness hydrogels. In addition, the expressions of NIK, phosphorylated p65 (pi-p65) and phosphorylated IκB (pi-IκB) were significantly increased after stimulation with low stiffness in BMMs. Taken together, these findings demonstrated that substrate stiffness could affect macrophages polarization. Low substrate stiffness promoted BMMs to shift to classically activated macrophages (M1) and the middle one to alternatively activated macrophages (M2), through modulating ROS-initiated NF-κB pathway. Therefore, we anticipated ECM-based substrate stiffness with immune modulation would be under consideration in the clinical applications if necessary.
Collapse
Affiliation(s)
- Mimi Chen
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, Orthopedic Institute, Medical College, Soochow University, 188 Shizi Road, Suzhou, Jiangsu, 215006, PR China
| | - Yu Zhang
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, Orthopedic Institute, Medical College, Soochow University, 188 Shizi Road, Suzhou, Jiangsu, 215006, PR China
| | - Pinghui Zhou
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, Orthopedic Institute, Medical College, Soochow University, 188 Shizi Road, Suzhou, Jiangsu, 215006, PR China
| | - Xingzhi Liu
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, Orthopedic Institute, Medical College, Soochow University, 188 Shizi Road, Suzhou, Jiangsu, 215006, PR China
| | - Huan Zhao
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, Orthopedic Institute, Medical College, Soochow University, 188 Shizi Road, Suzhou, Jiangsu, 215006, PR China
| | - Xichao Zhou
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, Orthopedic Institute, Medical College, Soochow University, 188 Shizi Road, Suzhou, Jiangsu, 215006, PR China
| | - Qiaoli Gu
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, Orthopedic Institute, Medical College, Soochow University, 188 Shizi Road, Suzhou, Jiangsu, 215006, PR China
| | - Bin Li
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, Orthopedic Institute, Medical College, Soochow University, 188 Shizi Road, Suzhou, Jiangsu, 215006, PR China
| | - Xuesong Zhu
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, Orthopedic Institute, Medical College, Soochow University, 188 Shizi Road, Suzhou, Jiangsu, 215006, PR China
| | - Qin Shi
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, Orthopedic Institute, Medical College, Soochow University, 188 Shizi Road, Suzhou, Jiangsu, 215006, PR China
- Key Laboratory of Stem Cells and Biomedical Materials of Jiangsu Province and Chinese Ministry of Science and Technology, 199 Renai Road, Suzhou, 215123, PR China
| |
Collapse
|
16
|
Zhou Z, Qi J, Lim CW, Kim JW, Kim B. Dual TBK1/IKKε inhibitor amlexanox mitigates palmitic acid-induced hepatotoxicity and lipoapoptosis in vitro. Toxicology 2020; 444:152579. [PMID: 32905826 DOI: 10.1016/j.tox.2020.152579] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 08/24/2020] [Accepted: 09/01/2020] [Indexed: 02/08/2023]
Abstract
The common causes of Non-alcoholic fatty liver disease (NAFLD) are obesity, dyslipidemia, and insulin resistance. Metabolic disorders and lipotoxic hepatocyte damage are hallmarks of NAFLD. Even though amlexanox, a dual inhibitor of TRAF associated nuclear factor κB (NF-κB) activator-binding kinase 1 (TBK1) and IκB kinase epsilon (IKKε), has been reported to effectively improve obesity-related metabolic dysfunctions in mice models, its molecular mechanism has not been fully investigated. This study was designed to investigate the effects of amlexanox on in vitro nonalcoholic steatohepatitis (NASH) model induced by treatment of palmitic acid (PA, 0.4 mM), using a trans-well co-culture system of hepatocytes and Kupffer cells (KCs). Stimulation with PA significantly increased the phosphorylation levels of TBK1 and IKKε in both hepatocytes and KCs, suggesting a potential role of TBK1/IKKε in PA-induced NASH progression. Treatment of amlexanox (50 μM) showed significantly reduced phosphorylation of TBK1 and IKKε and hepatotoxicity as confirmed by decreased levels of lactate dehydrogenase released from hepatocytes. Furthermore, PA-induced inflammation and lipotoxic cell death in hepatocytes were significantly reversed by amlexanox treatment. Intriguingly, amlexanox inhibited the activation of KCs and induced polarization of KCs towards M2 phenotype. Mechanistically, amlexanox treatment decreased the phosphorylation of interferon regulator factor 3 (IRF3) and NF-κB in PA-treated hepatocytes. However, decreased phosphorylation of NF-κB, not IRF3, was found in PA-treated KCs upon amlexanox treatment. Taken together, our findings show that treatment of amlexanox attenuated the severity of PA-induced hepatotoxicity in vitro and lipoapoptosis by the inhibition of TBK1/IKKε-NF-κB and/or IRF3 pathway in hepatocytes and KCs.
