1
|
Zhu YS, Zhou SR, Zhang HH, Wang T, Chen XD. Inhibition of EGFR attenuates EGF-induced activation of retinal pigment epithelium cell via EGFR/AKT signaling pathway. Int J Ophthalmol 2024; 17:1018-1027. [PMID: 38895677 PMCID: PMC11144774 DOI: 10.18240/ijo.2024.06.05] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 03/11/2024] [Indexed: 06/21/2024] Open
Abstract
AIM To explore the effect of epidermal growth factor receptor (EGFR) inhibition by erlotinib and EGFR siRNA on epidermal growth factor (EGF)-induced activation of retinal pigment epithelium (RPE) cells. METHODS Human RPE cell line (ARPE-19 cells) was activated by 100 ng/mL EGF. Erlotinib and EGFR siRNA were used to intervene EGF treatment. Cellular viability, proliferation, and migration were detected by methyl thiazolyl tetrazolium (MTT) assay, bromodeoxyuridine (BrdU) staining assay and wound healing assay, respectively. EGFR/protein kinase B (AKT) pathway proteins and N-cadherin, α-smooth muscle actin (α-SMA), and vimentin were tested by Western blot assay. EGFR was also determined by immunofluorescence staining. RESULTS EGF treatment for 24h induced a significant increase of ARPE-19 cells' viability, proliferation and migration, phosphorylation of EGFR/AKT proteins, and decreased total EGFR expression. Erlotinib suppressed ARPE-19 cells' viability, proliferation and migration through down regulating total EGFR and AKT protein expressions. Erlotinib also inhibited EGF-induced an increase of proliferative and migrative ability in ARPE-19 cells and clearly suppressed EGF-induced EGFR/AKT proteins phosphorylation and decreased expression of N-cadherin, α-SMA, and vimentin proteins. Similarly, EGFR inhibition by EGFR siRNA significantly affected EGF-induced an increase of cell proliferation, viability, and migration, phosphorylation of EGFR/AKT proteins, and up-regulation of N-cadherin, α-SMA, and vimentin proteins. CONCLUSION Erlotinib and EGFR-knockdown suppress EGF-induced cell viability, proliferation, and migration via EGFR/AKT pathway in RPE cells. EGFR inhibition may be a possible therapeutic approach for proliferative vitreoretinopathy (PVR).
Collapse
Affiliation(s)
- Yu-Sheng Zhu
- Faculty of Life Sciences and Medicine, Northwest University, Xi'an 710069, Shaanxi Province, China
- First Affiliated Hospital of Northwest University, Northwest University, Xi'an 710069, Shaanxi Province, China
- Department of Ophthalmology, Xi'an No.1 Hospital, Xi'an 710002, Shaanxi Province, China
| | - Si-Rui Zhou
- Faculty of Life Sciences and Medicine, Northwest University, Xi'an 710069, Shaanxi Province, China
- First Affiliated Hospital of Northwest University, Northwest University, Xi'an 710069, Shaanxi Province, China
- Department of Ophthalmology, Xi'an No.1 Hospital, Xi'an 710002, Shaanxi Province, China
| | - Hui-Hui Zhang
- Faculty of Life Sciences and Medicine, Northwest University, Xi'an 710069, Shaanxi Province, China
- First Affiliated Hospital of Northwest University, Northwest University, Xi'an 710069, Shaanxi Province, China
- Department of Ophthalmology, Xi'an No.1 Hospital, Xi'an 710002, Shaanxi Province, China
| | - Tong Wang
- Faculty of Life Sciences and Medicine, Northwest University, Xi'an 710069, Shaanxi Province, China
- First Affiliated Hospital of Northwest University, Northwest University, Xi'an 710069, Shaanxi Province, China
- Department of Ophthalmology, Xi'an No.1 Hospital, Xi'an 710002, Shaanxi Province, China
- Shaanxi Institute of Ophthalmology, Shaanxi Provincial Key Lab of Ophthalmology, Clinical Research Center for Ophthalmology Diseases of Shaanxi Province, Xi'an 710002, Shaanxi Province, China
| | - Xiao-Dong Chen
