1
|
Zhang S, Wen Q, Su S, Wang Y, Wang J, Xie N, Zhu W, Wen X, Di L, Lu Y, Xu M, Wang M, Chen H, Duo J, Huang Y, Wan D, Tao Z, Zhao S, Chai G, Hao J, Da Y. Peripheral immune profiling highlights a dynamic role of low-density granulocytes in myasthenia gravis. J Autoimmun 2025; 152:103395. [PMID: 40043622 DOI: 10.1016/j.jaut.2025.103395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2025] [Accepted: 02/25/2025] [Indexed: 03/29/2025]
Abstract
BACKGROUND Myasthenia gravis (MG) is an autoimmune neuromuscular disease marked by dysregulation of several immune cell populations. Here we explored peripheral immune landscape, particularly the role of low-density granulocytes (LDGs). METHODS Single-cell and bulk RNA sequencing analyzed peripheral immune cells from MG patients pre- (n = 4) and after treatment (n = 2), as well as healthy controls (n = 3). Flow cytometry was employed for validating LDG subsets, and various functional assays were conducted to assess their impact on T cell proliferation and differentiation, NET formation, and ROS production. RESULTS Single-cell analysis highlighted a shift towards inflammatory Th1/Th17/Tfh subsets, an intense interferon-mediated immune response, and an expansion of immature myeloid subsets in MG. Flow cytometry showed increased LDGs correlated with disease severity. Unlike myeloid-derived suppressor cells, MG LDGs do not restrict T cell proliferation but induce a pro-inflammatory Th1/Th17 response. They also display enhanced spontaneous neutrophil extracellular traps (NETs) formation and basal reactive oxygen species (ROS) production. LDGs decreased after intravenous immunoglobulin and increased after prolonged immunotherapy in minimal manifestation status (MM), with reduced pro-inflammatory activity. Bulk RNA sequencing revealed significant transcriptional differences in LDGs, especially in cell cycle and granule protein genes. CONCLUSION Peripheral immune profiling sheds light on the intricate role of LDGs in MG. These cells, as a distinct subtype of neutrophils with a proinflammatory phenotype, are notable increased in MG, exacerbating chronic inflammation. Furthermore, immunotherapy expanded LDGs but reduced their proinflammatory capacities. The complex interplay of LDGs in MG underscores their potential as biomarkers and therapeutic targets.
Collapse
Affiliation(s)
- Shu Zhang
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Qi Wen
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Shengyao Su
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Yaye Wang
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Jingsi Wang
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Nairong Xie
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Wenjia Zhu
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Xinmei Wen
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Li Di
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Yan Lu
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Min Xu
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Min Wang
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Hai Chen
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Jianying Duo
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Yue Huang
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Dongshan Wan
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Zhen Tao
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Shufang Zhao
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Guoliang Chai
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Junwei Hao
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China.
| | - Yuwei Da
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China.
| |
Collapse
|
2
|
García-Camacho M, Tvarijonaviciute A, Martínez-Subiela S, Cerón JJ, Muñoz-Prieto A. Analytical validation of an automated assay to measure calprotectin (S100A8/A9) in dog saliva and serum and changes in canine leishmaniasis, pyometra and hyperadrenocorticism. BMC Vet Res 2025; 21:80. [PMID: 39980018 PMCID: PMC11841251 DOI: 10.1186/s12917-024-04443-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Accepted: 12/11/2024] [Indexed: 02/22/2025] Open
Abstract
BACKGROUND Calprotectin (S100A8/A9) is a protein related to innate immunity that is considered a biomarker of inflammation. Currently, there is a commercially available automated assay for the measurement of calprotectin concentration (Bühlmann fCal Turbo® assay), which has been previously validated for saliva and serum of swine and for saliva of horses, and in the canine species it has been validated for use with fecal samples, but it has not been previously validated in canine saliva or serum. Thus, the aim of this study was to perform an analytical validation of an automated assay for the measurement of calprotectin in the saliva and serum of dogs. In addition, changes in this protein in saliva and serum of three diseases with different pathogenic mechanisms - leishmaniasis, pyometra and hyperadrenocorticism - were evaluated. Finally, in these diseases, the correlation of salivary and serum calprotectin with the serum levels of three acute phase proteins (APPs), including C-reactive protein (CRP), haptoglobin (Hp) and ferritin, was also assessed. RESULTS The analytical validation results showed that the assay was precise (coefficients of variation < 15% in all cases), accurate (the dilutional parallelism for serum and salivary calprotectin showed observed-to-expected ratios with a mean of 96.9% and 97.2%, respectively), and presented a limit of detection of 0.038 mg/L. When this assay was applied to the different diseases, a significant increase in the concentration of salivary calprotectin in dogs with leishmaniasis (p = 0.0002) and in those with pyometra (p = 0.002), compared to healthy ones, was observed, whereas no significant differences were found in serum. Furthermore, a significant positive moderate correlation was obtained between salivary calprotectin and serum CRP (r = 0.5; p = 0.001) and haptoglobin (r = 0.5; p = 0.002), and between calprotectin and CRP (r = 0.67; p < 0.001) in serum. CONCLUSIONS Calprotectin (S100A8/A9) can be measured in dog saliva and serum samples by the automated method validated in this study, and when measured in saliva it could be used as a potential biomarker of inflammation and immune activation in the dog.
Collapse
Affiliation(s)
- Marina García-Camacho
- Interdisciplinary Laboratory of Clinical Analysis, Interlab-UMU, Regional Campus of International Excellence Campus Mare Nostrum, University of Murcia, Murcia, 30100, Spain
| | - Asta Tvarijonaviciute
- Interdisciplinary Laboratory of Clinical Analysis, Interlab-UMU, Regional Campus of International Excellence Campus Mare Nostrum, University of Murcia, Murcia, 30100, Spain
| | - Silvia Martínez-Subiela
- Interdisciplinary Laboratory of Clinical Analysis, Interlab-UMU, Regional Campus of International Excellence Campus Mare Nostrum, University of Murcia, Murcia, 30100, Spain
| | - José Joaquín Cerón
- Interdisciplinary Laboratory of Clinical Analysis, Interlab-UMU, Regional Campus of International Excellence Campus Mare Nostrum, University of Murcia, Murcia, 30100, Spain
| | - Alberto Muñoz-Prieto
- Interdisciplinary Laboratory of Clinical Analysis, Interlab-UMU, Regional Campus of International Excellence Campus Mare Nostrum, University of Murcia, Murcia, 30100, Spain.
| |
Collapse
|
3
|
Wu Y, Chen D, Gao Y, Xu Q, Zhou Y, Ni Z, Na M. Immunosuppressive regulatory cells in cancer immunotherapy: restrain or modulate? Hum Cell 2024; 37:931-943. [PMID: 38814516 DOI: 10.1007/s13577-024-01083-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Accepted: 05/22/2024] [Indexed: 05/31/2024]
Abstract
Immunosuppressive regulatory cells (IRCs) play important roles in negatively regulating immune response, and are mainly divided into myeloid-derived suppressor cells (MDSCs) and regulatory T cells (Tregs). Large numbers of preclinical and clinical studies have shown that inhibition or reduction of IRCs could effectively elevate antitumor immune responses. However, several studies also reported that excessive inhibition of IRCs function is one of the main reasons causing the side effects of cancer immunotherapy. Therefore, the reasonable regulation of IRCs is crucial for improving the safety and efficiency of cancer immunotherapy. In this review, we summarised the recent research advances in the cancer immunotherapy by regulating the proportion of IRCs, and discussed the roles of IRCs in regulating tumour immune evasion and drug resistance to immunotherapies. Furthermore, we also discussed how to balance the potential opportunities and challenges of using IRCs to improve the safety of cancer immunotherapies.
Collapse
Affiliation(s)
- Yan Wu
- Department of Burn and Plastic Surgery, The Affiliated Hospital of Jiangsu University, Zhenjiang, 210031, Jiangsu, People's Republic of China
- School of Medicine, Jiangsu University, Zhenjiang, 212013, Jiangsu, People's Republic of China
| | - Dongfeng Chen
- School of Life Sciences, Jiangsu University, Zhenjiang, 212013, Jiangsu, People's Republic of China
| | - Yang Gao
- School of Life Sciences, Jiangsu University, Zhenjiang, 212013, Jiangsu, People's Republic of China
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, 999078, China
| | - Qinggang Xu
- School of Life Sciences, Jiangsu University, Zhenjiang, 212013, Jiangsu, People's Republic of China
| | - Yang Zhou
- School of Life Sciences, Jiangsu University, Zhenjiang, 212013, Jiangsu, People's Republic of China
| | - Zhong Ni
- School of Life Sciences, Jiangsu University, Zhenjiang, 212013, Jiangsu, People's Republic of China
| | - Manli Na
- Department of Burn and Plastic Surgery, The Affiliated Hospital of Jiangsu University, Zhenjiang, 210031, Jiangsu, People's Republic of China.
