1
|
Xie X, Li R, Mi F. hsa_circ_0095812 accelerates periodontitis progression by adsorbing miR-485-3p-mediated THBS1 expression. Clinics (Sao Paulo) 2025; 80:100631. [PMID: 40220480 PMCID: PMC12018572 DOI: 10.1016/j.clinsp.2025.100631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 02/08/2025] [Accepted: 03/24/2025] [Indexed: 04/14/2025] Open
Abstract
OBJECTIVE To explore the role of hsa_circ_0095812 (circLRRC4C) in periodontitis and its mechanism with miR-485-3p and Thrombospondin-1 (THBS1). METHODS Periodontal tissues were collected from periodontitis patients. Periodontal Ligament Cells (PDLCs) were stimulated with Lipopolysaccharide (LPS) and transfected. Cell viability, inflammation, apoptosis, and pyroptosis were analyzed. A mouse model of periodontitis was constructed and injected with a lentiviral plasmid vector targeting circLRRC4C. Immunohistochemistry was performed on the periodontal tissue of model mice. The relevant expression level of genes was measured via real-time reverse transcriptase-polymerase chain reaction or Western blot. The relationship between circLRRC4C and THBS1 with miR-485-3p was analyzed. RESULTS CircLRRC4C was highly expressed in periodontitis tissues of patients and LPS-treated PDLCs. Downregulating circLRRC4C attenuated LPS-induced PDLC inflammation, apoptosis and pyroptosis and recovered cellular viability. CircLRRC4C acted as a sponge for miR-485-3p. CircLRRC4C affected LPS-induced PDLC apoptosis, pyroptosis and inflammation by regulating miR-485-3p. THBS1 was the target gene of miR-485-3p. Inhibition of THBS1 effectively improved LPS-induced periodontitis. CircLRRC4C aggravated LPS-induced PDLC apoptosis, pyroptosis and inflammation by regulating the miR-485-3p/THBS1 axis. Suppressing circLRRC4C effectively improved periodontitis in mice. CONCLUSION CircLRRC4C induces periodontitis progression by adsorbing miR-485-3p-mediated THBS1 expression.
Collapse
Affiliation(s)
- XiaoTing Xie
- North Sichuan Medical College, Nanchong City, Sichuan Province, PR China
| | - RuiTing Li
- North Sichuan Medical College, Nanchong City, Sichuan Province, PR China
| | - FangLin Mi
- North Sichuan Medical College, Nanchong City, Sichuan Province, PR China.
| |
Collapse
|
2
|
Valverde A, George A, Nares S, Naqvi AR. Emerging therapeutic strategies targeting bone signaling pathways in periodontitis. J Periodontal Res 2025; 60:101-120. [PMID: 39044454 PMCID: PMC11873684 DOI: 10.1111/jre.13326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 06/22/2024] [Accepted: 07/05/2024] [Indexed: 07/25/2024]
Abstract
Periodontitis is a multifactorial immune-mediated disease exacerbated by dysregulated alveolar bone homeostasis. Timely intervention is crucial for disease management to prevent tooth loss. To successfully manage periodontitis, it is imperative to understand the cellular and molecular mechanisms involved in its pathogenesis to develop novel treatment modalities. Non-surgical periodontal therapy (NSPT) such as subgingival instrumentation/debridement has been the underlying treatment strategy over the past decades. However, new NSPT approaches that target key signaling pathways regulating alveolar bone homeostasis have shown positive clinical outcomes. This narrative review aims to discuss endogenous bone homeostasis mechanisms impaired in periodontitis and highlight the clinical outcomes of preventive periodontal therapy to avoid invasive periodontal therapies. Although the anti-resorptive therapeutic adjuncts have demonstrated beneficial outcomes, adverse events have been reported. Diverse immunomodulatory therapies targeting the osteoblast/osteoclast (OB/OC) axis have shown promising outcomes in vivo. Future controlled randomized clinical trials (RCT) would help clinicians and patients in the selection of novel preventing therapies targeting key molecules to effectively treat or prevent periodontitis.
Collapse
Affiliation(s)
- Araceli Valverde
- Department of PeriodonticsCollege of Dentistry, University of Illinois ChicagoChicagoIllinoisUSA
| | - Anne George
- Department of Oral BiologyCollege of Dentistry, University of Illinois ChicagoChicagoIllinoisUSA
| | - Salvador Nares
- Department of PeriodonticsCollege of Dentistry, University of Illinois ChicagoChicagoIllinoisUSA
| | - Afsar R. Naqvi
- Department of PeriodonticsCollege of Dentistry, University of Illinois ChicagoChicagoIllinoisUSA
- Department of Microbiology and ImmunologyUniversity of Illinois ChicagoChicagoIllinoisUSA
| |
Collapse
|
3
|
Fu D, Shu X, Zhou G, Ji M, Liao G, Zou L. Connection between oral health and chronic diseases. MedComm (Beijing) 2025; 6:e70052. [PMID: 39811802 PMCID: PMC11731113 DOI: 10.1002/mco2.70052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 12/07/2024] [Accepted: 12/10/2024] [Indexed: 01/16/2025] Open
Abstract
Chronic diseases have emerged as a paramount global health burden, accounting for 74% of global mortality and causing substantial economic losses. The oral cavity serves as a critical indicator of overall health and is inextricably linked to chronic disorders. Neglecting oral health can exacerbate localized pathologies and accelerate the progression of chronic conditions, whereas effective management has the potential to reduce their incidence and mortality. Nevertheless, limited resources and lack of awareness often impede timely dental intervention, delaying optimal therapeutic measures. This review provides a comprehensive analysis of the impact of prevalent chronic diseases-such as diabetes mellitus, rheumatoid arthritis, cardiovascular disorders, and chronic respiratory diseases-on oral health, along with an exploration of how changes in oral health affect these chronic conditions through both deterioration and intervention mechanisms. Additionally, novel insights into the underlying pathophysiological mechanisms governing these relationships are presented. By synthesizing these advancements, this review aims to illuminate the complex interrelationship between oral health and chronic diseases while emphasizing the urgent need for greater collaboration between dental practitioners and general healthcare providers to improve overall health outcomes.
Collapse
Affiliation(s)
- Di Fu
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral DiseasesSichuan UniversityChengduSichuanChina
| | - Xingyue Shu
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral DiseasesSichuan UniversityChengduSichuanChina
| | - Ge Zhou
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral DiseasesSichuan UniversityChengduSichuanChina
| | - Mengzhen Ji
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral DiseasesSichuan UniversityChengduSichuanChina
| | - Ga Liao
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral DiseasesSichuan UniversityChengduSichuanChina
- Department of Information Management, Department of Stomatology Informatics, West China Hospital of StomatologySichuan UniversityChengduSichuanChina
| | - Ling Zou
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Department of Conservative Dentistry and Endodontics, West China Hospital of StomatologySichuan UniversityChengduSichuanChina
| |
Collapse
|
4
|
Zhou H, Zhang YF, Zhang QQ, Liu F, Zhang JY, Chen Y. Cathepsin K inhibition alleviates periodontal bone resorption by promoting type H vessel formation through PDGF-BB/PDGFR-β axis. Oral Dis 2024; 30:5335-5348. [PMID: 38462960 DOI: 10.1111/odi.14920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 02/09/2024] [Accepted: 02/23/2024] [Indexed: 03/12/2024]
Abstract
OBJECTIVES To explore the effects of cathepsin K (CTSK) inhibition on type H vessel formation and alveolar bone resorption within periodontitis. METHODS Conditioned media derived from preosteoclasts pretreated with the CTSK inhibitor odanacatib (ODN), ODN supplemented small interfering RNA targeting PDGF-BB (si-PDGF-BB), or PBS were prepared, to assess their proangiogenic effects on endothelial cells (HUVECs). A series of angiogenic-related assays were conducted to evaluate HUVEC proliferation, migration, and tube formation abilities in vitro. In addition, qRT-PCR and Western blot assays were employed to examine the expression levels of genes/proteins related to PDGF-BB/PDGFR-β axis components. A mouse periodontitis model was established to evaluate the effects of CTSK inhibition on type H vessel formation. RESULTS CTSK inhibition promoted PDGF-BB secretion from preosteoclasts and proliferation, migration, and tube formation activities of HUVECs in vitro. However, the conditioned medium from preosteoclasts pretreated by si-PDGF-BB impaired the angiogenic activities of HUVECs. This promoted angiogenesis function by CTSK inhibition may be mediated by the PDGF-BB/PDGFR-β axis. Functionally, in vivo studies demonstrated that CTSK inhibition significantly accelerated type H vessel formation and alleviated bone loss within periodontitis. CONCLUSION CTSK inhibition promotes type H vessel formation and attenuates alveolar bone resorption within periodontitis via PDGF-BB/PDGFR-β axis.
