1
|
Yang R, Liu Q, Wang D, Zhao Z, Su Z, Fan D, Liu Q. The Toll-like Receptor-2/4 Antagonist, Sparstolonin B, and Inflammatory Diseases: A Literature Mining and Network Analysis. Cardiovasc Drugs Ther 2025; 39:499-515. [PMID: 38270691 DOI: 10.1007/s10557-023-07535-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/27/2023] [Indexed: 01/26/2024]
Abstract
BACKGROUND Sparstolonin B (SsnB) is characterized as a new toll-like receptor (TLR)-2/4 antagonist. However, the effects of SsnB on different inflammatory diseases have not been systemically reviewed. METHODS We investigated the effects of SsnB on inflammatory diseases with data mining and network analysis of literature, including frequency description, cluster analysis, association rule mining, functional enrichment, and protein-protein interaction (PPI) mining. RESULTS A total of 27 experimental reports were included. The ARRIVE 2.0 guidelines were used to evaluate the quality of animal studies. Frequency analysis revealed 13 different diseases (cardio-cerebrovascular system diseases account for 23.53%), 12 pharmacological effects (anti-inflammatory effect accounts for 53.85%), and 67 therapeutic targets. The overview of investigation sequence of SsnB studies was depicted by Sankey diagram. Cluster analysis classified the therapeutic targets for SsnB into four main categories: (1) NF-κB; (2) IL-1β, IL-6, and TNF-α; (3) TLR2, TLR4, and MyD88; (4) the other targets. Moreover, the Apriori association discovered two main association pairs: (1) TNF-α, IL-1β, and IL-6 and (2) TLR2, TLR4, and MyD88 (support range 33.33-50%, confidence range 83.33-88.89%). Functional enrichment of the therapeutic targets for SsnB showed that the top enriched items in the biological process were mainly the response to lipopolysaccharide (LPS)/bacterial origin and regulation of cytokine production. Finally, the PPI network and hub gene selection by maximal clique centrality (MCC) algorithm indicated the top ranked proteins were TNF-α, IL-1β, IL-6, AKT1, PPAR-γ, TLR4, CCL2, and TLR2. CONCLUSION These results emphasized the importance of TLR2/TLR4-MyD88-NF-κB-IL-1β/IL-6/TNF-α pathways as therapeutic targets of SsnB in inflammatory diseases.
Collapse
Affiliation(s)
- Rongyuan Yang
- State Key Laboratory of Traditional Chinese Medicine Syndrome, The Second Clinical School of Medicine, Guangzhou University of Chinese Medicine, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, 510120, China
| | - Qingqing Liu
- State Key Laboratory of Traditional Chinese Medicine Syndrome, The Second Clinical School of Medicine, Guangzhou University of Chinese Medicine, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, 510120, China
| | - Dawei Wang
- The First Affiliated Hospital of Guangzhou University of Traditional Chinese Medicine, Guangdong, 510405, China
| | - Zhen Zhao
- State Key Laboratory of Traditional Chinese Medicine Syndrome, The Second Clinical School of Medicine, Guangzhou University of Chinese Medicine, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, 510120, China
| | - Zhaohai Su
- Ganzhou Hospital of Guangdong Provincial People's Hospital, Ganzhou Municipal Hospital, Ganzhou, 341000, China
| | - Daping Fan
- Department of Cell Biology and Anatomy, University of South Carolina School of Medicine, Columbia, SC, 29209, USA.
| | - Qing Liu
- State Key Laboratory of Traditional Chinese Medicine Syndrome, The Second Clinical School of Medicine, Guangzhou University of Chinese Medicine, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, 510120, China.