- School of Life Sciences, Jiangsu University, Zhenjiang, 212013, Jiangsu, People's Republic of China.
- International Genome Center, Jiangsu University, 301 Xuefu Road, Zhenjiang, 212013, Jiangsu, People's Republic of China.
| |
Collapse
|
4
|
Hecker M, Fitzner B, Koczan D, Klehmet J, Grothe M, Schwab M, Winkelmann A, Meister S, Dudesek A, Ludwig-Portugall I, Eulitz K, Zettl UK. Differential gene expression in B cells and T helper cells following high-dose glucocorticoid therapy for multiple sclerosis relapse. Biomed Pharmacother 2024; 175:116721. [PMID: 38749180 DOI: 10.1016/j.biopha.2024.116721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 04/30/2024] [Accepted: 05/06/2024] [Indexed: 06/03/2024] Open
Abstract
BACKGROUND Despite remarkable advances in the therapy of multiple sclerosis (MS), patients with MS may still experience relapses. High-dose short-term methylprednisolone (MP) remains the standard treatment in the acute management of MS relapses due to its potent anti-inflammatory and immunosuppressive properties. However, there is a lack of studies on the cell type-specific transcriptome changes that are induced by this synthetic glucocorticoid (GC). Moreover, it is not well understood why some patients do not benefit adequately from MP therapy. METHODS We collected peripheral blood from MS patients in relapse immediately before and after ∼3-5 days of therapy with MP at 4 study centers. CD19+ B cells and CD4+ T cells were then isolated for profiling the transcriptome with high-density arrays. The patients' improvement of neurological symptoms was evaluated after ∼2 weeks by the treating physicians. We finally analyzed the data to identify genes that were differentially expressed in response to the therapy and whose expression differed between clinical responders and non-responders. RESULTS After MP treatment, a total of 33 genes in B cells and 55 genes in T helper cells were significantly up- or downregulated. The gene lists overlap in 10 genes and contain genes that have already been described as GC-responsive genes in the literature on other cell types and diseases. Their differential expression points to a rapid and coordinated modulation of multiple signaling pathways that influence transcription. Genes that were previously suggested as potential prognostic biomarkers of the clinical response to MP therapy could not be confirmed in our data. However, a greater increase in the expression of genes encoding proteins with antimicrobial activity was detected in CD4+ T cells from non-responders compared to responders. CONCLUSION Our study delved into the cell type-specific effects of MP at the transcriptional level. The data suggest a therapy-induced ectopic expression of some genes (e.g., AZU1, ELANE and MPO), especially in non-responders. The biological consequences of this remain to be explored in greater depth. A better understanding of the molecular mechanisms underlying clinical recovery from relapses in patients with MS will help to optimize future treatment decisions.
Collapse
Affiliation(s)
- Michael Hecker
- Division of Neuroimmunology, Department of Neurology, Rostock University Medical Center, Rostock, Germany.
| | - Brit Fitzner
- Division of Neuroimmunology, Department of Neurology, Rostock University Medical Center, Rostock, Germany
| | - Dirk Koczan
- Institute of Immunology, Rostock University Medical Center, Rostock, Germany
| | - Juliane Klehmet
- Center for Multiple Sclerosis, Department of Neurology, Jüdisches Krankenhaus Berlin, Berlin, Germany
| | - Matthias Grothe
- Department of Neurology, University Medicine Greifswald, Greifswald, Germany
| | - Matthias Schwab
- Department of Neurology, Jena University Hospital, Jena, Germany
| | - Alexander Winkelmann
- Division of Neuroimmunology, Department of Neurology, Rostock University Medical Center, Rostock, Germany
| | - Stefanie Meister
- Division of Neuroimmunology, Department of Neurology, Rostock University Medical Center, Rostock, Germany
| | - Ales Dudesek
- Division of Neuroimmunology, Department of Neurology, Rostock University Medical Center, Rostock, Germany
| | | | | | - Uwe Klaus Zettl
- Division of Neuroimmunology, Department of Neurology, Rostock University Medical Center, Rostock, Germany
| |
Collapse
|
5
|
Jiang Q, Duan J, Van Kaer L, Yang G. The Role of Myeloid-Derived Suppressor Cells in Multiple Sclerosis and Its Animal Model. Aging Dis 2024; 15:1329-1343. [PMID: 37307825 PMCID: PMC11081146 DOI: 10.14336/ad.2023.0323-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 03/23/2023] [Indexed: 06/14/2023] Open
Abstract
Myeloid-derived suppressor cells (MDSCs), a heterogeneous cell population that consists of mostly immature myeloid cells, are immunoregulatory cells mainly characterized by their suppressive functions. Emerging findings have revealed the involvement of MDSCs in multiple sclerosis (MS) and its animal model experimental autoimmune encephalomyelitis (EAE). MS is an autoimmune and degenerative disease of the central nervous system characterized by demyelination, axon loss, and inflammation. Studies have reported accumulation of MDSCs in inflamed tissues and lymphoid organs of MS patients and EAE mice, and these cells display dual functions in EAE. However, the contribution of MDSCs to MS/EAE pathogenesis remains unclear. This review aims to summarize our current understanding of MDSC subsets and their possible roles in MS/EAE pathogenesis. We also discuss the potential utility and associated obstacles in employing MDSCs as biomarkers and cell-based therapies for MS.
Collapse
Affiliation(s)
- Qianling Jiang
- Department of Infectious Diseases and Public Health, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Kowloon, Hong Kong, China.
| | - Jielin Duan
- Department of Allergy and Clinical Immunology, State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.
| | - Luc Van Kaer
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN 37232, USA.
| | - Guan Yang
- Department of Infectious Diseases and Public Health, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Kowloon, Hong Kong, China.
| |
Collapse
|
6
|
Tamberi L, Belloni A, Pugnaloni A, Rippo MR, Olivieri F, Procopio AD, Bronte G. The Influence of Myeloid-Derived Suppressor Cell Expansion in Neuroinflammation and Neurodegenerative Diseases. Cells 2024; 13:643. [PMID: 38607083 PMCID: PMC11011419 DOI: 10.3390/cells13070643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 04/03/2024] [Accepted: 04/05/2024] [Indexed: 04/13/2024] Open
Abstract
The neuro-immune axis has a crucial function both during physiological and pathological conditions. Among the immune cells, myeloid-derived suppressor cells (MDSCs) exert a pivotal role in regulating the immune response in many pathological conditions, influencing neuroinflammation and neurodegenerative disease progression. In chronic neuroinflammation, MDSCs could lead to exacerbation of the inflammatory state and eventually participate in the impairment of cognitive functions. To have a complete overview of the role of MDSCs in neurodegenerative diseases, research on PubMed for articles using a combination of terms made with Boolean operators was performed. According to the search strategy, 80 papers were retrieved. Among these, 44 papers met the eligibility criteria. The two subtypes of MDSCs, monocytic and polymorphonuclear MDSCs, behave differently in these diseases. The initial MDSC proliferation is fundamental for attenuating inflammation in Alzheimer's disease (AD), Parkinson's disease (PD), and multiple sclerosis (MS), but not in amyotrophic lateral sclerosis (ALS), where MDSC expansion leads to exacerbation of the disease. Moreover, the accumulation of MDSC subtypes in distinct organs changes during the disease. The proliferation of MDSC subtypes occurs at different disease stages and can influence the progression of each neurodegenerative disorder differently.
Collapse
Affiliation(s)
- Lorenza Tamberi
- Department of Clinical and Molecular Sciences (DISCLIMO), Polytechnic University of Marche, 60121 Ancona, Italy; (L.T.); (A.P.); (M.R.R.); (F.O.); (A.D.P.); (G.B.)
| | - Alessia Belloni
- Department of Clinical and Molecular Sciences (DISCLIMO), Polytechnic University of Marche, 60121 Ancona, Italy; (L.T.); (A.P.); (M.R.R.); (F.O.); (A.D.P.); (G.B.)
| | - Armanda Pugnaloni
- Department of Clinical and Molecular Sciences (DISCLIMO), Polytechnic University of Marche, 60121 Ancona, Italy; (L.T.); (A.P.); (M.R.R.); (F.O.); (A.D.P.); (G.B.)
| | - Maria Rita Rippo
- Department of Clinical and Molecular Sciences (DISCLIMO), Polytechnic University of Marche, 60121 Ancona, Italy; (L.T.); (A.P.); (M.R.R.); (F.O.); (A.D.P.); (G.B.)
| | - Fabiola Olivieri
- Department of Clinical and Molecular Sciences (DISCLIMO), Polytechnic University of Marche, 60121 Ancona, Italy; (L.T.); (A.P.); (M.R.R.); (F.O.); (A.D.P.); (G.B.)
