1
|
Saadh MJ, Ahmed HH, Sanghvi G, Bin Awang Isa MZ, Singh P, Kaur K, Kumar MR, Husseen B. Recent advances in the delivery of microRNAs via exosomes derived from MSCs, and their role in regulation of ferroptosis. Pathol Res Pract 2025; 270:155984. [PMID: 40315562 DOI: 10.1016/j.prp.2025.155984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Revised: 04/09/2025] [Accepted: 04/18/2025] [Indexed: 05/04/2025]
Abstract
Mesenchymal stem cell (MSC) therapy, with its unique properties, has garnered interest in cancer treatment. Exosomes (EXOs)-derived from MSC retain the paracrine components of MSCs and demonstrate increased stability, minimal immunogenicity, and low risk of unintended tumorigenesis. Enhanced endocytosis methods make them versatile delivery vehicles for therapeutic cargo. MSC-EXOs can either promote or inhibit carcinogenesis, mediated by paracrine factors and various RNA molecules, particularly microRNAs (miRNAs). The prospect of using MSC-EXOs as a delivery tool for antitumor miRNAs in solid tumor therapy is promising. Exosomes' intrinsic tumor-targeting abilities and low immunogenicity make them ideal for delivering miRNAs, which have shown potential as cancer therapeutics. miRNAs within MSC-EXOs molecules can stimulate tumor growth or induce non-apoptotic cell death pathways, such as ferroptosis, depending on context. Ferroptosis is a kind of controlled cell death that is associated with the pathophysiology of several illnesses and includes iron metabolism. There is growing evidence that miRNAs carried by exosomes derived from MSCs may control ferroptosis in tumor cells by altering key genes related to antioxidant defense, lipid peroxidation, and iron metabolism. Understanding their complex mechanisms in the tumor microenvironment and optimizing their cargo are critical steps toward harnessing their full therapeutic potential. This review provides a comprehensive overview of MSC-EXOs and their role in cancer treatment. We also discuss the potential of MSC-EXOs as delivery vehicles for miRNAs to enhance therapeutic efficacy, as well as the role of exosomal miRNAs in the induction of ferroptosis.
Collapse
Affiliation(s)
- Mohamed J Saadh
- Faculty of Pharmacy, Middle East University, Amman 11831, Jordan.
| | | | - Gaurav Sanghvi
- Marwadi University Research Center, Department of Microbiology, Faculty of Science, Marwadi University, Rajkot, Gujarat 360003, India
| | | | - Priyanka Singh
- NIMS School of Allied Sciences and Technology, NIMS University, Jaipur, Rajasthan 303121, India
| | - Kiranjeet Kaur
- Chandigarh Pharmacy College, Chandigarh Group of colleges-Jhanjeri, Mohali, Punjab 140307, India
| | - M Ravi Kumar
- Department of Chemistry, Raghu Engineering College, Visakhapatnam, Andhra Pradesh 531162, India
| | - Beneen Husseen
- Medical laboratory technique college, the Islamic University, Najaf, Iraq; Medical laboratory technique college, the Islamic University of Al Diwaniyah, Al Diwaniyah, Iraq
| |
Collapse
|
2
|
Gu Z, Li J, Yang Y, Ding R, Wang M, Chen J. Overexpression of miR-328-3p Inhibits Epithelial-Mesenchymal Transition in Prostate Cancer by Downregulating PFN1. Appl Biochem Biotechnol 2025; 197:2240-2257. [PMID: 39715971 DOI: 10.1007/s12010-024-05103-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/19/2024] [Indexed: 12/25/2024]
Abstract
MicroRNA (miR)-328-3p is believed to have anti-tumor impacts in various human cancers. However, its role in prostate cancer (PCa) is uncertain. In this research, miR-328-3p expression in PCa was reduced. Meanwhile, it was discovered that miR-328-3p directly targeted profilin-1 (PFN1) 3'-untranslated region to negatively modulate PFN1. Elevating miR-328-3p or reducing PFN1 suppressed cell growth, migration, and invasion, and epithelial-mesenchymal transition; overexpression of miR-328-3p or inhibition of PFN1 delayed tumor growth in vivo. Further studies found that PCa patients with advanced T stage or high Gleason score had significantly lower miR-328-3p compared to PCa patients with early stage or low score. In addition, PCa patients with high miR-328-3p had a better prognosis than those with low miR-328-3p. Briefly, this study highlights the clinical and biological role of miR-328-3p as a tumor suppressor miRNA in PCa and explores the downstream mechanisms of miR-328-3p.
Collapse
Affiliation(s)
- ZhenHua Gu
- Department of Urology, Wuxi Traditional Chinese Medicine Hospital, No. 8 Zhongnan West Road, Binhu District, Wuxi City, 214071, Jiangsu Province, China
| | - JianZhong Li
- Department of Urology, Wuxi Traditional Chinese Medicine Hospital, No. 8 Zhongnan West Road, Binhu District, Wuxi City, 214071, Jiangsu Province, China
| | - YuCheng Yang
- Department of Urology, Wuxi Traditional Chinese Medicine Hospital, No. 8 Zhongnan West Road, Binhu District, Wuxi City, 214071, Jiangsu Province, China
| | - Rui Ding
- Department of Urology, Wuxi Traditional Chinese Medicine Hospital, No. 8 Zhongnan West Road, Binhu District, Wuxi City, 214071, Jiangsu Province, China
| | - MeiLi Wang
- Department of Urology, Wuxi Traditional Chinese Medicine Hospital, No. 8 Zhongnan West Road, Binhu District, Wuxi City, 214071, Jiangsu Province, China
| | - Jian Chen
- Department of Urology, Wuxi Traditional Chinese Medicine Hospital, No. 8 Zhongnan West Road, Binhu District, Wuxi City, 214071, Jiangsu Province, China.
| |
Collapse
|
3
|
Branco H, Xavier CPR, Riganti C, Vasconcelos MH. Hypoxia as a critical player in extracellular vesicles-mediated intercellular communication between tumor cells and their surrounding microenvironment. Biochim Biophys Acta Rev Cancer 2025; 1880:189244. [PMID: 39672279 DOI: 10.1016/j.bbcan.2024.189244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 12/06/2024] [Accepted: 12/09/2024] [Indexed: 12/15/2024]
Abstract
In the past years, increasing attention has been paid to the role of extracellular vesicles (EVs) as mediators of intercellular communication in cancer. These small size particles mediate the intercellular transfer of important bioactive molecules involved in malignant initiation and progression. Hypoxia, or low partial pressure of oxygen, is recognized as a remarkable feature of solid tumors and has been demonstrated to exert a profound impact on tumor prognosis and therapeutic efficacy. Indeed, the high-pitched growth rate and chaotic neovascular architecture that embodies solid tumors results in a profound reduction in oxygen pressure within the tumor microenvironment (TME). In response to oxygen-deprived conditions, tumor cells and their surrounding milieu develop homeostatic adaptation mechanisms that contribute to the establishment of a pro-tumoral phenotype. Latest evidence suggests that the hypoxic microenvironment that surrounds the tumor bulk may be a clincher for the observed elevated levels of circulating EVs in cancer patients. Thus, it is proposed that EVs may play a role in mediating intercellular communication in response to hypoxic conditions. This review focuses on the EVs-mediated crosstalk that is established between tumor cells and their surrounding immune, endothelial, and stromal cell populations, within the hypoxic TME.
Collapse
Affiliation(s)
- Helena Branco
- i3S - Instituto de Investigação e Inovação em Saúde, University of Porto, 4200-135 Porto, Portugal; Cancer Drug Resistance Group, IPATIMUP - Institute of Molecular Pathology and Immunology of the University of Porto, 4200-135 Porto, Portugal; Department of Biological Sciences, FFUP - Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
| | - Cristina P R Xavier
- i3S - Instituto de Investigação e Inovação em Saúde, University of Porto, 4200-135 Porto, Portugal; Cancer Drug Resistance Group, IPATIMUP - Institute of Molecular Pathology and Immunology of the University of Porto, 4200-135 Porto, Portugal; UCIBIO - Applied Molecular Biosciences Unit, Toxicologic Pathology Research Laboratory, University Institute of Health Sciences (1H-TOXRUN, IUCS-CESPU), 4585-116 Gandra, Portugal; Associate Laboratory i4HB - Institute for Health and Bioeconomy, University Institute of Health Sciences - CESPU, 4585-116 Gandra, Portugal.
| | - Chiara Riganti
- Department of Oncology, University of Torino, 10126 Torino, Italy; Interdepartmental Research Center for Molecular Biotechnology "G. Tarone", University of Torino, 10126 Torino, Italy
| | - M Helena Vasconcelos
- i3S - Instituto de Investigação e Inovação em Saúde, University of Porto, 4200-135 Porto, Portugal; Cancer Drug Resistance Group, IPATIMUP - Institute of Molecular Pathology and Immunology of the University of Porto, 4200-135 Porto, Portugal; Department of Biological Sciences, FFUP - Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal.
| |
Collapse
|
4
|
Xue M, Ma L, Zhang P, Yang H, Wang Z. New insights into non-small cell lung cancer bone metastasis: mechanisms and therapies. Int J Biol Sci 2024; 20:5747-5763. [PMID: 39494330 PMCID: PMC11528464 DOI: 10.7150/ijbs.100960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Accepted: 10/11/2024] [Indexed: 11/05/2024] Open
Abstract
Bone metastasis is a common cause of death in patients with non-small cell lung cancer (NSCLC), with approximately 30-40% of NSCLC patients eventually developing bone metastases. Bone metastasis, especially the occurrence of skeletal-related events (SREs), significantly reduces overall survival (OS) and quality of life (QoL) in patients. Although bone-targeting agents (BTAs) have been shown to reduce SREs and improve QoL in NSCLC patients with bone metastases, the prognosis for these patients remains poor. Understanding the underlying molecular pathways of bone metastasis is crucial for the development of novel therapeutic approaches. Bone metastasis is a complex, multistep process that involves interactions between tumor cells and the bone microenvironment. The bone microenvironment provides a fertile soil for tumor cells, and crosstalk among various signaling pathways and secreted factors also plays a role in regulating the occurrence and progression of bone metastasis in NSCLC. In this article, we provide a comprehensive review of the process, regulatory mechanisms, and clinical treatment in NSCLC bone metastasis, with the hope of assisting with clinical treatment.