| |
Collapse
|
2
|
Wang Z, Zheng X, Lin J, Zhou B, Zeng Z, Gao H, Chen H, Tang C. Electroacupuncture ameliorates cartilage damage in a rat model of knee osteoarthritis and regulates expression of miRNAs and the TLR4/NF-κB pathway. Acupunct Med 2025:9645284251342259. [PMID: 40390302 DOI: 10.1177/09645284251342259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/21/2025]
Abstract
BACKGROUND Electroacupuncture (EA) has been shown to be effective in the treatment of knee osteoarthritis (KOA); however, its underlying mechanism remains unclear. METHODS 40 KOA model rats were divided into control, untreated model, EA-treated model and celecoxib-treated model groups (n=10 each). Articular cartilage of the knee joint was stained with hematoxylin and eosin (HE), periodic acid-Schiff (PAS) and Alcian blue (AB)-PAS, and Moran/Mankin scores were used to evaluate articular cartilage injury across groups. Moreover, toll-like receptor (TLR)4/nuclear factor (NF)-κB pathway (TN-P)-related protein levels in the articular cartilage were detected using Western blotting. Oxidative stress and inflammatory biomarkers in the synovial fluid were measured by enzyme-linked immunosorbent assay (ELISA). MicroRNA (miRNA/miR) expression was measured by quantitative real-time polymerase chain reaction (qRT-PCR). RESULTS Compared with the control group, Moran scores increased and Mankin scores decreased in the KOA model rats. In addition, compared with those in the control group, levels of superoxide dismutase (SOD), glutathione peroxidase (GSHPx) and interleukin (IL)-10 were significantly decreased, while levels of IL-1β, IL-6, tumor necrosis factor (TNF)-α, malondialdehyde (MDA) and nitric oxide (NO) were significantly increased, in the synovial fluid of the KOA model group. Protein levels of TLR4, anti-myeloid differentiation primary response protein 88 (MyD88) and p65 NF-κB phosphorylation were significantly increased in the articular cartilage of the KOA model group. EA and celecoxib treatment reversed the trends of these protein levels. Moreover, expression of miR-15a/127/140/146a/216a-5p and miR-27a-3p in the articular cartilage were markedly increased in KOA rats, while EA and celecoxib treatment reduced their expression. CONCLUSIONS EA reduces inflammation, oxidative stress and cartilage damage in KOA model rats, likely through regulation of the miRNA/TLR4/NF-κB pathway.
Collapse
Affiliation(s)
- Zhenzhen Wang
- Department of Rehabilitation, The Third Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
- Medical College of Acupuncture-Moxibustion and Rehabilitation, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xiahai Zheng
- Department of Rehabilitation, The Third Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Jing Lin
- Department of Rehabilitation, The Third Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Bin Zhou
- Department of Rehabilitation, The Third Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Zhenming Zeng
- Department of Rehabilitation, The Third Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Haiwei Gao
- Department of Rehabilitation, The Third Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Haoxiong Chen
- Department of Rehabilitation, The Third Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Chunzhi Tang
- Medical College of Acupuncture-Moxibustion and Rehabilitation, Guangzhou University of Chinese Medicine, Guangzhou, China
| |
Collapse
|
3
|
Sheng K, Bisson DG, Saran N, Bourdages J, Coluni C, Upshaw K, Tiedemann K, Komarova SV, Ouellet JA, Haglund L. The TLR-M-CSF axis is implicated in increased bone turnover and curve progression in adolescent idiopathic scoliosis. Arthritis Res Ther 2025; 27:68. [PMID: 40165259 PMCID: PMC11956469 DOI: 10.1186/s13075-025-03535-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Accepted: 03/12/2025] [Indexed: 04/02/2025] Open
Abstract
BACKGROUND Facet joint osteoarthritis (OA) is prevalent in patients with adolescent idiopathic scoliosis (AIS). The most pronounced OA presents above and below the curve's apex where the intervertebral rotation is the greatest. This indicates that facet joint OA is implicated and potentially contributes to AIS progression. OA impacts both cartilage and bone and we have previously demonstrated an association between lower bone quality and more severe OA in AIS facet joints. This study aimed to further investigate the molecular mechanisms underlying cartilage-bone crosstalk in the facet joints of patients with AIS. METHODS Unbiased deep RNA sequencing was performed to compare gene expression in facet joint chondrocytes of age-matched AIS patients and non-scoliotic individuals. Differentially expressed genes of interest were validated through qPCR and ELISA in a larger sample cohort. Key regulatory pathways involved in cartilage-bone crosstalk were identified through bioinformatic analysis. Functional studies were conducted by treating chondrocytes with TLR2 and TLR4 agonists, collecting conditioned media, and administering it to an in vitro osteoclastogenesis model. The expression of M-CSF, a key regulatory factor influencing osteoclast proliferation, was measured in individual facet joint cartilage samples at different spinal levels and correlated with cartilage morphological grade and 3D structural parameters extracted from spine reconstruction. RESULTS One thousand four hundred twenty six upregulated genes were detected, and gene ontology analysis revealed a significant enrichment of the TLR pathway, and bone-regulating biological processes in AIS chondrocytes. TLR activation of AIS chondrocytes induced expression of bone-regulating factors, including M-CSF, a key regulator of osteoclast proliferation. Furthermore, secreted factors from AIS chondrocytes enhanced osteoclast proliferation and maturation, with a stronger effect observed following TLR pre-activation. Clinically, M-CSF expression was found to correlate strongly with increased OA severity and a greater degree of intervertebral axial rotation. CONCLUSIONS Together, our findings suggest that the TLR-M-CSF axis is implicated in osteoclastogenesis, resulting in increased bone turnover and may contribute to curve progression in AIS patients.
