1
|
Zhang Y, Zheng H, Li B. Nuclear receptor 4A1 inhibits chondrocyte inflammation and cartilage degeneration in osteoarthritis by inhibiting NF-κB signal pathway. Inflammopharmacology 2025; 33:1965-1971. [PMID: 39964671 DOI: 10.1007/s10787-025-01646-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Accepted: 12/31/2024] [Indexed: 04/13/2025]
Abstract
OBJECTIVE The objective of this study is to explore the mechanism of nuclear receptor subfamily 4 group A member 1 (NR4A1) inhibiting the inflammatory response and cartilage degeneration of osteoarthritis (OA) chondrocytes by inhibiting the nuclear factor κB (NF-κB). METHODS A total of 45 Sprague-Dawley (SD) rats were randomly divided into three groups (n = 15 in each group): the blank control group (BCG), OA model group (OAG), and NR4A1 overexpression group (OE-NR4A1). The rat model of knee OA was established by medial meniscectomy. A total of 1 week after the operation, the rat model of NR4A1 overexpression was established by injecting NR4A1 overexpression lentivirus into the articular cavity of rats; 5 weeks after the establishment of the model, the rats were killed, and the morphological changes of knee cartilage were observed by hematoxylin and eosin (HE) staining under light microscope. The expression of NR4A1 and NF-κB protein in cartilage tissue was detected by western blot, and the relative expression of NR4A1 and NF-κB mRNA in cartilage tissue was detected by real-time quantitative reverse transcription polymerase chain reaction (qRT-PCR). The levels of interleukin (IL)-6, IL-8 and tumor necrosis factor (TNF)-α in the supernatant of chondrocytes were detected by ELISA, and the apoptosis of chondrocytes was detected by TUNEL staining. RESULTS The relative expression of NR4A1 mRNA and protein in knee cartilage of rats in OE-NR4A1 were raised compared with those of OAG and BCG (P < 0.05). The relative expression of NF-κB mRNA and protein expression in knee joint cartilage in OE-NR4A1 were reduced compared with those of OAG and BCG, while their expression in the OE-NR4A1 (200 μL) and OE-NR4A1 (300 μL) groups were lower than in the OE-NR4A1 (100 μL) group(P < 0.05). The knee cartilage Mankin's score and knee joint diameter in the OAG were raised compared with those in the BCG (P < 0.05), while those in the OE-NR4A1 were reduced compared with the OAG (P < 0.05), but higher than in the BCG; these measures in the OE-NR4A1 (200 μL) and OE-NR4A1 (300 μL) groups were lower than in the OE-NR4A1 (100 μL) group (P < 0.05). The levels of IL-6, TNF-α, and IL-1β in knee synovial fluid of rats in OE-NR4A1 were reduced compared with those in the OAG (P < 0.05), but raised compared with those in the BCG; and these in the OE-NR4A1 (200 μL) and OE-NR4A1 (300 μL) groups were lower than in the OE-NR4A1 (100 μL) group (P < 0.05). The scorch rate of chondrocytes in the OE-NR4A1 was reduced compared with that in the OAG and higher than that of the BCG, and this measure in the OE-NR4A1 (200 μL) and OE-NR4A1 (300 μL) groups was lower than in the OE-NR4A1 (100 μL) group (P < 0.05). CONCLUSIONS R4A1 can improve the level of intraarticular inflammatory factors by inhibiting the NF-κB signal pathway, thereby reducing intraarticular inflammation and cartilage degeneration, and it plays a protective role in OA.
Collapse
MESH Headings
- Animals
- Chondrocytes/metabolism
- Chondrocytes/pathology
- Rats, Sprague-Dawley
- NF-kappa B/metabolism
- NF-kappa B/antagonists & inhibitors
- Rats
- Signal Transduction/physiology
- Inflammation/metabolism
- Inflammation/pathology
- Osteoarthritis/metabolism
- Osteoarthritis/pathology
- Male
- Nuclear Receptor Subfamily 4, Group A, Member 1/metabolism
- Nuclear Receptor Subfamily 4, Group A, Member 1/genetics
- Cartilage, Articular/metabolism
- Cartilage, Articular/pathology
- Disease Models, Animal
- Osteoarthritis, Knee/metabolism
- Osteoarthritis, Knee/pathology
Collapse
Affiliation(s)
- Yawei Zhang
- Department of Traumatic Orthopedics, Gansu Provincial Hospital of TCM, Lanzhou, 730050, Gansu, China.