- Clinic of Laboratory and Precision Medicine, National Institute of Health and Sciences on Ageing (IRCCS INRCA), 60124 Ancona, Italy
| | - Antonio Domenico Procopio
- Department of Clinical and Molecular Sciences (DISCLIMO), Polytechnic University of Marche, 60121 Ancona, Italy; (L.T.); (A.P.); (M.R.R.); (F.O.); (A.D.P.); (G.B.)
- Clinic of Laboratory and Precision Medicine, National Institute of Health and Sciences on Ageing (IRCCS INRCA), 60124 Ancona, Italy
| | - Giuseppe Bronte
- Department of Clinical and Molecular Sciences (DISCLIMO), Polytechnic University of Marche, 60121 Ancona, Italy; (L.T.); (A.P.); (M.R.R.); (F.O.); (A.D.P.); (G.B.)
- Clinic of Laboratory and Precision Medicine, National Institute of Health and Sciences on Ageing (IRCCS INRCA), 60124 Ancona, Italy
| |
Collapse
|
7
|
Gao Y, Liu W, Liu P, Li M, Ni B. Effects of Psychological Stress on Multiple Sclerosis via HPA Axis-mediated Modulation of Natural Killer T Cell Activity. CNS & NEUROLOGICAL DISORDERS DRUG TARGETS 2024; 23:1450-1462. [PMID: 38818912 DOI: 10.2174/0118715273315953240528075542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 05/17/2024] [Accepted: 05/17/2024] [Indexed: 06/01/2024]
Abstract
The involvement of psychological stress and Natural Killer T (NKT) cells in the pathophysiology of multiple sclerosis has been identified in the progression of this disease. Psychological stress can impact disease occurrence, relapse, and severity through its effects on the Hypothalamic- Pituitary-Adrenal (HPA) axis and immune responses. NKT cells are believed to play a pivotal role in the pathogenesis of multiple sclerosis, with recent evidence suggesting their distinct functional alterations following activation of the HPA axis under conditions of psychological stress. This review summarizes the associations between psychological stress, NKT cells, and multiple sclerosis while discussing the potential mechanism for how NKT cells mediate the effects of psychological stress on this disease.
Collapse
Affiliation(s)
- Yafei Gao
- Department of Military Psychology, Army Medical University, Chongqing 400038, China
| | - Wenying Liu
- Department of Pathophysiology, College of High Altitude Military Medicine, Army Medical University, Chongqing 400038, China
| | - Paiyu Liu
- Department of Pathophysiology, College of High Altitude Military Medicine, Army Medical University, Chongqing 400038, China
| | - Min Li
- Department of Military Psychology, Army Medical University, Chongqing 400038, China
| | - Bing Ni
- Department of Pathophysiology, College of High Altitude Military Medicine, Army Medical University, Chongqing 400038, China
| |
Collapse
|
8
|
Rowson S, Bekhbat M, Kelly S, Hyer MM, Dyer S, Weinshenker D, Neigh G. Chronic adolescent stress alters GR-FKBP5 interactions in the hippocampus of adult female rats. Stress 2024; 27:2312467. [PMID: 38557197 PMCID: PMC11067065 DOI: 10.1080/10253890.2024.2312467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 01/25/2024] [Indexed: 04/04/2024] Open
Abstract
Chronic stress exposure during development can have lasting behavioral consequences that differ in males and females. More specifically, increased depressive behaviors in females, but not males, are observed in both humans and rodent models of chronic stress. Despite these known stress-induced outcomes, the molecular consequences of chronic adolescent stress in the adult brain are less clear. The stress hormone corticosterone activates the glucocorticoid receptor, and activity of the receptor is regulated through interactions with co-chaperones-such as the immunophilin FK506 binding proteins 5 (FKBP5). Previously, it has been reported that the adult stress response is modified by a history of chronic stress; therefore, the current study assessed the impact of chronic adolescent stress on the interactions of the glucocorticoid receptor (GR) with its regulatory co-chaperone FKBP5 in response to acute stress in adulthood. Although protein presence for FKBP5 did not differ by group, assessment of GR-FKBP5 interactions demonstrated that adult females with a history of chronic adolescent stress had elevated GR-FKBP5 interactions in the hippocampus following an acute stress challenge which could potentially contribute to a reduced translocation pattern given previous literature describing the impact of FKBP5 on GR activity. Interestingly, the altered co-chaperone interactions of the GR in the stressed female hippocampus were not coupled to an observable difference in transcription of GR-regulated genes. Together, these studies show that chronic adolescent stress causes lasting changes to co-chaperone interactions with the glucocorticoid receptor following stress exposure in adulthood and highlight the potential role that FKBP5 plays in these modifications. Understanding the long-term implications of adolescent stress exposure will provide a mechanistic framework to guide the development of interventions for adult disorders related to early life stress exposures.
Collapse
Affiliation(s)
- Sydney Rowson
- Molecular and Systems Pharmacology Graduate Program, Emory University, Atlanta, GA, USA
| | - Mandakh Bekhbat
- Neuroscience Graduate Program, Emory University, Atlanta, GA, USA
| | - Sean Kelly
- Department of Physiology, Emory University, Atlanta, GA, USA
| | - Molly M. Hyer
- Department of Anatomy and Neurobiology, Virginia Commonwealth University, Richmond, VA, USA
| | - Samya Dyer
- Department of Anatomy and Neurobiology, Virginia Commonwealth University, Richmond, VA, USA
| | - David Weinshenker
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA, USA
| | - Gretchen Neigh
- Department of Anatomy and Neurobiology, Virginia Commonwealth University, Richmond, VA, USA
| |
Collapse
|
9
|
Verbout NG, Su W, Pham P, Jordan KR, Kohs TCL, Tucker EI, McCarty OJT, Sherman LS. Cytoprotective E-WE thrombin reduces disease severity in a murine model of relapsing-remitting multiple sclerosis. Am J Physiol Cell Physiol 2024; 326:C40-C49. [PMID: 37955120 PMCID: PMC11192471 DOI: 10.1152/ajpcell.00377.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 10/25/2023] [Accepted: 11/08/2023] [Indexed: 11/14/2023]
Abstract
The blood-brain barrier is composed of microvascular endothelial cells, immune cells, and astrocytes that work in concert with the coagulation cascade to control inflammation and immune cell infiltration into the central nervous system. Endothelial cell dysfunction leading to increased permeability and compromised barrier function are hallmarks of neuroinflammatory and autoimmune disorders, including multiple sclerosis (MS). Therapeutic strategies that improve or protect endothelial barrier function may be beneficial in the treatment or prevention of neuroinflammatory diseases. We therefore tested the hypothesis that biasing thrombin toward anticoagulant and cytoprotective activities would provide equivalent or even additive benefit compared with standard-of-care therapeutic strategies, including corticosteroids. In a mouse model of relapsing-remitting MS, treatment with the thrombin mutant, E-WE thrombin, an engineered thrombin mutant with cytoprotective activities that is biased toward anticoagulant and cytoprotective activity, reduced neuroinflammation and extracellular fibrin formation in SJL mice inoculated with proteolipid protein (PLP) peptide. When administered at the onset of detectable disease, E-WE thrombin significantly improved the disease severity of the initial attack as well as the relapse and delayed the onset of relapse to a similar extent as observed with methylprednisolone. Both methylprednisolone and E-WE thrombin reduced demyelination and immune cell recruitment. These results provide rationale for considering engineered forms of thrombin biased toward anticoagulant and cytoprotective activity as a therapeutic strategy and perhaps an effective alternative to high-dose methylprednisolone for the management of acute relapsing MS attacks.NEW & NOTEWORTHY There are limited treatment options for mitigating acute relapsing attacks for patients with multiple sclerosis. We tested the hypothesis that harnessing the cytoprotective activity of the blood coagulation enzyme, thrombin, would provide benefit and protection against relapsing disease in a mouse model of MS. Our results provide rationale for considering engineered forms of thrombin biased toward cytoprotective activity as a therapeutic strategy and perhaps an alternative to steroids for the management of relapsing MS attacks.