Collapse
Affiliation(s)
- Kai Sheng
- Shriners Hospital for Children, Montreal, QC, Canada
- Department of Surgery, Orthopaedic Research Laboratory, Mcgill University, Montreal, QC, Canada
| | - Daniel G Bisson
- Shriners Hospital for Children, Montreal, QC, Canada
- Department of Surgery, Orthopaedic Research Laboratory, Mcgill University, Montreal, QC, Canada
| | - Neil Saran
- Shriners Hospital for Children, Montreal, QC, Canada
| | | | | | - Kirby Upshaw
- Shriners Hospital for Children, Montreal, QC, Canada
- Mcgill University Health Centre, Montreal, QC, Canada
| | | | | | | | - Lisbet Haglund
- Shriners Hospital for Children, Montreal, QC, Canada.
- Department of Surgery, Orthopaedic Research Laboratory, Mcgill University, Montreal, QC, Canada.
| |
Collapse
|
4
|
Mardan M, Mamat M, Yasin P, Cai X, Zheng H, Xu Q, Song S, Li B, Cai H, Chen P, Lu Z, Omar S, Jiang S, Jiang L, Zheng X. Investigating the causal links between inflammatory cytokines and scoliosis through bidirectional Mendelian randomization analysis. JOR Spine 2024; 7:e70019. [PMID: 39664590 PMCID: PMC11632254 DOI: 10.1002/jsp2.70019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Revised: 10/14/2024] [Accepted: 11/10/2024] [Indexed: 12/13/2024] Open
Abstract
Background Scoliosis, characterized by a lateral curvature of the spine, affects millions globally. The role of inflammatory cytokines in the pathogenesis of scoliosis is increasingly acknowledged, yet their causal relationships remain poorly defined. Aims This study aims to explore the genetic-level causal relationships between inflammatory cytokines and scoliosis utilizing bidirectional Mendelian randomization (MR) analysis. Materials and Methods This study leverages genetic data from public Genome-Wide Association Studies (GWAS). Bidirectional MR was employed to investigate the causal relationships between 44 inflammatory cytokines and scoliosis. The inflammatory cytokine data include 8293 Finnish individuals, while the scoliosis data consist of 165 850 participants of European descent, including 1168 scoliosis cases and 164 682 controls. Causal links were assessed using the inverse variance-weighted method, supplemented by MR-Egger, weighted median, and weighted mode analyses. Heterogeneity and pleiotropy were assessed using standard tests, with sensitivity analysis conducted through leave-one-out analysis. Results Our analysis demonstrated a significant causal association between the cytokine Resistin (RETN) and the development of scoliosis (p = 0.024, OR 95% CI = 1.344 [1.039-1.739]). No other cytokines among the 44 studied showed significant associations. Discussion The findings highlight the critical role of RETN in scoliosis progression and underscore the complex interplay of genetic and inflammatory pathways. Further research is needed to explore additional biomarkers and their mechanisms in scoliosis. Conclusion This study provides evidence of a significant causal relationship between RETN and scoliosis, emphasizing its potential as a therapeutic target. These findings contribute to understanding scoliosis pathogenesis and pave the way for future research on inflammation-related pathways and therapies.