Collapse
Affiliation(s)
- Man Xue
- Department of Oncology, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Li Ma
- Department of Oncology, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Pengpeng Zhang
- Department of Lung Cancer, Tianjin Lung Cancer Center, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Hui Yang
- Department of Oncology, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, China
- Department of Oncology, The Affiliated Jiangning Hospital of Nanjing Medical University, Nanjing, China
| | - Zhaoxia Wang
- Department of Oncology, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
5
|
Camacho-Cardenosa M, Pulido-Escribano V, Torrecillas-Baena B, Quesada-Gómez JM, Herrera-Martínez AD, Sola-Guirado RR, Dorado G, Gálvez-Moreno MÁ, Casado-Díaz A. Combined Effects of Cyclic Hypoxic and Mechanical Stimuli on Human Bone Marrow Mesenchymal Stem Cell Differentiation: A New Approach to the Treatment of Bone Loss. J Clin Med 2024; 13:5805. [PMID: 39407866 PMCID: PMC11476683 DOI: 10.3390/jcm13195805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 09/24/2024] [Accepted: 09/26/2024] [Indexed: 10/20/2024] Open
Abstract
Background: The prevention and treatment of bone loss and osteoporotic fractures is a public health challenge. Combined with normobaric hypoxia, whole-body vibration has a high clinic potential in bone health and body composition. The effect of this therapy may be mediated by its action on bone marrow mesenchymal stem cells (MSCs). Objectives: Evaluate the effects of cyclic low-vibration stimuli and/or hypoxia on bone marrow-derived human MSC differentiation. Methods: MSCs were exposed four days per week, two hours/day, to hypoxia (3% O2) and/or vibration before they were induced to differentiate or during differentiation into osteoblasts or adipocytes. Gene and protein expression of osteoblastic, adipogenic, and cytoskeletal markers were studied, as well as extracellular matrix mineralization and lipid accumulation. Results: early osteoblastic markers increased in undifferentiated MSCs, pretreated in hypoxia and vibration. This pretreatment also increased mRNA levels of osteoblastic genes and beta-catenin protein in the early stages of differentiation into osteoblasts without increasing mineralization. When MSCs were exposed to vibration under hypoxia or normoxia during osteoblastic differentiation, mineralization increased with respect to cultures without vibrational stimuli. In MSCs differentiated into adipocytes, both in those pretreated as well as exposed to different conditions during differentiation, lipid formation decreased. Changes in adipogenic gene expression and increased beta-catenin protein were observed in cultures treated during differentiation. Conclusions: Exposure to cyclic hypoxia in combination with low-intensity vibratory stimuli had positive effects on osteoblastic differentiation and negative ones on adipogenesis of bone marrow-derived MSCs. These results suggest that in elderly or frail people with difficulty performing physical activity, exposure to normobaric cyclic hypoxia and low-density vibratory stimuli could improve bone metabolism and health.
Collapse
Affiliation(s)
- Marta Camacho-Cardenosa
- Unidad de Gestión Clínica de Endocrinología y Nutrición, Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Hospital Universitario Reina Sofía, 14004 Córdoba, Spain; (V.P.-E.); (B.T.-B.); (J.M.Q.-G.); (A.D.H.-M.); (M.Á.G.-M.)
| | - Victoria Pulido-Escribano
- Unidad de Gestión Clínica de Endocrinología y Nutrición, Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Hospital Universitario Reina Sofía, 14004 Córdoba, Spain; (V.P.-E.); (B.T.-B.); (J.M.Q.-G.); (A.D.H.-M.); (M.Á.G.-M.)
| | - Bárbara Torrecillas-Baena
- Unidad de Gestión Clínica de Endocrinología y Nutrición, Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Hospital Universitario Reina Sofía, 14004 Córdoba, Spain; (V.P.-E.); (B.T.-B.); (J.M.Q.-G.); (A.D.H.-M.); (M.Á.G.-M.)
| | - Jose Manuel Quesada-Gómez
- Unidad de Gestión Clínica de Endocrinología y Nutrición, Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Hospital Universitario Reina Sofía, 14004 Córdoba, Spain; (V.P.-E.); (B.T.-B.); (J.M.Q.-G.); (A.D.H.-M.); (M.Á.G.-M.)
| | - Aura D. Herrera-Martínez
- Unidad de Gestión Clínica de Endocrinología y Nutrición, Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Hospital Universitario Reina Sofía, 14004 Córdoba, Spain; (V.P.-E.); (B.T.-B.); (J.M.Q.-G.); (A.D.H.-M.); (M.Á.G.-M.)
| | - Rafael R. Sola-Guirado
- Department Mecánica, Escuela Politécnica Superior, Universidad de Córdoba, 14071 Córdoba, Spain;
| | - Gabriel Dorado
- Department Bioquímica y Biología Molecular, Campus Rabanales C6-1-E17, Campus de Excelencia Internacional Agroalimentario (ceiA3), Universidad de Córdoba, 14071 Córdoba, Spain;
- CIBER Fragilidad y Envejecimiento Saludable (CIBERFES), Instituto de Salud Carlos III, 08003 Madrid, Spain
| | - María Ángeles Gálvez-Moreno
- Unidad de Gestión Clínica de Endocrinología y Nutrición, Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Hospital Universitario Reina Sofía, 14004 Córdoba, Spain; (V.P.-E.); (B.T.-B.); (J.M.Q.-G.); (A.D.H.-M.); (M.Á.G.-M.)
| | - Antonio Casado-Díaz
- Unidad de Gestión Clínica de Endocrinología y Nutrición, Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Hospital Universitario Reina Sofía, 14004 Córdoba, Spain; (V.P.-E.); (B.T.-B.); (J.M.Q.-G.); (A.D.H.-M.); (M.Á.G.-M.)
- CIBER Fragilidad y Envejecimiento Saludable (CIBERFES), Instituto de Salud Carlos III, 08003 Madrid, Spain
| |
Collapse
|
6
|
Lv J, Xiong X. Extracellular Vesicle microRNA: A Promising Biomarker and Therapeutic Target for Respiratory Diseases. Int J Mol Sci 2024; 25:9147. [PMID: 39273095 PMCID: PMC11395461 DOI: 10.3390/ijms25179147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Revised: 08/14/2024] [Accepted: 08/19/2024] [Indexed: 09/15/2024] Open
Abstract
Respiratory diseases, including chronic obstructive pulmonary disease (COPD), asthma, lung cancer, and coronavirus pneumonia, present a major global health challenge. Current diagnostic and therapeutic options for these diseases are limited, necessitating the urgent development of novel biomarkers and therapeutic strategies. In recent years, microRNAs (miRNAs) within extracellular vesicles (EVs) have received considerable attention due to their crucial role in intercellular communication and disease progression. EVs are membrane-bound structures released by cells into the extracellular environment, encapsulating a variety of biomolecules such as DNA, RNA, lipids, and proteins. Specifically, miRNAs within EVs, known as EV-miRNAs, facilitate intercellular communication by regulating gene expression. The expression levels of these miRNAs can reflect distinct disease states and significantly influence immune cell function, chronic airway inflammation, airway remodeling, cell proliferation, angiogenesis, epithelial-mesenchymal transition, and other pathological processes. Consequently, EV-miRNAs have a profound impact on the onset, progression, and therapeutic responses of respiratory diseases, with great potential for disease management. Synthesizing the current understanding of EV-miRNAs in respiratory diseases such as COPD, asthma, lung cancer, and novel coronavirus pneumonia, this review aims to explore the potential of EV-miRNAs as biomarkers and therapeutic targets and examine their prospects in the diagnosis and treatment of these respiratory diseases.
Collapse
Affiliation(s)
- Jiaxi Lv
- Department of Pulmonary and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan 430022, China
| | - Xianzhi Xiong
- Department of Pulmonary and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan 430022, China
- Department of Respiratory and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan 430022, China
| |
Collapse
|
7
|
Hu S, Zhang C, Ma Q, Li M, Yu X, Zhang H, Lv S, Shi Y, He X. Unveiling the multifaceted roles of microRNAs in extracellular vesicles derived from mesenchymal stem cells: implications in tumor progression and therapeutic interventions. Front Pharmacol 2024; 15:1438177. [PMID: 39161894 PMCID: PMC11330784 DOI: 10.3389/fphar.2024.1438177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Accepted: 07/23/2024] [Indexed: 08/21/2024] Open
Abstract
Mesenchymal stem/stromal cells (MSCs) have the capacity to migrate to tumor sites in vivo and transmit paracrine signals by secreting extracellular vesicles (EVs) to regulate tumor biological behaviors. MSC-derived EVs (MSC-EVs) have similar tumor tropism and pro- or anti-tumorigenesis as their parental cells and exhibit superior properties in drug delivery. MSC-EVs can transfer microRNAs (miRNAs) to tumor cells, thereby manipulating multiple key cancer-related pathways, and further playing a vital role in the tumor growth, metastasis, drug resistance and other aspects. In addition, tumor cells can also influence the behaviors of MSCs in the tumor microenvironment (TME), orchestrating this regulatory process via miRNAs in EVs (EV-miRNAs). Clarifying the specific mechanism by which MSC-derived EV-miRNAs regulate tumor progression, as well as investigating the roles of EV-miRNAs in the TME will contribute to their applications in tumor pharmacotherapy. This article mainly reviews the multifaceted roles and mechanism of miRNAs in MSC-EVs affecting tumor progression, the crosstalk between MSCs and tumor cells caused by EV-miRNAs in the TME. Eventually, the clinical applications of miRNAs in MSC-EVs in tumor therapeutics are illustrated.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Shuang Lv
- The Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, Changchun, Jilin, China
| | - Yingai Shi
- The Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, Changchun, Jilin, China
| | - Xu He
- The Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, Changchun, Jilin, China
| |
Collapse
|
8
|
Li B, Li X, Jiang Z, Zhou D, Feng Y, Chen G, Li N. LncRNA XIST modulates miR-328-3p ectopic expression in lung injury induced by tobacco-specific lung carcinogen NNK both in vitro and in vivo. Br J Pharmacol 2024; 181:2509-2527. [PMID: 38589338 DOI: 10.1111/bph.16373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 12/20/2023] [Accepted: 12/21/2023] [Indexed: 04/10/2024] Open
Abstract
BACKGROUND AND PURPOSE It is well acknowledged that tobacco-derived lung carcinogens can induce lung injury and even lung cancer through a complex mechanism. MicroRNAs (MiRNAs) are differentially expressed in tobacco-derived carcinogen nicotine-derived nitrosamine ketone (NNK)-treated A/J mice. EXPERIMENTAL APPROACH RNA sequencing was used to detect the level of long non-coding RNAs (lncRNAs). Murine and human lung normal and cancer cells were used to evaluate the function of lncRNA XIST and miR-328-3p in vitro, and NNK-treated A/J mice were used to test their function in vivo. In vivo levels of miR-328-3p and lncRNA XIST were analysed, using in situ hybridization. miR-328-3p agomir and lncRNA XIST-specific siRNA were used to manipulate in vivo levels of miR-328-3p and lncRNA XIST in A/J mice. KEY RESULTS LncRNA XIST was up-regulated in NNK-induced lung injury and dominated the NNK-induced ectopic miRNA expression in NNK-induced lung injury both in vitro and in vivo. Either lncRNA XIST silencing or miR-328-3p overexpression exerted opposing effects in lung normal and cancer cells regarding cell migration. LncRNA XIST down-regulated miR-328-3p levels as a miRNA sponge, and miR-328-3p targeted the 3'-UTR of FZD7 mRNA, which is ectopically overexpressed in lung cancer patients. Both in vivo lncRNA XIST silencing and miR-328 overexpression could rescue NNK-induced lung injury and aberrant overexpression of the lung cancer biomarker CK19 in NNK-treated A/J mice. CONCLUSIONS AND IMPLICATIONS Our results highlight the promotive effect of lncRNA XIST in NNK-induced lung injury and elucidate its post-transcriptional mechanisms, indicating that targeting lncRNA XIST/miR-328-3p could be a potential therapeutic strategy to prevent tobacco carcinogen-induced lung injury in vivo.