| | - Hengheng Zheng
- Department of Traumatic Orthopedics, Gansu Provincial Hospital of TCM, Lanzhou, 730050, Gansu, China
| | - Baitong Li
- Department of Traumatic Orthopedics, Gansu Provincial Hospital of TCM, Lanzhou, 730050, Gansu, China
| |
Collapse
|
2
|
Kawana S, Okazaki M, Sakaue T, Hashimoto K, Nakata K, Choshi H, Tanaka S, Miyoshi K, Ohtani S, Ohara T, Sugimoto S, Matsukawa A, Toyooka S. Loss of Nr4a1 ameliorates endothelial cell injury and vascular leakage in lung transplantation from circulatory-death donor. J Heart Lung Transplant 2025; 44:249-260. [PMID: 39369968 DOI: 10.1016/j.healun.2024.09.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 09/20/2024] [Accepted: 09/28/2024] [Indexed: 10/08/2024] Open
Abstract
BACKGROUND Ischemia-reperfusion injury (IRI) stands as a major trigger for primary graft dysfunction (PGD) in lung transplantation (LTx). Especially in LTx from donation after cardiac death (DCD), effective control of IRI following warm ischemia (WIRI) is crucial to prevent PGD. This study aimed to identify the key factors affecting WIRI in LTx from DCD. METHODS Previously reported RNA-sequencing dataset of lung WIRI was reanalyzed to identify nuclear receptor subfamily 4 group A member 1 (NR4A1) as the immediate early gene for WIRI. Dynamics of NR4A1 expression were verified using a mouse hilar clamp model. To investigate the role of NR4A1 in WIRI, a mouse model of LTx from DCD was established using Nr4a1 knockout (Nr4a1-/-) mice. RESULTS NR4A1 was located around vascular cells, and its protein levels in the lungs increased rapidly and transiently during WIRI. LTx from Nr4a1-/- donors significantly improved pulmonary graft function compared to wild-type donors. Histological analysis showed decreased microvascular endothelial cell death, neutrophil infiltration, and albumin leakage. Evans blue permeability assay demonstrated maintained pulmonary microvascular barrier integrity in grafts from Nr4a1-/- donors, correlating with diminished pulmonary edema. However, NR4A1 did not significantly affect the inflammatory response during WIRI, and IRI was not suppressed when a wild-type donor lung was transplanted into the Nr4a1-/- recipient. CONCLUSIONS Donor NR4A1 plays a specialized role in the positive regulation of endothelial cell injury and microvascular hyperpermeability. These findings demonstrate the potential of targeting NR4A1 interventions to alleviate PGD and improve outcomes in LTx from DCD.
Collapse
Affiliation(s)
- Shinichi Kawana
- Department of General Thoracic Surgery and Breast and Endocrinological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Mikio Okazaki
- Department of General Thoracic Surgery and Breast and Endocrinological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan.
| | - Tomohisa Sakaue
- Department of Cardiovascular and Thoracic Surgery, Ehime University Graduate School of Medicine, Shitsukawa, Toon, Ehime, Japan; Department of Cell Growth and Tumor Regulation, Proteo-Science Center (PROS), Ehime University, Shitsukawa, Toon, Ehime, Japan
| | - Kohei Hashimoto
- Department of General Thoracic Surgery and Breast and Endocrinological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Kentaro Nakata
- Department of Surgery, Division of Cardiovascular and Thoracic Surgery, Duke University School of Medicine, Durham, North Carolina
| | - Haruki Choshi
- Department of General Thoracic Surgery and Breast and Endocrinological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Shin Tanaka
- Department of General Thoracic Surgery and Breast and Endocrinological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Kentaroh Miyoshi
- Department of General Thoracic Surgery and Breast and Endocrinological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Shinji Ohtani
- Department of Cell Growth and Tumor Regulation, Proteo-Science Center (PROS), Ehime University, Shitsukawa, Toon, Ehime, Japan
| | - Toshiaki Ohara
- Department of Pathology and Experimental Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Seiichiro Sugimoto
- Department of General Thoracic Surgery and Breast and Endocrinological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Akihiro Matsukawa
- Department of Pathology and Experimental Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Shinichi Toyooka
- Department of General Thoracic Surgery and Breast and Endocrinological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| |
Collapse
|
3
|
Hu H, Zhong Z, Meng L, Chen J, Yu Z, Lu K. Knockdown of NR4A1 alleviates doxorubicin-induced cardiotoxicity through inhibiting the activation of the NLRP3 inflammasome. Biochem Biophys Res Commun 2024; 700:149582. [PMID: 38306930 DOI: 10.1016/j.bbrc.2024.149582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 01/10/2024] [Accepted: 01/24/2024] [Indexed: 02/04/2024]
Abstract
Doxorubicin (DOX) is a widely used antitumor drug, but its clinical applicability is hampered by the unfortunate side effect of DOX-induced cardiotoxicity (DIC). In our current study, we retrieved three high-throughput sequencing datasets related to DIC from the Gene Expression Omnibus (GEO) datasets. We conducted differential analysis using R (DESeq2) to pinpoint differentially expressed genes (DEGs, and identified 11 genes that were consistently altered in both the control and DOX-treated groups. Notably, our Random Forest analysis of these three GEO datasets highlighted the significance of nuclear receptor subfamily 4 group A member 1 (NR4A1) in the context of DIC. The DOX-induced mouse model and cell model were used for the in vivo and in vitro studies to reveal the role of NR4A1 in DIC. We found that silencing NR4A1 by adeno-associated virus serotype 9 (AAV9) contained shRNA in vivo alleviated the DOX-induced cardiac dysfunction, cardiomyocyte injury and fibrosis. Mechanistically, we found NR4A1 silencing was able to inhibit DOX-induced the cleavage of NLRP3, IL-1β and GSDMD in vivo. Further in vitro studies have shown that inhibition of NR4A1 suppressed DOX-induced cytotoxicity and oxidative stress through the same molecular mechanism. We prove that NR4A1 plays a critical role in DOX-induced cardiotoxicity by inducing pyroptosis via activation of the NLRP3 inflammasome, and it might be a promising therapeutic target for DIC.