Collapse
Affiliation(s)
- Muradil Mardan
- Department of Spine CenterXinhua Hospital Affiliated to Shanghai Jiaotong University School of MedicineShanghaiChina
| | - Mardan Mamat
- Department of Spine SurgeryThe First Affiliated Hospital of Xinjiang Medical UniversityUrumqiChina
| | - Parhat Yasin
- Department of Spine SurgeryThe First Affiliated Hospital of Xinjiang Medical UniversityUrumqiChina
| | - Xiaoyu Cai
- Department of Spine SurgeryThe First Affiliated Hospital of Xinjiang Medical UniversityUrumqiChina
| | - Huoliang Zheng
- Department of Spine CenterXinhua Hospital Affiliated to Shanghai Jiaotong University School of MedicineShanghaiChina
| | - Qingyin Xu
- Department of Spine CenterXinhua Hospital Affiliated to Shanghai Jiaotong University School of MedicineShanghaiChina
| | - Shaokuan Song
- Department of Spine CenterXinhua Hospital Affiliated to Shanghai Jiaotong University School of MedicineShanghaiChina
| | - Bo Li
- Department of Spine CenterXinhua Hospital Affiliated to Shanghai Jiaotong University School of MedicineShanghaiChina
| | - Hao Cai
- Department of Spine CenterXinhua Hospital Affiliated to Shanghai Jiaotong University School of MedicineShanghaiChina
| | - Pengbo Chen
- Department of Spine CenterXinhua Hospital Affiliated to Shanghai Jiaotong University School of MedicineShanghaiChina
| | - Zeyu Lu
- Department of Spine CenterXinhua Hospital Affiliated to Shanghai Jiaotong University School of MedicineShanghaiChina
| | - Shahna Omar
- Department of Research CommercializationWuxiChina
| | - Shengdan Jiang
- Department of Spine CenterXinhua Hospital Affiliated to Shanghai Jiaotong University School of MedicineShanghaiChina
| | - Leisheng Jiang
- Department of Spine CenterXinhua Hospital Affiliated to Shanghai Jiaotong University School of MedicineShanghaiChina
| | - Xin‐feng Zheng
- Department of Spine CenterXinhua Hospital Affiliated to Shanghai Jiaotong University School of MedicineShanghaiChina
| |
Collapse
|
5
|
Yan L, Li D, Li S, Jiao Li J, Du G, Liu H, Zhang J, Li X, Fan Z, Jiu J, Li R, Kong N, Liu W, Du Y, Wang B. Exosomes derived from 3D-cultured MSCs alleviate knee osteoarthritis by promoting M2 macrophage polarization through miR-365a-5p and inhibiting TLR2/Myd88/NF-κB pathway. CHEMICAL ENGINEERING JOURNAL 2024; 497:154432. [DOI: 10.1016/j.cej.2024.154432] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
6
|
Zhang J, Zheng K, Wu Y, Zhang S, Guo A, Sui C. The experimental study of mir-99a-5p negative regulation of TLR8 receptor mediated-mediated innate immune response in rabbit knee cartilage injury. Immun Inflamm Dis 2024; 12:e1211. [PMID: 38602270 PMCID: PMC11007787 DOI: 10.1002/iid3.1211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 01/25/2024] [Accepted: 02/29/2024] [Indexed: 04/12/2024] Open
Abstract
BACKGROUND Traumatic cartilage injury is an important cause of osteoarthritis (OA) and limb disability, and toll-like receptors (TLRs) mediated innate immune response has been confirmed to play a crucial role in cartilage injury. In the previous study, we found that the activation of TLR8 molecules in injured articular cartilage was more obvious than other TLRs by establishing an animal model of knee impact injury in rabbits, and the changes of TLR8 molecules could significantly affect the process of articular cartilage injury and repair. OBJECTIVE To verify how mir-99a-5p regulates TLR8 receptor mediated innate immune response to treat traumatic cartilage injury. METHODS The impact of a heavy object on the medial condyle of the rabbit's knee joint caused damage to the medial condylar cartilage. Through pathological and imaging analysis, it was demonstrated whether the establishment of an animal model of traumatic cartilage injury was successful. Establishing a cell model by virus transfection of chondrocytes to demonstrate the role of TLR8 in the innate immune response to impact cartilage injury. Through transcriptome sequencing, potential targets of TLR8, mir-99a-5p, were predicted, and basic experiments were conducted to demonstrate how they interact with innate immune responses to impact cartilage damage. RESULTS TLR8 is a receptor protein of the immune system, which is widely expressed in immune cells. In our study, we found that TLR8 expression is localized in lysosomes and endosomes. Mir-99a-5p can negatively regulate TLR8 to activate PI3K-AKT molecular pathway and aggravate cartilage damage. Inhibiting TLR8 expression can effectively reduce the incidence of articular cartilage damage. CONCLUSION Based on the results from this study, mir-99a-5p may be an effective molecular marker for predicting traumatic cartilage injury and targeting TLR8 is a novel and promising approach for the prevention or early treatment of cartilage damage.
