1
|
Siqueira BS, Gomes ECZ, Rentz T, Malta A, de Freitas Mathias PC, Balbo SL, Grassiolli S. Vagal Splenic-Dependent Effects Influence Glucose Homeostasis, Insulin Secretion, and Histopathology of the Endocrine Pancreas in Hypothalamic Obese Male Rats: Vagus Nerve and Spleen Interactions Affect the Endocrine Pancreas. ScientificWorldJournal 2025; 2025:9910997. [PMID: 40276696 PMCID: PMC12021492 DOI: 10.1155/tswj/9910997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Accepted: 02/20/2025] [Indexed: 04/26/2025] Open
Abstract
Vagus nerve (VN) and spleen dysfunctions are often associated with obesity (Ob). Aim: We evaluated the effects of VN and spleen ablation on adiposity, metabolism, and insulin secretion in hypothalamic obese male rats. Methods: Ob was induced by neonatal subcutaneous injection of monosodium glutamate (4 g/kg). At 60 days of life, Ob animals were randomly distributed into four groups (n = 16 rats/group): sham operation (SHAM), vagotomy (VAG), splenectomy (SPL), and VAG + SPL. Body weight and food intake were monitored for 8 weeks postsurgery. Intraperitoneal glucose tolerance test (ipGTT) and intraperitoneal pyruvate tolerance test (ipPTT) were performed at 148 days of life, and VN activity was recorded at 150 days. After euthanasia (150 days), adiposity, plasma biochemical parameters, glucose-induced insulin secretion (GIIS), and cholinergic and adrenergic islet responsiveness were evaluated. The pancreas was submitted for histopathological analysis, and the protein content of OXPHOS and IL-10 was evaluated in isolated pancreatic islets. Results: Decreased VN activity was confirmed in the Ob-VAG groups, associated with lower visceral adiposity, triglycerides, and plasma insulin, together with improved insulin sensibility and pyruvate tolerance, compared to Ob-SHAM rats. Spleen absence reduced VN activity and cholinergic insulinotropic responses, with deleterious effects on the endocrine pancreas. Furthermore, Ob-VAG + SPL rats presented greater reductions in GIIS and more severe endocrine pancreas histopathology, compared to the Ob-SHAM group, without altered islet size or number or protein content of OXPHOS or IL-10. Conclusion: Vagal and splenic interactions contribute to glucose homeostasis control in hypothalamic obese rats, modulating insulin secretion and pancreas histology.
Collapse
Affiliation(s)
- Bruna Schumaker Siqueira
- Programa de Pós-Graduação em Biociências e Saúde, Universidade Estadual do Oeste do Paraná-Campus de Cascavel, Cascavel, Brazil
| | - Ellen Carolina Zawoski Gomes
- Programa de Pós-Graduação em Biociências e Saúde, Universidade Estadual do Oeste do Paraná-Campus de Cascavel, Cascavel, Brazil
- Centro Universitario Fundacao Assis Gurgacz, Cascavel, Brazil
| | - Thiago Rentz
- Brigham and Women's Hospital, Boston, Massachusetts, USA
| | - Ananda Malta
- Universidade Estadual de Maringa, Maringá, Brazil
| | | | - Sandra Lucinei Balbo
- Programa de Pós-Graduação em Biociências e Saúde, Universidade Estadual do Oeste do Paraná-Campus de Cascavel, Cascavel, Brazil
| | - Sabrina Grassiolli
- Programa de Pós-Graduação em Biociências e Saúde, Universidade Estadual do Oeste do Paraná-Campus de Cascavel, Cascavel, Brazil
| |
Collapse
|
2
|
Brito CF, Fonseca RC, Rodrigues-Ribeiro L, Guimarães JSF, Vaz BF, Tofani GSS, Batista ACS, Diniz AB, Fernandes P, Nunes NAM, Pessoa RM, Oliveira ACC, Lula IS, Cardoso VN, Fernandes SOA, Poletini MO, Alvarez-Leite JI, Menezes GB, Ferreira AVM, Magalhães MTQ, Gorshkov V, Kjeldsen F, Verano-Braga T, Araujo AM, Oliveira AG. Vagus Nerve Mediated Liver-Brain-Axis Is a Major Regulator of the Metabolic Landscape in the Liver. Int J Mol Sci 2025; 26:2166. [PMID: 40076796 PMCID: PMC11901116 DOI: 10.3390/ijms26052166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2025] [Revised: 02/17/2025] [Accepted: 02/21/2025] [Indexed: 03/14/2025] Open
Abstract