- Faculty of Life Sciences and Medicine, Northwest University, Xi'an 710069, Shaanxi Province, China
- First Affiliated Hospital of Northwest University, Northwest University, Xi'an 710069, Shaanxi Province, China
- Department of Ophthalmology, Xi'an No.1 Hospital, Xi'an 710002, Shaanxi Province, China
- Shaanxi Institute of Ophthalmology, Shaanxi Provincial Key Lab of Ophthalmology, Clinical Research Center for Ophthalmology Diseases of Shaanxi Province, Xi'an 710002, Shaanxi Province, China
| |
Collapse
|
2
|
Zhao Y, Sun B, Fu X, Zuo Z, Qin H, Yao K. YAP in development and disease: Navigating the regulatory landscape from retina to brain. Biomed Pharmacother 2024; 175:116703. [PMID: 38713948 DOI: 10.1016/j.biopha.2024.116703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 04/30/2024] [Accepted: 05/01/2024] [Indexed: 05/09/2024] Open
Abstract
The distinctive role of Yes-associated protein (YAP) in the nervous system has attracted widespread attention. This comprehensive review strategically uses the retina as a vantage point, embarking on an extensive exploration of YAP's multifaceted impact from the retina to the brain in development and pathology. Initially, we explore the crucial roles of YAP in embryonic and cerebral development. Our focus then shifts to retinal development, examining in detail YAP's regulatory influence on the development of retinal pigment epithelium (RPE) and retinal progenitor cells (RPCs), and its significant effects on the hierarchical structure and functionality of the retina. We also investigate the essential contributions of YAP in maintaining retinal homeostasis, highlighting its precise regulation of retinal cell proliferation and survival. In terms of retinal-related diseases, we explore the epigenetic connections and pathophysiological regulation of YAP in diabetic retinopathy (DR), glaucoma, and proliferative vitreoretinopathy (PVR). Lastly, we broaden our exploration from the retina to the brain, emphasizing the research paradigm of "retina: a window to the brain." Special focus is given to the emerging studies on YAP in brain disorders such as Alzheimer's disease (AD) and Parkinson's disease (PD), underlining its potential therapeutic value in neurodegenerative disorders and neuroinflammation.
Collapse
Affiliation(s)
- Yaqin Zhao
- Institute of Visual Neuroscience and Stem Cell Engineering, Wuhan University of Science and Technology, Wuhan 430065, China; College of Life Sciences and Health, Wuhan University of Science and Technology, Wuhan 430065, China
| | - Bin Sun
- Institute of Visual Neuroscience and Stem Cell Engineering, Wuhan University of Science and Technology, Wuhan 430065, China; College of Life Sciences and Health, Wuhan University of Science and Technology, Wuhan 430065, China
| | - Xuefei Fu
- Institute of Visual Neuroscience and Stem Cell Engineering, Wuhan University of Science and Technology, Wuhan 430065, China; College of Life Sciences and Health, Wuhan University of Science and Technology, Wuhan 430065, China
| | - Zhuan Zuo
- Institute of Visual Neuroscience and Stem Cell Engineering, Wuhan University of Science and Technology, Wuhan 430065, China; College of Life Sciences and Health, Wuhan University of Science and Technology, Wuhan 430065, China
| | - Huan Qin
- Institute of Visual Neuroscience and Stem Cell Engineering, Wuhan University of Science and Technology, Wuhan 430065, China; College of Life Sciences and Health, Wuhan University of Science and Technology, Wuhan 430065, China.
| | - Kai Yao
- Institute of Visual Neuroscience and Stem Cell Engineering, Wuhan University of Science and Technology, Wuhan 430065, China; College of Life Sciences and Health, Wuhan University of Science and Technology, Wuhan 430065, China.