Collapse
Affiliation(s)
- Jiebin Zhang
- Provincial Second Clinical College of Anhui Medical UniversityHefeiAnhuiChina
- Department of OrthopaedicsAnhui No. 2 Provincial People's HosipitalHefeiAnhuiChina
| | - Ke Zheng
- Provincial Second Clinical College of Anhui Medical UniversityHefeiAnhuiChina
- Department of OrthopaedicsAnhui No. 2 Provincial People's HosipitalHefeiAnhuiChina
| | - Yichao Wu
- Department of OrthopaedicsThe First Afffliated Hospital of Anhui Medical UniversityHefeiAnhuiChina
| | - Shengting Zhang
- Department of OrthopaedicsThe First Afffliated Hospital of Anhui Medical UniversityHefeiAnhuiChina
| | - Ao Guo
- Department of OrthopaedicsThe First Afffliated Hospital of Anhui Medical UniversityHefeiAnhuiChina
| | - Cong Sui
- Department of OrthopaedicsThe First Afffliated Hospital of Anhui Medical UniversityHefeiAnhuiChina
| |
Collapse
|
7
|
Fu L, Duan H, Cai Y, Chen X, Zou B, Yuan L, Liu G. Moxibustion ameliorates osteoarthritis by regulating gut microbiota via impacting cAMP-related signaling pathway. Biomed Pharmacother 2024; 170:116031. [PMID: 38113621 DOI: 10.1016/j.biopha.2023.116031] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 12/12/2023] [Accepted: 12/14/2023] [Indexed: 12/21/2023] Open
Abstract
BACKGROUND Osteoarthritis (OA) is a prevalent progressive disorder. Moxibustion has found widespread use in clinical practice for OA, while its underlying mechanism remains elusive. OBJECTIVE To investigate whether moxibustion can ameliorate OA by influencing the metabolic processes in OA and to elucidate the specific metabolic mechanisms involved. METHODS C57BL/6J WT mice were randomly assigned to one of three groups: the SHAM group, the ACLT group, and the ACLT+M group. In the ACLT+M group, mice underwent moxibustion treatment at acupoints Shenshu (BL23) and Zusanli (ST36) for a continuous period of 28 days, with each session lasting 20 min. We conducted a comprehensive analysis to assess the impact of moxibustion on OA, focusing on pathological changes, intestinal flora composition, and serum metabolites. RESULTS Moxibustion treatment effectively mitigated OA-related pathological changes. Specifically, moxibustion treatment resulted in the amelioration of articular cartilage damage, synovial inflammation, subchondral bone sclerosis when compared to the ACLT group. Moreover, 16S rDNA sequencing analysis revealed that moxibustion treatment positively influenced the composition of the flora, making it more similar to that of the SHAM group. Notably, moxibustion treatment led to a reduction in the abundance of Ruminococcus and Proteobacteria in the intestine. In addition, non-targeted metabolomics analysis identified 254 significantly different metabolites between the groups. Based on KEGG pathway analysis and the observed impact of moxibustion on OA-related inflammation, moxibustion therapy is closely associated with the cAMP-related signaling pathway. CONCLUSION Moxibustion can relieve OA by regulating intestinal flora and via impacting cAMP-related signaling pathway.