Collapse
Affiliation(s)
- Zixiong Zhou
- Biosafety Research Institute and Laboratory of Pathology (BK21 Plus Program), College of Veterinary Medicine, Jeonbuk National University, Iksan, 54596, Republic of Korea
| | - Jing Qi
- Biosafety Research Institute and Laboratory of Pathology (BK21 Plus Program), College of Veterinary Medicine, Jeonbuk National University, Iksan, 54596, Republic of Korea
| | - Chae Woong Lim
- Biosafety Research Institute and Laboratory of Pathology (BK21 Plus Program), College of Veterinary Medicine, Jeonbuk National University, Iksan, 54596, Republic of Korea
| | - Jong-Won Kim
- Biosafety Research Institute and Laboratory of Pathology (BK21 Plus Program), College of Veterinary Medicine, Jeonbuk National University, Iksan, 54596, Republic of Korea.
| | - Bumseok Kim
- Biosafety Research Institute and Laboratory of Pathology (BK21 Plus Program), College of Veterinary Medicine, Jeonbuk National University, Iksan, 54596, Republic of Korea.
| |
Collapse
|
17
|
Biological Functions of HMGN Chromosomal Proteins. Int J Mol Sci 2020; 21:ijms21020449. [PMID: 31936777 PMCID: PMC7013550 DOI: 10.3390/ijms21020449] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 01/02/2020] [Accepted: 01/08/2020] [Indexed: 12/14/2022] Open
Abstract
Chromatin plays a key role in regulating gene expression programs necessary for the orderly progress of development and for preventing changes in cell identity that can lead to disease. The high mobility group N (HMGN) is a family of nucleosome binding proteins that preferentially binds to chromatin regulatory sites including enhancers and promoters. HMGN proteins are ubiquitously expressed in all vertebrate cells potentially affecting chromatin function and epigenetic regulation in multiple cell types. Here, we review studies aimed at elucidating the biological function of HMGN proteins, focusing on their possible role in vertebrate development and the etiology of disease. The data indicate that changes in HMGN levels lead to cell type-specific phenotypes, suggesting that HMGN optimize epigenetic processes necessary for maintaining cell identity and for proper execution of specific cellular functions. This manuscript contains tables that can be used as a comprehensive resource for all the English written manuscripts describing research aimed at elucidating the biological function of the HMGN protein family.
Collapse
|
18
|
Wang X, Chen S, Ren H, Chen J, Li J, Wang Y, Hua Y, Wang X, Huang N. HMGN2 regulates non-tuberculous mycobacteria survival via modulation of M1 macrophage polarization. J Cell Mol Med 2019; 23:7985-7998. [PMID: 31596045 PMCID: PMC6850944 DOI: 10.1111/jcmm.14599] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Revised: 07/18/2019] [Accepted: 07/29/2019] [Indexed: 01/02/2023] Open
Abstract
Non‐tuberculous mycobacteria (NTM), also known as an environmental and atypical mycobacteria, can cause the chronic pulmonary infectious diseases. Macrophages have been suggested as the main host cell to initiate the innate immune responses to NTM infection. However, the molecular mechanism to regulate the antimicrobial immune responses to NTM is still largely unknown. Current study showed that the NTM clinical groups, Mycobacterium abscessus and Mycobacterium smegmatis, significantly induced the M1 macrophage polarization with the characteristic production of nitric oxide (NO) and marker gene expression of iNOS, IFNγ, TNF‐α, IL1‐β and IL‐6. Interestingly, a non‐histone nuclear protein, HMGN2 (high‐mobility group N2), was found to be spontaneously induced during NTM‐activated M1 macrophage polarization. Functional studies revealed that HMGN2 deficiency in NTM‐infected macrophage promotes the expression of M1 markers and the production of NO via the enhanced activation of NF‐κB and MAPK signalling. Further studies exhibited that HMGN2 knock‐down also enhanced IFNγ‐induced M1 macrophage polarization. Finally, we observed that silencing HMGN2 affected the survival of NTM in macrophage, which might largely relevant to enhanced macrophage polarization into M1 phenotype under the NTM infection. Collectively, current studies thus suggested a novel function of HMGN2 in regulating the anti‐non‐tuberculous mycobacteria innate immunity of macrophage.
Collapse
Affiliation(s)
- Xinyuan Wang
- Department of Pathophysiology, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, China.,Comprehensive Pneumology Center (CPC), University Hospital, Ludwig-Maximilians University, Helmholtz Zentrum München, Member of the German Center for Lung Research (DZL), Munich, Germany
| | - Shanze Chen
- Department of Pathophysiology, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, China
| | - Hongyu Ren
- Department of Pathophysiology, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, China
| | - Junli Chen
- Department of Pathophysiology, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, China
| | - Jingyu Li
- Department of Pathophysiology, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, China
| | - Yi Wang
- Department of Pathophysiology, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, China
| | - Yuanqi Hua
- Department of Pathophysiology, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, China
| | - Xiaoying Wang
- Department of Pathophysiology, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, China
| | - Ning Huang
- Department of Pathophysiology, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, China
| |
Collapse
|