| |
Collapse
|
3
|
Ikeda T, Jin D, Takai S, Nakamura K, Nemoto E, Kojima S, Oku H. Blastocyst-like Structures in the Peripheral Retina of Young Adult Beagles. Int J Mol Sci 2024; 25:6045. [PMID: 38892233 PMCID: PMC11172769 DOI: 10.3390/ijms25116045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 05/26/2024] [Accepted: 05/29/2024] [Indexed: 06/21/2024] Open
Abstract
In this immunohistological study on the peripheral retina of 3-year-old beagle dogs, excised retina specimens were immunostained with antibodies against nestin, Oct4, Nanog, Sox2, CDX2, cytokeratin 18 (CK 18), RPE65, and YAP1, as well as hematoxylin and DAPI, two nuclear stains. Our findings revealed solitary cysts of various sizes in the inner retina. Intriguingly, a mass of small round cells with scant cytoplasms was observed in the cavity of small cysts, while many disorganized cells partially occupied the cavity of the large cysts. The small cysts were strongly positive for nestin, Oct4, Nanog, Sox2, CDX2, CK18, and YAP1. RPE65-positive cells were exclusively observed in the tissue surrounding the cysts. Since RPE65 is a specific marker of retinal pigment epithelial (RPE) cells, the surrounding cells of the peripheral cysts were presumably derived from RPE cells that migrated intraretinally. In the small cysts, intense positive staining for nestin, a marker of retinal stem cells, seemed to indicate that they were derived from retinal stem cells. The morphology and positive staining for markers of blastocyst and RPE cells indicated that the small cysts may have formed structures resembling the blastocyst, possibly caused by the interaction between retinal stem cells and migrated RPE cells.
Collapse
Affiliation(s)
- Tsunehiko Ikeda
- Department of Ophthalmology, Osaka Kaisei Hospital, Osaka 532-0003, Osaka, Japan
- Department of Ophthalmology, Osaka Medical and Pharmaceutical University, Takatsuki 569-8686, Osaka, Japan; (E.N.); (S.K.); (H.O.)
| | - Denan Jin
- Department of Innovative Medicine, Graduate School of Medicine, Osaka Medical and Pharmaceutical University, Takatsuki 569-8686, Osaka, Japan; (D.J.); (S.T.)
| | - Shinji Takai
- Department of Innovative Medicine, Graduate School of Medicine, Osaka Medical and Pharmaceutical University, Takatsuki 569-8686, Osaka, Japan; (D.J.); (S.T.)
| | | | - Emika Nemoto
- Department of Ophthalmology, Osaka Medical and Pharmaceutical University, Takatsuki 569-8686, Osaka, Japan; (E.N.); (S.K.); (H.O.)
| | - Shota Kojima
- Department of Ophthalmology, Osaka Medical and Pharmaceutical University, Takatsuki 569-8686, Osaka, Japan; (E.N.); (S.K.); (H.O.)
| | - Hidehiro Oku
- Department of Ophthalmology, Osaka Medical and Pharmaceutical University, Takatsuki 569-8686, Osaka, Japan; (E.N.); (S.K.); (H.O.)
| |
Collapse
|
4
|
Murakami Y, Imaizumi T, Hashizume K, Tezuka Y, Oku Y, Nishiya N, Sanbe A, Kurosaka D. Inhibition of Connective Tissue Growth Factor Expression in Adult Retinal Pigment Epithelial-19 Cells by Blocking Yes-Associated Protein/Transcriptional Coactivator with PDZ-Binding Motif Activity. J Ocul Pharmacol Ther 2024; 40:246-252. [PMID: 38517736 DOI: 10.1089/jop.2023.0141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/24/2024] Open
Abstract
Purpose: To investigate the effect of yes-associated protein (YAP) and transcriptional coactivator with PDZ-binding motif (TAZ) on connective tissue growth factor (CTGF) expression in adult retinal pigment epithelial (ARPE)-19 cells. We also studied the inhibitory effect of K-975, a new pan-transcriptional enhanced associate domain (TEAD) inhibitor, and luteolin, a plant-derived flavonoid on CTGF expression. Methods: ARPE-19 cells were transfected with either YAP or TAZ overexpression plasmid or treated with transforming growth factor (TGF)-β2. The cells were cultured either with or without K-975 or luteolin. The expression of YAP, TAZ, and CTGF was examined using real-time PCR. Results: ARPE-19 cells overexpressing YAP or TAZ exhibited significantly increased CTGF expression. This increase was attenuated by K-975 or luteolin alone. TGF-β2 treatment significantly raised the expression of not just YAP and TAZ, but also CTGF in ARPE-19 cells. TGF-β2 treatment-enhanced CTGF expression was considerably lowered by the addition of K-975 or luteolin. Conclusions: Overexpression of YAP or TAZ and treatment with TGF-β2 led to an increase in the expression of CTGF in ARPE-19 cells. These increases were attenuated by treatment with K-975 and luteolin. These findings suggest that YAP and TAZ may be related to the expression of CTGF in ARPE-19 cells and that K-975 and luteolin can be explored as potential therapeutic agents for preventing CTGF production in vitreoretinal fibrosis.