Collapse
Affiliation(s)
- Huanhuan Hu
- Department of Cardiology, Fifth School of Clinical Medicine of Zhejiang Chinese Medical University, Huzhou Central Hospital, Zhejiang, 313000, China
| | - Zuoquan Zhong
- The First Clinical Medical College, Wenzhou Medical University, Zhejiang, 325000, China
| | - Liping Meng
- Department of Cardiology, Shaoxing People's Hospital, Zhejiang, 312000, China
| | - Jiming Chen
- Department of Cardiology, Fifth School of Clinical Medicine of Zhejiang Chinese Medical University, Huzhou Central Hospital, Zhejiang, 313000, China
| | - Ziheng Yu
- Department of Cardiology, Fifth School of Clinical Medicine of Zhejiang Chinese Medical University, Huzhou Central Hospital, Zhejiang, 313000, China
| | - Kongjie Lu
- Department of Cardiology, Fifth School of Clinical Medicine of Zhejiang Chinese Medical University, Huzhou Central Hospital, Zhejiang, 313000, China.
| |
Collapse
|
4
|
Lin G, Jiang H, Zhang Z, Ning L, Zhang W, Peng L, Xu S, Sun W, Tao S, Zhang T, Tang L. Molecular mechanism of NR4A1/MDM2/P53 signaling pathway regulation inducing ferroptosis in renal tubular epithelial cells involved in the progression of renal ischemia-reperfusion injury. Biochim Biophys Acta Mol Basis Dis 2024; 1870:166968. [PMID: 38008232 DOI: 10.1016/j.bbadis.2023.166968] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 10/26/2023] [Accepted: 11/20/2023] [Indexed: 11/28/2023]
Abstract
Revealing the possible molecular mechanism of the NR4A1 (nuclear receptor subfamily 4 group A member 1)-MDM2 (MDM2 proto-oncogene)-P53 (tumor protein p53) signaling pathway that induces ferroptosis in renal tubular epithelial cells. Renal ischemia-reperfusion injury (RIRI) -related datasets were obtained from the GEO database. Differentially expressed genes in RIRI were analyzed using R language, intersected with RIRI-related genes in the GeneCard database, and retrieved from the literature to finally obtain differential ferroptosis-related genes. An in vitro cell model of RIRI was constructed using mouse renal cortical proximal tubule epithelial cells (mRTEC cells) treated with hypoxia-reoxygenation (H/R). Bioinformatic analysis showed that NR4A1 may be involved in RIRI through the induction of ferroptosis; in addition, we predicted through online databases that the downstream target gene of NR4A1, MDM2, could be targeted and regulated by ChIP and dual luciferase assays, and that NR4A1 could prevent MDM2 by inhibiting it, and NR4A1 was able to promote ferroptosis by inhibiting the ubiquitinated degradation of P53. NR4A1 expression was significantly increased in mRTEC cells in the hypoxia/reoxygenation model, and the expression of ferroptosis-related genes was increased in vitro experiments. NR4A1 reduces the ubiquitinated degradation of P53 by targeting the inhibition of MDM2 expression, thereby inducing ferroptosis and ultimately exacerbating RIRI by affecting the oxidative respiration process in mitochondria and producing oxidized lipids. This study presents a novel therapeutic approach for the clinical treatment of renal ischemia-reperfusion injury by developing drugs that inhibit NR4A1 to alleviate kidney damage caused by renal ischemia-reperfusion.
Collapse
Affiliation(s)
- Guangzheng Lin
- Department of Urology, the Second Affiliated Hospital of Anhui Medical University, Hefei 230601, PR China
| | - Heng Jiang
- Department of General Surgery, the Second Affiliated Hospital of Anhui Medical University, Hefei 230601, PR China
| | - Zhihui Zhang
- Department of Urology, the Second Affiliated Hospital of Anhui Medical University, Hefei 230601, PR China
| | - Ling Ning
- Department of Infectious Diseases, The First Affiliated Hospital of USTC (Anhui Provincial Hospital), Hefei 230000, PR China
| | - Wenbo Zhang
- Department of Urology, the Second Affiliated Hospital of Anhui Medical University, Hefei 230601, PR China
| | - Longfei Peng
- Department of Urology, the Second Affiliated Hospital of Anhui Medical University, Hefei 230601, PR China
| | - Shen Xu
- Department of Urology, the Second Affiliated Hospital of Anhui Medical University, Hefei 230601, PR China
| | - Wei Sun
- Department of Urology, the Second Affiliated Hospital of Anhui Medical University, Hefei 230601, PR China
| | - Sha Tao
- Second School of Clinical Medicine, Anhui Medical University, Hefei 230601, PR China
| | - Tao Zhang
- Department of Urology, the Second Affiliated Hospital of Anhui Medical University, Hefei 230601, PR China.
| | - Liang Tang
- Department of Urology, the Second Affiliated Hospital of Anhui Medical University, Hefei 230601, PR China.
| |
Collapse
|
5
|
Li M, Hu Y, Zhou H, Chen Y. NR4A1 Aggravates Myocardial Ischaemia-Reperfusion Injury by Inhibiting OPA1-Mediated Mitochondrial Fusion. J Cardiovasc Transl Res 2023; 16:1050-1063. [PMID: 37249897 DOI: 10.1007/s12265-023-10396-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Accepted: 05/03/2023] [Indexed: 05/31/2023]
Abstract
Mitochondrial fusion is an important process that protects the myocardium. However, mitochondrial fusion is often inhibited in myocardial ischaemia-reperfusion injury (IR). The upstream mechanism of this effect is unclear. Nuclear receptor subfamily 4 group A member 1 (NR4A1) can aggravate myocardial IR and increase the level of oxidative stress, thereby affecting mitochondrial function and morphology. Inhibiting NR4A1 can improve oxidative stress levels and mitochondrial function and morphology, thereby reducing IR. Downregulating NR4A1 increases the expression level of the mitochondrial fusion-related protein optic atrophy 1 (OPA1), which is associated with these benefits. Inhibiting OPA1 expression with MYLS22 abrogates the effects of NR4A1 downregulation on IR. Furthermore, NR4A1 disrupts mitochondrial dynamics and activates the STING and NF-κB pathways. Insufficient mitochondrial fusion and increased apoptosis and inflammatory reactions worsen irreversible damage to cardiomyocytes. In conclusion, NR4A1 can exacerbate IR by inhibiting OPA1, causing mitochondrial damage.