Collapse
Affiliation(s)
- Bingxin Li
- School of Traditional Chinese Materia Medica, Key Laboratory of Innovative Traditional Chinese Medicine for Major Chronic Diseases of Liaoning Province, Key Laboratory for TCM Material Basis Study and Innovative Drug Development of Shenyang City, Shenyang Pharmaceutical University, Shenyang, China
| | - Xuezheng Li
- Department of PIVAS, Yanbian University Hospital, Yanji, China
| | - Zhe Jiang
- Department of PIVAS, Yanbian University Hospital, Yanji, China
| | - Di Zhou
- School of Traditional Chinese Materia Medica, Key Laboratory of Innovative Traditional Chinese Medicine for Major Chronic Diseases of Liaoning Province, Key Laboratory for TCM Material Basis Study and Innovative Drug Development of Shenyang City, Shenyang Pharmaceutical University, Shenyang, China
| | - Yuan Feng
- School of Traditional Chinese Materia Medica, Key Laboratory of Innovative Traditional Chinese Medicine for Major Chronic Diseases of Liaoning Province, Key Laboratory for TCM Material Basis Study and Innovative Drug Development of Shenyang City, Shenyang Pharmaceutical University, Shenyang, China
| | - Gang Chen
- School of Traditional Chinese Materia Medica, Key Laboratory of Innovative Traditional Chinese Medicine for Major Chronic Diseases of Liaoning Province, Key Laboratory for TCM Material Basis Study and Innovative Drug Development of Shenyang City, Shenyang Pharmaceutical University, Shenyang, China
| | - Ning Li
- School of Traditional Chinese Materia Medica, Key Laboratory of Innovative Traditional Chinese Medicine for Major Chronic Diseases of Liaoning Province, Key Laboratory for TCM Material Basis Study and Innovative Drug Development of Shenyang City, Shenyang Pharmaceutical University, Shenyang, China
| |
Collapse
|
9
|
Deng AF, Wang FX, Wang SC, Zhang YZ, Bai L, Su JC. Bone-organ axes: bidirectional crosstalk. Mil Med Res 2024; 11:37. [PMID: 38867330 PMCID: PMC11167910 DOI: 10.1186/s40779-024-00540-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 05/31/2024] [Indexed: 06/14/2024] Open
Abstract
In addition to its recognized role in providing structural support, bone plays a crucial role in maintaining the functionality and balance of various organs by secreting specific cytokines (also known as osteokines). This reciprocal influence extends to these organs modulating bone homeostasis and development, although this aspect has yet to be systematically reviewed. This review aims to elucidate this bidirectional crosstalk, with a particular focus on the role of osteokines. Additionally, it presents a unique compilation of evidence highlighting the critical function of extracellular vesicles (EVs) within bone-organ axes for the first time. Moreover, it explores the implications of this crosstalk for designing and implementing bone-on-chips and assembloids, underscoring the importance of comprehending these interactions for advancing physiologically relevant in vitro models. Consequently, this review establishes a robust theoretical foundation for preventing, diagnosing, and treating diseases related to the bone-organ axis from the perspective of cytokines, EVs, hormones, and metabolites.
Collapse
Affiliation(s)
- An-Fu Deng
- Institute of Translational Medicine, Organoid Research Center, Shanghai University, Shanghai, 200444, China
- National Center for Translational Medicine (Shanghai) SHU Branch, Shanghai University, Shanghai, 200444, China
| | - Fu-Xiao Wang
- Institute of Translational Medicine, Organoid Research Center, Shanghai University, Shanghai, 200444, China
- National Center for Translational Medicine (Shanghai) SHU Branch, Shanghai University, Shanghai, 200444, China
| | - Si-Cheng Wang
- Institute of Translational Medicine, Organoid Research Center, Shanghai University, Shanghai, 200444, China
- National Center for Translational Medicine (Shanghai) SHU Branch, Shanghai University, Shanghai, 200444, China
- Department of Orthopedics, Shanghai Zhongye Hospital, Shanghai, 200444, China
| | - Ying-Ze Zhang
- Department of Orthopaedics, the Third Hospital of Hebei Medical University, Orthopaedic Research Institution of Hebei Province, NHC Key Laboratory of Intelligent Orthopaedic Equipment, Shijiazhuang, 050051, China.
| | - Long Bai
- Institute of Translational Medicine, Organoid Research Center, Shanghai University, Shanghai, 200444, China.
- National Center for Translational Medicine (Shanghai) SHU Branch, Shanghai University, Shanghai, 200444, China.
- School of Medicine, Shanghai University, Shanghai, 200444, China.
- Wenzhou Institute of Shanghai University, Wenzhou, 325000, Zhejiang, China.
| | - Jia-Can Su
- Institute of Translational Medicine, Organoid Research Center, Shanghai University, Shanghai, 200444, China.
- National Center for Translational Medicine (Shanghai) SHU Branch, Shanghai University, Shanghai, 200444, China.
- Department of Orthopaedics, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China.
| |
Collapse
|
10
|
Li S, Mao L, Song L, Xia X, Wang Z, Cheng Y, Lai J, Tang X, Chen X. Extracellular Vesicles Derived from Glioma Stem Cells Affect Glycometabolic Reprogramming of Glioma Cells Through the miR-10b-5p/PTEN/PI3K/Akt Pathway. Stem Cell Rev Rep 2024; 20:779-796. [PMID: 38294721 DOI: 10.1007/s12015-024-10677-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/08/2024] [Indexed: 02/01/2024]
Abstract
OBJECTIVE Glioma is one of the most prevalently diagnosed types of primary malignant brain tumors. Glioma stem cells (GSCs) are crucial in glioma recurrence. This study aims to elucidate the mechanism by which extracellular vehicles (EVs) derived from GSCs modulate glycometabolic reprogramming in glioma. METHODS Xenograft mouse models and cell models of glioma were established and treated with GSC-EVs. Additionally, levels and activities of PFK1, LDHA, and FASN were assessed to evaluate the effect of GSC-EVs on glycometabolic reprogramming in glioma. Glioma cell proliferation, invasion, and migration were evaluated using MTT, EdU, Colony formation, and Transwell assays. miR-10b-5p expression was determined, with its target gene PTEN and downstream pathway PI3K/Akt evaluated. The involvement of miR-10b-5p and the PI3K/Akt pathway in the effect of GSC-EVs on glycometabolic reprogramming was tested through joint experiments. RESULTS GSC-EVs facilitated glycometabolic reprogramming in glioma mice, along with enhancing glucose uptake, lactate level, and adenosine monophosphate-to-adenosine triphosphate ratio. Moreover, GSC-EV treatment potentiated glioma cell proliferation, invasion, and migration, reinforced cell resistance to temozolomide, and raised levels and activities of PFK1, LDHA, and FASN. miR-10b-5p was highly-expressed in GSC-EV-treated glioma cells while being carried into glioma cells by GSC-EVs. miR-10b-5p targeted PTEN and activated the PI3K/Akt pathway, hence stimulating glycometabolic reprogramming. CONCLUSION GSC-EVs target PTEN and activate the PI3K/Akt pathway through carrying miR-10b-5p, subsequently accelerating glycometabolic reprogramming in glioma, which might provide new insights into glioma treatment.
Collapse
Affiliation(s)
- Shun Li
- Department of Neurosurgery, Affiliated Hospital of North Sichuan Medical College, Nanchong, 637000, Sichuan, China.
- Neurosurgical Research Center, Affiliated Hospital of North Sichuan Medical College, Nanchong, 637000, Sichuan, China.
- Department of Neurosurgery, The First Affiliated Hospital of Jinan University, Guangzhou, 510630, Guangdong, China.
| | - Lifang Mao
- Department of Neurosurgery, Affiliated Hospital of North Sichuan Medical College, Nanchong, 637000, Sichuan, China
| | - Lvmeng Song
- Department of Neurosurgery, Affiliated Hospital of North Sichuan Medical College, Nanchong, 637000, Sichuan, China
| | - Xiaochao Xia
- Department of Neurosurgery, Affiliated Hospital of North Sichuan Medical College, Nanchong, 637000, Sichuan, China
| | - Zihao Wang
- Department of Neurosurgery, Affiliated Hospital of North Sichuan Medical College, Nanchong, 637000, Sichuan, China
| | - Yinchuan Cheng
- Department of Neurosurgery, Affiliated Hospital of North Sichuan Medical College, Nanchong, 637000, Sichuan, China
| | - Jinqing Lai
- Department of Neurosurgery, The Second Affiliated Hospital, Fujian Medical University, Quanzhou, 362000, Fujian, China
| | - Xiaoping Tang
- Department of Neurosurgery, Affiliated Hospital of North Sichuan Medical College, Nanchong, 637000, Sichuan, China.
- Neurosurgical Research Center, Affiliated Hospital of North Sichuan Medical College, Nanchong, 637000, Sichuan, China.
| | - Xiangrong Chen
- Department of Neurosurgery, The Second Affiliated Hospital, Fujian Medical University, Quanzhou, 362000, Fujian, China.
| |
Collapse
|
11
|
Guo S, Huang J, Li G, Chen W, Li Z, Lei J. The role of extracellular vesicles in circulating tumor cell-mediated distant metastasis. Mol Cancer 2023; 22:193. [PMID: 38037077 PMCID: PMC10688140 DOI: 10.1186/s12943-023-01909-5] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 11/23/2023] [Indexed: 12/02/2023] Open
Abstract
Current research has demonstrated that extracellular vesicles (EVs) and circulating tumor cells (CTCs) are very closely related in the process of distant tumor metastasis. Primary tumors are shed and released into the bloodstream to form CTCs that are referred to as seeds to colonize and grow in soil-like distant target organs, while EVs of tumor and nontumor origin act as fertilizers in the process of tumor metastasis. There is no previous text that provides a comprehensive review of the role of EVs on CTCs during tumor metastasis. In this paper, we reviewed the mechanisms of EVs on CTCs during tumor metastasis, including the ability of EVs to enhance the shedding of CTCs, protect CTCs in circulation and determine the direction of CTC metastasis, thus affecting the distant metastasis of tumors.