Collapse
Affiliation(s)
- Yoko Murakami
- Department of Ophthalmology, School of Medicine, Iwate Medical University, 2-1-1 Idaitori, Yahaba-Cho, Shiwa-gun, Iwate, Japan
| | - Toshiyasu Imaizumi
- Department of Ophthalmology, School of Medicine, Iwate Medical University, 2-1-1 Idaitori, Yahaba-Cho, Shiwa-gun, Iwate, Japan
| | - Kouhei Hashizume
- Department of Ophthalmology, School of Medicine, Iwate Medical University, 2-1-1 Idaitori, Yahaba-Cho, Shiwa-gun, Iwate, Japan
| | - Yu Tezuka
- Department of Pharmacotherapeutics, School of Pharmacy, Iwate Medical University, Shiwa-gun, Japan
| | - Yusuke Oku
- Department of Integrated Information for Pharmaceutical Sciences, School of Pharmacy, Iwate Medical University, Shiwa-gun, Japan
| | - Naoyuki Nishiya
- Department of Integrated Information for Pharmaceutical Sciences, School of Pharmacy, Iwate Medical University, Shiwa-gun, Japan
| | - Atsushi Sanbe
- Department of Pharmacotherapeutics, School of Pharmacy, Iwate Medical University, Shiwa-gun, Japan
| | - Daijiro Kurosaka
- Department of Ophthalmology, School of Medicine, Iwate Medical University, 2-1-1 Idaitori, Yahaba-Cho, Shiwa-gun, Iwate, Japan
| |
Collapse
|
5
|
Du Y. The Hippo signalling pathway and its impact on eye diseases. J Cell Mol Med 2024; 28:e18300. [PMID: 38613348 PMCID: PMC11015399 DOI: 10.1111/jcmm.18300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Revised: 02/26/2024] [Accepted: 03/25/2024] [Indexed: 04/14/2024] Open
Abstract
The Hippo signalling pathway, an evolutionarily conserved kinase cascade, has been shown to be crucial for cell fate determination, homeostasis and tissue regeneration. Recent experimental and clinical studies have demonstrated that the Hippo signalling pathway is involved in the pathophysiology of ocular diseases. This article provides the first systematic review of studies on the regulatory and functional roles of mammalian Hippo signalling systems in eye diseases. More comprehensive studies on this pathway are required for a better understanding of the pathophysiology of eye diseases and the development of effective therapies.