Collapse
Affiliation(s)
- Muding Li
- Chinese PLA Medical School, Chinese PLA General Hospital, Beijing, China
| | - Yingyun Hu
- School of Medicine, Nankai University, Tianjin, China
| | - Hao Zhou
- Department of Cardiology, Chinese PLA General Hospital, Beijing, China
| | - Yundai Chen
- Department of Cardiology, Chinese PLA General Hospital, Beijing, China.
| |
Collapse
|
6
|
Li Y, Han X, Lin Z, Wang C, Fu Z, Sun Q, Li C. G6PD activation in TNBC cells induces macrophage recruitment and M2 polarization to promote tumor progression. Cell Mol Life Sci 2023; 80:165. [PMID: 37237244 PMCID: PMC11073185 DOI: 10.1007/s00018-023-04810-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 04/28/2023] [Accepted: 05/16/2023] [Indexed: 05/28/2023]
Abstract
Glucose-6-phosphate dehydrogenase (G6PD) is involved in triple-negative breast cancer (TNBC) progression. Metabolic crosstalk between cancer cells and tumor-associated macrophages mediates tumor progression in TNBC. Molecular biological methods were applied to clarify the mechanism of the crosstalk between TNBC cells and M2 macrophages. In the present study, we verified that G6PD overexpression drives M2 macrophage polarization by directly combining with phospho-STAT1 and upregulating CCL2 and TGF-β1 secretion in TNBC cells. In turn, M2-like TAMs activated TNBC cells through IL-10 secretion, providing feedback to upregulate G6PD and promote TNBC cell migration and proliferation in vitro. Furthermore, we found that 6-AN (a specific inhibitor of G6PD) not only suppressed the cancer-driven polarization of macrophages toward the M2 phenotype but also inhibited the inherent M2 polarization of macrophages. Targeting the G6PD-regulated pentose phosphate pathway restrained TNBC progression and M2-type polarization of macrophages in vitro and in vivo.
Collapse
Affiliation(s)
- Yin Li
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, No.38 Tongyan Road, Jinnan District, Tianjin, 300350, People's Republic of China
| | - Xiao Han
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, No.38 Tongyan Road, Jinnan District, Tianjin, 300350, People's Republic of China
| | - Zhoujun Lin
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, No.38 Tongyan Road, Jinnan District, Tianjin, 300350, People's Republic of China
| | - Changjun Wang
- Department of Breast Surgery, Peking Union Medical College Hospital, No.1 Shuaifuyuan, Dongcheng District, Beijing, 100730, China.
| | - Zhenkun Fu
- Department of Immunology, Wu Lien-Teh Institute, Heilongjiang Provincial Key Laboratory for Infection and Immunity, Harbin Medical University & Heilongjiang Academy of Medical Science, No.157 Baojian Street, Nangang District, Harbin, 150086, People's Republic of China.
| | - Qiang Sun
- Department of Breast Surgery, Peking Union Medical College Hospital, No.1 Shuaifuyuan, Dongcheng District, Beijing, 100730, China.
| | - Chenggang Li
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, No.38 Tongyan Road, Jinnan District, Tianjin, 300350, People's Republic of China.
| |
Collapse
|
7
|
Tang BL, Liu Y, Zhang JL, Lu ML, Wang HX. Ginsenoside Rg1 ameliorates hypoxia-induced pulmonary arterial hypertension by inhibiting endothelial-to-mesenchymal transition and inflammation by regulating CCN1. Biomed Pharmacother 2023; 164:114920. [PMID: 37216706 DOI: 10.1016/j.biopha.2023.114920] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 05/10/2023] [Accepted: 05/13/2023] [Indexed: 05/24/2023] Open
Abstract
Pulmonary arterial hypertension (PAH) is a chronic obstructive disease characterized by vascular remodeling. Studies have confirmed that ginsenoside Rg1 can improve pulmonary hypertension to a certain extent, but the potential mechanism by which it improves hypoxia-induced PAH remains unclear. The aim of this study was to investigate the therapeutic effect of ginsenoside Rg1 on hypoxia-induced PAH. The results showed that hypoxia promoted inflammation, EndMT, and vascular remodeling, which were accompanied by decreased CCN1 levels and increased p-NFκB p65, TGF-β1, and p-Smad 2/3 levels. Treatment with ginsenoside Rg1, recombinant CCN1, BAY-11-7082, and SB-431542 could prevent hypoxia-induced vascular remodeling, reduce the expression of the hypoxia-induced inflammatory cytokines TNF-α and IL-1β, inhibit the expression of the mesenchymal markers α-SMA and Vimentin and restore the expression of the endothelial markers CD31 and VE-cadherin to improve hypoxia-induced EndMT, which may be associated with the upregulation of CCN1 protein expression and downregulation of p-NFκB p65, TGF-β1, and p-Smad 2/3 in rats and cells. siRNA CCN1 transfection increased the expression of p-NFκB p65, TGF-β1, and p-Smad 2/3 and accelerated the occurrence and development of inflammation and EndMT after hypoxia. In summary, our study indicated that hypoxia-induced EndMT and inflammation play a role in hypoxic pulmonary hypertension (HPH). Ginsenoside Rg1 treatment could reverse hypoxia-induced EndMT and inflammation by regulating CCN1 and has potential value in the prevention and treatment of HPH.