Collapse
Affiliation(s)
- Liping Fu
- Department of Rehabilitation Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, China; Third Level Research Laboratory of State Administration of Traditional Chinese Medicine, Guangdong Provincial Key Laboratory of Chinese Medicine Pharmaceutics, School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Huimin Duan
- Department of Rehabilitation Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Yisi Cai
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong 510515, China; Third Level Research Laboratory of State Administration of Traditional Chinese Medicine, Guangdong Provincial Key Laboratory of Chinese Medicine Pharmaceutics, School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Xuelan Chen
- Department of Rehabilitation Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Binhua Zou
- Department of Rehabilitation Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, China.
| | - Lixia Yuan
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong 510515, China.
| | - Gang Liu
- Department of Rehabilitation Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, China.
| |
Collapse
|
8
|
Li L, Sheng K, Mannarino M, Jarzem P, Cherif H, Haglund L. o-Vanillin Modulates Cell Phenotype and Extracellular Vesicles of Human Mesenchymal Stem Cells and Intervertebral Disc Cells. Cells 2022; 11:cells11223589. [PMID: 36429018 PMCID: PMC9688801 DOI: 10.3390/cells11223589] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Revised: 11/02/2022] [Accepted: 11/10/2022] [Indexed: 11/16/2022] Open
Abstract
Human mesenchymal stem cell (hMSC) and extracellular vesicle (EV) therapy is a promising treatment for discogenic low back pain (LBP). Although promising, major obstacles remain to be overcome. Cellular senescence reduces self-renewal and multipotent potentials, and the senescence-associated secretory phenotype creates an inflammatory environment negatively affecting tissue homeostasis. Reducing senescence could therefore improve regenerative approaches. Ortho-Vanillin (o-Vanillin) has senolytic activity and anti-inflammatory properties and could be a valuable supplement to MSC and EV therapy. Here, we used direct co-culture experiments to evaluate proteoglycan synthesis, inflammatory mediators, and senescent cells in the presence or absence of o-Vanillin. EV release and transfer between hMSCs and intervertebral disc cells (DCs) was examined, and the effect on hMSC differentiation and DC phenotype was evaluated in the presence and absence of o-Vanillin. This study demonstrates that o-Vanillin affects cell communication, enhances hMSC differentiation and improves DC phenotype. Co-cultures of DCs and hMSCs resulted in increased proteoglycan synthesis, a decreased number of senescent cells and decreased release of the cytokines IL6 and 8. Effects that were further enhanced by o-Vanillin. o-Vanillin profoundly increased EV release and/or uptake by hMSCs and DCs. DC markers were significantly upregulated in both cell types in response to conditioned media of o-Vanillin treated donor cells. Collectively, this study demonstrates that o-Vanillin affects hMSC and DC crosstalk and suggests that combining hMSCs and senolytic compounds may improve the outcome of cell supplementation and EV therapy for LBP.