Collapse
Affiliation(s)
- Huan Zhou
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, China
- Department of Periodontology, College of Stomatology, Xi'an Jiaotong University, Xi'an, China
| | - Yi-Fan Zhang
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, China
- Department of Periodontology, College of Stomatology, Xi'an Jiaotong University, Xi'an, China
| | - Qian-Qian Zhang
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, China
- Department of Orthodontics, College of Stomatology, Xi'an Jiaotong University, Xi'an, China
| | - Fen Liu
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, China
- Department of Pediatric Dentistry, College of Stomatology, Xi'an Jiaotong University, Xi'an, China
| | - Jia-Yu Zhang
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, China
- Department of Periodontology, College of Stomatology, Xi'an Jiaotong University, Xi'an, China
| | - Yue Chen
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, China
- Department of Periodontology, College of Stomatology, Xi'an Jiaotong University, Xi'an, China
| |
Collapse
|
5
|
Tavares SJS, Pereira CR, Fortes RAM, Alves BES, Fonteles CSR, Wong DVT, Lima-Júnior RCP, Moraes MO, Lima V. Umbelliferone reduces inflammation and ligature-induced osteoclastic alveolar bone resorption in mice. J Periodontal Res 2024; 59:982-992. [PMID: 38742802 DOI: 10.1111/jre.13277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 04/08/2024] [Accepted: 04/12/2024] [Indexed: 05/16/2024]
Abstract
AIMS This study aimed to investigate the effects of Umbelliferone (UMB) on the inflammation underlying alveolar bone resorption in mouse periodontitis. METHODS Male Swiss mice subjected to a ligature of molars were grouped as non-treated (NT), received UMB (15, 45, or 135 mg/kg) or saline daily for 7 days, respectively, and were compared with naïve mice as control. Gingival tissues were evaluated by myeloperoxidase (MPO) activity and interleukin-1β level by ELISA. The bone resorption was directly assessed on the region between the cement-enamel junction and the alveolar bone crest. Microscopically, histomorphometry of the furcation region, immunofluorescence for nuclear factor-kappa B (NF-ĸB), and immunohistochemistry for tartrate-resistant acid phosphatase (TRAP), and cathepsin K (CTSK) were performed. Systemically, body mass variation and leukogram were analyzed. RESULTS Periodontitis significantly increased MPO activity, interleukin-1β level, and NF-ĸB+ immunofluorescence, and induced severe alveolar bone and furcation resorptions, besides increased TRAP+ and CTSK+ cells compared with naïve. UMB significantly prevented the inflammation by reducing MPO activity, interleukin-1β level, and NF-ĸB+ intensity, besides reduction of resorption of alveolar bone and furcation area, and TRAP+ and CTSK+ cells compared with the NT group. Periodontitis or UMB treatment did not affect the animals systemically. CONCLUSION UMB improved periodontitis by reducing inflammation and bone markers.
Collapse
Affiliation(s)
- Samia Jessica Silva Tavares
- Faculty of Pharmacy, Dentistry and Nursing, Course of Dentistry, Federal University of Ceará, Fortaleza, Brazil
| | - Camila Rodrigues Pereira
- Faculty of Pharmacy, Dentistry and Nursing, Course of Dentistry, Federal University of Ceará, Fortaleza, Brazil
| | | | - Bianca Elen Souza Alves
- Faculty of Medicine, Department of Physiology and Pharmacology, Federal University of Ceará, Fortaleza, Brazil
- Center for Drug Research and Development, Federal University of Ceará, Fortaleza, Brazil
| | - Cristiane Sá Roriz Fonteles
- Faculty of Pharmacy, Dentistry and Nursing, Course of Dentistry, Federal University of Ceará, Fortaleza, Brazil
| | - Deysi Viviana Tenazoa Wong
- Faculty of Medicine, Department of Physiology and Pharmacology, Federal University of Ceará, Fortaleza, Brazil
- Center for Drug Research and Development, Federal University of Ceará, Fortaleza, Brazil
| | - Roberto César Pereira Lima-Júnior
- Faculty of Medicine, Department of Physiology and Pharmacology, Federal University of Ceará, Fortaleza, Brazil
- Center for Drug Research and Development, Federal University of Ceará, Fortaleza, Brazil
| | - Manoel Odorico Moraes
- Faculty of Medicine, Department of Physiology and Pharmacology, Federal University of Ceará, Fortaleza, Brazil
- Center for Drug Research and Development, Federal University of Ceará, Fortaleza, Brazil
| | - Vilma Lima
- Faculty of Medicine, Department of Physiology and Pharmacology, Federal University of Ceará, Fortaleza, Brazil
- Center for Drug Research and Development, Federal University of Ceará, Fortaleza, Brazil
| |
Collapse
|
6
|
Yue Y, Chan W, Zhang J, Liu J, Wang M, Hao L, Wang J. Activation of receptor-interacting protein 3-mediated necroptosis accelerates periodontitis in mice. Oral Dis 2024; 30:2485-2496. [PMID: 37518945 DOI: 10.1111/odi.14693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 07/09/2023] [Accepted: 07/14/2023] [Indexed: 08/01/2023]
Abstract
OBJECTIVE To investigate the involvement and role of receptor-interacting protein 3 (RIP3)-mediated necroptosis in periodontitis. METHODS A periodontitis murine model was established by oral infection with Porphyromonas gingivalis, and activation of necroptosis pathway was identified by immunohistochemistry. Adeno-associated virus was used to knock down Rip3 and the effect of Rip3 knockdown on periodontal inflammation was examined by Micro-CT, qRT-PCR and histological staining. In vitro, P. gingivalis-LPS was used to infect fibroblast cell line L929 and siRNA was used to knock down Rip3. Necroptosis pathway signalling and inflammation in cells were detected by cell viability and death assay, Western Blot, qRT-PCR and immunofluorescence analysis. RESULTS Phosphorylation of RIP3 and mixed lineage kinase domain-like protein (MLKL) was increased in the periodontal ligament of mice infected with P. gingivalis. RIP3 knockdown reduced osteoclastogenesis and inflammatory cytokines in the periodontal area, and alleviated alveolar bone loss in vivo. In vitro, P. gingivalis-LPS-induced RIP3-mediated necroptosis in L929 cells, and knockdown of RIP3 by siRNA decreased the expression of inflammatory cytokines. CONCLUSION RIP3-mediated necroptosis is activated in periodontitis and blocking necroptosis alleviates disease progression, indicating that RIP3 may be a potential target for periodontitis treatment.
Collapse
Affiliation(s)
- Yuan Yue
- The State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Weicheng Chan
- The State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Jing Zhang
- The First Affiliated Hospital of Chengdu Medical College, Chengdu, China
| | - Jie Liu
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Clinical Research Center for Oral Diseases of Zhejiang Province, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou, China
| | - Min Wang
- The State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Liang Hao
- The State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Jiajia Wang
- The State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
7
|
Lopez-Oliva I, Malcolm J, Culshaw S. Periodontitis and rheumatoid arthritis-Global efforts to untangle two complex diseases. Periodontol 2000 2024. [PMID: 38411247 DOI: 10.1111/prd.12530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Revised: 08/07/2023] [Accepted: 09/01/2023] [Indexed: 02/28/2024]
Abstract
Understanding the impact of oral health on rheumatoid arthritis (RA) will inform how best to manage patients with both periodontitis and RA. This review seeks to provide an update on interventional and mechanistic investigations, including a brief summary of European Research programs investigating the link between periodontitis and RA. Recent clinical studies are described that evaluate how the treatment of one disease impacts on the other, as are studies in both humans and animal models that have sought to identify the potential mechanisms linking the two diseases.
Collapse
Affiliation(s)
- Isabel Lopez-Oliva
- Department of Periodontology, Institute of Dentistry, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Jennifer Malcolm
- Oral Sciences, University of Glasgow Dental School, School of Medicine, Dentistry and Nursing, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
- Centre for Immunobiology, School of Infection and Immunity, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - Shauna Culshaw
- Oral Sciences, University of Glasgow Dental School, School of Medicine, Dentistry and Nursing, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
- Centre for Immunobiology, School of Infection and Immunity, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
- Clinic for Periodontology, Endodontology and Cariology, University Center of Dental Medicine, University of Basel, Basel, Switzerland
| |
Collapse
|
8
|
Schneider AH, Taira TM, Públio GA, da Silva Prado D, Donate Yabuta PB, Dos Santos JC, Machado CC, de Souza FFL, Rodrigues Venturini LG, de Oliveira RDR, Cunha TM, Alves-Filho JC, Louzada-Júnior P, Aparecida da Silva T, Fukada SY, Cunha FQ. Neutrophil extracellular traps mediate bone erosion in rheumatoid arthritis by enhancing RANKL-induced osteoclastogenesis. Br J Pharmacol 2024; 181:429-446. [PMID: 37625900 DOI: 10.1111/bph.16227] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 07/17/2023] [Accepted: 07/31/2023] [Indexed: 08/27/2023] Open
Abstract
BACKGROUND AND PURPOSE Rheumatoid arthritis (RA) is a chronic autoimmune disease that can cause bone erosion due to increased osteoclastogenesis. Neutrophils involvement in osteoclastogenesis remains uncertain. Given that neutrophil extracellular traps (NETs) can act as inflammatory mediators in rheumatoid arthritis, we investigated the role of NETs in stimulating bone loss by potentiating osteoclastogenesis during arthritis. EXPERIMENTAL APPROACH The level of NETs in synovial fluid from arthritis patients was assessed. Bone loss was evaluated by histology and micro-CT in antigen-induced arthritis (AIA)-induced WT mice treated with DNase or in Padi4-deficient mice (Padi4flox/flox LysMCRE ). The size and function of osteoclasts and the levels of RANKL and osteoprotegerin (OPG) released by osteoblasts that were incubated with NETs were measured. The expression of osteoclastogenic marker genes and protein levels were evaluated by qPCR and western blotting. To assess the participation of TLR4 and TLR9 in osteoclastogenesis, cells from Tlr4-/- and Tlr9-/- mice were cultured with NETs. KEY RESULTS Rheumatoid arthritis patients had higher levels of NETs in synovial fluid than osteoarthritis patients, which correlated with increased levels of RANKL/OPG. Moreover, patients with bone erosion had higher levels of NETs. Inhibiting NETs with DNase or Padi4 deletion alleviated bone loss in arthritic mice. Consistently, NETs enhanced RANKL-induced osteoclastogenesis that was dependent on TLR4 and TLR9 and increased osteoclast resorptive functions in vitro. In addition, NETs stimulated the release of RANKL and inhibited osteoprotegerin in osteoblasts, favouring osteoclastogenesis. CONCLUSIONS AND IMPLICATIONS Inhibiting NETs could be an alternative strategy to reduce bone erosion in arthritis patients.