Collapse
Affiliation(s)
- Bai-Lin Tang
- Key Laboratory of Cardiovascular and Cerebrovascular Drug Research of Liaoning Province, Jinzhou Medical University, Jinzhou 121000, China
| | - Yu Liu
- Key Laboratory of Cardiovascular and Cerebrovascular Drug Research of Liaoning Province, Jinzhou Medical University, Jinzhou 121000, China
| | - Jing-Liang Zhang
- Internal Medicine-Cardiovascular Department, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou 121000, China
| | - Mei-Li Lu
- Key Laboratory of Cardiovascular and Cerebrovascular Drug Research of Liaoning Province, Jinzhou Medical University, Jinzhou 121000, China
| | - Hong-Xin Wang
- Key Laboratory of Cardiovascular and Cerebrovascular Drug Research of Liaoning Province, Jinzhou Medical University, Jinzhou 121000, China.
| |
Collapse
|
8
|
Yan N, Wang S, Gao H, Chen J, Cao J, Wei P, Li X, Yu Y, Wang Y, Niu Y, Wang Y, Liu S, Jin G. Neuroprotective effect of aloe emodin against Huntington's disease-like symptoms in R6/1 transgenic mice. Food Funct 2023. [PMID: 37191091 DOI: 10.1039/d3fo00156c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Aloe emodin is a natural anthraquinone derived from aloe or rhubarb, showing anti-renal fibrosis, anti-atherosclerosis and anti-cancer effects. Aloe emodin also shows neuroprotective effects in ischemic stroke rats. Naturally, anthraquinone derivatives generally have the effect of inhibiting the transforming growth factor-β1 (TGF-β1) pathway. There is an increase in the calcium/calmodulin-dependent protein kinase II (CaMKII) and TGF-β1 levels in both Huntington's disease (HD) patients' brains and HD transgenic mice. Thus, we hypothesized that aloe emodin may inhibit the phosphorylation of CaMKII (p-CaMKII) and TGF-β1/sma- and mad-related protein (Smad) signaling in the brain, further preventing motor and cognitive dysfunction. Aloe emodin was orally administered to 10- to 20-week-old HD R6/1 transgenic mice. Aloe emodin improved the motor coordination of R6/1 transgenic mice in the rotarod test and attenuated visual recognition impairment in the novel object recognition test. Aloe emodin downregulated levels of the mutant huntingtin protein, p-CaMKII and TGF-β1, but not the TGF-β2 or TGF-β3 levels, in the brains of R6/1 mice. Aloe emodin could also inhibit neuronal apoptosis in the hippocampus of R6/1 mice. Altogether, these results indicated that aloe emodin prevents several HD-like symptoms through the inhibition of CaMKII/Smad and TGF-β1/Smad signaling in mice.
Collapse
Affiliation(s)
- Nan Yan
- School of Medical Applied Technology, Shenyang Medical College, Shenyang, 110034, P.R. China
| | - Shuai Wang
- Basic Medical School, Shenyang Medical College, Shenyang, 110034, P.R. China
| | - Haotian Gao
- Basic Medical School, Shenyang Medical College, Shenyang, 110034, P.R. China
| | - Jiaqi Chen
- Basic Medical School, Shenyang Medical College, Shenyang, 110034, P.R. China
| | - Jiahui Cao
- School of Pharmacy, Shenyang Medical College, Shenyang, 110034, P.R. China.
| | - Pengsheng Wei
- Basic Medical School, Shenyang Medical College, Shenyang, 110034, P.R. China
| | - Xue Li
- Basic Medical School, Shenyang Medical College, Shenyang, 110034, P.R. China
| | - Ying Yu
- Liaoning Medical Device Test Institute, Shenyang, 110171, P.R. China
| | - Yan Wang
- Department of Occupational and Environmental Health, School of Public Health, Shenyang Medical College, Shenyang, 110034, P.R. China
| | - Yalin Niu
- Basic Medical School, Shenyang Medical College, Shenyang, 110034, P.R. China
| | - Yijie Wang
- Basic Medical School, Shenyang Medical College, Shenyang, 110034, P.R. China
| | - Shuyuan Liu
- School of Pharmacy, Shenyang Medical College, Shenyang, 110034, P.R. China.
- Key Laboratory of Behavioral and Cognitive Neuroscience of Liaoning Province, Shenyang Medical College, Shenyang, 110034, P.R. China
| | - Ge Jin
- School of Pharmacy, Shenyang Medical College, Shenyang, 110034, P.R. China.
- Key Laboratory of Behavioral and Cognitive Neuroscience of Liaoning Province, Shenyang Medical College, Shenyang, 110034, P.R. China
| |
Collapse
|
9
|
Wang H, Zhang M, Fang F, Xu C, Liu J, Gao L, Zhao C, Wang Z, Zhong Y, Wang X. The nuclear receptor subfamily 4 group A1 in human disease. Biochem Cell Biol 2023; 101:148-159. [PMID: 36861809 DOI: 10.1139/bcb-2022-0331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/03/2023] Open
Abstract
Nuclear receptor 4A1 (NR4A1), a member of the NR4A subfamily, acts as a gene regulator in a wide range of signaling pathways and responses to human diseases. Here, we provide a brief overview of the current functions of NR4A1 in human diseases and the factors involved in its function. A deeper understanding of these mechanisms can potentially improve drug development and disease therapy.