Collapse
Affiliation(s)
- Norah G Verbout
- Department of Biomedical Engineering, Oregon Health & Science University, Portland, Oregon, United States
- Aronora, Inc, Portland, Oregon, United States
| | - Weiping Su
- Division of Neuroscience, Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, Oregon, United States
| | - Peter Pham
- Division of Neuroscience, Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, Oregon, United States
| | - Kelley R Jordan
- Department of Biomedical Engineering, Oregon Health & Science University, Portland, Oregon, United States
| | - Tia C L Kohs
- Department of Biomedical Engineering, Oregon Health & Science University, Portland, Oregon, United States
| | - Erik I Tucker
- Department of Biomedical Engineering, Oregon Health & Science University, Portland, Oregon, United States
- Aronora, Inc, Portland, Oregon, United States
| | - Owen J T McCarty
- Department of Biomedical Engineering, Oregon Health & Science University, Portland, Oregon, United States
| | - Larry S Sherman
- Division of Neuroscience, Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, Oregon, United States
| |
Collapse
|
10
|
Bekić M, Tomić S. Myeloid-derived suppressor cells in the therapy of autoimmune diseases. Eur J Immunol 2023; 53:e2250345. [PMID: 37748117 DOI: 10.1002/eji.202250345] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 08/14/2023] [Accepted: 09/20/2023] [Indexed: 09/27/2023]
Abstract
Myeloid-derived suppressor cells (MDSCs) are well recognized as critical factors in the pathology of tumors. However, their roles in autoimmune diseases are still unclear, which hampers the development of efficient immunotherapies. The role of different MDSCs subsets in multiple sclerosis, inflammatory bowel diseases, rheumatoid arthritis, type 1 diabetes, and systemic lupus erythematosus displayed different mechanisms of immune suppression, and several studies pointed to MDSCs' capacity to induce T-helper (Th)17 cells and tissue damage. These results also suggested that MDSCs could be present in different functional states and utilize different mechanisms for controlling the activity of T and B cells. Therefore, various therapeutic strategies should be employed to restore homeostasis in autoimmune diseases. The therapies harnessing MDSCs could be designed either as cell therapy or rely on the expansion and activation of MDSCs in vivo, or their depletion. Cumulatively, MDSCs are inevitable players in autoimmunity, and rational approaches in developing therapies are required to avoid the adverse effects of MDSCs and harness their suppressive mechanisms to improve the overall efficacy of autoimmunity therapy.
Collapse
Affiliation(s)
- Marina Bekić
- Institute for the Application of Nuclear Energy, University in Belgrade, Beograd, Serbia
| | - Sergej Tomić
- Institute for the Application of Nuclear Energy, University in Belgrade, Beograd, Serbia
| |
Collapse
|
11
|
Chen Y, Zhang M, Li W, Wang X, Chen X, Wu Y, Zhang H, Yang L, Han B, Tang J. Drug repurposing based on the similarity gene expression signatures to explore for potential indications of quercetin: a case study of multiple sclerosis. Front Chem 2023; 11:1250043. [PMID: 37744058 PMCID: PMC10514366 DOI: 10.3389/fchem.2023.1250043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 08/14/2023] [Indexed: 09/26/2023] Open
Abstract
Quercetin (QR) is a natural flavonol compound widely distributed in the plant kingdom with extensive pharmacological effects. To find the potential clinical indications of QR, 156 differentially expressed genes (DEGs) regulated by QR were obtained from the Gene Expression Omnibus database, and new potential pharmacological effects and clinical indications of QR were repurposed by integrating compounds with similar gene perturbation signatures and associated-disease signatures to QR based on the Connectivity Map and Coexpedia platforms. The results suggested QR has mainly potential therapeutic effects on multiple sclerosis (MS), osteoarthritis, type 2 diabetes mellitus, and acute leukemia. Then, MS was selected for subsequent animal experiments as a representative potential indication, and it found that QR significantly delays the onset time of classical MS model animal mice and ameliorates the inflammatory infiltration and demyelination in the central nervous system. Combined with network pharmacology technology, the therapeutic mechanism of QR on MS was further demonstrated to be related to the inhibition of the expression of inflammatory cytokines (TNF-α, IL-6, IL-1β, IFN-γ, IL-17A, and IL-2) related to TNF-α/TNFR1 signaling pathway. In conclusion, this study expanded the clinical indications of QR and preliminarily confirmed the therapeutic effect and potential mechanism of QR on MS.
Collapse
Affiliation(s)
- Yulong Chen
- School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, China
| | - Mingliang Zhang
- Henan Province Engineering Research Center for Clinical Application, Evaluation and Transformation of Traditional Chinese Medicine, Henan Provincial Key Laboratory for Clinical Pharmacy of Traditional Chinese Medicine, Henan Province Engineering Research Center of Safety Evaluation and Risk Management of Traditional Chinese Medicine, Department of Pharmacy, The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, China
| | - Weixia Li
- School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, China
- Henan Province Engineering Research Center for Clinical Application, Evaluation and Transformation of Traditional Chinese Medicine, Henan Provincial Key Laboratory for Clinical Pharmacy of Traditional Chinese Medicine, Henan Province Engineering Research Center of Safety Evaluation and Risk Management of Traditional Chinese Medicine, Department of Pharmacy, The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, China
| | - Xiaoyan Wang
- School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, China
- Henan Province Engineering Research Center for Clinical Application, Evaluation and Transformation of Traditional Chinese Medicine, Henan Provincial Key Laboratory for Clinical Pharmacy of Traditional Chinese Medicine, Henan Province Engineering Research Center of Safety Evaluation and Risk Management of Traditional Chinese Medicine, Department of Pharmacy, The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, China
| | - Xiaofei Chen
- Henan Province Engineering Research Center for Clinical Application, Evaluation and Transformation of Traditional Chinese Medicine, Henan Provincial Key Laboratory for Clinical Pharmacy of Traditional Chinese Medicine, Henan Province Engineering Research Center of Safety Evaluation and Risk Management of Traditional Chinese Medicine, Department of Pharmacy, The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, China
| | - Yali Wu
- Henan Province Engineering Research Center for Clinical Application, Evaluation and Transformation of Traditional Chinese Medicine, Henan Provincial Key Laboratory for Clinical Pharmacy of Traditional Chinese Medicine, Henan Province Engineering Research Center of Safety Evaluation and Risk Management of Traditional Chinese Medicine, Department of Pharmacy, The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, China
| | - Hui Zhang
- Henan Province Engineering Research Center for Clinical Application, Evaluation and Transformation of Traditional Chinese Medicine, Henan Provincial Key Laboratory for Clinical Pharmacy of Traditional Chinese Medicine, Henan Province Engineering Research Center of Safety Evaluation and Risk Management of Traditional Chinese Medicine, Department of Pharmacy, The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, China
| | - Liuqing Yang
- Henan Province Engineering Research Center for Clinical Application, Evaluation and Transformation of Traditional Chinese Medicine, Henan Provincial Key Laboratory for Clinical Pharmacy of Traditional Chinese Medicine, Henan Province Engineering Research Center of Safety Evaluation and Risk Management of Traditional Chinese Medicine, Department of Pharmacy, The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, China
| | - Bing Han
- School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, China
| | - Jinfa Tang
- School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, China
- Henan Province Engineering Research Center for Clinical Application, Evaluation and Transformation of Traditional Chinese Medicine, Henan Provincial Key Laboratory for Clinical Pharmacy of Traditional Chinese Medicine, Henan Province Engineering Research Center of Safety Evaluation and Risk Management of Traditional Chinese Medicine, Department of Pharmacy, The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, China
| |
Collapse
|
12
|
Lepper A, Bitsch R, Özbay Kurt FG, Arkhypov I, Lasser S, Utikal J, Umansky V. Melanoma patients with immune-related adverse events after immune checkpoint inhibitors are characterized by a distinct immunological phenotype of circulating T cells and M-MDSCs. Oncoimmunology 2023; 12:2247303. [PMID: 37593676 PMCID: PMC10431726 DOI: 10.1080/2162402x.2023.2247303] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 08/09/2023] [Accepted: 08/09/2023] [Indexed: 08/19/2023] Open
Abstract
Treatment with immune checkpoint inhibitors (ICIs) has improved the prognosis of melanoma patients. However, ICIs can cause an overactivation of the immune system followed by diverse immunological side effects known as immune-related adverse events (irAE). Currently, the toxicity of irAE is limiting the usage of ICIs. Here, we studied circulating monocytic myeloid-derived suppressor cells (M-MDSCs) and T cells in course of irAE after the ICI therapy. Our longitudinal study involved 31 melanoma patients with and without adverse events during anti-PD-1 monotherapy or anti-CTLA-4/PD-1 combination therapy. Peripheral blood samples were analyzed before ICI start, during ICI treatment, at the time point of irAE and during immunosuppressive treatment to cure irAE. We observed an enhanced progression-free survival among patients with irAE. In patients with irAE, we found an upregulation of CD69 on CD8+ T cells and a decreased frequency of regulatory T cells (Tregs). Moreover, lower frequencies of Tregs correlated with more severe side effects. Patients treated with immunomodulatory drugs after irAE manifestation tend to show an elevated number of M-MDSCs during an immunosuppressive therapy. We suggest that an activation of CD8+ T cells and the reduction of Treg frequencies could be responsible for the development of irAE.