The liver serves as a major energetic reservoir for other tissues and its metabolic function is controlled by humoral and neural factors. The vagus nerve innervating the gastrointestinal tract plays an important role in regulating peripheral metabolism and energy expenditure. Although the liver receives vagus nerve fibers, the impact of this circuitry in the regulation of hepatic metabolism is still poorly understood. Herein, we used a combination of quantitative proteomics and in vivo imaging techniques to investigate the impact of the vagus nerve on liver metabolism in male mice. Liver-brain axis was impaired by vagotomy (VNX) or knocking down of the vesicular acetylcholine transporter (VAChT-KD). Mice were challenged with high carbohydrate or high-fat feeding. The vagus nerve shapes the metabolic framework of the liver, as vagotomy led to a significant alteration of the hepatic proteome landscape. Differential protein expression and pathway enrichment analyses showed that glycolytic and fatty acid biosynthesis were increased following VNX, whereas β-oxidation was decreased. These results were corroborated in VAChT-KD mice. This metabolic shift facilitated lipid accumulation in hepatocytes in mice fed with a standard commercial diet. Furthermore, VNX worsened liver steatosis following high-carbohydrate or high-fat dietary challenges. This study describes the liver-brain axis mediated by the vagus nerve as an important regulator of the hepatic metabolic landscape.
Collapse
Affiliation(s)
- Camila F. Brito
- Department of Physiology and Biophysics, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, Brazil; (C.F.B.); (R.C.F.)
| | - Roberta C. Fonseca
- Department of Physiology and Biophysics, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, Brazil; (C.F.B.); (R.C.F.)
| | - Lucas Rodrigues-Ribeiro
- Department of Physiology and Biophysics, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, Brazil; (C.F.B.); (R.C.F.)
| | - João S. F. Guimarães
- Department of Physiology and Biophysics, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, Brazil; (C.F.B.); (R.C.F.)
| | - Bruna F. Vaz
- Department of Physiology and Biophysics, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, Brazil; (C.F.B.); (R.C.F.)
| | - Gabriel S. S. Tofani
- Department of Physiology and Biophysics, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, Brazil; (C.F.B.); (R.C.F.)
| | - Ana C. S. Batista
- Department of Biochemistry and Immunology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, Brazil
| | - Ariane B. Diniz
- Department of Morphology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, Brazil
| | - Paola Fernandes
- Department of Physiology and Biophysics, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, Brazil; (C.F.B.); (R.C.F.)
| | - Núbia A. M. Nunes
- Department of Biochemistry and Immunology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, Brazil
| | - Rafaela M. Pessoa
- Department of Clinical and Toxicological Analysis, College of Pharmacy, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, Brazil
| | - Amanda C. C. Oliveira
- Department of Nutrition, Nursing School, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, Brazil
| | - Ivana S. Lula
- Department of Chemistry, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, Brazil;
| | - Valbert N. Cardoso
- Department of Clinical and Toxicological Analysis, College of Pharmacy, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, Brazil
| | - Simone O. A. Fernandes
- Department of Clinical and Toxicological Analysis, College of Pharmacy, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, Brazil
| | - Maristela O. Poletini
- Department of Physiology and Biophysics, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, Brazil; (C.F.B.); (R.C.F.)
| | - Jacqueline I. Alvarez-Leite
- Department of Biochemistry and Immunology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, Brazil
| | - Gustavo B. Menezes
- Department of Morphology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, Brazil
| | - Adaliene V. M. Ferreira
- Department of Nutrition, Nursing School, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, Brazil
| | - Mariana T. Q. Magalhães
- Department of Biochemistry and Immunology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, Brazil
| | - Vladimir Gorshkov
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, 5230 Odense, Denmark
| | - Frank Kjeldsen
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, 5230 Odense, Denmark
| | - Thiago Verano-Braga
- Department of Physiology and Biophysics, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, Brazil; (C.F.B.); (R.C.F.)