Collapse
Affiliation(s)
- Hongshuang Wang
- Graduate School, Hebei University of Chinese Medicine, Shijiazhuang 050091, China
| | - Mengjuan Zhang
- Graduate School, Hebei University of Chinese Medicine, Shijiazhuang 050091, China
| | - Fang Fang
- Graduate School, Hebei University of Chinese Medicine, Shijiazhuang 050091, China
| | - Chang Xu
- Graduate School, Hebei University of Chinese Medicine, Shijiazhuang 050091, China
| | - Jiazhi Liu
- Graduate School, Hebei University of Chinese Medicine, Shijiazhuang 050091, China
| | - Lanjun Gao
- Graduate School, Hebei University of Chinese Medicine, Shijiazhuang 050091, China
| | - Chenchen Zhao
- Graduate School, Hebei University of Chinese Medicine, Shijiazhuang 050091, China
| | - Zheng Wang
- Hebei Key Laboratory of Integrative Medicine on Liver-Kidney Patterns Research, Shijiazhuang 050091, China.,Institute of Integrative Medicine, College of Integrative Medicine, Hebei University of Chinese Medicine, Shijiazhuang 050200, China
| | - Yan Zhong
- Hebei Key Laboratory of Integrative Medicine on Liver-Kidney Patterns Research, Shijiazhuang 050091, China.,Institute of Integrative Medicine, College of Integrative Medicine, Hebei University of Chinese Medicine, Shijiazhuang 050200, China
| | - Xiangting Wang
- Hebei Key Laboratory of Integrative Medicine on Liver-Kidney Patterns Research, Shijiazhuang 050091, China
| |
Collapse
|
10
|
Yao MX, Cheng JY, Liu Y, Sun J, Hua DX, He QY, Liu HY, Fu L, Zhao H. Cross-sectional and longitudinal associations of serum Cysteine-rich 61 with severity and prognosis among community-acquired pneumonia patients in China. Front Med (Lausanne) 2022; 9:939002. [PMID: 36035395 PMCID: PMC9403795 DOI: 10.3389/fmed.2022.939002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Accepted: 07/22/2022] [Indexed: 11/13/2022] Open
Abstract
BackgroundCysteine-rich 61 (CYR61) is implicated in many pulmonary diseases. However, the relationship between CYR61 and community-acquired pneumonia (CAP) patients was unknown. This research aimed to estimate the correlations of serum CYR61 with severity and prognosis in CAP patients through a prospective cohort study.MethodsAll 541 CAP patients were enrolled in this study. Fasting venous blood was collected. Clinical characteristics and demographic information were obtained. CYR61 and inflammatory cytokines were detected in serum using ELISA.ResultsSerum CYR61 was gradually increased in parallel with severity scores in CAP patients. Correlative analysis indicated that serum CYR61 was strongly associated with many clinical parameters in CAP patients. Moreover, mixed logistic and linear regression models found that there were positive correlations between serum CYR61 and CAP severity scores after adjusted for age, BMI, and respiratory rate. Stratified analyses suggested that age affected the associations between serum CYR61 and severity scores. On admission, higher serum CYR61 levels elevated the risks of mechanical ventilation, vasoactive agent, ICU admission, death, and longer hospital stays during hospitalization. Moreover, serum CYR61 in combination with severity scores upregulated the predictive capacities for severity and death than single serum CYR61 or severity scores in CAP patients.ConclusionThere are significantly positive dose-response associations of serum CYR61 on admission with the severity and adverse prognostic outcomes, demonstrating that CYR61 is involved in the pathophysiology of CAP. Serum CYR61 may be used as a potential biomarker for the diagnosis and prognosis in CAP patients.
Collapse
Affiliation(s)
- Meng-Xing Yao
- Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Jia-Yi Cheng
- Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Ying Liu
- Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Jing Sun
- Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Dong-Xu Hua
- Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Qi-Yuan He
- Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Hong-Yan Liu
- Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Lin Fu
- Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital of Anhui Medical University, Hefei, China
- Department of Toxicology, Anhui Medical University, Hefei, China
- *Correspondence: Lin Fu, ;
| | - Hui Zhao
- Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital of Anhui Medical University, Hefei, China
- Hui Zhao,
| |
Collapse
|
11
|
Jin Y, Liu Z, Li Z, Li H, Zhu C, Li R, Zhou T, Fang B. Histone demethylase JMJD3 downregulation protects against aberrant force-induced osteoarthritis through epigenetic control of NR4A1. Int J Oral Sci 2022; 14:34. [PMID: 35831280 PMCID: PMC9279410 DOI: 10.1038/s41368-022-00190-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Revised: 05/27/2022] [Accepted: 06/21/2022] [Indexed: 11/09/2022] Open
Abstract
Osteoarthritis (OA) is a prevalent joint disease with no effective treatment strategies. Aberrant mechanical stimuli was demonstrated to be an essential factor for OA pathogenesis. Although multiple studies have detected potential regulatory mechanisms underlying OA and have concentrated on developing novel treatment strategies, the epigenetic control of OA remains unclear. Histone demethylase JMJD3 has been reported to mediate multiple physiological and pathological processes, including cell differentiation, proliferation, autophagy, and apoptosis. However, the regulation of JMJD3 in aberrant force-related OA and its mediatory effect on disease progression are still unknown. In this work, we confirmed the upregulation of JMJD3 in aberrant force-induced cartilage injury in vitro and in vivo. Functionally, inhibition of JMJD3 by its inhibitor, GSK-J4, or downregulation of JMJD3 by adenovirus infection of sh-JMJD3 could alleviate the aberrant force-induced chondrocyte injury. Mechanistic investigation illustrated that aberrant force induces JMJD3 expression and then demethylates H3K27me3 at the NR4A1 promoter to promote its expression. Further experiments indicated that NR4A1 can regulate chondrocyte apoptosis, cartilage degeneration, extracellular matrix degradation, and inflammatory responses. In vivo, anterior cruciate ligament transection (ACLT) was performed to construct an OA model, and the therapeutic effect of GSK-J4 was validated. More importantly, we adopted a peptide-siRNA nanoplatform to deliver si-JMJD3 into articular cartilage, and the severity of joint degeneration was remarkably mitigated. Taken together, our findings demonstrated that JMJD3 is flow-responsive and epigenetically regulates OA progression. Our work provides evidences for JMJD3 inhibition as an innovative epigenetic therapy approach for joint diseases by utilizing p5RHH-siRNA nanocomplexes.