Collapse
Affiliation(s)
- Alisa Lepper
- Skin Cancer Unit, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Department of Dermatology, Venereology and Allergology, University Medical Center Mannheim, Ruprecht-Karl University of Heidelberg, Mannheim, Germany
- DKFZ-Hector Cancer Institute at the University Medical Centre Mannheim, Mannheim, Germany
- Mannheim Institute for Innate Immunoscience (MI3), Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - Rebekka Bitsch
- Skin Cancer Unit, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Department of Dermatology, Venereology and Allergology, University Medical Center Mannheim, Ruprecht-Karl University of Heidelberg, Mannheim, Germany
- DKFZ-Hector Cancer Institute at the University Medical Centre Mannheim, Mannheim, Germany
- Mannheim Institute for Innate Immunoscience (MI3), Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - Feyza Gül Özbay Kurt
- Skin Cancer Unit, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Department of Dermatology, Venereology and Allergology, University Medical Center Mannheim, Ruprecht-Karl University of Heidelberg, Mannheim, Germany
- DKFZ-Hector Cancer Institute at the University Medical Centre Mannheim, Mannheim, Germany
- Mannheim Institute for Innate Immunoscience (MI3), Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - Ihor Arkhypov
- Skin Cancer Unit, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Department of Dermatology, Venereology and Allergology, University Medical Center Mannheim, Ruprecht-Karl University of Heidelberg, Mannheim, Germany
- DKFZ-Hector Cancer Institute at the University Medical Centre Mannheim, Mannheim, Germany
- Mannheim Institute for Innate Immunoscience (MI3), Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - Samantha Lasser
- Skin Cancer Unit, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Department of Dermatology, Venereology and Allergology, University Medical Center Mannheim, Ruprecht-Karl University of Heidelberg, Mannheim, Germany
- DKFZ-Hector Cancer Institute at the University Medical Centre Mannheim, Mannheim, Germany
- Mannheim Institute for Innate Immunoscience (MI3), Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - Jochen Utikal
- Skin Cancer Unit, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Department of Dermatology, Venereology and Allergology, University Medical Center Mannheim, Ruprecht-Karl University of Heidelberg, Mannheim, Germany
- DKFZ-Hector Cancer Institute at the University Medical Centre Mannheim, Mannheim, Germany
| | - Viktor Umansky
- Skin Cancer Unit, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Department of Dermatology, Venereology and Allergology, University Medical Center Mannheim, Ruprecht-Karl University of Heidelberg, Mannheim, Germany
- DKFZ-Hector Cancer Institute at the University Medical Centre Mannheim, Mannheim, Germany
- Mannheim Institute for Innate Immunoscience (MI3), Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| |
Collapse
|
13
|
Cantoni C, Ghezzi L, Choi J, Cross AH, Piccio L. Targeting miR-223 enhances myeloid-derived suppressor cell suppressive activities in multiple sclerosis patients. Mult Scler Relat Disord 2023; 76:104839. [PMID: 37364375 PMCID: PMC10957070 DOI: 10.1016/j.msard.2023.104839] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Accepted: 06/16/2023] [Indexed: 06/28/2023]
Abstract
BACKGROUND Multiple sclerosis (MS) is an incurable autoimmune inflammatory demyelinating disease of the central nervous system. Several MS medications can modify disease course through effects on adaptive immune cells, while drugs targeting innate immunity are under investigation. Myeloid-derived suppressor cells (MDSCs) which arise during chronic inflammation, are defined by their T-cell immunosuppressive functions. MiR-223 modulates myeloid cell maturation and expansion, including MDSCs. METHODS MDSCs isolated from healthy controls (HC) and people with MS (pwMS) were co-cultured with CD4+ T-cells to study their immunosuppressive activities in vitro. Cytokines and chemokines concentration were evaluated by Luminex assay in the serum of HC, pwMS, and other neuroinflammatory diseases and correlated with MDSC activities. RESULTS MDSC suppressive functions are dysregulated in pwMS compared to HC, which was reversed by glucocorticoids (GC). GC specifically downregulated miR-223 levels in MDSCs and increased the expression of STAT3. In vitro assay showed that miR-223 inhibition enhanced MDSC suppressive activity, STAT3 dependently. By multiple linear regression analysis, we demonstrated that MDSC phosphorylated STAT3 was correlated with serum GM-CSF in HC and pwMS. CONCLUSIONS These results suggest that miR-223 could be a therapeutic target for enhancing MDSC's suppressive activities as an alternative to GC.
Collapse
Affiliation(s)
- Claudia Cantoni
- Department of Translational Neuroscience, Barrow Neurological Institute, Phoenix, AZ, 85013, United States.
| | - Laura Ghezzi
- Department of Neurology, Washington University School of Medicine, St. Louis, MO, 63110, United States; Department of Biomedical, Surgical and Dental Sciences, University of Milan, 20122 Milan, Italy; Fondazione IRCCS Ca' Granda, Ospedale Maggiore Policlinico, 20122 Milan, Italy
| | - Jasmine Choi
- Department of Neurology, Washington University School of Medicine, St. Louis, MO, 63110, United States
| | - Anne H Cross
- Department of Neurology, Washington University School of Medicine, St. Louis, MO, 63110, United States
| | - Laura Piccio
- Department of Neurology, Washington University School of Medicine, St. Louis, MO, 63110, United States; Charles Perkins Centre, School of Medical Sciences, The University of Sydney, Sydney, NSW, Australia
| |
Collapse
|
14
|
Ortega MC, Lebrón-Galán R, Machín-Díaz I, Naughton M, Pérez-Molina I, García-Arocha J, Garcia-Dominguez JM, Goicoechea-Briceño H, Vila-Del Sol V, Quintanero-Casero V, García-Montero R, Galán V, Calahorra L, Camacho-Toledano C, Martínez-Ginés ML, Fitzgerald DC, Clemente D. Central and peripheral myeloid-derived suppressor cell-like cells are closely related to the clinical severity of multiple sclerosis. Acta Neuropathol 2023; 146:263-282. [PMID: 37243699 PMCID: PMC10329064 DOI: 10.1007/s00401-023-02593-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 05/10/2023] [Accepted: 05/21/2023] [Indexed: 05/29/2023]
Abstract
Multiple sclerosis (MS) is a highly heterogeneous demyelinating disease of the central nervous system (CNS) that needs for reliable biomarkers to foresee disease severity. Recently, myeloid-derived suppressor cells (MDSCs) have emerged as an immune cell population with an important role in MS. The monocytic-MDSCs (M-MDSCs) share the phenotype with Ly-6Chi-cells in the MS animal model, experimental autoimmune encephalomyelitis (EAE), and have been retrospectively related to the severity of the clinical course in the EAE. However, no data are available about the presence of M-MDSCs in the CNS of MS patients or its relation with the future disease aggressiveness. In this work, we show for the first time cells exhibiting all the bona-fide phenotypical markers of M-MDSCs associated with MS lesions, whose abundance in these areas appears to be directly correlated with longer disease duration in primary progressive MS patients. Moreover, we show that blood immunosuppressive Ly-6Chi-cells are strongly related to the future severity of EAE disease course. We found that a higher abundance of Ly-6Chi-cells at the onset of the EAE clinical course is associated with a milder disease course and less tissue damage. In parallel, we determined that the abundance of M-MDSCs in blood samples from untreated MS patients at their first relapse is inversely correlated with the Expanded Disability Status Scale (EDSS) at baseline and after a 1-year follow-up. In summary, our data point to M-MDSC load as a factor to be considered for future studies focused on the prediction of disease severity in EAE and MS.