Collapse
Affiliation(s)
- Yuxiang Du
- Precision Medicine Laboratory for Chronic Non‐communicable Diseases of Shandong Province, Institute of Precision MedicineJining Medical UniversityJiningShandongPeople's Republic of China
| |
Collapse
|
6
|
Liu D, Zhang C, Zhang J, Xu GT, Zhang J. Molecular pathogenesis of subretinal fibrosis in neovascular AMD focusing on epithelial-mesenchymal transformation of retinal pigment epithelium. Neurobiol Dis 2023; 185:106250. [PMID: 37536385 DOI: 10.1016/j.nbd.2023.106250] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Revised: 07/11/2023] [Accepted: 07/31/2023] [Indexed: 08/05/2023] Open
Abstract
Age-related macular degeneration (AMD) is a leading cause of vision loss among elderly people in developed countries. Neovascular AMD (nAMD) accounts for more than 90% of AMD-related vision loss. At present, intravitreal injection of anti-vascular endothelial growth factor (anti-VEGF) is widely used as the first-line therapy to decrease the choroidal and retinal neovascularizations, and thus to improve or maintain the visual acuity of the patients with nAMD. However, about 1/3 patients still progress to irreversible visual impairment due to subretinal fibrosis even with adequate anti-VEGF treatment. Extensive literatures support the critical role of epithelial-mesenchymal transformation (EMT) of retinal pigment epithelium (RPE) in the pathogenesis of subretinal fibrosis in nAMD, but the underlying mechanisms still remain largely unknown. This review summarized the molecular pathogenesis of subretinal fibrosis in nAMD, especially focusing on the transforming growth factor-β (TGF-β)-induced EMT pathways. It was also discussed how these pathways crosstalk and respond to signals from the microenvironment to mediate EMT and contribute to the progression of nAMD-related subretinal fibrosis. Targeting EMT signaling pathways might provide a promising and effective therapeutic strategy to treat subretinal fibrosis secondary to nAMD.
Collapse
Affiliation(s)
- Dandan Liu
- Department of Ophthalmology of Tongji Hospital and Laboratory of Clinical and Visual Sciences of Tongji Eye Institute, School of Medicine, Tongji University, Shanghai, China
| | - Chaoyang Zhang
- Department of Ophthalmology, Shanghai General Hospital (Shanghai First People's Hospital), Shanghai Jiao Tong University, Shanghai, China; National Clinical Research Center for Eye Diseases, Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Diseases, Shanghai, China
| | - Jingting Zhang
- Department of Ophthalmology, Shanghai General Hospital (Shanghai First People's Hospital), Shanghai Jiao Tong University, Shanghai, China; National Clinical Research Center for Eye Diseases, Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Diseases, Shanghai, China
| | - Guo-Tong Xu
- Department of Ophthalmology of Tongji Hospital and Laboratory of Clinical and Visual Sciences of Tongji Eye Institute, School of Medicine, Tongji University, Shanghai, China.
| | - Jingfa Zhang
- Department of Ophthalmology, Shanghai General Hospital (Shanghai First People's Hospital), Shanghai Jiao Tong University, Shanghai, China; National Clinical Research Center for Eye Diseases, Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Diseases, Shanghai, China.
| |
Collapse
|
7
|
Gao AY, Haak AJ, Bakri SJ. In vitro laboratory models of proliferative vitreoretinopathy. Surv Ophthalmol 2023; 68:861-874. [PMID: 37209723 DOI: 10.1016/j.survophthal.2023.05.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 05/13/2023] [Accepted: 05/15/2023] [Indexed: 05/22/2023]
Abstract
Proliferative vitreoretinopathy (PVR), the most common cause of recurrent retinal detachment, is characterized by the formation and contraction of fibrotic membranes on the surface of the retina. There are no Food and Drug Administration (FDA)-approved drugs to prevent or treat PVR. Therefore, it is necessary to develop accurate in vitro models of the disease that will enable researchers to screen drug candidates and prioritize the most promising candidates for clinical studies. We provide a summary of recent in vitro PVR models, as well as avenues for model improvement. Several in vitro PVR models were identified, including various types of cell cultures. Additionally, novel techniques that have not been used to model PVR were identified, including organoids, hydrogels, and organ-on-a-chip models. Novel ideas for improving in vitro PVR models are highlighted. Researchers may consult this review to help design in vitro models of PVR, which will aid in the development of therapies to treat the disease.
Collapse
Affiliation(s)
- Ashley Y Gao
- Mayo Clinic, Department of Ophthalmology, Rochester, Minnesota, USA
| | - Andrew J Haak
- Mayo Clinic, Department of Physiology and Biomedical Engineering, Rochester, Minnesota, USA
| | - Sophie J Bakri
- Mayo Clinic, Department of Ophthalmology, Rochester, Minnesota, USA.