Collapse
Affiliation(s)
- Li Li
- Department of Surgery, McGill University, Montreal, QC H3G 1A4, Canada
| | - Kai Sheng
- Department of Surgery, McGill University, Montreal, QC H3G 1A4, Canada
- Shriners Hospital for Children, Montreal, QC H4A 0A9, Canada
| | - Matthew Mannarino
- Department of Surgery, McGill University, Montreal, QC H3G 1A4, Canada
| | - Peter Jarzem
- Department of Surgery, McGill University, Montreal, QC H3G 1A4, Canada
| | - Hosni Cherif
- Department of Surgery, McGill University, Montreal, QC H3G 1A4, Canada
| | - Lisbet Haglund
- Department of Surgery, McGill University, Montreal, QC H3G 1A4, Canada
- Shriners Hospital for Children, Montreal, QC H4A 0A9, Canada
- Correspondence: ; Tel.: +1-514-934-1934 (ext. 35380)
| |
Collapse
|
9
|
Xu X, Li N, Wu Y, Yan K, Mi Y, Yi N, Tan X, Kuang G, Lu M. Zhuifeng tougu capsules inhibit the TLR4/MyD88/NF-κB signaling pathway and alleviate knee osteoarthritis: In vitro and in vivo experiments. Front Pharmacol 2022; 13:951860. [PMID: 36188596 PMCID: PMC9521277 DOI: 10.3389/fphar.2022.951860] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 08/22/2022] [Indexed: 01/17/2023] Open
Abstract
Background: Knee osteoarthritis (KOA), a chronic degenerative disease, is mainly characterized by destruction of articular cartilage and inflammatory reactions. At present, there is a lack of economical and effective clinical treatment. Zhuifeng Tougu (ZFTG) capsules have been clinically approved for treatment of OA as they relieve joint pain and inflammatory manifestations. However, the mechanism of ZFTG in KOA remains unknown. Purpose: This study aimed to investigate the effect of ZFTG on the TLR4/MyD88/NF-κB signaling pathway and its therapeutic effect on rabbits with KOA. Study design: In vivo, we established a rabbit KOA model using the modified Videman method. In vitro, we treated chondrocytes with IL-1β to induce a pro-inflammatory phenotype and then intervened with different concentrations of ZFTG. Levels of IL-1β, IL-6, TNF-α, and IFN-γ were assessed with histological observations and ELISA data. The effect of ZFTG on the viability of chondrocytes was detected using a Cell Counting Kit-8 and flow cytometry. The protein and mRNA expressions of TLR2, TLR4, MyD88, and NF-κB were detected using Western blot and RT-qPCR and immunofluorescence observation of NF-κB p65 protein expression, respectively, to investigate the mechanism of ZFTG in inhibiting inflammatory injury of rabbit articular chondrocytes and alleviating cartilage degeneration. Results: The TLR4/MyD88/NF-κB signaling pathway in rabbits with KOA was inhibited, and the levels of IL-1β, IL-6, TNF-α, and IFN-γ in blood and cell were significantly downregulated, consistent with histological results. Both the protein and mRNA expressions of TLR2, TLR4, MyD88, NF-κB, and NF-κB p65 proteins in that nucleus decreased in the ZFTG groups. Moreover, ZFTG promotes the survival of chondrocytes and inhibits the apoptosis of inflammatory chondrocytes. Conclusion: ZFTG alleviates the degeneration of rabbit knee joint cartilage, inhibits the apoptosis of inflammatory chondrocytes, and promotes the survival of chondrocytes. The underlying mechanism may be inhibition of the TLR4/MyD88/NF-kB signaling pathway and secretion of inflammatory factors.
Collapse
Affiliation(s)
- Xiaotong Xu
- Department of Orthopedic Surgery, The First Hospital of Hunan University of Chinese Medicine, Changsha, Hunan, China
- Graduate School, Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Naping Li
- Department of Orthopedic Surgery, The First Hospital of Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Yongrong Wu
- School of Traditional Chinese Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Ke Yan
- Department of Orthopedic Surgery, The First Hospital of Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Yilin Mi
- Graduate School, Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Nanxing Yi
- Graduate School, Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Xuyi Tan
- Department of Orthopedic Surgery, Affiliated Hospital of Hunan Academy of Chinese Medical Science, Changsha, Hunan, China
| | - Gaoyan Kuang
- Department of Orthopedic Surgery, The First Hospital of Hunan University of Chinese Medicine, Changsha, Hunan, China
- Postdoctoral Research Workstation, Hinye Pharmaceutical Co., Ltd., Changsha, Hunan, China
| | - Min Lu
- Department of Orthopedic Surgery, The First Hospital of Hunan University of Chinese Medicine, Changsha, Hunan, China
| |
Collapse
|
10
|
Promises of phytochemical based nano drug delivery systems in the management of cancer. Chem Biol Interact 2021; 351:109745. [PMID: 34774839 DOI: 10.1016/j.cbi.2021.109745] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 10/29/2021] [Accepted: 11/09/2021] [Indexed: 12/11/2022]
Abstract
Cancer is the leading cause of human disease and death worldwide, accounting for 7.6 million deaths per year and projected to reach 13.1 million by 2030. Many phytochemicals included in traditional medicine have been utilized in the management of cancer. Conventional chemotherapy is generally known to be the most effective treatment of metastatic cancer but these cancerous cells might grow resistant to numerous anticancer drugs over time that resulting in treatment failure. This review tried to portray the advancement in the anticancer and chemopreventive effects of several phytochemicals and some of its members encapsulated in the nano-based delivery system of the drug. It comprises the issue associated with limited use of each phytoconstituents in human cancer treatment are discussed, and the benefits of entrapment into nanocarriers are evaluated in terms of drug loading efficiency, nanocarrier size, release profile of the drug, and in vitro and/or in vivo research and treatment testing, such as cytotoxicity assays and cell inhibition/viability.