Collapse
Affiliation(s)
- María Cristina Ortega
- Grupo de Neuroinmuno-Reparación, Hospital Nacional de Parapléjicos, SESCAM, Finca "La Peraleda" s/n, 45071, Toledo, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Carlos III Health Institute, c/Monforte de Lemos, 3-5, 28029, Madrid, Spain
| | - Rafael Lebrón-Galán
- Grupo de Neuroinmuno-Reparación, Hospital Nacional de Parapléjicos, SESCAM, Finca "La Peraleda" s/n, 45071, Toledo, Spain
| | - Isabel Machín-Díaz
- Grupo de Neuroinmuno-Reparación, Hospital Nacional de Parapléjicos, SESCAM, Finca "La Peraleda" s/n, 45071, Toledo, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Carlos III Health Institute, c/Monforte de Lemos, 3-5, 28029, Madrid, Spain
| | - Michelle Naughton
- Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry and Biomedical Science, Queen's University Belfast, 97 Lisburn Rd, Belfast, BT9 7BL, Northern Ireland, UK
| | - Inmaculada Pérez-Molina
- Departamento de Neurología, Hospital Universitario de Toledo, Av. del Río Guadiana, 45007, Toledo, Spain
| | - Jennifer García-Arocha
- Grupo de Neuroinmuno-Reparación, Hospital Nacional de Parapléjicos, SESCAM, Finca "La Peraleda" s/n, 45071, Toledo, Spain
| | - Jose Manuel Garcia-Dominguez
- Departamento de Neurología, Hospital General Universitario Gregorio Marañón, Calle del Dr. Esquerdo 46, 28007, Madrid, Spain
| | - Haydee Goicoechea-Briceño
- Departamento de Neurología, Hospital General Universitario Gregorio Marañón, Calle del Dr. Esquerdo 46, 28007, Madrid, Spain
| | - Virginia Vila-Del Sol
- Servicio de Citometría de Flujo, Hospital Nacional de Parapléjicos, SESCAM, Finca "La Peraleda" s/n, 45071, Toledo, Spain
| | - Víctor Quintanero-Casero
- Grupo de Neuroinmuno-Reparación, Hospital Nacional de Parapléjicos, SESCAM, Finca "La Peraleda" s/n, 45071, Toledo, Spain
| | - Rosa García-Montero
- Departamento de Neurología, Hospital Universitario de Toledo, Av. del Río Guadiana, 45007, Toledo, Spain
| | - Victoria Galán
- Departamento de Neurología, Hospital Universitario de Toledo, Av. del Río Guadiana, 45007, Toledo, Spain
| | - Leticia Calahorra
- Grupo de Neuroinmuno-Reparación, Hospital Nacional de Parapléjicos, SESCAM, Finca "La Peraleda" s/n, 45071, Toledo, Spain
| | - Celia Camacho-Toledano
- Grupo de Neuroinmuno-Reparación, Hospital Nacional de Parapléjicos, SESCAM, Finca "La Peraleda" s/n, 45071, Toledo, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Carlos III Health Institute, c/Monforte de Lemos, 3-5, 28029, Madrid, Spain
| | - María Luisa Martínez-Ginés
- Departamento de Neurología, Hospital General Universitario Gregorio Marañón, Calle del Dr. Esquerdo 46, 28007, Madrid, Spain
| | - Denise C Fitzgerald
- Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry and Biomedical Science, Queen's University Belfast, 97 Lisburn Rd, Belfast, BT9 7BL, Northern Ireland, UK
| | - Diego Clemente
- Grupo de Neuroinmuno-Reparación, Hospital Nacional de Parapléjicos, SESCAM, Finca "La Peraleda" s/n, 45071, Toledo, Spain.
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Carlos III Health Institute, c/Monforte de Lemos, 3-5, 28029, Madrid, Spain.
| |
Collapse
|
15
|
Verbout NG, Su W, Pham P, Jordan K, Kohs TC, Tucker EI, McCarty OJ, Sherman LS. E-WE thrombin, a protein C activator, reduces disease severity and spinal cord inflammation in relapsing-remitting murine experimental autoimmune encephalomyelitis. RESEARCH SQUARE 2023:rs.3.rs-2802415. [PMID: 37131631 PMCID: PMC10153372 DOI: 10.21203/rs.3.rs-2802415/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Objective Relapses in patients with relapsing-remitting multiple sclerosis (RRMS) are typically treated with high-dose corticosteroids including methylprednisolone. However, high-dose corticosteroids are associated with significant adverse effects, can increase the risk for other morbidities, and often do not impact disease course. Multiple mechanisms are proposed to contribute to acute relapses in RRMS patients, including neuroinflammation, fibrin formation and compromised blood vessel barrier function. The protein C activator, E-WE thrombin is a recombinant therapeutic in clinical development for its antithrombotic and cytoprotective properties, including protection of endothelial cell barrier function. In mice, treatment with E-WE thrombin reduced neuroinflammation and extracellular fibrin formation in myelin oligodendrocyte glycoprotein (MOG)-induced experimental autoimmune encephalomyelitis (EAE). We therefore tested the hypothesis that E-WE thrombin could reduce disease severity in a relapsing-remitting model of EAE. Methods Female SJL mice were inoculated with proteolipid protein (PLP) peptide and treated with E-WE thrombin (25 μg/kg; iv) or vehicle at onset of detectable disease. In other experiments, E-WE thrombin was compared to methylprednisolone (100 mg/kg; iv) or the combination of both. Results Compared to vehicle, administration of E-WE thrombin significantly improved disease severity of the initial attack and relapse and delayed onset of relapse as effectively as methylprednisolone. Both methylprednisolone and E-WE thrombin reduced demyelination and immune cell recruitment, and the combination of both treatments had an additive effect. Conclusion The data presented herein demonstrate that E-WE thrombin is protective in mice with relapsing-remitting EAE, a widely used model of MS. Our data indicate that E-WE thrombin is as effective as high-dose methylprednisolone in improving disease score and may exert additional benefit when administered in combination. Taken together, these data suggest that E-WE thrombin may be an effective alternative to high-dose methylprednisolone for managing acute MS attacks.
Collapse
Affiliation(s)
| | - Weiping Su
- Oregon National Primate Research Center, Oregon Health & Science University
| | - Peter Pham
- Oregon National Primate Research Center, Oregon Health & Science University
| | | | | | | | | | - Larry S Sherman
- Oregon National Primate Research Center, Oregon Health & Science University
| |
Collapse
|
16
|
Camacho-Toledano C, Machín-Díaz I, Calahorra L, Cabañas-Cotillas M, Otaegui D, Castillo-Triviño T, Villar LM, Costa-Frossard L, Comabella M, Midaglia L, García-Domínguez JM, García-Arocha J, Ortega MC, Clemente D. Peripheral myeloid-derived suppressor cells are good biomarkers of the efficacy of fingolimod in multiple sclerosis. J Neuroinflammation 2022; 19:277. [PMCID: PMC9675277 DOI: 10.1186/s12974-022-02635-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Accepted: 10/30/2022] [Indexed: 11/21/2022] Open
Abstract
Background The increasing number of treatments that are now available to manage patients with multiple sclerosis (MS) highlights the need to develop biomarkers that can be used within the framework of individualized medicine. Fingolimod is a disease-modifying treatment that belongs to the sphingosine-1-phosphate receptor modulators. In addition to inhibiting T cell egress from lymph nodes, fingolimod promotes the immunosuppressive activity of myeloid-derived suppressor cells (MDSCs), whose monocytic subset (M-MDSCs) can be used as a biomarker of disease severity, as well as the degree of demyelination and extent of axonal damage in the experimental autoimmune encephalomyelitis (EAE) model of MS. In the present study, we have assessed whether the abundance of circulating M-MDSCs may represent a useful biomarker of fingolimod efficacy in EAE and in the clinical context of MS patients. Methods Treatment with vehicle or fingolimod was orally administered to EAE mice for 14 days in an individualized manner, starting the day when each mouse began to develop clinical signs. Peripheral blood from EAE mice was collected previous to treatment and human peripheral blood mononuclear cells (PBMCs) were collected from fingolimod to treat MS patients’ peripheral blood. In both cases, M-MDSCs abundance was analyzed by flow cytometry and its relationship with the future clinical affectation of each individual animal or patient was assessed. Results Fingolimod-treated animals presented a milder EAE course with less demyelination and axonal damage, although a few animals did not respond well to treatment and they invariably had fewer M-MDSCs prior to initiating the treatment. Remarkably, M-MDSC abundance was also found to be an important and specific parameter to distinguish EAE mice prone to better fingolimod efficacy. Finally, in a translational effort, M-MDSCs were quantified in MS patients at baseline and correlated with different clinical parameters after 12 months of fingolimod treatment. M-MDSCs at baseline were highly representative of a good therapeutic response to fingolimod, i.e., patients who met at least two of the criteria used to define non-evidence of disease activity-3 (NEDA-3) 12 months after treatment. Conclusion Our data indicate that M-MDSCs might be a useful predictive biomarker of the response of MS patients to fingolimod. Supplementary Information The online version contains supplementary material available at 10.1186/s12974-022-02635-3.