| |
Collapse
|
8
|
Higashijima F, Hasegawa M, Yoshimoto T, Kobayashi Y, Wakuta M, Kimura K. Molecular mechanisms of TGFβ-mediated EMT of retinal pigment epithelium in subretinal fibrosis of age-related macular degeneration. FRONTIERS IN OPHTHALMOLOGY 2023; 2:1060087. [PMID: 38983569 PMCID: PMC11182173 DOI: 10.3389/fopht.2022.1060087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Accepted: 12/30/2022] [Indexed: 07/11/2024]
Abstract
Age-related macular degeneration (AMD) is one of the leading causes of blindness in the elderly, affecting the macula of the retina and resulting in vision loss. There are two types of AMD, wet and dry, both of which cause visual impairment. Wet AMD is called neovascular AMD (nAMD) and is characterized by the formation of choroidal neovascular vessels (CNVs) in the macula. nAMD can be treated with intravitreal injections of vascular endothelial growth factor (VEGF) inhibitors, which help improve vision. However, approximately half the patients do not achieve satisfactory results. Subretinal fibrosis often develops late in nAMD, leading to irreversible photoreceptor degeneration and contributing to visual loss. Currently, no treatment exists for subretinal fibrosis, and the molecular mechanisms of fibrous tissue formation following neovascular lesions remain unclear. In this review, we describe the clinical features and molecular mechanisms of macular fibrosis secondary to nAMD. Myofibroblasts play an essential role in the development of fibrosis. This review summarizes the latest findings on the clinical features and cellular and molecular mechanisms of the pathogenesis of subretinal fibrosis in nAMD and discusses the potential therapeutic strategies to control subretinal fibrosis in the future.
Collapse
Affiliation(s)
| | | | | | | | | | - Kazuhiro Kimura
- Department of Ophthalmology, Yamaguchi University Graduate School of Medicine, Ube, Yamaguchi, Japan
| |
Collapse
|
9
|
Experimental Models to Study Epithelial-Mesenchymal Transition in Proliferative Vitreoretinopathy. Int J Mol Sci 2023; 24:ijms24054509. [PMID: 36901938 PMCID: PMC10003383 DOI: 10.3390/ijms24054509] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 02/22/2023] [Accepted: 02/24/2023] [Indexed: 03/03/2023] Open
Abstract
Proliferative vitreoretinal diseases (PVDs) encompass proliferative vitreoretinopathy (PVR), epiretinal membranes, and proliferative diabetic retinopathy. These vision-threatening diseases are characterized by the development of proliferative membranes above, within and/or below the retina following epithelial-mesenchymal transition (EMT) of the retinal pigment epithelium (RPE) and/or endothelial-mesenchymal transition of endothelial cells. As surgical peeling of PVD membranes remains the sole therapeutic option for patients, development of in vitro and in vivo models has become essential to better understand PVD pathogenesis and identify potential therapeutic targets. The in vitro models range from immortalized cell lines to human pluripotent stem-cell-derived RPE and primary cells subjected to various treatments to induce EMT and mimic PVD. In vivo PVR animal models using rabbit, mouse, rat, and swine have mainly been obtained through surgical means to mimic ocular trauma and retinal detachment, and through intravitreal injection of cells or enzymes to induce EMT and investigate cell proliferation and invasion. This review offers a comprehensive overview of the usefulness, advantages, and limitations of the current models available to investigate EMT in PVD.