Collapse
Affiliation(s)
- Siyin Guo
- Division of Thyroid Surgery, Department of General Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Jing Huang
- Division of Thyroid Surgery, Department of General Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Genpeng Li
- Division of Thyroid Surgery, Department of General Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Wenjie Chen
- Division of Thyroid Surgery, Department of General Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Zhihui Li
- Division of Thyroid Surgery, Department of General Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Jianyong Lei
- Division of Thyroid Surgery, Department of General Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China.
| |
Collapse
|
12
|
Ghafouri-Fard S, Safarzadeh A, Hassani Fard Katiraei S, Hussen BM, Hajiesmaeili M. Diverse functions of miR-328 in the carcinogenesis. Pathol Res Pract 2023; 251:154896. [PMID: 37852016 DOI: 10.1016/j.prp.2023.154896] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 10/08/2023] [Accepted: 10/14/2023] [Indexed: 10/20/2023]
Abstract
MicroRNA-328 (miR-328) is an RNA gene that is primarily associated with lung cancer, and its encoding gene is located on 16q22.1. Expression of miR-328 has been observed in lung and esophagus tissues based on RNAseq data. Although several studies have aimed at the detection of miR-328 levels in tumor tissues, there is an obvious discrepancy between the results of these studies. Even in a certain type of cancer, some studies have reported up-regulation of miR-328 in cancerous tissues versus control tissues, while others have reported its down-regulation. This discrepancy might be attributed to different stages/grades of tumor tissues or other clinical characteristics. This review article focuses on the available literature to explore the functions of miR-328 in the development of human carcinogenesis.
Collapse
Affiliation(s)
- Soudeh Ghafouri-Fard
- Department of Medical Genetics, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Arash Safarzadeh
- Phytochemistry Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Bashdar Mahmud Hussen
- Department of Clinical Analysis, College of Pharmacy, Hawler Medical University, Erbil, Kurdistan Region, Iraq
| | - Mohammadreza Hajiesmaeili
- Anesthesia and Critical Care Department, Critical Care Quality Improvement Research Center, Loghman Hakim Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
13
|
Ren J. Intermittent hypoxia BMSCs-derived exosomal miR-31-5p promotes lung adenocarcinoma development via WDR5-induced epithelial mesenchymal transition. Sleep Breath 2023; 27:1399-1409. [PMID: 36409397 DOI: 10.1007/s11325-022-02737-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 10/18/2022] [Accepted: 10/24/2022] [Indexed: 11/22/2022]
Abstract
BACKGROUND Intermittent hypoxia (IH) is a factor involved in the incidence and progression of lung adenocarcinoma (LUAD). Bone marrow-derived bone mesenchymal stem cells (BMSCs)-derived exosomes are related to the promotion of tumor development. The objective of this experiment was to clarify the mechanism of exosomes from BMSCs in promoting the progression of LUAD induced by IH. METHODS This study examined if IH BMSCS-derived exosomes affect the malignancy of LUAD cells in vitro. Dual-luciferase assays were conducted to confirm the target of miR-31-5p with WD repeat domain 5 (WDR5). We further investigated whether or not exosomal miR-31-5p or WDR5 could regulate epithelial-mesenchymal transition (EMT). We determined the effect of IH exosomes using a tumorigenesis model in vivo. RESULTS miR-31-5p entered into LUAD cells via exosomes. MiR-31-5p was greatly upregulated in IH BMSCs-derived exosomes compared with RA exosomes. Increased expression of exosomal miR-31-5p induced by IH was discovered to target WDR5 directly, increased activation of WDR5, and significantly facilitated EMT, thereby promoting LUAD progression. CONCLUSIONS The promoting effect of IH on LUAD is achieved partly through BMSCs-derived exosomal miR-31-5p triggering WDR5 and promoting EMT.
Collapse
Affiliation(s)
- Jie Ren
- Department of Geriatric Respiratory Medicine, The First Affiliated Hospital of Zhengzhou University, No.1 Jianshe East Road, Erqi District, Zhengzhou City, Henan Province, China.
| |
Collapse
|
14
|
Zhang YM, Zhang LY, Li YY, Zhou H, Miao ZM, Liu ZW, Zhou GC, Zhou T, Niu F, Li J, Hong T, He JP, Ding N, Zhang YN, Hua JR, Wang JF, Liu YQ. Radiation-Induced Bystander Effect on the Genome of Bone Marrow Mesenchymal Stem Cells in Lung Cancer. Antioxid Redox Signal 2023; 38:747-767. [PMID: 36242096 DOI: 10.1089/ars.2022.0072] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Aims: Radiation by-radiation effect (RIBE) can induce the genomic instability of bone marrow mesenchymal stem cells (BMSCs) adjacent to lung cancer, and this effect not only exists in the short-term, but also accompanies it in the long-term, but its specific mechanism is not clear. Our goal is to explore the similarities and differences in the mechanism of genomic damage in tumor-associated BMSCs induced by short-term and long-term RIBE, and to provide a theoretical basis for adjuvant drugs for protection against RIBE at different clinical time periods. Results: We found that both short- and long-term RIBE induced genomic instability. We could show a high expression of TGF-β1, TNF-α, and HIF-1α in tumor-associated BMSCs after short-term RIBE whereas only TNF-α and HIF-1α expression was increased in long-term RIBE. We further confirmed that genomic instability is associated with the activation of the HIF-1α pathway and that this is mediated by TNF-α and TGF-β1. In addition, we found differences in the mechanisms of genomic instability in the considered RIBE windows of analysis. In short-term RIBE, both TNF-α and TGF-β1 play a role, whereas only TNF-α plays a decisive role in long-term RIBE. In addition, there were differences in BMSC recruitment and genomic instability of different tissues with a more pronounced expression in tumor and bone marrow than compared to lung. Innovation and Conclusion: We could show dynamic changes in the expression of the cytokines TGF-β1 and TNF-α during short- and long-term RIBE. The differential expression of the two is the key to causing the genomic damage of tumor-associated BMSCs in the considered windows of analysis. Therefore, these results may serve as a guideline for the administration of radiation protection adjuvant drugs at different clinical stages. Antioxid. Redox Signal. 38, 747-767.
Collapse
Affiliation(s)
- Yi-Ming Zhang
- Provincial-Level Key Laboratory for Molecular Medicine of Major Diseases and The Prevention and Treatment with Traditional Chinese Medicine Research in Gansu Colleges and Universities, Gansu University of Chinese Medicine, Lanzhou, China
| | - Li-Ying Zhang
- Provincial-Level Key Laboratory for Molecular Medicine of Major Diseases and The Prevention and Treatment with Traditional Chinese Medicine Research in Gansu Colleges and Universities, Gansu University of Chinese Medicine, Lanzhou, China
- Gansu Institute of Cardiovascular Diseases, Lanzhou, China
| | - Yang-Yang Li
- Provincial-Level Key Laboratory for Molecular Medicine of Major Diseases and The Prevention and Treatment with Traditional Chinese Medicine Research in Gansu Colleges and Universities, Gansu University of Chinese Medicine, Lanzhou, China
| | - Heng Zhou
- Key Laboratory of Space Radiobiology of Gansu Province & Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China
| | - Zhi-Ming Miao
- Provincial-Level Key Laboratory for Molecular Medicine of Major Diseases and The Prevention and Treatment with Traditional Chinese Medicine Research in Gansu Colleges and Universities, Gansu University of Chinese Medicine, Lanzhou, China
| | - Zhi-Wei Liu
- Provincial-Level Key Laboratory for Molecular Medicine of Major Diseases and The Prevention and Treatment with Traditional Chinese Medicine Research in Gansu Colleges and Universities, Gansu University of Chinese Medicine, Lanzhou, China
| | - Gu-Cheng Zhou
- Provincial-Level Key Laboratory for Molecular Medicine of Major Diseases and The Prevention and Treatment with Traditional Chinese Medicine Research in Gansu Colleges and Universities, Gansu University of Chinese Medicine, Lanzhou, China
| | - Ting Zhou
- Provincial-Level Key Laboratory for Molecular Medicine of Major Diseases and The Prevention and Treatment with Traditional Chinese Medicine Research in Gansu Colleges and Universities, Gansu University of Chinese Medicine, Lanzhou, China
| | - Fan Niu
- Provincial-Level Key Laboratory for Molecular Medicine of Major Diseases and The Prevention and Treatment with Traditional Chinese Medicine Research in Gansu Colleges and Universities, Gansu University of Chinese Medicine, Lanzhou, China
| | - Jing Li
- Provincial-Level Key Laboratory for Molecular Medicine of Major Diseases and The Prevention and Treatment with Traditional Chinese Medicine Research in Gansu Colleges and Universities, Gansu University of Chinese Medicine, Lanzhou, China
| | - Tao Hong
- Provincial-Level Key Laboratory for Molecular Medicine of Major Diseases and The Prevention and Treatment with Traditional Chinese Medicine Research in Gansu Colleges and Universities, Gansu University of Chinese Medicine, Lanzhou, China
| | - Jin-Peng He
- Key Laboratory of Space Radiobiology of Gansu Province & Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China
| | - Nan Ding
- Key Laboratory of Space Radiobiology of Gansu Province & Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China
| | - Ya-Nan Zhang
- Key Laboratory of Space Radiobiology of Gansu Province & Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China
| | - Jun-Rui Hua
- Key Laboratory of Space Radiobiology of Gansu Province & Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China
| | - Ju-Fang Wang
- Key Laboratory of Space Radiobiology of Gansu Province & Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China
| | - Yong-Qi Liu
- Provincial-Level Key Laboratory for Molecular Medicine of Major Diseases and The Prevention and Treatment with Traditional Chinese Medicine Research in Gansu Colleges and Universities, Gansu University of Chinese Medicine, Lanzhou, China
- Key Laboratory of Dunhuang Medicine, Ministry of Education, Lanzhou, China
| |
Collapse
|
15
|
Ghafouri-Fard S, Hussen BM, Shoorei H, Abak A, Poornajaf Y, Taheri M, Samadian M. Interactions between non-coding RNAs and HIF-1α in the context of cancer. Eur J Pharmacol 2023; 943:175535. [PMID: 36731723 DOI: 10.1016/j.ejphar.2023.175535] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 01/18/2023] [Accepted: 01/20/2023] [Indexed: 02/03/2023]
Abstract
Hypoxia-inducible factor 1α (HIF-1α) is a subunit of the HIF-1 transcription factor which is encoded by the HIF1A gene. This transcription factor is the main modulator of the cell response to hypoxia. Hypoxia-induced up-regulation of HIF-1α is involved in the pathogenesis of cancer. Recently, the interactions of several long non-coding RNAs (lncRNAs), microRNAs (miRNAs), and circular RNAs (circRNAs) with HIF-1α have been reported. These ncRNAs regulate the expression of HIF-1α through different mechanisms. The regulatory roles of ncRNAs on HIF-1α are involved in the response of cancer cells to a wide range of anticancer drugs such as sorafenib, cisplatin, propofol, doxorubicin, and paclitaxel. Therefore, identification of the complex network between ncRNAs and HIF-1α not only facilitates the design of novel therapies but also promotes the efficacy of conventional anticancer treatments. This review aims to explain the interactions between these classes of ncRNAs and HIF-1α in the context of cancer.