Collapse
Affiliation(s)
- Celia Camacho-Toledano
- grid.414883.20000 0004 1767 1847Neuroimmuno-Repair Group, Hospital Nacional de Parapléjicos-SESCAM, Finca La Peraleda s/n, 45071 Toledo, Spain
| | - Isabel Machín-Díaz
- grid.414883.20000 0004 1767 1847Neuroimmuno-Repair Group, Hospital Nacional de Parapléjicos-SESCAM, Finca La Peraleda s/n, 45071 Toledo, Spain
| | - Leticia Calahorra
- grid.414883.20000 0004 1767 1847Neuroimmuno-Repair Group, Hospital Nacional de Parapléjicos-SESCAM, Finca La Peraleda s/n, 45071 Toledo, Spain
| | - María Cabañas-Cotillas
- grid.414883.20000 0004 1767 1847Neuroimmuno-Repair Group, Hospital Nacional de Parapléjicos-SESCAM, Finca La Peraleda s/n, 45071 Toledo, Spain
| | - David Otaegui
- grid.432380.eMultiple Sclerosis Unit, Biodonostia Health Institute, 20014 Donostia-San Sebastián, Spain
| | - Tamara Castillo-Triviño
- grid.432380.eMultiple Sclerosis Unit, Biodonostia Health Institute, 20014 Donostia-San Sebastián, Spain ,grid.414651.30000 0000 9920 5292Neurology Department, Hospital Universitario Donostia, San Sebastián, Spain
| | - Luisa María Villar
- grid.411347.40000 0000 9248 5770Immunology Department, Hospital Universitario Ramón y Cajal, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain
| | - Lucienne Costa-Frossard
- grid.411347.40000 0000 9248 5770Immunology Department, Hospital Universitario Ramón y Cajal, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain ,grid.411347.40000 0000 9248 5770Multiple Sclerosis Unit, Neurology, Ramón y Cajal University Hospital, Madrid, Spain
| | - Manuel Comabella
- grid.411083.f0000 0001 0675 8654Neurology-Neuroimmunology Service, Centre d’Esclerosi Múltiple de Catalunya (Cemcat), Institut de Recerca Vall d’Hebron, Hospital Universitari Vall d’Hebron, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Luciana Midaglia
- grid.411083.f0000 0001 0675 8654Neurology-Neuroimmunology Service, Centre d’Esclerosi Múltiple de Catalunya (Cemcat), Institut de Recerca Vall d’Hebron, Hospital Universitari Vall d’Hebron, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - José Manuel García-Domínguez
- grid.410526.40000 0001 0277 7938Multiple Sclerosis Unit, Department of Neurology, Hospital General Universitario Gregorio Marañón, Madrid, Spain
| | - Jennifer García-Arocha
- grid.414883.20000 0004 1767 1847Neuroimmuno-Repair Group, Hospital Nacional de Parapléjicos-SESCAM, Finca La Peraleda s/n, 45071 Toledo, Spain
| | - María Cristina Ortega
- grid.414883.20000 0004 1767 1847Neuroimmuno-Repair Group, Hospital Nacional de Parapléjicos-SESCAM, Finca La Peraleda s/n, 45071 Toledo, Spain
| | - Diego Clemente
- grid.414883.20000 0004 1767 1847Neuroimmuno-Repair Group, Hospital Nacional de Parapléjicos-SESCAM, Finca La Peraleda s/n, 45071 Toledo, Spain
| |
Collapse
|
17
|
Zhao F, Gong W, Song J, Shen Z, Cui D. The paradoxical role of MDSCs in inflammatory bowel diseases: From bench to bedside. Front Immunol 2022; 13:1021634. [PMID: 36189262 PMCID: PMC9520533 DOI: 10.3389/fimmu.2022.1021634] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 09/02/2022] [Indexed: 11/17/2022] Open
Abstract
Myeloid-derived suppressor cells (MDSCs) are a group of bone marrow derived heterogeneous cells, which is known for their immunosuppressive functions especially in tumors. Recently, MDSCs have receiving increasing attention in pathological conditions like infection, inflammation and autoimmune diseases. Inflammatory bowel diseases (IBD) are a series of immune-dysfunctional autoimmune diseases characterized by relapsing intestinal inflammation. The role of MDSCs in IBD remains controversial. Although most studies in vitro demonstrated its anti-inflammatory effects by inhibiting the proliferation and function of T cells, it was reported that MDSCs failed to relieve inflammation but even promoted inflammatory responses in experimental IBD. Here we summarize recent insights into the role of MDSCs in the development of IBD and the potential of MDSCs-targeted therapy.
Collapse
Affiliation(s)
- Fan Zhao
- Department of General Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Wenbin Gong
- Department of General Surgery, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Jiaojiao Song
- Department of General Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Zhe Shen
- Department of Gastroenterology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- *Correspondence: Zhe Shen, ; Dawei Cui,
| | - Dawei Cui
- Department of Blood Transfusion, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- *Correspondence: Zhe Shen, ; Dawei Cui,
| |
Collapse
|
18
|
van Geffen C, Heiss C, Deißler A, Kolahian S. Pharmacological modulation of myeloid-derived suppressor cells to dampen inflammation. Front Immunol 2022; 13:933847. [PMID: 36110844 PMCID: PMC9468781 DOI: 10.3389/fimmu.2022.933847] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Accepted: 07/26/2022] [Indexed: 11/13/2022] Open
Abstract
Myeloid-derived suppressor cells (MDSCs) are a heterogeneous cell population with potent suppressive and regulative properties. MDSCs’ strong immunosuppressive potential creates new possibilities to treat chronic inflammation and autoimmune diseases or induce tolerance towards transplantation. Here, we summarize and critically discuss different pharmacological approaches which modulate the generation, activation, and recruitment of MDSCs in vitro and in vivo, and their potential role in future immunosuppressive therapy.
Collapse
|
19
|
Wang Y, Yan C, Su C, Wang Y, Luo S, Lu J, Zhao C, Zhao G, Xi J. Increased Frequency of Myeloid-Derived Suppressor Cells in Myasthenia Gravis After Immunotherapy. Front Neurol 2022; 13:902384. [PMID: 35847216 PMCID: PMC9278661 DOI: 10.3389/fneur.2022.902384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 05/03/2022] [Indexed: 11/13/2022] Open
Abstract
Myeloid-derived suppressor cells (MDSCs) are a population of myeloid progenitor cells with immunoregulatory functions and their role in myasthenia gravis (MG) was unknown. In this study, we investigated the phenotypic and functional alterations of MDSCs in MG before and after immunotherapy. The frequency of MDSCs significantly increased and negatively correlated to that of Th1 or Th17 cells after immunotherapy. MDSCs from untreated patients with MG showed an impaired suppression of IFN-γ production in T-cells and improved immunosuppressive function was identified after immunotherapy. The MFI of Arg-1 in MDSCs also increased after immunotherapy. These findings suggested the functional difference in MDSCs before and after immunotherapy, and MDSCs might play a role in disease remission.
Collapse
Affiliation(s)
- Yan Wang
- Central Lab, Huashan Hospital, Fudan University, Shanghai, China
| | - Chong Yan
- Department of Neurology, Huashan Hospital, Fudan University, Shanghai, China
- Huashan Rare Disease Center, Shanghai, China
| | - Caixia Su
- China Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
| | - Ying Wang
- Department of Pharmacy, Huashan Hospital, Fudan University, Shanghai, China
| | - Sushan Luo
- Department of Neurology, Huashan Hospital, Fudan University, Shanghai, China
- Huashan Rare Disease Center, Shanghai, China
| | - Jun Lu
- Department of Neurology, Huashan Hospital, Fudan University, Shanghai, China
- Huashan Rare Disease Center, Shanghai, China
| | - Chongbo Zhao
- Department of Neurology, Huashan Hospital, Fudan University, Shanghai, China
- Huashan Rare Disease Center, Shanghai, China
| | - Gan Zhao
- China Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
- *Correspondence: Gan Zhao
| | - Jianying Xi
- Department of Neurology, Huashan Hospital, Fudan University, Shanghai, China
- Huashan Rare Disease Center, Shanghai, China
- Jianying Xi
| |
Collapse
|
20
|
Calahorra L, Camacho-Toledano C, Serrano-Regal MP, Ortega MC, Clemente D. Regulatory Cells in Multiple Sclerosis: From Blood to Brain. Biomedicines 2022; 10:335. [PMID: 35203544 PMCID: PMC8961785 DOI: 10.3390/biomedicines10020335] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 01/26/2022] [Accepted: 01/27/2022] [Indexed: 02/01/2023] Open
Abstract
Multiple sclerosis (MS) is a chronic, autoimmune, and neurodegenerative disease of the central nervous system (CNS) that affects myelin. The etiology of MS is unclear, although a variety of environmental and genetic factors are thought to increase the risk of developing the disease. Historically, T cells were considered to be the orchestrators of MS pathogenesis, but evidence has since accumulated implicating B lymphocytes and innate immune cells in the inflammation, demyelination, and axonal damage associated with MS disease progression. However, more recently the importance of the protective role of immunoregulatory cells in MS has become increasingly evident, such as that of myeloid-derived suppressor cells (MDSCs), regulatory T (Treg) and B (Breg) cells, or CD56bright natural killer cells. In this review, we will focus on how peripheral regulatory cells implicated in innate and adaptive immune responses are involved in the physiopathology of MS. Moreover, we will discuss how these cells are thought to act and contribute to MS histopathology, also addressing their promising role as promoters of successful remyelination within the CNS. Finally, we will analyze how understanding these protective mechanisms may be crucial in the search for potential therapies for MS.