Collapse
|
11
|
Bisson DG, Sheng K, Kocabas S, Krock E, Teles A, Saran N, Ouellet JA, Haglund L. Toll-like receptor involvement in adolescent scoliotic facet joint degeneration. J Cell Mol Med 2020; 24:11355-11365. [PMID: 32853438 PMCID: PMC7576299 DOI: 10.1111/jcmm.15733] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Accepted: 07/17/2020] [Indexed: 12/22/2022] Open
Abstract
Facet joint osteoarthritis is prevalent in young patients with adolescent idiopathic scoliosis (AIS) and might contribute to back pain. Toll-like receptors (TLR) have been linked to cartilaginous tissue degeneration but their involvement in facet joint osteoarthritis in AIS patients is still unknown. We compared baseline gene expression levels of TLRs -1, -2, -4, and -6 in scoliotic and non-scoliotic chondrocytes and found higher expression levels in scoliotic chondrocytes with significantly higher TLR2 levels. Furthermore, TLR expression correlated strongly and significantly with inflammatory and catabolic markers in scoliotic but not in non-scoliotic chondrocytes. TLR activation with a synthetic TLR2/6 agonist resulted in a robust induction and release of pro-inflammatory and catabolic factors which exacerbated proteoglycan loss in scoliotic but not in non-scoliotic cartilage. We also detected a higher abundance of alarmins including S100A8/9 and biglycan in scoliotic cartilage. Finally, the small-molecule antagonists Sparstolonin B and o-Vanillin reduced catabolism following induction with naturally occurring alarmins and the synthetic TLR2/6 agonist. The high baseline expression, robust responsiveness and strong and significant correlation with proteases and pro-inflammatory cytokines suggest that TLRs are key regulators of facet joint degeneration in AIS. Blocking their activity could therefore potentially modify disease progression.
Collapse
Affiliation(s)
- Daniel G Bisson
- Shriners Hospital for Children, Montreal, QC, Canada.,Orthopaedic Research Laboratory, Department of Orthopedic Surgery, McGill University, Montreal, QC, Canada
| | - Kai Sheng
- Shriners Hospital for Children, Montreal, QC, Canada.,Orthopaedic Research Laboratory, Department of Orthopedic Surgery, McGill University, Montreal, QC, Canada
| | - Semsi Kocabas
- Shriners Hospital for Children, Montreal, QC, Canada.,Orthopaedic Research Laboratory, Department of Orthopedic Surgery, McGill University, Montreal, QC, Canada
| | - Emerson Krock
- Orthopaedic Research Laboratory, Department of Orthopedic Surgery, McGill University, Montreal, QC, Canada
| | - Alisson Teles
- Shriners Hospital for Children, Montreal, QC, Canada
| | - Neil Saran
- Shriners Hospital for Children, Montreal, QC, Canada
| | - Jean A Ouellet
- Shriners Hospital for Children, Montreal, QC, Canada.,Orthopaedic Research Laboratory, Department of Orthopedic Surgery, McGill University, Montreal, QC, Canada
| | - Lisbet Haglund
- Shriners Hospital for Children, Montreal, QC, Canada.,Orthopaedic Research Laboratory, Department of Orthopedic Surgery, McGill University, Montreal, QC, Canada
| |
Collapse
|