| | - Alan M. Araujo
- Department of Neuroscience, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Monell Chemical Senses Center, Philadelphia, PA 19104, USA
| | - André G. Oliveira
- Department of Physiology and Biophysics, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, Brazil; (C.F.B.); (R.C.F.)
| |
Collapse
|
3
|
Su YQ, Lin Y, Huang SJ, Lin YT, Ran J, Yan FF, Liu XL, Hong LC, Huang M, Su HZ, Zhang XD, You JH, Su YM. Pyroptosis is involved in maternal nicotine exposure-induced metabolic associated fatty liver disease progression in offspring mice. Mol Reprod Dev 2024; 91:e23719. [PMID: 38018308 DOI: 10.1002/mrd.23719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Revised: 10/29/2023] [Accepted: 11/20/2023] [Indexed: 11/30/2023]
Abstract
We have investigated whether inflammasomes and pyroptosis are activated in maternal nicotine exposure (MNE) offspring mice and whether they are involved in MNE-promoted metabolic associated fatty liver disease (MAFLD) in adult offspring. We injected pregnant mice subcutaneously with saline vehicle or nicotine twice a day on gestational days 11-21. Offspring mice from both groups were fed with a normal diet (ND) or a high-fat diet (HFD) for 6 months at postnatal day 21 to develop the MAFLD model. Serum biochemical indices were analyzed, and liver histology was performed. The expression levels of inflammasome and pyroptosis proteins were detected by western blot. We found MNE significantly aggravated the injury of MAFLD in adult offspring mice. MNE activated inflammasomes and pyroptosis in both infant and adult offspring mice. HFD treatment activated inflammasomes but not pyroptosis at 3 months, while it showed no effect at 6 months. However, pyroptosis was more severe in MNE-HFD mice than in MNE-ND mice at 6 months. Taken together, our data suggest MNE promotes MAFLD progression in adult offspring mice. MNE also induces NLRP3 and NLRP6 inflammasome activation and pyroptosis in both infant and adult offspring mice, which may be involved in MNE-promoted progression of MAFLD.
Collapse
Affiliation(s)
- Yu-Qing Su
- Department of Ultrasound, The School of Clinical Medicine, Fujian Medical University, Fuzhou, China
- Department of Ultrasound, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Yan Lin
- Department of Ultrasound, Fujian Maternity and Child Health Hospital College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, Fuzhou, China
| | - Shu-Jing Huang
- Department of Ultrasound, The School of Clinical Medicine, Fujian Medical University, Fuzhou, China
- Department of Ultrasound, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Yan-Ting Lin
- Department of Ultrasound, The School of Clinical Medicine, Fujian Medical University, Fuzhou, China
- Department of Ultrasound, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Jing Ran
- Department of Gynecology and Obstetrics, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Fang-Fang Yan
- Department of Endocrinology and Diabetes, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Xian-Lan Liu
- Department of Ultrasound, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Long-Cheng Hong
- Department of Ultrasound, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Mei Huang
- Department of Ultrasound, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Huan-Zhong Su
- Department of Ultrasound, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Xiao-Dong Zhang
- Department of Ultrasound, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Jian-Hong You
- Department of Ultrasound, Zhongshan Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Yi-Ming Su
- Department of Ultrasound, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
- Department of Ultrasound, Siming Branch Hospital, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
- Collaborative Innovation Center for Maternal and Infant Health Service Application technology, Quanzhou Medical College, Quanzhou, China
| |
Collapse
|
4
|
Jun H, Liu S, Knights AJ, Zhu K, Ma Y, Gong J, Lenhart AE, Peng X, Huang Y, Ginder JP, Downie CH, Ramos ET, Kullander K, Kennedy RT, Xu XZS, Wu J. Signaling through the nicotinic acetylcholine receptor in the liver protects against the development of metabolic dysfunction-associated steatohepatitis. PLoS Biol 2024; 22:e3002728. [PMID: 39028754 PMCID: PMC11290650 DOI: 10.1371/journal.pbio.3002728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 07/31/2024] [Accepted: 07/02/2024] [Indexed: 07/21/2024] Open
Abstract
Metabolic dysfunction-associated steatohepatitis (MASH) is the progressive form of liver steatosis, the most common liver disease, and substantially increases the mortality rate. However, limited therapies are currently available to prevent MASH development. Identifying potential pharmacological treatments for the condition has been hampered by its heterogeneous and complex nature. Here, we identified a hepatic nonneuronal cholinergic signaling pathway required for metabolic adaptation to caloric overload. We found that cholinergic receptor nicotinic alpha 2 subunit (CHRNA2) is highly expressed in hepatocytes of mice and humans. Further, CHRNA2 is activated by a subpopulation of local acetylcholine-producing macrophages during MASH development. The activation of CHRNA2 coordinates defensive programs against a broad spectrum of MASH-related pathogenesis, including steatosis, inflammation, and fibrosis. Hepatocyte-specific loss of CHRNA2 signaling accelerates the disease onset in different MASH mouse models. Activation of this pathway via pharmacological inhibition of acetylcholine degradation protects against MASH development. Our study uncovers a hepatic nicotinic cholinergic receptor pathway that constitutes a cell-autonomous self-defense route against prolonged metabolic stress and holds therapeutic potential for combatting human MASH.