Collapse
Affiliation(s)
- Yu Jin
- Department of Orthodontics, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine; College of Stomatology, Shanghai Jiao Tong University; National Center for Stomatology; National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai, China
| | - Zhen Liu
- Department of Orthodontics, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine; College of Stomatology, Shanghai Jiao Tong University; National Center for Stomatology; National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai, China
| | - Zhenxia Li
- Department of Orthodontics, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine; College of Stomatology, Shanghai Jiao Tong University; National Center for Stomatology; National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai, China
| | - Hairui Li
- Department of Orthodontics, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine; College of Stomatology, Shanghai Jiao Tong University; National Center for Stomatology; National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai, China
| | - Cheng Zhu
- Department of Orthodontics, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine; College of Stomatology, Shanghai Jiao Tong University; National Center for Stomatology; National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai, China
| | - Ruomei Li
- Department of Orthodontics, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine; College of Stomatology, Shanghai Jiao Tong University; National Center for Stomatology; National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai, China
| | - Ting Zhou
- Department of Orthodontics, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine; College of Stomatology, Shanghai Jiao Tong University; National Center for Stomatology; National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai, China.
| | - Bing Fang
- Department of Orthodontics, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine; College of Stomatology, Shanghai Jiao Tong University; National Center for Stomatology; National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai, China.
| |
Collapse
|
12
|
Jiang R, Tang J, Zhang X, He Y, Yu Z, Chen S, Xia J, Lin J, Ou Q. CCN1 Promotes Inflammation by Inducing IL-6 Production via α6β1/PI3K/Akt/NF-κB Pathway in Autoimmune Hepatitis. Front Immunol 2022; 13:810671. [PMID: 35547732 PMCID: PMC9084230 DOI: 10.3389/fimmu.2022.810671] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Accepted: 03/25/2022] [Indexed: 12/12/2022] Open
Abstract
Autoimmune hepatitis (AIH) is a chronic inflammatory liver disease with unknown etiology. CCN1, an extracellular matrix-associated protein, is associated with carcinoma, inflammation, liver fibrosis, and even autoimmune diseases. However, the role that CCN1 plays in AIH has remained undetermined. In this study, expression of CCN1 in liver was detected by real-time PCR, western blot and immunohistochemistry (IHC). CCN1 level in serum was detected by ELISA. Diagnostic value of CCN1 was determined by receiver operating characteristic (ROC) curve analysis. CCN1 conditional knockout (CCN1fl/flCre+) mice were generated by mating CCN1fl/fl C57BL/6J and CAG-Cre-ERT C57BL/6J mice. Autoimmune hepatitis mice model was induced by concanavalin A (ConA). IKKα/β, IκBα, NF-κB p65 and Akt phosphorylation were determined by western blot. NF-κB p65 nuclear translocation was examined by immunofluorescence. Here, we found that CCN1 was over-expressed in hepatocytes of AIH patients. CCN1 level also increased in serum of AIH patients compared to healthy controls (HC). ROC curve analysis results showed that serum CCN1 was able to distinguish AIH patients from HD. In ConA induced hepatitis mice model, CCN1 conditional knockout (CCN1fl/flCre+) attenuated inflammation by reducing ALT/AST level and IL-6 expression. In vitro, CCN1 treatment dramatically induced IL-6 production in LO2 cells. Moreover, the production of IL-6 was attenuated by CCN1 knockdown. Furthermore, we showed that CCN1 could activate IL-6 production via the PI3K/Akt/NF-κB signaling pathway by binding to α6β1 receptor. In summary, our results reveal a novel role of CCN1 in promoting inflammation by upregulation of IL-6 production in AIH. Our study also suggests that targeting of CCN1 may represent a novel strategy in AIH treatment.