Collapse
Affiliation(s)
- Soudeh Ghafouri-Fard
- Department of Medical Genetics, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Bashdar Mahmud Hussen
- Department of Pharmacognosy, College of Pharmacy, Hawler Medical University, Kurdistan Region, Erbil, Iraq
| | - Hamed Shoorei
- Department of Anatomical Sciences, Faculty of Medicine, Birjand University of Medical Sciences, Birjand, Iran; Clinical Research Development Unit of Tabriz Valiasr Hospital, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Atefe Abak
- Phytochemistry Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Yadollah Poornajaf
- Student Research Committee, Birjand University of Medical Sciences, Birjand, Iran
| | - Mohammad Taheri
- Institute of Human Genetics, Jena University Hospital, Jena, Germany; Urology and Nephrology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Mohammad Samadian
- Skull Base Research Center, Loghman Hakim Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
16
|
Deciphering the role of Hippo pathway in lung cancer. Pathol Res Pract 2023; 243:154339. [PMID: 36736143 DOI: 10.1016/j.prp.2023.154339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Revised: 01/20/2023] [Accepted: 01/21/2023] [Indexed: 01/24/2023]
Abstract
Hippo pathway has been initially recognized as a regulatory mechanism for modulation of organ size in fruitfly. Subsequently, its involvement in the regulation of homeostasis and tumorigenesis has been identified. This pathway contains some tumor suppressor genes such as hippo (hpo) and warts (wts), as well as a number of oncogenic ones such as yorkie (yki). Recent studies have shown participation of Hippo pathway in the lung carcinogenesis. This pathway can affect lung cancer via different mechanisms. The interaction between some miRNAs and Hippo pathway is a possible mechanism for carcinogenic processes. Moreover, some other types of non-coding RNAs including PVT1, SFTA1P, NSCLCAT1 and circ_0067741 are implicated in this process. Besides, anti-cancer effects of gallic acid, icotinib hydrochloride, curcumin, ginsenoside Rg3, cryptotanshinone, nitidine chloride, cucurbitacin E, erlotinib, verteporfin, sophoridine, cisplatin and verteporfin in lung cancer are mediated through modulation of Hippo pathway. Here, we summarize the results of recent studies that investigated the role of Hippo signaling in the progression of lung cancer, the impact of non-coding RNAs on this pathway and the effects of anti-cancer agents on Hippo signaling in the context of lung cancer.
Collapse
|
17
|
Kopcho S, McDew-White M, Naushad W, Mohan M, Okeoma CM. Alterations in Abundance and Compartmentalization of miRNAs in Blood Plasma Extracellular Vesicles and Extracellular Condensates during HIV/SIV Infection and Its Modulation by Antiretroviral Therapy (ART) and Delta-9-Tetrahydrocannabinol (Δ 9-THC). Viruses 2023; 15:623. [PMID: 36992332 PMCID: PMC10053514 DOI: 10.3390/v15030623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 02/20/2023] [Accepted: 02/21/2023] [Indexed: 03/02/2023] Open
Abstract
In this follow-up study, we investigated the abundance and compartmentalization of blood plasma extracellular miRNA (exmiRNA) into lipid-based carriers-blood plasma extracellular vesicles (EVs) and non-lipid-based carriers-extracellular condensates (ECs) during SIV infection. We also assessed how combination antiretroviral therapy (cART), administered in conjunction with phytocannabinoid delta-9-tetrahydrocannabinol (THC), altered the abundance and compartmentalization of exmiRNAs in the EVs and ECs of SIV-infected rhesus macaques (RMs). Unlike cellular miRNAs, exmiRNAs in blood plasma may serve as minimally invasive disease indicators because they are readily detected in stable forms. The stability of exmiRNAs in cell culture fluids and body fluids (urine, saliva, tears, cerebrospinal fluid (CSF), semen, blood) is based on their association with different carriers (lipoproteins, EVs, and ECs) that protect them from the activities of endogenous RNases. Here, we showed that in the blood plasma of uninfected control RMs, significantly less exmiRNAs were associated with EVs compared to the level (30% higher) associated with ECs, and that SIV infection altered the profile of EVs and ECs miRNAome (Manuscript 1). In people living with HIV (PLWH), host-encoded miRNAs regulate both host and viral gene expression, which may serve as indicators of disease or treatment biomarkers. The profile of miRNAs in blood plasma of PLWH (elite controllers versus viremic patients) are different, indicating that HIV may alter host miRNAome. However, there are no studies assessing the effect of cART or other substances used by PLWH, such as THC, on the abundance of exmiRNA and their association with EVs and ECs. Moreover, longitudinal exmiRNA profiles following SIV infection, treatment with THC, cART, or THC+cART remains unclear. Here, we serially analyzed miRNAs associated with blood plasma derived EVs and ECs. Methods: Paired EVs and ECs were separated from EDTA blood plasma of male Indian rhesus macaques (RMs) in five treatment groups, including VEH/SIV, VEH/SIV/cART, THC/SIV, THC/SIV/cART, or THC alone. Separation of EVs and ECs was achieved with the unparalleled nano-particle purification tool ─PPLC, a state-of-the-art, innovative technology equipped with gradient agarose bead sizes and a fast fraction collector that allows high resolution separation and retrieval of preparative quantities of sub-populations of extracellular structures. Global miRNA profiles of the paired EVs and ECs were determined with RealSeq Biosciences (Santa Cruz, CA) custom sequencing platform by conducting small RNA (sRNA)-seq. The sRNA-seq data were analyzed using various bioinformatic tools. Validation of key exmiRNA was performed using specific TaqMan microRNA stem-loop RT-qPCR assays. Results: We investigated the effect of cART, THC, or both cART and THC together on the abundance and compartmentalization of blood plasma exmiRNA in EVs and ECs in SIV-infected RMs. As shown in Manuscript 1 of this series, were in uninfected RMs, ~30% of exmiRNAs were associated with ECs, we confirmed in this follow up manuscript that exmiRNAs were present in both lipid-based carriers-EVs and non-lipid-based carriers-ECs, with 29.5 to 35.6% and 64.2 to 70.5 % being associated with EVs and ECs, respectively. Remarkably, the different treatments (cART, THC) have distinct effects on the enrichment and compartmentalization pattern of exmiRNAs. In the VEH/SIV/cART group, 12 EV-associated and 15 EC-associated miRNAs were significantly downregulated. EV-associated miR-206, a muscle-specific miRNA that is present in blood, was higher in the VEH/SIV/ART compared to the VEH/SIV group. ExmiR-139-5p that was implicated in endocrine resistance, focal adhesion, lipid and atherosclerosis, apoptosis, and breast cancer by miRNA-target enrichment analysis was significantly lower in VEH/SIV/cART compared to VEH/SIV, irrespective of the compartment. With respect to THC treatment, 5 EV-associated and 21 EC-associated miRNAs were significantly lower in the VEH/THC/SIV. EV-associated miR-99a-5p was higher in VEH/THC/SIV compared to VEH/SIV, while miR-335-5p counts were significantly lower in both EVs and ECs of THC/SIV compared to VEH/SIV. EVs from SIV/cART/THC combined treatment group have significant increases in the count of eight (miR-186-5p, miR-382-5p, miR-139-5p and miR-652, miR-10a-5p, miR-657, miR-140-5p, miR-29c-3p) miRNAs, all of which were lower in VEH/SIV/cART group. Analysis of miRNA-target enrichment showed that this set of eight miRNAs were implicated in endocrine resistance, focal adhesions, lipid and atherosclerosis, apoptosis, and breast cancer as well as cocaine and amphetamine addiction. In ECs and EVs, combined THC and cART treatment significantly increased miR-139-5p counts compared to VEH/SIV group. Significant alterations in these host miRNAs in both EVs and ECs in the untreated and treated (cART, THC, or both) RMs indicate the persistence of host responses to infection or treatments, and this is despite cART suppression of viral load and THC suppression of inflammation. To gain further insight into the pattern of miRNA alterations in EVs and ECs and to assess potential cause-and-effect relationships, we performed longitudinal miRNA profile analysis, measured in terms of months (1 and 5) post-infection (MPI). We uncovered miRNA signatures associated with THC or cART treatment of SIV-infected macaques in both EVs and ECs. While the number of miRNAs was significantly higher in ECs relative to EVs for all groups (VEH/SIV, SIV/cART, THC/SIV, THC/SIV/cART, and THC) longitudinally from 1 MPI to 5 MPI, treatment with cART and THC have longitudinal effects on the abundance and compartmentalization pattern of exmiRNAs in the two carriers. As shown in Manuscript 1 where SIV infection led to longitudinal suppression of EV-associated miRNA-128-3p, administration of cART to SIV-infected RMs did not increase miR-128-3p but resulted in longitudinal increases in six EV-associated miRNAs (miR-484, miR-107, miR-206, miR-184, miR-1260b, miR-6132). Furthermore, administration of cART to THC treated SIV-infected RMs resulted in a longitudinal decrease in three EV-associated miRNAs (miR-342-3p, miR-100-5p, miR181b-5p) and a longitudinal increase in three EC-associated miRNAs (miR-676-3p, miR-574-3p, miR-505-5p). The longitudinally altered miRNAs in SIV-infected RMs may indicate disease progression, while in the cART Group and the THC Group, the longitudinally altered miRNAs may serve as biomarkers of response to treatment. Conclusions: This paired EVs and ECs miRNAome analyses provided a comprehensive cross-sectional and longitudinal summary of the host exmiRNA responses to SIV infection and the impact of THC, cART, or THC and cART together on the miRNAome during SIV infection. Overall, our data point to previously unrecognized alterations in the exmiRNA profile in blood plasma following SIV infection. Our data also indicate that cART and THC treatment independently and in combination may alter both the abundance and the compartmentalization of several exmiRNA related to various disease and biological processes.