Collapse
Affiliation(s)
- Heejin Jun
- Life Sciences Institute, University of Michigan, Ann Arbor, Michigan, United States of America
- Department of Nutritional Sciences, College of Human Sciences, Texas Tech University, Lubbock, Texas, United States of America
| | - Shanshan Liu
- Life Sciences Institute, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Alexander J. Knights
- Life Sciences Institute, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Kezhou Zhu
- Life Sciences Institute, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Yingxu Ma
- Life Sciences Institute, University of Michigan, Ann Arbor, Michigan, United States of America
- Department of Cardiology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Jianke Gong
- Life Sciences Institute, University of Michigan, Ann Arbor, Michigan, United States of America
- International Research Center for Sensory Biology and Technology of MOST, Key Laboratory of Molecular Biophysics of MOE, and College of Life Sciences and Technology, and Huazhong University of Science and Technology, Wuhan, China
| | - Ashley E. Lenhart
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Xiaoling Peng
- Life Sciences Institute, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Yunying Huang
- Life Sciences Institute, University of Michigan, Ann Arbor, Michigan, United States of America
- Department of Cardiology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Jared P. Ginder
- Life Sciences Institute, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Christopher H. Downie
- Life Sciences Institute, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Erika Thalia Ramos
- Department of Nutritional Sciences, College of Human Sciences, Texas Tech University, Lubbock, Texas, United States of America
| | - Klas Kullander
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Robert T. Kennedy
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan, United States of America
- Department of Pharmacology, University of Michigan, Ann Arbor, Michigan, United States of America
| | - X. Z. Shawn Xu
- Life Sciences Institute, University of Michigan, Ann Arbor, Michigan, United States of America
- Department of Molecular & Integrative Physiology, University of Michigan Medical School, Ann Arbor, Michigan, United States of America
| | - Jun Wu
- Life Sciences Institute, University of Michigan, Ann Arbor, Michigan, United States of America
- Department of Molecular & Integrative Physiology, University of Michigan Medical School, Ann Arbor, Michigan, United States of America
| |
Collapse
|
5
|
Ichimura-Shimizu M, Kurrey K, Miyata M, Dezawa T, Tsuneyama K, Kojima M. Emerging Insights into the Role of BDNF on Health and Disease in Periphery. Biomolecules 2024; 14:444. [PMID: 38672461 PMCID: PMC11048455 DOI: 10.3390/biom14040444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 03/06/2024] [Accepted: 03/28/2024] [Indexed: 04/28/2024] Open
Abstract
Brain-derived neurotrophic factor (BDNF) is a growth factor that promotes the survival and growth of developing neurons. It also enhances circuit formation to synaptic transmission for mature neurons in the brain. However, reduced BDNF expression and single nucleotide polymorphisms (SNP) are reported to be associated with functional deficit and disease development in the brain, suggesting that BDNF is a crucial molecule for brain health. Interestingly, BDNF is also expressed in the hypothalamus in appetite and energy metabolism. Previous reports demonstrated that BDNF knockout mice exhibited overeating and obesity phenotypes remarkably. Therefore, we could raise a hypothesis that the loss of function of BDNF may be associated with metabolic syndrome and peripheral diseases. In this review, we describe our recent finding that BDNF knockout mice develop metabolic dysfunction-associated steatohepatitis and recent reports demonstrating the role of one of the BDNF receptors, TrkB-T1, in some peripheral organ functions and diseases, and would provide an insight into the role of BDNF beyond the brain.