Collapse
Affiliation(s)
- Ayda Henriques Schneider
- Center of Research in Inflammatory Diseases, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirão Preto, Brazil
- Department of Pharmacology, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirão Preto, Brazil
| | - Thaise Mayumi Taira
- Center of Research in Inflammatory Diseases, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirão Preto, Brazil
- Department of Bio-Molecular Sciences, School of Pharmaceutical Science, University of Sao Paulo, Ribeirão Preto, Brazil
| | - Gabriel Azevedo Públio
- Center of Research in Inflammatory Diseases, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirão Preto, Brazil
- Department of Pharmacology, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirão Preto, Brazil
| | - Douglas da Silva Prado
- Center of Research in Inflammatory Diseases, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirão Preto, Brazil
- Department of Pharmacology, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirão Preto, Brazil
| | - Paula Barbim Donate Yabuta
- Center of Research in Inflammatory Diseases, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirão Preto, Brazil
- Department of Pharmacology, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirão Preto, Brazil
| | - Jéssica Cristina Dos Santos
- Center of Research in Inflammatory Diseases, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirão Preto, Brazil
- Department of Neurosciences, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirão Preto, Brazil
| | - Caio Cavalcante Machado
- Center of Research in Inflammatory Diseases, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirão Preto, Brazil
- Department of Medicine, Clinical Immunology Division, Medicine Faculty of Ribeirao Preto, University of Sao Paulo, Ribeirão Preto, Brazil
| | - Flávio Falcão Lima de Souza
- Center of Research in Inflammatory Diseases, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirão Preto, Brazil
- Department of Medicine, Clinical Immunology Division, Medicine Faculty of Ribeirao Preto, University of Sao Paulo, Ribeirão Preto, Brazil
| | - Lucas Gabriel Rodrigues Venturini
- Center of Research in Inflammatory Diseases, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirão Preto, Brazil
- Department of Bio-Molecular Sciences, School of Pharmaceutical Science, University of Sao Paulo, Ribeirão Preto, Brazil
| | - Renê Donizeti Ribeiro de Oliveira
- Center of Research in Inflammatory Diseases, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirão Preto, Brazil
- Department of Medicine, Clinical Immunology Division, Medicine Faculty of Ribeirao Preto, University of Sao Paulo, Ribeirão Preto, Brazil
| | - Thiago Mattar Cunha
- Center of Research in Inflammatory Diseases, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirão Preto, Brazil
- Department of Pharmacology, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirão Preto, Brazil
| | - José Carlos Alves-Filho
- Center of Research in Inflammatory Diseases, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirão Preto, Brazil
- Department of Pharmacology, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirão Preto, Brazil
| | - Paulo Louzada-Júnior
- Center of Research in Inflammatory Diseases, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirão Preto, Brazil
- Department of Medicine, Clinical Immunology Division, Medicine Faculty of Ribeirao Preto, University of Sao Paulo, Ribeirão Preto, Brazil
| | - Tarcília Aparecida da Silva
- Center of Research in Inflammatory Diseases, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirão Preto, Brazil
- Department of Oral Surgery and Pathology, Faculty of Dentistry, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Sandra Yasuyo Fukada
- Center of Research in Inflammatory Diseases, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirão Preto, Brazil
- Department of Bio-Molecular Sciences, School of Pharmaceutical Science, University of Sao Paulo, Ribeirão Preto, Brazil
| | - Fernando Queiróz Cunha
- Center of Research in Inflammatory Diseases, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirão Preto, Brazil
- Department of Pharmacology, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirão Preto, Brazil
| |
Collapse
|
9
|
Tan L, Chan W, Zhang J, Wang J, Wang Z, Liu J, Li J, Liu X, Wang M, Hao L, Yue Y. Regulation of RIP1-Mediated necroptosis via necrostatin-1 in periodontitis. J Periodontal Res 2023; 58:919-931. [PMID: 37334934 DOI: 10.1111/jre.13150] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 05/16/2023] [Accepted: 06/06/2023] [Indexed: 06/21/2023]
Abstract
OBJECTIVE To explore the mechanism of receptor-interacting protein 1 (RIP1)-mediated necroptosis during periodontitis progression. BACKGROUND RIP3 and mixed lineage kinase domain-like protein (MLKL) have been detected to be upregulated in periodontitis models. Because RIP1 is involved in necroptosis, it might also play a role in the progression of periodontitis. METHODS An experimental periodontitis model in BALB/c mice was established by inducing oral bacterial infection. Western blotting and immunofluorescence analyses were used to detect RIP1 expression in the periodontal ligament. Porphyromonas gingivalis was used to stimulate L929 and MC3T3-E1. RIP1 was inhibited using small-interfering RNA. Western blotting, reverse transcription-quantitative polymerase chain reaction (RT-qPCR), and enzyme-linked immunosorbent assay (ELISA) analyses were used to detect the effect of necroptosis inhibition on the expression of damage-associated molecular patterns and inflammatory cytokines. Necrostatin-1 (Nec-1) was intraperitoneally injected to inhibit RIP1 expression in mice. Necroptosis activation and inflammatory cytokine expression in periodontal tissue were verified. Tartrate-resistant acid phosphatase staining was applied to observe osteoclasts in the bone tissues of different groups. RESULTS RIP1-mediated necroptosis was activated in mice with periodontitis. P. gingivalis induced RIP1-mediated necroptosis in L929 and MC3T3-E1 cells. After RIP1 inhibition, the expression levels of high mobility group protein B1 (HMGB1) and inflammatory cytokines were downregulated. After inhibiting RIP1 with Nec-1 in vivo, necroptosis was also inhibited, the expression levels of HMGB1 and inflammatory cytokines were downregulated, and osteoclast counts in the periodontal tissue decreased. CONCLUSION RIP1-mediated necroptosis plays a role in the pathological process of periodontitis in mice. Nec-1 inhibited necroptosis, alleviated inflammation in periodontal tissue, and reduced bone resorption in periodontitis.
Collapse
Affiliation(s)
- Liangyu Tan
- Department of Prosthodontics, The State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Department of Prosthodontics, Tianjin Key Laboratory of Oral and Maxillofacial Function Reconstruction, Tianjin Stomatological Hospital, School of Medicine, Nankai University, Tianjin, China
| | - Weicheng Chan
- Department of Prosthodontics, The State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Jing Zhang
- The First Affiliated Hospital of Chengdu Medical College, Chengdu, China
| | - Jiajia Wang
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zizheng Wang
- Department of Prosthodontics, The State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Jie Liu
- Key Laboratory of Oral Biomedical Research of Zhejiang Province, Stomatology Hospital, Clinical Research Center for Oral Diseases of Zhejiang Province, School of Stomatology, Zhejiang University School of Medicine, Cancer Center of Zhejiang University, Zhejiang, Hangzhou, China
| | - Jiaxin Li
- Department of Prosthodontics, The State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Xinran Liu
- Department of Prosthodontics, The State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Min Wang
- Department of Prosthodontics, The State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Liang Hao
- Department of Prosthodontics, The State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yuan Yue
- Department of Prosthodontics, The State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| |
Collapse
|
10
|
Viglianisi G, Santonocito S, Polizzi A, Troiano G, Amato M, Zhurakivska K, Pesce P, Isola G. Impact of Circulating Cell-Free DNA (cfDNA) as a Biomarker of the Development and Evolution of Periodontitis. Int J Mol Sci 2023; 24:9981. [PMID: 37373135 PMCID: PMC10298201 DOI: 10.3390/ijms24129981] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Revised: 06/07/2023] [Accepted: 06/08/2023] [Indexed: 06/29/2023] Open
Abstract
In the last few decades, circulating cell-free DNA (cfDNA) has been shown to have an important role in cell apoptosis or necrosis, including in the development and evolution of several tumors and inflammatory diseases in humans. In this regard, periodontitis, a chronic inflammatory disease that can induce the destruction of supporting components of the teeth, could represent a chronic inflammatory stimulus linked to a various range of systemic inflammatory diseases. Recently, a possible correlation between periodontal disease and cfDNA has been shown, representing new important diagnostic-therapeutic perspectives. During the development of periodontitis, cfDNA is released in biological fluids such as blood, saliva, urine and other body fluids and represents an important index of inflammation. Due to the possibility of withdrawing some of these liquids in a non-invasive way, cfDNA could be used as a possible biomarker for periodontal disease. In addition, discovering a proportional relationship between cfDNA levels and the severity of periodontitis, expressed through the disease extent, could open the prospect of using cfDNA as a possible therapeutic target. The aim of this article is to report what researchers have discovered in recent years about circulating cfDNA in the development, evolution and therapy of periodontitis. The analyzed literature review shows that cfDNA has considerable potential as a diagnostic, therapeutic biomarker and therapeutic target in periodontal disease; however, further studies are needed for cfDNA to be used in clinical practice.