Collapse
Affiliation(s)
- Renquan Jiang
- Department of Laboratory Medicine, Gene Diagnosis Research Center, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China.,Fujian Key Laboratory of Laboratory Medicine, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China
| | - Jifeng Tang
- Department of Laboratory Medicine, Gene Diagnosis Research Center, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China.,Fujian Key Laboratory of Laboratory Medicine, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China
| | - Xuehao Zhang
- Department of Laboratory Medicine, Gene Diagnosis Research Center, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China
| | - Yujue He
- Department of Laboratory Medicine, Gene Diagnosis Research Center, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China.,Fujian Key Laboratory of Laboratory Medicine, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China
| | - Ziqing Yu
- Department of Laboratory Medicine, Gene Diagnosis Research Center, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China.,Fujian Key Laboratory of Laboratory Medicine, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China
| | - Shuhui Chen
- Department of Laboratory Medicine, Gene Diagnosis Research Center, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China.,Fujian Key Laboratory of Laboratory Medicine, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China
| | - Jinfang Xia
- Department of Laboratory Medicine, Gene Diagnosis Research Center, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China.,Fujian Key Laboratory of Laboratory Medicine, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China
| | - Jinpiao Lin
- Department of Laboratory Medicine, Gene Diagnosis Research Center, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China.,Fujian Key Laboratory of Laboratory Medicine, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China
| | - Qishui Ou
- Department of Laboratory Medicine, Gene Diagnosis Research Center, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China.,Fujian Key Laboratory of Laboratory Medicine, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China
| |
Collapse
|
13
|
Li Y. Gypenoside A attenuates dysfunction of pancreatic β cells by activating PDX1 signal transduction via the inhibition of miR-150-3p both in vivo and in vitro. J Biochem Mol Toxicol 2022; 36:e23004. [PMID: 35191145 DOI: 10.1002/jbt.23004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 12/12/2021] [Accepted: 01/19/2022] [Indexed: 12/14/2022]
Abstract
Saponin gypenoside A (GP) has shown its potential to handle diabetes mellitus. MicroRNA-150-3p (miR-150-3p) is closely related to the dysfunction of pancreatic β cells by targeting PDX1. Given the function of GP is related to its regulation on different miRs, the current study assessed the role of miR-150-3p as a therapeutic target for the hypoglycemic effects of GP. Pancreatic β cell dysfunction was induced in mice using the high-fatty diet (HFD) method and then handled with GP. Changes in insulin release and resistance and the activity of the miR-150-3p/PDX1 axis were detected. The expression of miR-150-3p was induced to confirm its central in the effects of GP. The results of in vivo tests were then validated with in vitro assays. HFD administration suppressed glucose tolerance, delayed insulin release, and induced insulin resistance and pancreas apoptosis in mice, which was indicative of the dysfunction of β pancreatic cells. Changes in pancreatic β function were associated with the increased expression of miR-150-3p and suppressed expression of PDX1. After the administration of GP, the impairments of the pancreas were alleviated and the expression of miR-150-3p was inhibited, contributing to the restored level of PDX1. The injection of miR-150-3p agomir counteracted the protective effects of GP. In in vitro assays, the pretransfection of miR-150-3p mimetics also counteracted the protective effects of GP on pancreatic β cells against palmitic acid. Collectively, miR-150-3p played a key role in the protective effects of GP against pancreatic β cell dysfunction by inhibiting PDX1 expression.
Collapse
Affiliation(s)
- Yue Li
- Department of Pharmacy, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning, China
| |
Collapse
|
14
|
Cao J, Xu T, Zhou C, Wang S, Jiang B, Wu K, Ma L. NR4A1 knockdown confers hepatoprotection against ischaemia-reperfusion injury by suppressing TGFβ1 via inhibition of CYR61/NF-κB in mouse hepatocytes. J Cell Mol Med 2021; 25:5099-5112. [PMID: 33942481 PMCID: PMC8178266 DOI: 10.1111/jcmm.16493] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 11/23/2020] [Accepted: 03/16/2021] [Indexed: 12/19/2022] Open
Abstract
Nuclear receptor subfamily 4, group A, member 1 (NR4A1) can aggravate ischaemia‐reperfusion (I/R) injury in the heart, kidney and brain. Thus, the present study aimed to unravel the role of NR4A1 on hepatic I/R injury. For this purpose, the mouse hepatic I/R model and H/R‐exposed mouse hepatocytes model were established to stimulate the hepatic and hepatocellular damage. Then, the levels of ALT and AST as well as TNF‐α and IL‐1β expression were measured in the mouse serum and supernatant of hepatocyte s, respectively. Thereafter, we quantified the levels of NR4A1, CYR61, NF‐kB p65 and TGFβ1 under pathological conditions, and their interactions were analysed using ChIP and dual‐luciferase reporter gene assays. The in vivo and in vitro effects of NR4A1, CYR61, NF‐kB p65 and TGFβ1 on I/R‐induced hepatic and H/R‐induced hepatocellular damage were evaluated using gain‐ and loss‐of‐function approaches. NR4A1 was up‐regulated in the hepatic tissues of I/R‐operated mice and in H/R‐treated hepatocytes. Silencing NR4A1 relieved the I/R‐induced hepatic injury, as supported by suppression of ALT and AST as well as TNF‐α and IL‐1β. Meanwhile, NR4A1 knockdown attenuated the H/R‐induced hepatocellular damage by inhibiting the apoptosis of hepatocyte s. Moreover, we also found that NR4A1 up‐regulated the expression of CYR61 which resulted in the activation of the NF‐κB signalling pathway, thereby enhancing the transcription of TGFβ1, which was validated to be the mechanism underlying the contributory role of NR4A1 in hepatic I/R injury. Taken together, NR4A1 silencing reduced the expression of CYR61/NF‐κB/TGFβ1, thereby relieving the hepatic I/R injury.
Collapse
Affiliation(s)
- Jun Cao
- Department of hepatic and Laparoscopic Surgery, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Ting Xu
- The Affiliated Huai'an No. 1 People's Hospital of Nanjing Medical University, Huai'an, China.,The First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Chengming Zhou
- Department of hepatic and Laparoscopic Surgery, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Shaochuang Wang
- Department of Hepatobiliary Surgery, The Affiliated Huai'an No. 1 People's Hospital of Nanjing Medical University, Huai'an, China
| | - Baofei Jiang
- Department of General surgery, The Affiliated Huai'an No. 1 People's Hospital of Nanjing Medical University, Huai'an, China
| | - Kun Wu
- Department of General surgery, The Affiliated Huai'an No. 1 People's Hospital of Nanjing Medical University, Huai'an, China
| | - Long Ma
- Department of Intensive Care Unit, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| |
Collapse
|