Collapse
Affiliation(s)
- Mayuko Ichimura-Shimizu
- Department of Pathology and Laboratory Medicine, Tokushima University Graduate School, 3-18-15 Kuramoto-cho, Tokushima 770-8503, Japan; (M.I.-S.); (K.T.)
| | - Khuleshwari Kurrey
- Department of Neuroscience, School of Medicine, Yale University, New Haven, CT 06520, USA;
| | - Misaki Miyata
- Department of Applied Bioscience, College of Bioscience and Chemistry, Kanazawa Institute of Technology, 3-1 Yatsukaho, Hakusan 924-0838, Japan; (M.M.); (T.D.)
| | - Takuya Dezawa
- Department of Applied Bioscience, College of Bioscience and Chemistry, Kanazawa Institute of Technology, 3-1 Yatsukaho, Hakusan 924-0838, Japan; (M.M.); (T.D.)
| | - Koichi Tsuneyama
- Department of Pathology and Laboratory Medicine, Tokushima University Graduate School, 3-18-15 Kuramoto-cho, Tokushima 770-8503, Japan; (M.I.-S.); (K.T.)
| | - Masami Kojima
- Department of Applied Bioscience, College of Bioscience and Chemistry, Kanazawa Institute of Technology, 3-1 Yatsukaho, Hakusan 924-0838, Japan; (M.M.); (T.D.)
| |
Collapse
|
6
|
Hajiasgharzadeh K, Shahabi P, Karimi-Sales E, Alipour MR. Nicotine promotes development of bile duct ligation-induced liver fibrosis by increasing expression of nicotinic acetylcholine receptors in rats. Clin Exp Hepatol 2024; 10:62-71. [PMID: 38765906 PMCID: PMC11100344 DOI: 10.5114/ceh.2024.136227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Accepted: 11/12/2023] [Indexed: 05/22/2024] Open
Abstract
Aim of the study Liver fibrosis and cigarette smoking seem to be directly linked. Nicotine, as an agonist of nicotinic acetylcholine receptors (nAChRs), induces many downstream signaling pathways. The pathways through which nicotine affects the process of liver fibrosis have not been clarified. The present study aimed to investigate the nicotine-induced effects on fibrosis progression in cholestatic rats. Material and methods First, the Wistar rats were subjected to sham or bile duct ligation (BDL) surgery. The rats were treated with low and high doses of nicotine (1 or 10 mg/kg) for three weeks. They were monitored for their body weights before and 21 days after BDL. Also, spleens were weighed to calculate the spleen/body weight ratio. Ductular proliferation and fibrosis were evaluated using hematoxylin and eosin (H&E) as well as Masson's trichrome staining. The mRNA expression of α4nAChR, α7nAChR, and fibrosis gene α-smooth muscle actin (α-SMA) was measured by real-time PCR. Results The findings showed that nicotine promotes the development of BDL-induced liver fibrosis. The ratio of spleen/body weight was significantly affected by nicotine exposure. H&E and Masson's trichrome staining showed that the level of liver fibrosis was higher in the cholestatic BDL groups, and this effect was significantly augmented in the nicotine-treated rats. Also, α4nAChR, α7nAChR, and α-SMA expression was observed in the BDL rats and increased following nicotine treatment. Conclusions The activation of nAChR triggers biliary proliferation and liver fibrosis. Studying the intracellular mechanism of nicotine and alteration in the expression of nicotinic receptors following nicotine exposure can be useful both in diagnosing nicotine-related diseases and finding new treatment strategies.