Collapse
Affiliation(s)
- Gaia Viglianisi
- Department of General Surgery and Surgical-Medical Specialties, School of Dentistry, University of Catania, 95124 Catania, Italy; (G.V.); (S.S.); (A.P.); (G.I.)
| | - Simona Santonocito
- Department of General Surgery and Surgical-Medical Specialties, School of Dentistry, University of Catania, 95124 Catania, Italy; (G.V.); (S.S.); (A.P.); (G.I.)
| | - Alessandro Polizzi
- Department of General Surgery and Surgical-Medical Specialties, School of Dentistry, University of Catania, 95124 Catania, Italy; (G.V.); (S.S.); (A.P.); (G.I.)
| | - Giuseppe Troiano
- Department of Clinical and Experimental Medicine, University of Foggia, 71122 Foggia, Italy;
| | - Mariacristina Amato
- Department of General Surgery and Surgical-Medical Specialties, School of Dentistry, University of Catania, 95124 Catania, Italy; (G.V.); (S.S.); (A.P.); (G.I.)
| | - Khrystyna Zhurakivska
- Department of Clinical and Experimental Medicine, University of Foggia, 71122 Foggia, Italy;
| | - Paolo Pesce
- Department of Surgical Sciences and Integrated Diagnostics (DISC), University of Genoa, Ospedale S. Martino, 16148 Genoa, Italy
| | - Gaetano Isola
- Department of General Surgery and Surgical-Medical Specialties, School of Dentistry, University of Catania, 95124 Catania, Italy; (G.V.); (S.S.); (A.P.); (G.I.)
| |
Collapse
|
11
|
Jiang H, Dong Z, Xia X, Li X. Cathepsins in oral diseases: mechanisms and therapeutic implications. Front Immunol 2023; 14:1203071. [PMID: 37334378 PMCID: PMC10272612 DOI: 10.3389/fimmu.2023.1203071] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Accepted: 05/18/2023] [Indexed: 06/20/2023] Open
Abstract
Cathepsins are a type of lysosomal globulin hydrolase and are crucial for many physiological processes, including the resorption of bone matrix, innate immunity, apoptosis, proliferation, metastasis, autophagy, and angiogenesis. Findings regarding their functions in human physiological processes and disorders have drawn extensive attention. In this review, we will focus on the relationship between cathepsins and oral diseases. We highlight the structural and functional properties of cathepsins related to oral diseases, as well as the regulatory mechanisms in tissue and cells and their therapeutic uses. Elucidating the associated mechanism between cathepsins and oral diseases is thought to be a promising strategy for the treatment of oral diseases and may be a starting point for further studies at the molecular level.
Collapse
Affiliation(s)
- Hao Jiang
- Department of Stomatology, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China
- School of Stomatology, Qingdao University, Qingdao, China
| | - Zuoxiang Dong
- Department of Neurosurgery, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China
| | - Xiaomin Xia
- Department of Stomatology, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China
- School of Stomatology, Qingdao University, Qingdao, China
| | - Xue Li
- Department of Stomatology, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China
- School of Stomatology, Qingdao University, Qingdao, China
| |
Collapse
|
12
|
The Correlation between Periodontal Parameters and Cell-Free DNA in the Gingival Crevicular Fluid, Saliva, and Plasma in Chinese Patients: A Cross-Sectional Study. J Clin Med 2022; 11:jcm11236902. [PMID: 36498477 PMCID: PMC9741438 DOI: 10.3390/jcm11236902] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 11/17/2022] [Accepted: 11/18/2022] [Indexed: 11/24/2022] Open
Abstract
Purpose: To investigate the correlation between periodontal parameters and cell-free DNA (cfDNA) concentrations in gingival crevicular fluid (GCF), saliva, and plasma. Methods: Full mouth periodontal parameters, including probing depth (PD), bleeding on probing (BOP), and plaque index (PI) were recorded from 25 healthy volunteers, 31 patients with untreated gingivitis, and 25 patients with untreated periodontitis. GCF, saliva, and plasma samples were collected from all subjects. Extraction and quantification assays were undertaken to determine cfDNA concentrations of each sample. Results: GCF and salivary cfDNA levels were increased with aggravation of periodontal inflammation (GCF p < 0.0001; saliva p < 0.001). Plasma cfDNA concentrations in patients with periodontitis were significantly higher than those in healthy volunteers and patients with gingivitis. GCF and salivary cfDNA were positively correlated with mean PD, max PD, BOP, and mean PI (p < 0.0001), whereas plasma cfDNA was not correlated with BOP (p = 0.099). Conclusion: GCF, saliva, and plasma concentrations of cfDNA were significantly elevated in patients with periodontal disease. There were also positive correlations between cfDNA levels in GCF and saliva and periodontal parameters.
Collapse
|
13
|
Wu N, Wang Y, Wang K, Zhong B, Liao Y, Liang J, Jiang N. Cathepsin K regulates the tumor growth and metastasis by IL-17/CTSK/EMT axis and mediates M2 macrophage polarization in castration-resistant prostate cancer. Cell Death Dis 2022; 13:813. [PMID: 36138018 PMCID: PMC9499936 DOI: 10.1038/s41419-022-05215-8] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 08/23/2022] [Accepted: 08/24/2022] [Indexed: 01/23/2023]
Abstract
A common stage of advanced prostate cancer is castration-resistant prostate cancer (CRPC), greater understanding of which is required in order to address and solve the clinically difficult challenge. Cathepsin K (CTSK) is a cysteine protease that usually has a strong activity of degrading extracellular matrix and is related to osteoclast-mediated bone destruction. However, the mechanism of CTSK-regulation in CRPC is still unclear to us. The current study aimed to analyze the expression of differentially expressed genes (DEGs) in patient samples (from localized PC and CRPC). Interestingly, we found that CTSK to be significantly up-regulated in CRPC. Through further signal pathway enrichment analysis, we found that the IL-17 signaling pathway to be highly correlated with CTSK. The oncogenic functions of CTSK and IL-17 in CRPC were proven by a series of in vivo and in vitro experiments. Possible downstream molecules of CTSK were investigated, which could serve as control elements to regulate the expression of EMT, thereby facilitating the metastasis and excessive proliferation of PC cells. Expression of CTSK was related to high concentration of M2 tumor-associated macrophages (TAMs) M2 in CRPC. A CTSK-mediated feedback circuit between TAMs and CRPC tissues was indicated in the process of transfer, proving the possibility of CTSK could be use as an available therapeutic target for CRPC.
Collapse
Affiliation(s)
- Ning Wu
- Department of Urology, Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin, 300211, PR China
- Tianjin Medical University Cancer Institute and Hospital, Tianjin Medical University, Tianjin, 300060, China
| | - YouZhi Wang
- Department of Urology, Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin, 300211, PR China
| | - KeKe Wang
- Department of Urology, Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin, 300211, PR China
| | - BoQiang Zhong
- Department of Urology, Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin, 300211, PR China
| | - YiHao Liao
- Department of Urology, Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin, 300211, PR China
| | - JiaMing Liang
- Department of Urology, Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin, 300211, PR China
| | - Ning Jiang
- Department of Urology, Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin, 300211, PR China.
| |
Collapse
|
14
|
Cathepsin K: A Versatile Potential Biomarker and Therapeutic Target for Various Cancers. Curr Oncol 2022; 29:5963-5987. [PMID: 36005209 PMCID: PMC9406569 DOI: 10.3390/curroncol29080471] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Revised: 08/15/2022] [Accepted: 08/21/2022] [Indexed: 12/11/2022] Open
Abstract
Cancer, a common malignant disease, is one of the predominant causes of diseases that lead to death. Additionally, cancer is often detected in advanced stages and cannot be radically cured. Consequently, there is an urgent need for reliable and easily detectable markers to identify and monitor cancer onset and progression as early as possible. Our aim was to systematically review the relevant roles of cathepsin K (CTSK) in various possible cancers in existing studies. CTSK, a well-known key enzyme in the bone resorption process and most studied for its roles in the effective degradation of the bone extracellular matrix, is expressed in various organs. Nowadays, CTSK has been involved in various cancers such as prostate cancer, breast cancer, bone cancer, renal carcinoma, lung cancer and other cancers. In addition, CTSK can promote tumor cells proliferation, invasion and migration, and its mechanism may be related to RANK/RANKL, TGF-β, mTOR and the Wnt/β-catenin signaling pathway. Clinically, some progress has been made with the use of cathepsin K inhibitors in the treatment of certain cancers. This paper reviewed our current understanding of the possible roles of CTSK in various cancers and discussed its potential as a biomarker and/or novel molecular target for various cancers.