Collapse
|
10
|
Chien HW, Chen YS, Wang K, Chiou HL, Yang SF, Hsieh YH. Norcantharidin attenuates epidermal growth factor-induced proliferation, EMT and motility in ARPE-19 cells by modulating the AKT/snail/E-cadherin axis. Life Sci 2022; 311:121157. [DOI: 10.1016/j.lfs.2022.121157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 10/27/2022] [Accepted: 11/04/2022] [Indexed: 11/09/2022]
|
11
|
Yang X, Zou R, Dai X, Wu X, Yuan F, Feng Y. YAP is critical to inflammation, endothelial-mesenchymal transition and subretinal fibrosis in experimental choroidal neovascularization. Exp Cell Res 2022; 417:113221. [PMID: 35623419 DOI: 10.1016/j.yexcr.2022.113221] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Revised: 05/18/2022] [Accepted: 05/19/2022] [Indexed: 11/15/2022]
Abstract
Subretinal fibrosis causes local damage to the retina and irreversible vision loss, as the final stage of neovascular age-related macular degeneration (nAMD). More recently, the endothelial-to-mesenchymal transition (EndoMT) has been considered one of the most significant sources of myofibroblasts in subretinal fibrosis, though the underpinning molecular mechanisms remain unclear. In this study, a series of experiments were performed to test the hypothesis that Yes-associated protein (YAP) may be involved in EndoMT and subretinal fibrosis. We demonstrated that transforming growth factor (TGF)-β2 stimulation induces YAP dephosphorylation (activated) and nuclear transcription in human umbilical vein endothelial cells (HUVECs) by increasing reactive oxygen species (ROS) levels. Moreover, TGF-β2-mediated EndoMT and proinflammatory cytokine production in HUVECs were reduced by ROS clearance or YAP knockdown. Furthermore, the severity of subretinal fibrosis was markedly relieved by intravitreal administration of a small interfering RNA targeting YAP in the mouse laser-induced choroidal neovascularization (CNV) model. Our findings provide novel insights into a previously unknown effect of YAP on the EndoMT process and reveal YAP as a potential target for suppressing CNV-related subretinal fibrosis and protect vision.
Collapse
Affiliation(s)
- Xi Yang
- Department of Ophthalmology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Rong Zou
- Department of Ophthalmology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Xiaochan Dai
- Department of Ophthalmology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Xinyuan Wu
- Department of Ophthalmology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Fei Yuan
- Department of Ophthalmology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China.
| | - Yifan Feng
- Department of Ophthalmology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
12
|
Zhang W, Li J. Yes-associated protein is essential for proliferative vitreoretinopathy development via the epithelial-mesenchymal transition in retinal pigment epithelial fibrosis. J Cell Mol Med 2021; 25:10213-10223. [PMID: 34598306 PMCID: PMC8572794 DOI: 10.1111/jcmm.16958] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 09/09/2021] [Accepted: 09/19/2021] [Indexed: 12/16/2022] Open
Abstract
This study was aim to investigate whether the progression of proliferative vitreoretinopathy (PVR) depended on the activation of Yes‐associated protein (YAP) and the subsequent epithelial‐mesenchymal transition (EMT) of retinal pigment epithelial (RPE) cell. The effect of YAP activation on retinal fibrosis in a PVR mouse model and in human ARPE‐19 cells in vitro was studied. After treated with transforming growth factor‐β2(TGF‐β2), the expressions of fibrogenic molecules, YAP activation and the TGF‐β2‐Smad signalling pathway in ARPE‐19 cells were detected by Western blot and immunocytochemical analyses. The effect of YAP on change in fibrosis and EMT was tested by knockdown experiment using verteporfin (YAP inhibitor). YAP was upregulated in the PVR mouse model and during TGF‐β2–induced RPE cell EMT. In an in vivo study, verteporfin attenuated PVR progression in a mouse model. Additionally, YAP knockdown retained phenotype of RPE cells and ameliorated TGF‐β2–induced migration, gel contraction and EMT in vitro. YAP knockdown inhibited the TGF‐β2–induced upregulation of connective tissue growth factor (CTGF), smooth muscle actin (SMA‐α) and fibronectin. YAP was essential for the TGF‐β2–induced nuclear translocation and phosphorylation of Smad2/3. Our work provides direct evidence that YAP is an essential regulator of EMT and profibrotic responses in PVR and indicates that YAP inhibition could be a potential target in PVR therapeutic intervention.
Collapse
Affiliation(s)
- Wei Zhang
- Tianjin Key Lab of Ophthalmology and Visual Science, Tianjin Eye Institute, Tianjin Eye Hospital, Clinical College of Ophthalmology Tianjin Medical University, Tianjin, China.,Department of Ophthalmology, Tianjin Medical University General Hospital, Tianjin, China
| | - Jing Li
- Tianjin Key Lab of Ophthalmology and Visual Science, Tianjin Eye Institute, Tianjin Eye Hospital, Clinical College of Ophthalmology Tianjin Medical University, Tianjin, China
| |
Collapse
|