Collapse
Affiliation(s)
| | - Parviz Shahabi
- Department of Physiology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Elham Karimi-Sales
- Department of Physiology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Reza Alipour
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Physiology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
7
|
Rivera-García LG, Francis-Malavé AM, Castillo ZW, Uong CD, Wilson TD, Ferchmin PA, Eterovic V, Burton MD, Carrasquillo Y. Anti-hyperalgesic and anti-inflammatory effects of 4R-tobacco cembranoid in a mouse model of inflammatory pain. J Inflamm (Lond) 2024; 21:2. [PMID: 38267952 PMCID: PMC10809744 DOI: 10.1186/s12950-023-00373-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 12/21/2023] [Indexed: 01/26/2024] Open
Abstract
4R is a tobacco cembranoid that binds to and modulates cholinergic receptors and exhibits neuroprotective and anti-inflammatory activity. Given the established function of the cholinergic system in pain and inflammation, we propose that 4R is also analgesic. Here, we tested the hypothesis that systemic 4R treatment decreases pain-related behaviors and peripheral inflammation via modulation of the alpha 7 nicotinic acetylcholine receptors (α7 nAChRs) in a mouse model of inflammatory pain. We elicited inflammation by injecting Complete Freund's Adjuvant (CFA) into the hind paw of male and female mice. We then assessed inflammation-induced hypersensitivity to cold, heat, and tactile stimulation using the Acetone, Hargreaves, and von Frey tests, respectively, before and at different time points (2.5 h - 8d) after a single systemic 4R (or vehicle) administration. We evaluated the contribution of α7 nAChRs 4R-mediated analgesia by pre-treating mice with a selective antagonist of α7 nAChRs followed by 4R (or vehicle) administration prior to behavioral tests. We assessed CFA-induced paw edema and inflammation by measuring paw thickness and quantifying immune cell infiltration in the injected hind paw using hematoxylin and eosin staining. Lastly, we performed immunohistochemical and flow cytometric analyses of paw skin in α7 nAChR-cre::Ai9 mice to measure the expression of α7 nAChRs on immune subsets. Our experiments show that systemic administration of 4R decreases inflammation-induced peripheral hypersensitivity in male and female mice and inflammation-induced paw edema in male but not female mice. Notably, 4R-mediated analgesia and anti-inflammatory effects lasted up to 8d after a single systemic administration on day 1. Pretreatment with an α7 nAChR-selective antagonist prevented 4R-mediated analgesia and anti-inflammatory effects, demonstrating that 4R effects are via modulation of α7 nAChRs. We further show that a subset of immune cells in the hind paw expresses α7 nAChRs. However, the number of α7 nAChR-expressing immune cells is unaltered by CFA or 4R treatment, suggesting that 4R effects are independent of α7 nAChR-expressing immune cells. Together, our findings identify a novel function of the 4R tobacco cembranoid as an analgesic agent in both male and female mice that reduces peripheral inflammation in a sex-dependent manner, further supporting the pharmacological targeting of the cholinergic system for pain treatment.
Collapse
Affiliation(s)
- Luis G Rivera-García
- Division of Intramural Research National Center for Complementary and Integrative Health, 35 Convent Drive, Building 35A / Room 1E-410, Bethesda, MD, 20892, USA
- Department of Neuroscience, Universidad Central Del Caribe School of Medicine, Bayamon, Puerto Rico, USA
| | - Adela M Francis-Malavé
- Division of Intramural Research National Center for Complementary and Integrative Health, 35 Convent Drive, Building 35A / Room 1E-410, Bethesda, MD, 20892, USA
| | - Zachary W Castillo
- Neuroimmunology and Behavior Group, Department of Neuroscience, Center for Advanced Pain Studies (CAPS), School of Behavioral and Brain Sciences, University of Texas, Dallas, USA
| | - Calvin D Uong
- Neuroimmunology and Behavior Group, Department of Neuroscience, Center for Advanced Pain Studies (CAPS), School of Behavioral and Brain Sciences, University of Texas, Dallas, USA
| | - Torri D Wilson
- Division of Intramural Research National Center for Complementary and Integrative Health, 35 Convent Drive, Building 35A / Room 1E-410, Bethesda, MD, 20892, USA
| | - P A Ferchmin
- Department of Neuroscience, Universidad Central Del Caribe School of Medicine, Bayamon, Puerto Rico, USA
| | - Vesna Eterovic
- Department of Neuroscience, Universidad Central Del Caribe School of Medicine, Bayamon, Puerto Rico, USA
| | - Michael D Burton
- Neuroimmunology and Behavior Group, Department of Neuroscience, Center for Advanced Pain Studies (CAPS), School of Behavioral and Brain Sciences, University of Texas, Dallas, USA
| | - Yarimar Carrasquillo
- Division of Intramural Research National Center for Complementary and Integrative Health, 35 Convent Drive, Building 35A / Room 1E-410, Bethesda, MD, 20892, USA.