Collapse
|
15
|
Cheng L, Fan Y, Cheng J, Wang J, Liu Q, Feng Z. Long non-coding RNA ZFY-AS1 represses periodontitis tissue inflammation and oxidative damage via modulating microRNA-129-5p/DEAD-Box helicase 3 X-linked axis. Bioengineered 2022; 13:12691-12705. [PMID: 35659193 PMCID: PMC9275892 DOI: 10.1080/21655979.2021.2019876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022] Open
Abstract
A large number of studies have manifested long non-coding RNA (lncRNA) is involved in the modulation of the development of periodontitis, but the specific mechanism has not been fully elucidated. The purpose of this study was to explore the biological function and latent molecular mechanism of lncZFY-AS1 in periodontitis. The results clarified lncZFY-AS1 and DEAD-Box Helicase 3 X-Linked (DDX3X) were up-regulated, but microRNA (miR)-129-5p was down-regulated in periodontitis. Knockdown of lncZFY-AS2 or overexpression of miR-129-5p decreased macrophage infiltration and periodontal membrane cell apoptosis, increased cell viability, repressed inflammatory factors and nuclear factor kappa B activation, reduced oxidative stress, but promoted nuclear factor-E2-related factor 2/heme oxygenase 1 expression. LncZFY-AS1 elevation further aggravated periodontitis inflammation, oxidative stress, and apoptosis. LncZFY competitively adsorbed miR-129-5p to mediate DDX3X expression. Knockdown lncZFY’s improvement effect on periodontitis was reversed by depressive miR-129-5p or enhancive DDX3X. In conclusion, these data suggest lncZFY-AS1 promotes inflammatory injury and oxidative stress in periodontitis by competitively binding to miR-129-5p and mediating DDX3X expression. LncZFY-AS1/miR-129-5p/DDX3X may serve as a novel molecular target for treatment of periodontitis in the future.
Collapse
Affiliation(s)
- Lin Cheng
- Department of Stomatology, Bethune Hospital, (Shanxi Academy of Medical Sciences), Taiyuan City, Shanxi Province, China
| | - YuLing Fan
- Department of Stomatology, School of Stomatology, Shanxi Medical University, Taiyuan City, Shanxi Province, China
| | - Jue Cheng
- Department of Stomatology, The Community Health Service Center of Beijing Jiao Tong University, Beijing City, China
| | - Jun Wang
- Department of Stomatology, Bethune Hospital, (Shanxi Academy of Medical Sciences), Taiyuan City, Shanxi Province, China
| | - Qingmei Liu
- Department of Stomatology, Bethune Hospital, (Shanxi Academy of Medical Sciences), Taiyuan City, Shanxi Province, China
| | - ZhiYuan Feng
- Department of Orthodontics, Shanxi Provincial People’s Hospital, Taiyuan City, Shanxi Province, China
| |
Collapse
|
16
|
Pharmacological Therapies for the Management of Inflammatory Bone Resorption in Periodontal Disease: A Review of Preclinical Studies. BIOMED RESEARCH INTERNATIONAL 2022; 2022:5832009. [PMID: 35547360 PMCID: PMC9085331 DOI: 10.1155/2022/5832009] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 03/28/2022] [Accepted: 04/13/2022] [Indexed: 02/06/2023]
Abstract
Periodontitis, a highly prevalent multicausal chronic inflammatory and destructive disease, develops as a result of complex host-parasite interactions. Dysbiotic bacterial biofilm in contact with the gingival tissues initiates a cascade of inflammatory events, mediated and modulated by the host's immune response, which is characterized by increased expression of several inflammatory mediators such as cytokines and chemokines in the connective tissue. If periodontal disease (PD) is left untreated, it results in the destruction of the supporting tissues around the teeth, including periodontal ligament, cementum, and alveolar bone, which lead to a wide range of disabilities and poor quality of life, thus imposing significant burdens. This process depends on the differentiation and activity of osteoclasts, the cells responsible for reabsorbing the bone tissue. Therefore, the inhibition of differentiation or activity of these cells is a promising strategy for controlling bone resorption. Several pharmacological drugs that target osteoclasts and inflammatory cells with immunomodulatory and anti-inflammatory effects, such as bisphosphonates, anti-RANK-L antibody, strontium ranelate, cathepsin inhibitors, curcumin, flavonoids, specialized proresolving mediators, and probiotics, were already described to manage inflammatory bone resorption during experimental PD progression in preclinical studies. Meantime, a growing number of studies have described the beneficial effects of herbal products in inhibiting bone resorption in experimental PD. Therefore, this review summarizes the role of several pharmacological drugs used for PD prevention and treatment and highlights the targeted action of all those drugs with antiresorptive properties. In addition, our review provides a timely and critical appraisal for the scientific rationale use of the antiresorptive and immunomodulatory medications in preclinical studies, which will help to understand the basis for its clinical application.
Collapse
|
17
|
Exploring the pharmacological components and effective mechanism of Mori Folium against periodontitis using network pharmacology and molecular docking. Arch Oral Biol 2022; 139:105391. [DOI: 10.1016/j.archoralbio.2022.105391] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2021] [Revised: 02/28/2022] [Accepted: 03/01/2022] [Indexed: 12/25/2022]
|
18
|
Chan WC, Tan L, Liu J, Yang Q, Wang J, Wang M, Yue Y, Hao L, Man Y. Inhibition of Rgs10 aggravates periodontitis with collagen-induced arthritis via the NF-κB pathway. Oral Dis 2022; 29:1802-1811. [PMID: 35122384 DOI: 10.1111/odi.14147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 01/20/2022] [Accepted: 01/31/2022] [Indexed: 02/05/2023]
Abstract
OBJECTIVE To explore the role of the Rgs10-associated nuclear factor (NF)-κB signalling pathway in periodontitis with rheumatoid arthritis. METHODS Porphyromonas gingivalis and collagen were locally applied to mice to establish in vivo periodontitis and rheumatoid arthritis models, respectively. Both agents were administered together to establish the comorbid group. All models were treated with adeno-associated virus-green fluorescent protein (AAV-GFP) or adeno-associated virus small hairpin Rgs10 (AAV-sh-Rgs10). In vivo expression of Rgs10 and inflammatory cytokines was analysed, along with exploration of the NF-κB signalling pathway in lipopolysaccharide (LPS)-stimulated mouse-derived RAW264.7 cells, with and without treatment of small interfering RNA (siRNA; Rgs10-Mus-MSS245072). RESULTS In the comorbidity mouse group (mice with both periodontitis and rheumatoid arthritis), inhibition of Rgs10 exacerbated periodontitis, along with upregulation of phospho-RelA (pP65), tumour necrosis factor-α (TNF-α), and interleukin-6 (IL-6) expression in the NF-κB signalling pathway. Similarly, treatment of LPS-stimulated RAW264.7 cells with siRNA resulted in the inhibition of Rgs10, along with upregulation of pP65, TNF-α, and IL-6 expression in vitro. CONCLUSION Inhibition of Rgs10 in mice with periodontitis and rheumatoid arthritis can promote the progression of periodontitis, indicating the potential therapeutic role of Rgs10 in this condition.
Collapse
Affiliation(s)
- Wei-Cheng Chan
- The State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Sichuan, People's Republic of China
| | - Liangyu Tan
- Department of Prosthodontics, Tianjin Stomatological Hospital, School of Medicine, Nankai University, Tianjin Key Laboratory of Oral and Maxillofacial Function Reconstruction, Tianjin, People's Republic of China
| | - Jie Liu
- The State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Sichuan, People's Republic of China
| | - Qin Yang
- The State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Sichuan, People's Republic of China
| | - Jiajia Wang
- The State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Sichuan, People's Republic of China
| | - Min Wang
- The State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Sichuan, People's Republic of China
| | - Yuan Yue
- The State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Sichuan, People's Republic of China
| | - Liang Hao
- The State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Sichuan, People's Republic of China
| | - Yi Man
- The State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, Department of Oral Implantology, West China Hospital of Stomatology, Sichuan University, Sichuan, People's Republic of China
| |
Collapse
|
19
|
Shen K, Zhang X, Tang Q, Fang X, Zhang C, Zhu Z, Hou Y, Lai M. Microstructured titanium functionalized by naringin inserted multilayers for promoting osteogenesis and inhibiting osteoclastogenesis. JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION 2021; 32:1865-1881. [PMID: 34233132 DOI: 10.1080/09205063.2021.1949098] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Osteoporosis is the most common cause of fractures in middle-aged and elderly people. Fracture repair can be difficult due to the decreased bone volume in osteoporosis patients and implants are often required. In this study, a slow-release system for microstructured titanium (Micro-Ti) was designed to promote osteogenesis and inhibit osteoclastogenesis. Firstly, Micro-Ti was prepared on titanium surfaces by dual acid etching. Micro-Ti was covered with naringin (NA), chitosan (CHI) and gelatin (GEL) multilayers through layer by layer technique, which is denoted as LBL (NA) coated-Ti. Osteoblasts (ME3T3-E1) and macrophages (RAW 264.7) were cultured on untreated and treated titanium surfaces in vitro. Osteoblasts grown on LBL (NA) coated-Ti showed higher alkaline phosphatase (ALP) and mineralization, consistent with qRT-PCR analysis of osteoblast genes including runt-related transcription factor 2 (Runx2), ALP, collagen I (Col I), osteocalcin (OCN), osteopontin (OPN), and osteoprotegerin (OPG). In contrast, acid tartarate-resistant phosphatase activity and the expression of osteoclastic differentiation related genes comprising of cathepsin K (CTSK), nuclear factor of activated T cells (NFAT), tartrate resistant acid phosphatase (TRAP) and V-ATPase (VATP) in osteoclasts were significantly reduced on LBL (NA) coated-Ti surfaces compared with other groups. These results indicate that microstructured titanium functionalized by naringin inserted multilayers enhanced the differentiation of osteoblasts and inhibited osteoclast formation. The proposed approach in this research provides a novel way to modify titanium-based implants for fracture repair in osteoporosis patients.