Collapse
Affiliation(s)
- Steven Kopcho
- Department of Pharmacology, Stony Brook University Renaissance School of Medicine, Stony Brook, NY 11794-8651, USA
| | - Marina McDew-White
- Host Pathogen Interaction Program, Southwest National Primate Research Center, Texas Biomedical Research Institute, San Antonio, TX 78227-5302, USA
| | - Wasifa Naushad
- Department of Pathology, Microbiology, and Immunology, New York Medical College, Valhalla, NY 10595-1524, USA
| | - Mahesh Mohan
- Host Pathogen Interaction Program, Southwest National Primate Research Center, Texas Biomedical Research Institute, San Antonio, TX 78227-5302, USA
| | - Chioma M. Okeoma
- Department of Pathology, Microbiology, and Immunology, New York Medical College, Valhalla, NY 10595-1524, USA
- Lovelace Biomedical Institute, Albuquerque, NM 87108-5127, USA
| |
Collapse
|
18
|
Wang Z, Xie W, Guan H. The diagnostic, prognostic role and molecular mechanism of miR-328 in human cancer. Biomed Pharmacother 2023; 157:114031. [PMID: 36413837 DOI: 10.1016/j.biopha.2022.114031] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Revised: 11/06/2022] [Accepted: 11/17/2022] [Indexed: 11/20/2022] Open
Abstract
MicroRNA are non-coding small RNAs that bind to their target mRNA and cause mRNA degradation or translation inhibition. MiRNA dysregulation is linked to a variety of human cancers and has a role in the genesis and development of cancer pathology. MiR-328 has been reported to be involved in various human cancers. And miR-328 is considered a key regulator in human cancer. It participates in biological processes such as proliferation, apoptosis, invasion, migration, and EMT. The present review will combine the basic and clinical studies to find that miR-328 promotes tumorigenesis and metastasis in human cancer. And we will describe the diagnostic, prognostic, and therapeutic value of miR-328 in various human cancers.
Collapse
Affiliation(s)
- Zhichao Wang
- Department of Clinical Laboratory, The Affiliated Hospital of Qingdao University, 16 Jiangsu Road, Qingdao 266003, China.
| | - Wenjie Xie
- Department of Clinical Laboratory, The Affiliated Hospital of Qingdao University, 16 Jiangsu Road, Qingdao 266003, China.
| | - Hongzai Guan
- Department of Clinical Laboratory, The Affiliated Hospital of Qingdao University, 16 Jiangsu Road, Qingdao 266003, China.
| |
Collapse
|
19
|
Dalmizrak A, Dalmizrak O. Mesenchymal stem cell-derived exosomes as new tools for delivery of miRNAs in the treatment of cancer. Front Bioeng Biotechnol 2022; 10:956563. [PMID: 36225602 PMCID: PMC9548561 DOI: 10.3389/fbioe.2022.956563] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 09/01/2022] [Indexed: 11/13/2022] Open
Abstract
Although ongoing medical research is working to find a cure for a variety of cancers, it continues to be one of the major causes of death worldwide. Chemotherapy and immunotherapy, as well as surgical intervention and radiation therapy, are critical components of cancer treatment. Most anti-cancer drugs are given systemically and distribute not just to tumor tissues but also to normal tissues, where they may cause side effects. Furthermore, because anti-cancer drugs have a low delivery efficiency, some tumors do not respond to them. As a result, tumor-targeted drug delivery is critical for improving the safety and efficacy of anti-cancer treatment. Exosomes are microscopic extracellular vesicles that cells produce to communicate with one another. MicroRNA (miRNA), long non-coding RNA (lncRNA), small interfering RNA (siRNA), DNA, protein, and lipids are among the therapeutic cargos found in exosomes. Recently, several studies have focused on miRNAs as a potential therapeutic element for the treatment of cancer. Mesenchymal stem cells (MSC) have been known to have angiogenic, anti-apoptotic, anti-inflammatory and immunomodulatory effects. Exosomes derived from MSCs are gaining popularity as a non-cellular alternative to MSC-based therapy, as this method avoids unwanted lineage differentiation. Therefore more research have focused on transferring miRNAs to mesenchymal stem cells (MSC) and targeting miRNA-loaded exosomes to cancer cells. Here, we initially gave an overview of the characteristics and potentials of MSC as well as the use of MSC-derived exosomes in cancer therapy. Finally, we emphasized the utilization of MSC-derived exosomes for miRNA delivery in the treatment of cancer.
Collapse
Affiliation(s)
- Aysegul Dalmizrak
- Department of Medical Biology, Faculty of Medicine, Balıkesir University, Balıkesir, Turkey
| | - Ozlem Dalmizrak
- Department of Medical Biochemistry, Faculty of Medicine, Near East University, Nicosia, Mersin, Turkey
- *Correspondence: Ozlem Dalmizrak,
| |
Collapse
|
20
|
Sawai S, Wong PF, Ramasamy TS. Hypoxia-regulated microRNAs: the molecular drivers of tumor progression. Crit Rev Biochem Mol Biol 2022; 57:351-376. [PMID: 35900938 DOI: 10.1080/10409238.2022.2088684] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Hypoxia is a common feature of the tumor microenvironment (TME) of nearly all solid tumors, leading to therapeutic failure. The changes in stiffness of the extracellular matrix (ECM), pH gradients, and chemical balance that contribute to multiple cancer hallmarks are closely regulated by intratumoral oxygen tension via its primary mediators, hypoxia-inducible factors (HIFs). HIFs, especially HIF-1α, influence these changes in the TME by regulating vital cancer-associated signaling pathways and cellular processes including MAPK/ERK, NF-κB, STAT3, PI3K/Akt, Wnt, p53, and glycolysis. Interestingly, research has revealed the involvement of epigenetic regulation by hypoxia-regulated microRNAs (HRMs) of downstream target genes involved in these signaling. Through literature search and analysis, we identified 48 HRMs that have a functional role in the regulation of 5 key cellular processes: proliferation, metabolism, survival, invasion and migration, and immunoregulation in various cancers in hypoxic condition. Among these HRMs, 17 were identified to be directly associated with HIFs which include miR-135b, miR-145, miR-155, miR-181a, miR-182, miR-210, miR-224, miR-301a, and miR-675-5p as oncomiRNAs, and miR-100-5p, miR-138, miR-138-5p, miR-153, miR-22, miR-338-3p, miR-519d-3p, and miR-548an as tumor suppressor miRNAs. These HRMs serve as a potential lead in the development of miRNA-based targeted therapy for advanced solid tumors. Future development of combined HIF-targeted and miRNA-targeted therapy is possible, which requires comprehensive profiling of HIFs-HRMs regulatory network, and improved formula of the delivery vehicles to enhance the therapeutic kinetics of the targeted cancer therapy (TCT) moving forward.
Collapse
Affiliation(s)
- Sakunie Sawai
- Stem Cell Biology Laboratory, Department of Molecular Medicine, Faculty of Medicine, Universiti Malaya, Wilayah Persekutuan Kuala Lumpur, Malaysia
| | - Pooi-Fong Wong
- Department of Pharmacology, Faculty of Medicine, Universiti Malaya, Wilayah Persekutuan Kuala Lumpur, Malaysia
| | - Thamil Selvee Ramasamy
- Stem Cell Biology Laboratory, Department of Molecular Medicine, Faculty of Medicine, Universiti Malaya, Wilayah Persekutuan Kuala Lumpur, Malaysia
| |
Collapse
|
21
|
Li S, Lu X, Zheng D, Chen W, Li Y, Li F. Methyltransferase-like 3 facilitates lung cancer progression by accelerating m6A methylation-mediated primary miR-663 processing and impeding SOCS6 expression. J Cancer Res Clin Oncol 2022; 148:3485-3499. [PMID: 35907010 DOI: 10.1007/s00432-022-04128-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Accepted: 06/08/2022] [Indexed: 11/28/2022]
Abstract
OBJECTIVE Lung cancer (LC) remains a threatening health issue worldwide. Methyltransferase-like protein 3 (METTL3) is imperative in carcinogenesis via m6A modification of microRNAs (miRNAs). This study estimated the effect of METTL3 in LC by regulating m6A methylation-mediated pri-miR-663 processing. METHODS miR-663 expression in 4 LC cell lines and normal HBE cells was determined using RT-qPCR. A549 and PC9 LC cells selected for in vitro studies were transfected with miR-663 mimics or inhibitor. Cell viability, migration, invasion, proliferation, and apoptosis were detected by CCK-8, Transwell, EdU, and flow cytometry assays. The downstream target genes and binding sites of miR-663 were predicted via Starbase database and validated by dual-luciferase assay. LC cells were delivered with oe-METTL3/sh-METTL3. Crosslinking between METTL3 and DGCR8 was verified by co-immunoprecipitation. Levels of m6A, miR-663, and pri-miR-663 were measured by m6A dot blot assay and RT-qPCR. m6A modification of pri-miR-663 was verified by Me-RIP assay. Finally, the effects of METTL3 in vivo were ascertained by tumor xenograft in nude mice. RESULTS miR-663 was upregulated in LC cells, and miR-663 overexpression promoted cell proliferation, migration, invasion, and inhibited apoptosis, but miR-663 knockdown exerted the opposite effects. miR-663 repressed SOCS6 expression. SOCS6 overexpression annulled the promotion of miR-663 on LC cell growth. METTL3 bound to DGCR8, and METTL3 silencing elevated the levels of pri-miR-663 and m6A methylation-modified pri-miR-663, and suppressed miR-663 maturation and miR-663 expression. METTL3 facilitated tumor growth in mice through the miR-663/SOCS6 axis. CONCLUSION METTL3 promotes LC progression by accelerating m6A methylation-mediated pri-miR-663 processing and repressing SOCS6.
Collapse
Affiliation(s)
- Shengshu Li
- Department of Pulmonary and Critical Care Medicine, The 8th Medical Center of Chinese, PLA General Hospital, Beijing, 100091, China
| | - Xiaoxin Lu
- Department of Oncology, Hainan Hospital of PLA General Hospital, Haitang District, Sanya, 572013, China
| | - Dongyang Zheng
- Department of Pulmonary and Critical Care Medicine, Hainan Hospital of PLA General Hospital, Haitang District, Sanya, 572013, China
| | - Weizong Chen
- Xinglong Red Cross Hospital, Wanning, 571533, China
| | - Yuzhu Li
- Department of Pulmonary and Critical Care Medicine, Hainan Hospital of PLA General Hospital, Haitang District, Sanya, 572013, China.
| | - Fang Li
- Department of Oncology, Hainan Hospital of PLA General Hospital, Haitang District, Sanya, 572013, China.
| |
Collapse
|
22
|
Integrative Analysis of Pyroptosis-Related Prognostic Signature and Immunological Infiltration in Lung Squamous Cell Carcinoma. BIOMED RESEARCH INTERNATIONAL 2022; 2022:4944758. [PMID: 35692583 PMCID: PMC9177339 DOI: 10.1155/2022/4944758] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Revised: 04/13/2022] [Accepted: 04/21/2022] [Indexed: 02/08/2023]
Abstract
Background Lung cancer is one of leading causes of human health threatening with approximately 2.09 million initially diagnosed cases and 1.76 million deaths worldwide annually. Pyroptosis is a programmed cell death mediated by Gasdermin family proteins. Pyroptosis could suppress the tumor oncogenesis and progression; nevertheless, pyroptosis could promote tumor growth by forming a suitable microenvironment. Methods LASSO Cox regression analysis was performed to construct prognostic pyroptosis-related gene (PRG) signature. A ceRNA was constructed to explore the potential lncRNA-miRNA-mRNA regulatory axis in LUSC. Results The expression of 26 PRGs were increased or decreased in LUSC. We also summarized simple nucleotide variation and copy number variation landscape of PRGs in LUSC. Prognosis analysis suggested a poor overall survival rate in LUSC patients with high expression of IL6, IL1B, ELANE, and CASP6. A pyroptosis-related prognostic signature was developed based on four prognostic PRGs. High-risk score LUSC patients had a poor overall survival rate versus low-risk score patients with an AUC of 0.565, 0.641, and 0.619 in 1-year, 3-year, and 5-year ROC curves, respectively. Moreover, the risk score was correlated with immune infiltration in LUSC. Further analysis revealed that pyroptosis-related prognostic signature was correlated with immune cell infiltration, tumor mutation burden, microsatellite instability, and drug sensitivity. We also constructed a ceRNA network and identified a lncRNA KCNQ1OT1/miR-328-3p/IL1B regulatory axis for LUSC. Conclusion A bioinformatics method was performed to develop a pyroptosis-related prognostic signature containing four genes (IL6, IL1B, ELANE, and CASP4) in LUSC. We also constructed a ceRNA network and identified a lncRNA KCNQ1OT1/miR-328-3p/IL1B regulatory axis for LUSC. Further in vivo and in vitro studies should be conducted to verify these results.