- National Institute On Drug Abuse, National Institutes of Health, 35 Convent Drive, Building 35A / Room 1E-410, Bethesda, MD, 20892, USA.
| |
Collapse
|
8
|
Ichimura-Shimizu M, Kojima M, Suzuki S, Miyata M, Osaki Y, Matsui K, Mizui T, Tsuneyama K. Brain-derived neurotrophic factor knock-out mice develop non-alcoholic steatohepatitis. J Pathol 2023; 261:465-476. [PMID: 37781961 DOI: 10.1002/path.6204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 07/26/2023] [Accepted: 08/17/2023] [Indexed: 10/03/2023]
Abstract
While brain-derived neurotrophic factor (BDNF), which is a growth factor associated with cognitive improvement and the alleviation of depression symptoms, is known to regulate food intake and body weight, the role of BDNF in peripheral disease is not fully understood. Here, we show that reduced BDNF expression is associated with weight gain and the chronic liver disease non-alcoholic steatohepatitis (NASH). At 10 months of age, BDNF-heterozygous (BDNF+/- ) mice developed symptoms of NASH: centrilobular/perivenular steatosis, lobular inflammation with infiltration of neutrophils, ballooning hepatocytes, and fibrosis of the liver. Obesity and higher serum levels of glucose and insulin - major pathologic features in human NASH - were dramatic. Dying adipocytes were surrounded by macrophages in visceral fat, suggesting that chronic inflammation occurs in peripheral organs. RNA sequencing (RNA-seq) studies of the liver revealed that the most significantly enriched Gene Ontology term involved fatty acid metabolic processes and the modulation of neutrophil aggregation, pathologies that well characterise NASH. Gene expression analysis by RNA-seq also support the notion that BDNF+/- mice are under oxidative stress, as indicated by alterations in the expression of the cytochrome P450 family and a reduction in glutathione S-transferase p, an antioxidant enzyme. Histopathologic phenotypes of NASH were also observed in a knock-in mouse (BDNF+/pro ), in which the precursor BDNF is inefficiently converted into the mature form of BDNF. Lastly, as BDNF reduction causes overeating and subsequent obesity, a food restriction study was conducted in BDNF+/pro mice. Pair-fed BDNF+/pro mice developed hepatocellular damage and showed infiltration of inflammatory cells, including neutrophils in the liver, despite having body weights and blood parameters that were comparable to those of controls. This is the first report demonstrating that reduced BDNF expression plays a role in the pathogenic mechanism of NASH, which is a hepatic manifestation of metabolic syndrome. © 2023 The Pathological Society of Great Britain and Ireland.