Collapse
Affiliation(s)
- Ke Shen
- School of Life Science, Jiangsu Normal University, Xuzhou, Jiangsu, China
| | - Xiaojing Zhang
- School of Life Science, Jiangsu Normal University, Xuzhou, Jiangsu, China
| | - Qiang Tang
- School of Life Science, Jiangsu Normal University, Xuzhou, Jiangsu, China
| | - Xingtang Fang
- School of Life Science, Jiangsu Normal University, Xuzhou, Jiangsu, China
| | - Chunlei Zhang
- School of Life Science, Jiangsu Normal University, Xuzhou, Jiangsu, China
| | - Zhaojing Zhu
- Chongqing Engineering Research Center of Pharmaceutical Sciences, Chongqing Medical and Pharmaceutical College, Chongqing, China
| | - Yanhua Hou
- Chongqing Engineering Research Center of Pharmaceutical Sciences, Chongqing Medical and Pharmaceutical College, Chongqing, China
| | - Min Lai
- School of Life Science, Jiangsu Normal University, Xuzhou, Jiangsu, China
| |
Collapse
|
20
|
Inflammation and tumor progression: signaling pathways and targeted intervention. Signal Transduct Target Ther 2021; 6:263. [PMID: 34248142 PMCID: PMC8273155 DOI: 10.1038/s41392-021-00658-5] [Citation(s) in RCA: 1199] [Impact Index Per Article: 299.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2021] [Revised: 05/11/2021] [Accepted: 05/23/2021] [Indexed: 02/06/2023] Open
Abstract
Cancer development and its response to therapy are regulated by inflammation, which either promotes or suppresses tumor progression, potentially displaying opposing effects on therapeutic outcomes. Chronic inflammation facilitates tumor progression and treatment resistance, whereas induction of acute inflammatory reactions often stimulates the maturation of dendritic cells (DCs) and antigen presentation, leading to anti-tumor immune responses. In addition, multiple signaling pathways, such as nuclear factor kappa B (NF-kB), Janus kinase/signal transducers and activators of transcription (JAK-STAT), toll-like receptor (TLR) pathways, cGAS/STING, and mitogen-activated protein kinase (MAPK); inflammatory factors, including cytokines (e.g., interleukin (IL), interferon (IFN), and tumor necrosis factor (TNF)-α), chemokines (e.g., C-C motif chemokine ligands (CCLs) and C-X-C motif chemokine ligands (CXCLs)), growth factors (e.g., vascular endothelial growth factor (VEGF), transforming growth factor (TGF)-β), and inflammasome; as well as inflammatory metabolites including prostaglandins, leukotrienes, thromboxane, and specialized proresolving mediators (SPM), have been identified as pivotal regulators of the initiation and resolution of inflammation. Nowadays, local irradiation, recombinant cytokines, neutralizing antibodies, small-molecule inhibitors, DC vaccines, oncolytic viruses, TLR agonists, and SPM have been developed to specifically modulate inflammation in cancer therapy, with some of these factors already undergoing clinical trials. Herein, we discuss the initiation and resolution of inflammation, the crosstalk between tumor development and inflammatory processes. We also highlight potential targets for harnessing inflammation in the treatment of cancer.
Collapse
|
21
|
Rojas C, García MP, Polanco AF, González-Osuna L, Sierra-Cristancho A, Melgar-Rodríguez S, Cafferata EA, Vernal R. Humanized Mouse Models for the Study of Periodontitis: An Opportunity to Elucidate Unresolved Aspects of Its Immunopathogenesis and Analyze New Immunotherapeutic Strategies. Front Immunol 2021; 12:663328. [PMID: 34220811 PMCID: PMC8248545 DOI: 10.3389/fimmu.2021.663328] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Accepted: 05/10/2021] [Indexed: 12/17/2022] Open
Abstract
Periodontitis is an oral inflammatory disease in which the polymicrobial synergy and dysbiosis of the subgingival microbiota trigger a deregulated host immune response, that leads to the breakdown of tooth-supporting tissues and finally tooth loss. Periodontitis is characterized by the increased pathogenic activity of T helper type 17 (Th17) lymphocytes and defective immunoregulation mediated by phenotypically unstable T regulatory (Treg), lymphocytes, incapable of resolving the bone-resorbing inflammatory milieu. In this context, the complexity of the immune response orchestrated against the microbial challenge during periodontitis has made the study of its pathogenesis and therapy difficult and limited. Indeed, the ethical limitations that accompany human studies can lead to an insufficient etiopathogenic understanding of the disease and consequently, biased treatment decision-making. Alternatively, animal models allow us to manage these difficulties and give us the opportunity to partially emulate the etiopathogenesis of periodontitis by inoculating periodontopathogenic bacteria or by placing bacteria-accumulating ligatures around the teeth; however, these models still have limited translational application in humans. Accordingly, humanized animal models are able to emulate human-like complex networks of immune responses by engrafting human cells or tissues into specific strains of immunodeficient mice. Their characteristics enable a viable time window for the study of the establishment of a specific human immune response pattern in an in vivo setting and could be exploited for a wider study of the etiopathogenesis and/or treatment of periodontitis. For instance, the antigen-specific response of human dendritic cells against the periodontopathogen Porphyromonas gingivalis favoring the Th17/Treg response has already been tested in humanized mice models. Hypothetically, the proper emulation of periodontal dysbiosis in a humanized animal could give insights into the subtle molecular characteristics of a human-like local and systemic immune response during periodontitis and support the design of novel immunotherapeutic strategies. Therefore, the aims of this review are: To elucidate how the microbiota-elicited immunopathogenesis of periodontitis can be potentially emulated in humanized mouse models, to highlight their advantages and limitations in comparison with the already available experimental periodontitis non-humanized animal models, and to discuss the potential translational application of using these models for periodontitis immunotherapeutics.