Collapse
|
23
|
MZF1 Transcriptionally Activated MicroRNA-328-3p Suppresses the Malignancy of Stomach Adenocarcinoma via Inhibiting CD44. J Immunol Res 2022; 2022:5819295. [PMID: 35669102 PMCID: PMC9167131 DOI: 10.1155/2022/5819295] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 04/22/2022] [Indexed: 12/15/2022] Open
Abstract
MicroRNA-328-3p (miR-328-3p) plays a critical role in mediating the progression of multiple types of cancers. To date, no study has concentrated on the molecular mechanism of miR-328-3p in mediating stomach adenocarcinoma (STAD). In this study, it was found that miR-328-3p was downregulated in STAD, and inhibition of miR-328-3p significantly promoted the growth, migration, invasion, and stemness of STAD cells, while miR-328-3p overexpression exerted reverse effects. Through bioinformatics analysis, it was uncovered that a cluster of differentiation 44 (CD44) was upregulated in STAD and closely associated with the prognosis of STAD patients. Mechanistically, we identified CD44 as the target gene of miR-328-3p. Notably, knockdown of CD44 abolished the promoting function of miR-328-3p inhibitor in the development of STAD. Moreover, myeloid zinc finger protein 1 (MZF1) was confirmed as an upstream transcription factor for miR-328-3p, which is involved in enhancing miR-328-3p expression. In addition, the role of MZF1 downregulation in the malignant traits of STAD cells was blocked by miR-328-3p overexpression. More importantly, upregulation of miR-328-3p efficiently suppressed STAD tumor growth in vivo. Collectively, our findings illustrated that MZF1-mediated miR-328-3p acted as a cancer suppressor in STAD progression via regulation of CD44, which suggested the possibility of the MZF1/miR-328-3p/CD44 axis as a novel promising therapeutic candidate for STAD.
Collapse
|
24
|
Corrigendum. J Cell Mol Med 2022; 26:2132. [PMID: 35384285 PMCID: PMC8980965 DOI: 10.1111/jcmm.17193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Accepted: 12/31/2021] [Indexed: 11/29/2022] Open
|
25
|
Chacko KM, Nouri MZ, Schramm WC, Malik Z, Liu LP, Denslow ND, Alli AA. Tempol Alters Urinary Extracellular Vesicle Lipid Content and Release While Reducing Blood Pressure during the Development of Salt-Sensitive Hypertension. Biomolecules 2021; 11:biom11121804. [PMID: 34944449 PMCID: PMC8699083 DOI: 10.3390/biom11121804] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Accepted: 11/27/2021] [Indexed: 12/11/2022] Open
Abstract
Salt-sensitive hypertension resulting from an increase in blood pressure after high dietary salt intake is associated with an increase in the production of reactive oxygen species (ROS). ROS are known to increase the activity of the epithelial sodium channel (ENaC), and therefore, they have an indirect effect on sodium retention and increasing blood pressure. Extracellular vesicles (EVs) carry various molecules including proteins, microRNAs, and lipids and play a role in intercellular communication and intracellular signaling in health and disease. We investigated changes in EV lipids, urinary electrolytes, osmolality, blood pressure, and expression of renal ENaC and its adaptor protein, MARCKS/MARCKS Like Protein 1 (MLP1) after administration of the antioxidant Tempol in salt-sensitive hypertensive 129Sv mice. Our results show Tempol infusion reduces systolic blood pressure and protein expression of the alpha subunit of ENaC and MARCKS in the kidney cortex of hypertensive 129Sv mice. Our lipidomic data show an enrichment of diacylglycerols and monoacylglycerols and reduction in ceramides, dihydroceramides, and triacylglycerols in urinary EVs from these mice after Tempol treatment. These data will provide insight into our understanding of mechanisms involving strategies aimed to inhibit ROS to alleviate salt-sensitive hypertension.
Collapse
Affiliation(s)
- Kevin M. Chacko
- Department of Physiology and Functional Genomics, University of Florida, Gainesville, FL 32610, USA; (K.M.C.); (W.C.S.); (Z.M.); (L.P.L.)
| | - Mohammad-Zaman Nouri
- Department of Physiological Sciences and Center for Environmental and Human Toxicology, University of Florida, Gainesville, FL 32610, USA; (M.-Z.N.); (N.D.D.)
| | - Whitney C. Schramm
- Department of Physiology and Functional Genomics, University of Florida, Gainesville, FL 32610, USA; (K.M.C.); (W.C.S.); (Z.M.); (L.P.L.)
| | - Zeeshan Malik
- Department of Physiology and Functional Genomics, University of Florida, Gainesville, FL 32610, USA; (K.M.C.); (W.C.S.); (Z.M.); (L.P.L.)
| | - Lauren P. Liu
- Department of Physiology and Functional Genomics, University of Florida, Gainesville, FL 32610, USA; (K.M.C.); (W.C.S.); (Z.M.); (L.P.L.)
| | - Nancy D. Denslow
- Department of Physiological Sciences and Center for Environmental and Human Toxicology, University of Florida, Gainesville, FL 32610, USA; (M.-Z.N.); (N.D.D.)
| | - Abdel A. Alli
- Department of Physiology and Functional Genomics, University of Florida, Gainesville, FL 32610, USA; (K.M.C.); (W.C.S.); (Z.M.); (L.P.L.)
- Department of Medicine, Division of Nephrology, Hypertension, and Renal Transplantation, University of Florida, Gainesville, FL 32610, USA
- Correspondence: ; Tel.: +1-(352)-273-7877
| |
Collapse
|
26
|
Ma H, Liu C, Zhang S, Yuan W, Hu J, Huang D, Zhang X, Liu Y, Qiu Y. miR-328-3p promotes migration and invasion by targeting H2AFX in head and neck squamous cell carcinoma. J Cancer 2021; 12:6519-6530. [PMID: 34659543 PMCID: PMC8489127 DOI: 10.7150/jca.60743] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Accepted: 08/24/2021] [Indexed: 12/18/2022] Open
Abstract
Migration and invasion are the initial step in the metastatic process, while metastasis is responsible for the poor prognosis of head and neck squamous cell carcinoma (HNSCC). Since miRNA has been found as an important regulator of gene expression at the post-transcriptional level in various diseases including carcinoma, exploring the role of miRNA in cancer metastasis will facilitate the target therapy of advanced HNSCC. MiR-328-3p has been reported to be an onco-miRNA or a tumor suppressor in several cancers. However, the role of miR-328-3p in HNSCC migration and invasion remains undefined. In this study, we first demonstrated that miR-328-3p enhanced migration and invasion of HNSCC in vitro, accompanying with a promotion of epithelial-mesenchymal transition (EMT) and mTOR activity. Meanwhile, we confirmed that miR-328-3p directly targeted the 3'UTR of H2A histone family, member X (H2AFX), which served as a tumor suppressor in migration and invasion of HNSCC. Moreover, H2AFX could partially reverse the migration and invasion of HNSCC caused by miR-328-3p. Overall, our results indicated that miR-328-3p enhanced migration and invasion of HNSCC through targeting H2AFX and activated the mTOR pathway.
Collapse
Affiliation(s)
- Huiling Ma
- Department of Otolaryngology Head and Neck Surgery, Xiangya Hospital, Central South University, Changsha, China.,Otolaryngology Major Disease Research Key Laboratory of Hunan Province, Changsha, China
| | - Chao Liu
- Department of Otolaryngology Head and Neck Surgery, Xiangya Hospital, Central South University, Changsha, China.,Otolaryngology Major Disease Research Key Laboratory of Hunan Province, Changsha, China.,Clinical Research Center for Pharyngolaryngeal Diseases and Voice Disorders in Hunan Province, Changsha, China
| | - Shuiting Zhang
- Department of Otolaryngology Head and Neck Surgery, Xiangya Hospital, Central South University, Changsha, China.,Otolaryngology Major Disease Research Key Laboratory of Hunan Province, Changsha, China.,Clinical Research Center for Pharyngolaryngeal Diseases and Voice Disorders in Hunan Province, Changsha, China
| | - Wenhui Yuan
- Department of Otolaryngology Head and Neck Surgery, Xiangya Hospital, Central South University, Changsha, China.,Otolaryngology Major Disease Research Key Laboratory of Hunan Province, Changsha, China.,Clinical Research Center for Pharyngolaryngeal Diseases and Voice Disorders in Hunan Province, Changsha, China
| | - Junli Hu
- Department of Otolaryngology Head and Neck Surgery, Xiangya Hospital, Central South University, Changsha, China.,Otolaryngology Major Disease Research Key Laboratory of Hunan Province, Changsha, China.,Clinical Research Center for Pharyngolaryngeal Diseases and Voice Disorders in Hunan Province, Changsha, China
| | - Donghai Huang
- Department of Otolaryngology Head and Neck Surgery, Xiangya Hospital, Central South University, Changsha, China.,Otolaryngology Major Disease Research Key Laboratory of Hunan Province, Changsha, China.,Clinical Research Center for Pharyngolaryngeal Diseases and Voice Disorders in Hunan Province, Changsha, China
| | - Xin Zhang
- Department of Otolaryngology Head and Neck Surgery, Xiangya Hospital, Central South University, Changsha, China.,Otolaryngology Major Disease Research Key Laboratory of Hunan Province, Changsha, China.,Clinical Research Center for Pharyngolaryngeal Diseases and Voice Disorders in Hunan Province, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Yong Liu
- Department of Otolaryngology Head and Neck Surgery, Xiangya Hospital, Central South University, Changsha, China.,Otolaryngology Major Disease Research Key Laboratory of Hunan Province, Changsha, China.,Clinical Research Center for Pharyngolaryngeal Diseases and Voice Disorders in Hunan Province, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Yuanzheng Qiu
- Department of Otolaryngology Head and Neck Surgery, Xiangya Hospital, Central South University, Changsha, China.,Otolaryngology Major Disease Research Key Laboratory of Hunan Province, Changsha, China.,Clinical Research Center for Pharyngolaryngeal Diseases and Voice Disorders in Hunan Province, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
27
|
Shi Z, Wang K, Xing Y, Yang X. CircNRIP1 Encapsulated by Bone Marrow Mesenchymal Stem Cell-Derived Extracellular Vesicles Aggravates Osteosarcoma by Modulating the miR-532-3p/AKT3/PI3K/AKT Axis. Front Oncol 2021; 11:658139. [PMID: 34660257 PMCID: PMC8511523 DOI: 10.3389/fonc.2021.658139] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Accepted: 07/22/2021] [Indexed: 12/24/2022] Open
Abstract
Emerging evidence indicates that extracellular vesicle (EV)-encapsulated circRNAs have the potential diagnostic and prognostic values for malignancies. However, the role of circNRIP1 in osteosarcoma remains unclear. We herein investigated the therapeutic potential of circNRIP1 delivered by bone marrow mesenchymal stem cell–derived EVs (BMSC-EVs) in osteosarcoma. The expression of circNRIP1 was examined in the clinical tissue samples of osteosarcoma patients, after which the downstream genes of circNRIP1 were bioinformatically predicted. Gain- and loss-of function assays were then performed in osteosarcoma cells with manipulation of circNRIP1 and miR-532-3p expression. EVs isolated from BMSCs were characterized and co-cultured with osteosarcoma cells to examine their effects on cell phenotypes, as reflected by CCK-8 and Transwell assays. Further, a mouse model of tumor xenografts was established for in vivo substantiation. circNRIP1 was upregulated in osteosarcoma tissues and cells. Overexpression of circNRIP1 promoted the proliferative, migratory, and invasive potential of osteosarcoma cells. Co-culture data showed that BMSC-EVs could transfer circNRIP1 into osteosarcoma cells where it competitively bound to miR-532-3p and weakened miR-532-3p’s binding ability to AKT3. By this mechanism, the PI3K/AKT signaling pathway was activated and the malignant characteristics of osteosarcoma cells were stimulated. In vivo experimental results unveiled that circNRIP1-overexpressing BMSC-EVs in nude mice resulted in enhanced tumor growth. In conclusion, the BMSC-EV-enclosed circNRIP1 revealed a new molecular mechanism in the pathogenesis of osteosarcoma, which might provide a novel therapeutic target for osteosarcoma.