Collapse
Affiliation(s)
| | | | | | | | - Diego Clemente
- Grupo de Neuroinmuno-Reparación, Hospital Nacional de Parapléjicos, Finca La Peraleda s/n, 45071 Toledo, Spain; (L.C.); (C.C.-T.); (M.P.S.-R.); (M.C.O.)
| |
Collapse
|
21
|
Koushki K, Salemi M, Miri SM, Arjeini Y, Keshavarz M, Ghaemi A. Role of myeloid-derived suppressor cells in viral respiratory infections; Hints for discovering therapeutic targets for COVID-19. Biomed Pharmacother 2021; 144:112346. [PMID: 34678727 PMCID: PMC8516725 DOI: 10.1016/j.biopha.2021.112346] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 10/07/2021] [Accepted: 10/13/2021] [Indexed: 02/06/2023] Open
Abstract
The expansion of myeloid-derived suppressor cells (MDSCs), known as heterogeneous population of immature myeloid cells, is enhanced during several pathological conditions such as inflammatory or viral respiratory infections. It seems that the way MDSCs behave in infection depends on the type and the virulence mechanisms of the invader pathogen, the disease stage, and the infection-related pathology. Increasing evidence showing that in correlation with the severity of the disease, MDSCs are accumulated in COVID-19 patients, in particular in those at severe stages of the disease or ICU patients, contributing to pathogenesis of SARS-CoV2 infection. Based on the involved subsets, MDSCs delay the clearance of the virus through inhibiting T-cell proliferation and responses by employing various mechanisms such as inducing the secretion of anti-inflammatory cytokines, inducible nitric oxide synthase (iNOS)-mediated hampering of IFN-γ production, or forcing arginine shortage. While the immunosuppressive characteristic of MDSCs may help to preserve the tissue homeostasis and prevent hyperinflammation at early stages of the infection, hampering of efficient immune responses proved to exert significant pathogenic effects on severe forms of COVID-19, suggesting the targeting of MDSCs as a potential intervention to reactivate T-cell immunity and thereby prevent the infection from developing into severe stages of the disease. This review tried to compile evidence on the roles of different subsets of MDSCs during viral respiratory infections, which is far from being totally understood, and introduce the promising potential of MDSCs for developing novel diagnostic and therapeutic approaches, especially against COVID-19 disease.
Collapse
Affiliation(s)
- Khadijeh Koushki
- Hepatitis Research Center, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Maryam Salemi
- Department of Medical Virology, The Persian Gulf Tropical Medicine Research Center, The Persian Gulf Biomedical Sciences Research Institute, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Seyed Mohammad Miri
- Department of Influenza and Other Respiratory Viruses, Pasteur Institute of Iran, Tehran, Iran
| | - Yaser Arjeini
- Department of Research and Development, Production and Research Complex, Pasteur Institute of Iran, Tehran, Iran
| | - Mohsen Keshavarz
- Department of Medical Virology, The Persian Gulf Tropical Medicine Research Center, The Persian Gulf Biomedical Sciences Research Institute, Bushehr University of Medical Sciences, Bushehr, Iran.
| | - Amir Ghaemi
- Department of Influenza and Other Respiratory Viruses, Pasteur Institute of Iran, Tehran, Iran.
| |
Collapse
|
22
|
Falck-Jones S, Vangeti S, Yu M, Falck-Jones R, Cagigi A, Badolati I, Österberg B, Lautenbach MJ, Åhlberg E, Lin A, Lepzien R, Szurgot I, Lenart K, Hellgren F, Maecker H, Sälde J, Albert J, Johansson N, Bell M, Loré K, Färnert A, Smed-Sörensen A. Functional monocytic myeloid-derived suppressor cells increase in blood but not airways and predict COVID-19 severity. J Clin Invest 2021; 131:144734. [PMID: 33492309 DOI: 10.1172/jci144734] [Citation(s) in RCA: 79] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Accepted: 01/13/2021] [Indexed: 12/11/2022] Open
Abstract
The immunopathology of coronavirus disease 2019 (COVID-19) remains enigmatic, causing immunodysregulation and T cell lymphopenia. Monocytic myeloid-derived suppressor cells (M-MDSCs) are T cell suppressors that expand in inflammatory conditions, but their role in acute respiratory infections remains unclear. We studied the blood and airways of patients with COVID-19 across disease severities at multiple time points. M-MDSC frequencies were elevated in blood but not in nasopharyngeal or endotracheal aspirates of patients with COVID-19 compared with healthy controls. M-MDSCs isolated from patients with COVID-19 suppressed T cell proliferation and IFN-γ production partly via an arginase 1-dependent (Arg-1-dependent) mechanism. Furthermore, patients showed increased Arg-1 and IL-6 plasma levels. Patients with COVID-19 had fewer T cells and downregulated expression of the CD3ζ chain. Ordinal regression showed that early M-MDSC frequency predicted subsequent disease severity. In conclusion, M-MDSCs expanded in the blood of patients with COVID-19, suppressed T cells, and were strongly associated with disease severity, indicating a role for M-MDSCs in the dysregulated COVID-19 immune response.
Collapse
Affiliation(s)
- Sara Falck-Jones
- Division of Immunology and Allergy, Department of Medicine Solna, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Sindhu Vangeti
- Division of Immunology and Allergy, Department of Medicine Solna, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Meng Yu
- Division of Immunology and Allergy, Department of Medicine Solna, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Ryan Falck-Jones
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden.,Department of Perioperative Medicine and Intensive Care, Karolinska University Hospital, Stockholm, Sweden
| | - Alberto Cagigi
- Division of Immunology and Allergy, Department of Medicine Solna, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Isabella Badolati
- Division of Immunology and Allergy, Department of Medicine Solna, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Björn Österberg
- Division of Immunology and Allergy, Department of Medicine Solna, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Maximilian Julius Lautenbach
- Division of Infectious Diseases, Department of Medicine Solna, Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Eric Åhlberg
- Division of Immunology and Allergy, Department of Medicine Solna, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Ang Lin
- Division of Immunology and Allergy, Department of Medicine Solna, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden.,Stemirna Therapeutics Inc., Shanghai, China
| | - Rico Lepzien
- Division of Immunology and Allergy, Department of Medicine Solna, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Inga Szurgot
- Division of Immunology and Allergy, Department of Medicine Solna, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Klara Lenart
- Division of Immunology and Allergy, Department of Medicine Solna, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Fredrika Hellgren
- Division of Immunology and Allergy, Department of Medicine Solna, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Holden Maecker
- Stanford University Medical Center, Stanford, California, USA
| | - Jörgen Sälde
- Health Care Services Stockholm County (SLSO), Stockholm, Sweden
| | - Jan Albert
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden.,Department of Clinical Microbiology and
| | - Niclas Johansson
- Division of Infectious Diseases, Department of Medicine Solna, Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden.,Department of Infectious Diseases, Karolinska University Hospital Solna, Stockholm, Sweden
| | - Max Bell
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden.,Department of Perioperative Medicine and Intensive Care, Karolinska University Hospital, Stockholm, Sweden
| | - Karin Loré
- Division of Immunology and Allergy, Department of Medicine Solna, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Anna Färnert
- Division of Infectious Diseases, Department of Medicine Solna, Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden.,Department of Infectious Diseases, Karolinska University Hospital Solna, Stockholm, Sweden
| | - Anna Smed-Sörensen
- Division of Immunology and Allergy, Department of Medicine Solna, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|