Collapse
Affiliation(s)
- Carolina Rojas
- Periodontal Biology Laboratory, Faculty of Dentistry, Universidad de Chile, Santiago, Chile
| | - Michelle P García
- Periodontal Biology Laboratory, Faculty of Dentistry, Universidad de Chile, Santiago, Chile
| | - Alan F Polanco
- Periodontal Biology Laboratory, Faculty of Dentistry, Universidad de Chile, Santiago, Chile
| | - Luis González-Osuna
- Periodontal Biology Laboratory, Faculty of Dentistry, Universidad de Chile, Santiago, Chile
| | - Alfredo Sierra-Cristancho
- Periodontal Biology Laboratory, Faculty of Dentistry, Universidad de Chile, Santiago, Chile.,Faculty of Dentistry, Universidad Andres Bello, Santiago, Chile
| | - Samanta Melgar-Rodríguez
- Periodontal Biology Laboratory, Faculty of Dentistry, Universidad de Chile, Santiago, Chile.,Department of Conservative Dentistry, Faculty of Dentistry, Universidad de Chile, Santiago, Chile
| | - Emilio A Cafferata
- Periodontal Biology Laboratory, Faculty of Dentistry, Universidad de Chile, Santiago, Chile.,Department of Periodontology, School of Dentistry, Universidad Científica del Sur, Lima, Perú
| | - Rolando Vernal
- Periodontal Biology Laboratory, Faculty of Dentistry, Universidad de Chile, Santiago, Chile.,Department of Conservative Dentistry, Faculty of Dentistry, Universidad de Chile, Santiago, Chile
| |
Collapse
|
22
|
Brito VGB, Patrocinio MS, Sousa MCL, Barreto AEA, Frasnelli SCT, Lara VS, Santos CF, Oliveira SHP. Mast cells contribute to alveolar bone loss in Spontaneously Hypertensive Rats with periodontal disease regulating cytokines production. PLoS One 2021; 16:e0247372. [PMID: 33661916 PMCID: PMC7932174 DOI: 10.1371/journal.pone.0247372] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Accepted: 02/05/2021] [Indexed: 12/28/2022] Open
Abstract
Mast cells (MCs) play a pivotal role in inflammatory responses and had been studied in inflammatory bone disorders, however, their role in alveolar bone loss induced by periodontal disease (PD) is not yet fully understood. We, therefore, aimed to evaluate the effects of MCs depletion in the PD-induced alveolar bone loss in Wistar (W) and Spontaneously Hypertensive Rats (SHRs). PD was induced by ligating the lower first molars with silk thread one day after the MCs depletion, by the pre-treatment with compound 48/80 for 4 days. After 15 days of PD induction, the hemi-mandibles were surgically collected for qRT-PCR, histological analyses, immunostaining, and ELISA. Systolic blood pressure (SBP) was verified by tail plethysmography to confirm the hypertensive status, and SHR presented SBP >150 mmHg, and previous MC depletion alone or associated with PD did not alter this parameter. SHRs showed a more severe alveolar bone loss compared to W, and MC depletion significantly inhibited this response in both strains, with a more significant response in SHRs. MCs were less abundant in 48/80+PD groups, thus validating the previous MCs depletion in our model. PD increased the number of MC in the gingival tissue of SHR. Cytokine production (TNF-α, IL-6, IL-1β, and CXCL3) was constitutively higher in SHR and increased further after PD, which was also significantly reduced in the MCs-depleted animals. PD led to an increased expression of Opn, Rankl, Rank, Vtn, Itga5, Itgb5, Trap, and Ctsk in the mandible of W and SHRs, which was reversed in MCs-depleted animals. These results suggest that MCs significantly contributes to the PD-induced alveolar bone resorption, especially in the SHR, which is associated with a more severe PD progression compared to Wistar, partly explained by these cells contribution to the inflammatory status and mediator production, stimulating osteoclast-related response markers, which were reduced after MC depletion in our experimental model.
Collapse
Affiliation(s)
- Victor Gustavo Balera Brito
- Programa Multicêntrico de Pós-graduação em Ciências Fisiológicas, SBFis, São Paulo State University (UNESP), School of Dentistry, Araçatuba, SP, Brazil
- Department of Basic Sciences, São Paulo State University (UNESP), School of Dentistry, Araçatuba, SP, Brazil
| | - Mariana Sousa Patrocinio
- Department of Basic Sciences, São Paulo State University (UNESP), School of Dentistry, Araçatuba, SP, Brazil
| | | | - Ayná Emanuelli Alves Barreto
- Programa Multicêntrico de Pós-graduação em Ciências Fisiológicas, SBFis, São Paulo State University (UNESP), School of Dentistry, Araçatuba, SP, Brazil
- Department of Basic Sciences, São Paulo State University (UNESP), School of Dentistry, Araçatuba, SP, Brazil
| | | | - Vanessa Soares Lara
- Department of Biological Science, Bauru School of Dentistry, University of São Paulo (USP), SP, Brazil
| | - Carlos Ferreira Santos
- Department of Stomatology, Bauru School of Dentistry, University of São Paulo (USP), SP, Brazil
| | - Sandra Helena Penha Oliveira
- Programa Multicêntrico de Pós-graduação em Ciências Fisiológicas, SBFis, São Paulo State University (UNESP), School of Dentistry, Araçatuba, SP, Brazil
- Department of Basic Sciences, São Paulo State University (UNESP), School of Dentistry, Araçatuba, SP, Brazil
- * E-mail:
| |
Collapse
|
23
|
Heo SC, Kim YN, Choi Y, Joo JY, Hwang JJ, Bae MK, Kim HJ. Elevated Expression of Cathepsin K in Periodontal Ligament Fibroblast by Inflammatory Cytokines Accelerates Osteoclastogenesis via Paracrine Mechanism in Periodontal Disease. Int J Mol Sci 2021; 22:E695. [PMID: 33445732 PMCID: PMC7828200 DOI: 10.3390/ijms22020695] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 01/04/2021] [Accepted: 01/09/2021] [Indexed: 12/15/2022] Open
Abstract
Cathepsin K (CTSK) is a cysteine protease that is mainly produced from mature osteoclasts and contributes to the destruction of connective tissues and mineralized matrix as a consequence of periodontal disease (PD). However, few studies have reported its regulatory role in osteoclastogenesis-supporting cells in inflammatory conditions. Here, we investigated the role of CTSK in osteoclastogenesis-supporting cells, focusing on the modulation of paracrine function. Microarray data showed that CTSK was upregulated in PD patients compared with healthy individuals, which was further supported by immunohistochemistry and qPCR analyses performed with human gingival tissues. The expression of CTSK in the osteoclastogenesis-supporting cells, including dental pulp stem cells, gingival fibroblasts, and periodontal ligament fibroblasts (PDLFs) was significantly elevated by treatment with inflammatory cytokines such as TNFα and IL-1β. Moreover, TNFα stimulation potentiated the PDLF-mediated osteoclastogenesis of bone marrow-derived macrophages. Interestingly, small interfering RNA-mediated silencing of CTSK in PDLF noticeably attenuated the TNFα-triggered upregulation of receptor activator of nuclear factor kappa-B ligand (RANKL), macrophage colony-stimulating factor, and RANKL/osteoprotegerin ratio, thereby abrogating the enhanced osteoclastogenesis-supporting activity of PDLF. Collectively, these results suggest a novel role of CTSK in the paracrine function of osteoclastogenesis-supporting cells in periodontal disease.
Collapse
Affiliation(s)
- Soon Chul Heo
- Department of Oral Physiology, Periodontal Diseases Signaling Network Research Center, Dental and Life Science Institute, School of Dentistry, Pusan National University, Yangsan 50612, Korea; (S.C.H.); (Y.N.K.); (Y.C.); (M.-K.B.)
| | - Yu Na Kim
- Department of Oral Physiology, Periodontal Diseases Signaling Network Research Center, Dental and Life Science Institute, School of Dentistry, Pusan National University, Yangsan 50612, Korea; (S.C.H.); (Y.N.K.); (Y.C.); (M.-K.B.)
| | - YunJeong Choi
- Department of Oral Physiology, Periodontal Diseases Signaling Network Research Center, Dental and Life Science Institute, School of Dentistry, Pusan National University, Yangsan 50612, Korea; (S.C.H.); (Y.N.K.); (Y.C.); (M.-K.B.)
| | - Ji-Young Joo
- Department of Periodontology and Dental Research Institute, Pusan National University Dental Hospital, Yangsan 50612, Korea;
| | - Jae Joon Hwang
- Department of Oral and Maxillofacial Radiology and Dental Research Institute, Pusan National University, Yangsan 50612, Korea;
| | - Moon-Kyoung Bae
- Department of Oral Physiology, Periodontal Diseases Signaling Network Research Center, Dental and Life Science Institute, School of Dentistry, Pusan National University, Yangsan 50612, Korea; (S.C.H.); (Y.N.K.); (Y.C.); (M.-K.B.)
| | - Hyung Joon Kim
- Department of Oral Physiology, Periodontal Diseases Signaling Network Research Center, Dental and Life Science Institute, School of Dentistry, Pusan National University, Yangsan 50612, Korea; (S.C.H.); (Y.N.K.); (Y.C.); (M.-K.B.)
| |
Collapse
|
24
|
Inhibition of Cathepsin K Alleviates Autophagy-Related Inflammation in Periodontitis-Aggravating Arthritis. Infect Immun 2020; 88:IAI.00498-20. [PMID: 32900814 DOI: 10.1128/iai.00498-20] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Accepted: 08/31/2020] [Indexed: 02/05/2023] Open
Abstract
Rheumatoid arthritis (RA) and periodontitis share many epidemiological and pathological features, with emerging studies reporting a relationship between the two diseases. Recently, RA and periodontitis have been associated with autophagy. In the present study, we investigated the effects of cathepsin K (CtsK) inhibition on RA with periodontitis in a mouse model and its immunological function affecting autophagy. To topically inhibit CtsK periodontitis with arthritis in the animal model, adeno-associated virus (AAV) transfection was performed in periodontal and knee joint regions. Transfection of small interfering RNA (siRNA) was performed to inhibit CtsK in RAW264.7 cells. The effects of CtsK inhibition on the autophagy pathway were then evaluated in both in vivo and in vitro experiments. RA and periodontitis aggravated destruction and inflammation in their respective lesion areas. Inhibition of CtsK had multiple effects: (i) reduced destruction of alveolar bone and articular tissue, (ii) decreased macrophage numbers and inflammatory cytokine expression in the synovium, and (iii) alleviated expression of the autophagy-related transcription factor EB (TFEB) and microtubule-associated protein 1A/1B-light chain 3 (LC3) at the protein level in knee joints. Inhibition of CtsK in vitro reduced the expression of autophagy-related proteins and related inflammatory factors. Our data revealed that the inhibition of CtsK resisted the destruction of articular tissues and relieved inflammation from RA with periodontitis. Furthermore, CtsK was implicated as an imperative regulator of the autophagy pathway in RA and macrophages.