Collapse
Affiliation(s)
- Zuowei Shi
- Department of Orthopaedics, First Hospital of Harbin Medical University, Harbin, China
| | - Kaifu Wang
- Department of Orthopaedics, First Hospital of Harbin Medical University, Harbin, China
| | - Yufei Xing
- Department of Orthopaedics, First Hospital of Harbin Medical University, Harbin, China
| | - Xuefeng Yang
- Department of Orthopaedics, First Hospital of Harbin Medical University, Harbin, China
| |
Collapse
|
28
|
Gala D, Mohak S, Fábián Z. Extracellular Vehicles of Oxygen-Depleted Mesenchymal Stromal Cells: Route to Off-Shelf Cellular Therapeutics? Cells 2021; 10:cells10092199. [PMID: 34571848 PMCID: PMC8465344 DOI: 10.3390/cells10092199] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Revised: 08/23/2021] [Accepted: 08/24/2021] [Indexed: 11/16/2022] Open
Abstract
Cellular therapy is a promising tool of human medicine to successfully treat complex and challenging pathologies such as cardiovascular diseases or chronic inflammatory conditions. Bone marrow-derived mesenchymal stromal cells (BMSCs) are in the limelight of these efforts, initially, trying to exploit their natural properties by direct transplantation. Extensive research on the therapeutic use of BMSCs shed light on a number of key aspects of BMSC physiology including the importance of oxygen in the control of BMSC phenotype. These efforts also led to a growing number of evidence indicating that the beneficial therapeutic effects of BMSCs can be mediated by BMSC-secreted agents. Further investigations revealed that BMSC-excreted extracellular vesicles could mediate the potentially therapeutic effects of BMSCs. Here, we review our current understanding of the relationship between low oxygen conditions and the effects of BMSC-secreted extracellular vesicles focusing on the possible medical relevance of this interplay.
Collapse
|
29
|
Xiao Z, Zheng YB, Dao WX, Luo JF, Deng WH, Yan RC, Liu JS. MicroRNA-328-3p facilitates the progression of gastric cancer via KEAP1/NRF2 axis. Free Radic Res 2021; 55:720-730. [PMID: 34160338 DOI: 10.1080/10715762.2021.1923705] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Gastric cancer is a common lethal malignancy and causes great cancer-related mortality worldwide. MicroRNA (miR)-328-3p is implicated in the progression of various human cancers; however, its role and mechanism in the progression of gastric cancer remain unclear.Human gastric cancer cells were incubated with miR-328-3p mimic, inhibitor or the matched negative control. Cell viability, colony formation, migrative and invasive capacity, cell apoptosis and oxidative stress were measured. To clarify the involvement of nuclear factor-E2-related factor 2 (NRF2) and kelch-like ECH-associated protein 1 (KEAP1), small interfering RNA was used. miR-328-3p was upregulated in human gastric cancer cells and tissues, and its level positively correlated with the progression of gastric cancer. miR-328-3p promoted cell viability, colony formation, migration and invasion, thereby facilitating the progression of gastric cancer. miR-328-3p mimic reduced, while miR-328-3p inhibitor increased apoptosis and oxidative stress of human gastric cancer cells. Mechanistically, miR-328-3p upregulated NRF2 via targeting KEAP1to attenuate excessive free radical production and cell apoptosis. miR-328-3p functions as an oncogenic gene and inhibiting miR-328-3p may help to develop novel therapeutic strategies of human gastric cancer.
Collapse
Affiliation(s)
- Zhe Xiao
- Department of Gastrointestinal Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Yong-Bin Zheng
- Department of Gastrointestinal Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Wen-Xin Dao
- Department of Gastrointestinal Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Jian-Fei Luo
- Department of Gastrointestinal Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Wen-Hong Deng
- Department of Gastrointestinal Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Rui-Cheng Yan
- Department of Gastrointestinal Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Jia-Sheng Liu
- Department of Gastrointestinal Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| |
Collapse
|
30
|
MicroRNAs Regulating Hippo-YAP Signaling in Liver Cancer. Biomedicines 2021; 9:biomedicines9040347. [PMID: 33808155 PMCID: PMC8067275 DOI: 10.3390/biomedicines9040347] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 03/23/2021] [Accepted: 03/25/2021] [Indexed: 12/17/2022] Open
Abstract
Liver cancer is one of the most common cancers worldwide, and its prevalence and mortality rate are increasing due to the lack of biomarkers and effective treatments. The Hippo signaling pathway has long been known to control liver size, and genetic depletion of Hippo kinases leads to liver cancer in mice through activation of the downstream effectors yes-associated protein (YAP) and transcriptional coactivator with PDZ-binding motif (TAZ). Both YAP and TAZ not only reprogram tumor cells but also alter the tumor microenvironment to exert carcinogenic effects. Therefore, understanding the mechanisms of YAP/TAZ-mediated liver tumorigenesis will help overcome liver cancer. For decades, small noncoding RNAs, microRNAs (miRNAs), have been reported to play critical roles in the pathogenesis of many cancers, including liver cancer. However, the interactions between miRNAs and Hippo-YAP/TAZ signaling in the liver are still largely unknown. Here, we review miRNAs that influence the proliferation, migration and apoptosis of tumor cells by modulating Hippo-YAP/TAZ signaling during hepatic tumorigenesis. Previous findings suggest that these miRNAs are potential biomarkers and therapeutic targets for the diagnosis, prognosis, and treatment of liver cancer.
Collapse
|
31
|
Liu X, Jiang F, Wang Z, Tang L, Zou B, Xu P, Yu T. Hypoxic bone marrow mesenchymal cell-extracellular vesicles containing miR-328-3p promote lung cancer progression via the NF2-mediated Hippo axis. J Cell Mol Med 2021; 25:96-109. [PMID: 33219752 PMCID: PMC7810954 DOI: 10.1111/jcmm.15865] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Revised: 07/16/2020] [Accepted: 08/21/2020] [Indexed: 12/12/2022] Open
Abstract
Lung cancer is the most aggressive tumour afflicting patients on a global scale. Extracellular vesicle (EV)-delivered microRNAs (miRs) have been reported to play critical roles in cancer development. The current study aimed to investigate the role of hypoxic bone marrow mesenchymal cell (BMSC)-derived EVs containing miR-328-3p in lung cancer. miR-328-3p expression was determined in a set of lung cancer tissues by RT-qPCR. BMSCs were infected with lentivirus-mediated miR-328-3p knock-down and then cultured in normoxic or hypoxic conditions, followed by isolation of EVs. Following ectopic expression and depletion experiments in lung cancer cells, the biological functions of miR-328-3p were analysed using CCK-8 assay, flow cytometry and Transwell assay. Xenograft in nude mice was performed to test the in vivo effects of miR-328-3p delivered by hypoxic BMSC-derived EVs on tumour growth of lung cancer. Finally, the expression of circulating miR-328-3p was detected in the serum of lung cancer patients. miR-328-3p was highly expressed in EVs derived from hypoxic BMSCs. miR-328-3p was delivered to lung cancer cells by hypoxic BMSC-derived EVs, thereby promoting lung cancer cell proliferation, invasion, migration and epithelial-mesenchymal transition. miR-328-3p targeted NF2 to inactivate the Hippo pathway. Moreover, EV-delivered miR-328-3p increased tumour growth in vivo. Additionally, circulating miR-328-3p was bioactive in the serum of lung cancer patients. Taken together, our results demonstrated that hypoxic BMSC-derived EVs could deliver miR-328-3p to lung cancer cells and that miR-328-3p targets the NF2 gene, thereby inhibiting the Hippo pathway to ultimately promote the occurrence and progression of lung cancer.
Collapse
Affiliation(s)
- Xi Liu
- Department of Thoracic SurgeryJiangxiCancer HospitalNanchangChina
| | - Feng Jiang
- Department of Thoracic SurgeryJiangxiCancer HospitalNanchangChina
| | - Zhilinag Wang
- Department of Obstetrics and GynecologyThe Second Affiliated Hospital of Chongqing Medical UniversityChongqingChina
| | - Lang Tang
- Department of Thoracic SurgeryJiangxiCancer HospitalNanchangChina
| | - Bin Zou
- Department of Thoracic SurgeryJiangxiCancer HospitalNanchangChina
| | - Pengfei Xu
- Department of Thoracic SurgeryJiangxiCancer HospitalNanchangChina
| | - Tenghua Yu
- Department of Breast SurgeryJiangxiCancer HospitalNanchangChina
| |
Collapse
|