Collapse
|
25
|
Involvement of Cathepsins in Innate and Adaptive Immune Responses in Periodontitis. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2020; 2020:4517587. [PMID: 32328131 PMCID: PMC7150685 DOI: 10.1155/2020/4517587] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Revised: 02/27/2020] [Accepted: 03/07/2020] [Indexed: 12/25/2022]
Abstract
Periodontitis is an infectious disease whereby the chronic inflammatory process of the periodontium stimulated by bacterial products induces specific host cell responses. The activation of the host cell immune system upregulates the production of inflammatory mediators, comprising cytokines and proteolytic enzymes, which contribute to inflammation and bone destruction. It has been well known that periodontitis is related to systemic inflammation which links to numerous systemic diseases, including diabetes and arteriosclerosis. Furthermore, periodontitis has been reported in association with neurodegenerative diseases such as Alzheimer's disease (AD) in the brain. Regarding immune responses and inflammation, cathepsin B (CatB) plays pivotal role for the induction of IL-1β, cathepsin K- (CatK-) dependent active toll-like receptor 9 (TLR9) signaling, and cathepsin S (CatS) which involves in regulating both TLR signaling and maturation of the MHC class II complex. Notably, both the production and proteolytic activities of cathepsins are upregulated in chronic inflammatory diseases, including periodontitis. In the present review, we focus on the roles of cathepsins in the innate and adaptive immune responses within periodontitis. We believe that understanding the roles of cathepsins in the immune responses in periodontitis would help to elucidate the therapeutic strategies of periodontitis, thus benefit for reduction of systemic diseases as well as neurodegenerative diseases in the global aging society.
Collapse
|
26
|
Wei W, Ren J, Yin W, Ding H, Lu Q, Tan L, Deng S, Liu J, Yang Q, Wang J, Wang M, Yue Y, Hao L. Inhibition of Ctsk modulates periodontitis with arthritis via downregulation of TLR9 and autophagy. Cell Prolif 2019; 53:e12722. [PMID: 31737959 PMCID: PMC6985664 DOI: 10.1111/cpr.12722] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Revised: 10/21/2019] [Accepted: 10/23/2019] [Indexed: 02/05/2023] Open
Abstract
Objectives The mechanisms underlying the effects of Toll‐like receptor 9 (TLR9) and autophagy on rheumatoid arthritis (RA)‐aggravated periodontitis are unclear. We aimed to explore a novel target, cathepsin K (Ctsk)‐mediated TLR9‐related autophagy, during the progress of periodontitis with RA. Materials and Methods DBA/J1 mouse model of periodontitis with RA was created by local colonization of Porphyromonas gingivalis (Pg) and injection of collagen. The expression of Ctsk was inhibited by adeno‐associated virus (AAV). Micro‐CT, immunohistochemistry (IHC), Western blot and quantitative real‐time polymerase chain reaction (qRT‐PCR) were used to detect the expression of TLR9‐related autophagy in periodontitis with RA. Small interfering RNA (siRNA) and CpG oligodeoxynucleotides (CpG ODN) were applied in macrophages. Western blot, immunofluorescence (IF) and qRT‐PCR were used to verify the in vivo results. Results RA can promote periodontitis bone destruction in the lesion area, while inhibiting Ctsk could effectively alleviate this effect. The infiltration of macrophages, TLR9, autophagy proteins (TFEB and LC3) and inflammatory cytokines increased in the periodontitis‐with‐RA group and was reduced by the inhibition of Ctsk in the periodontal region. Macrophage stimulation confirmed the in vivo results. With the activation of TLR9 by CpG ODN, inhibition of Ctsk could suppress both TLR9 downstream signalling proteins and autophagy‐related proteins. Conclusions This study advanced a novel role for Ctsk in TLR9 and autophagy to explain the interaction between periodontitis and RA.
Collapse
Affiliation(s)
- Wei Wei
- The State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Sichuan, China
| | - Jie Ren
- The State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Sichuan, China
| | - Wuwei Yin
- The State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Sichuan, China.,Stomatological Hospital, Southern Medical University, Guangzhou, China
| | - Handong Ding
- The State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Sichuan, China
| | - Qiuyu Lu
- The State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Sichuan, China
| | - Liangyu Tan
- The State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Sichuan, China
| | - Shibing Deng
- The State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Sichuan, China
| | - Jie Liu
- The State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Sichuan, China
| | - Qin Yang
- The State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Sichuan, China
| | - Jiajia Wang
- The State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Sichuan, China
| | - Min Wang
- The State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Sichuan, China
| | - Yuan Yue
- The State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Sichuan, China
| | - Liang Hao
- The State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Sichuan, China
| |
Collapse
|
27
|
Pan W, Wang Q, Chen Q. The cytokine network involved in the host immune response to periodontitis. Int J Oral Sci 2019; 11:30. [PMID: 31685798 PMCID: PMC6828663 DOI: 10.1038/s41368-019-0064-z] [Citation(s) in RCA: 397] [Impact Index Per Article: 66.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Accepted: 07/29/2019] [Indexed: 02/06/2023] Open
Abstract
Periodontitis is an inflammatory disease involving the destruction of both soft and hard tissue in the periodontal region. Although dysbiosis of the local microbial community initiates local inflammation, over-activation of the host immune response directly activates osteoclastic activity and alveolar bone loss. Many studies have reported on the cytokine network involved in periodontitis and its crucial and pleiotropic effect on the recruitment of specific immunocytes, control of pathobionts and induction or suppression of osteoclastic activity. Nonetheless, particularities in the stimulation of pathogens in the oral cavity that lead to the specific and complex periodontal cytokine network are far from clarified. Thus, in this review, we begin with an up-to-date aetiological hypothesis of periodontal disease and summarize the roles of cytokines in the host immune response. In addition, we also summarize the latest cytokine-related therapeutic measures for periodontal disease.
Collapse
Affiliation(s)
- Weiyi Pan
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Qingxuan Wang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Qianming Chen
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, Chengdu, China.
| |
Collapse
|
28
|
Balmasova IP, Lomakin YA, Babaev EA, Tsarev VN, Gabibov AG, Smirnov IV, Knorre VD, Ovchinnikova LA, Gnuchev NV, Khurs EN, Deev MS, Kostin NN, Arutyunov SD. "Shielding" of Cytokine Induction by the Periodontal Microbiome in Patients with Periodontitis Associated with Type 2 Diabetes Mellitus. Acta Naturae 2019; 11:79-87. [PMID: 31993238 PMCID: PMC6977959 DOI: 10.32607/20758251-2019-11-4-79-87] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Accepted: 12/02/2019] [Indexed: 12/23/2022] Open
Abstract
Periodontal diseases, especially those with polymicrobial etiology, are often associated with type 2 diabetes mellitus, proceeding more severely and affecting the course of diabetes mellitus. Recently, this feature has been associated with the ability of periodontopathogen microflora to cause not only a local infectious process in the oral cavity, but also to interact with the human immune system and induce various systemic effects. We investigated changes in the salivary cytokine profile of patients with chronic periodontitis, associated and not associated with type 2 diabetes mellitus. We observed a statistically significant decrease of MCP-1/CCL2, GM-CSF, IL-5, IL-6, and IFN-γ in the saliva of patients with chronic periodontitis associated with type 2 diabetes mellitus in comparison with patients with chronic periodontitis only. All of these cytokines are associated with macrophage activation. These data are an important contribution to the elucidation of the mechanism of periodontopathogens involvement in the manifestation of the systemic effects of type 2 diabetes.
Collapse
Affiliation(s)
- I. P. Balmasova
- A.I. Evdokimov Moscow State University of Medicine and Dentistry of the Ministry of Healthcare of the Russian Federation, Moscow, 127473 Russia
| | - Y. A. Lomakin
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry RAS, Moscow, 117997 Russia
| | - E. A. Babaev
- A.I. Evdokimov Moscow State University of Medicine and Dentistry of the Ministry of Healthcare of the Russian Federation, Moscow, 127473 Russia
| | - V. N. Tsarev
- A.I. Evdokimov Moscow State University of Medicine and Dentistry of the Ministry of Healthcare of the Russian Federation, Moscow, 127473 Russia
| | - A. G. Gabibov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry RAS, Moscow, 117997 Russia
| | - I. V. Smirnov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry RAS, Moscow, 117997 Russia
| | - V. D. Knorre
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry RAS, Moscow, 117997 Russia
| | - L. A. Ovchinnikova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry RAS, Moscow, 117997 Russia
| | - N. V. Gnuchev
- Engelhardt Institute of Molecular Biology, RAS, Moscow, 119991 Russia
| | - E. N. Khurs
- Engelhardt Institute of Molecular Biology, RAS, Moscow, 119991 Russia
| | - M. S. Deev
- Peoples’ Friendship University of Russia, Moscow, 117198 Russia
| | - N. N. Kostin
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry RAS, Moscow, 117997 Russia
| | - S. D. Arutyunov
- A.I. Evdokimov Moscow State University of Medicine and Dentistry of the Ministry of Healthcare of the Russian Federation, Moscow, 127473 Russia
| |
Collapse
|