Collapse
Affiliation(s)
- Mayuko Ichimura-Shimizu
- Department of Pathology and Laboratory Medicine, Tokushima University Graduate School, Tokushima, Japan
| | - Masami Kojima
- Department of Applied Bioscience, College of Bioscience and Chemistry, Kanazawa Institute of Technology, Ishikawa, Japan
- Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Osaka, Japan
- Core Research for Evolutional Science and Technology (CREST), Japan Science and Technology Agency (JST), Kawaguchi, Japan
| | - Shingo Suzuki
- Department of Anatomy and Neurobiology, Faculty of Medicine, Kagawa University, Kagawa, Japan
- Health and Medical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Takamatsu, Japan
| | - Misaki Miyata
- Department of Applied Bioscience, College of Bioscience and Chemistry, Kanazawa Institute of Technology, Ishikawa, Japan
| | - Yui Osaki
- Department of Pathology and Laboratory Medicine, Tokushima University Graduate School, Tokushima, Japan
| | - Konomi Matsui
- Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Osaka, Japan
| | - Toshiyuki Mizui
- Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Osaka, Japan
- Core Research for Evolutional Science and Technology (CREST), Japan Science and Technology Agency (JST), Kawaguchi, Japan
| | - Koichi Tsuneyama
- Department of Pathology and Laboratory Medicine, Tokushima University Graduate School, Tokushima, Japan
| |
Collapse
|
9
|
Inaba Y, Hashiuchi E, Watanabe H, Kimura K, Oshima Y, Tsuchiya K, Murai S, Takahashi C, Matsumoto M, Kitajima S, Yamamoto Y, Honda M, Asahara SI, Ravnskjaer K, Horike SI, Kaneko S, Kasuga M, Nakano H, Harada K, Inoue H. The transcription factor ATF3 switches cell death from apoptosis to necroptosis in hepatic steatosis in male mice. Nat Commun 2023; 14:167. [PMID: 36690638 PMCID: PMC9871012 DOI: 10.1038/s41467-023-35804-w] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Accepted: 01/03/2023] [Indexed: 01/24/2023] Open
Abstract
Hepatocellular death increases with hepatic steatosis aggravation, although its regulation remains unclear. Here we show that hepatic steatosis aggravation shifts the hepatocellular death mode from apoptosis to necroptosis, causing increased hepatocellular death. Our results reveal that the transcription factor ATF3 acts as a master regulator in this shift by inducing expression of RIPK3, a regulator of necroptosis. In severe hepatic steatosis, after partial hepatectomy, hepatic ATF3-deficient or -overexpressing mice display decreased or increased RIPK3 expression and necroptosis, respectively. In cultured hepatocytes, ATF3 changes TNFα-dependent cell death mode from apoptosis to necroptosis, as revealed by live-cell imaging. In non-alcoholic steatohepatitis (NASH) mice, hepatic ATF3 deficiency suppresses RIPK3 expression and hepatocellular death. In human NASH, hepatocellular damage is correlated with the frequency of hepatocytes expressing ATF3 or RIPK3, which overlap frequently. ATF3-dependent RIPK3 induction, causing a modal shift of hepatocellular death, can be a therapeutic target for steatosis-induced liver damage, including NASH.
Collapse
Affiliation(s)
- Yuka Inaba
- Metabolism and Nutrition Research Unit, Institute for Frontier Science Initiative, Kanazawa University, Kanazawa, Japan
- Department of Physiology and Metabolism, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Japan
| | - Emi Hashiuchi
- Department of Physiology and Metabolism, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Japan
| | - Hitoshi Watanabe
- Metabolism and Nutrition Research Unit, Institute for Frontier Science Initiative, Kanazawa University, Kanazawa, Japan
| | - Kumi Kimura
- Department of Biochemistry and Molecular Vascular Biology, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Japan
| | - Yu Oshima
- Department of Biochemistry and Molecular Vascular Biology, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Japan
| | - Kohsuke Tsuchiya
- Division of Immunology and Molecular Biology, Cancer Research Institute, Kanazawa University, Kanazawa, Japan
| | - Shin Murai
- Department of Biochemistry, Toho University School of Medicine, Tokyo, Japan
| | - Chiaki Takahashi
- Division of Oncology and Molecular Biology, Cancer Research Institute, Kanazawa University, Kanazawa, Japan
| | - Michihiro Matsumoto
- Department of Molecular Metabolic Regulation, Diabetes Research Center, Research Institute, National Center for Global Health and Medicine, Tokyo, Japan
| | - Shigetaka Kitajima
- Medical Research Institute, Tokyo Medical and Dental University, Tokyo, Japan
| | - Yasuhiko Yamamoto
- Department of Biochemistry and Molecular Vascular Biology, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Japan
| | - Masao Honda
- Department of Gastroenterology, Graduate School of Medicine, Kanazawa University, Kanazawa, Japan
- Department of Clinical Laboratory Medicine, Graduate School of Medical Science, Kanazawa University, Kanazawa, Japan
| | - Shun-Ichiro Asahara
- Division of Diabetes and Endocrinology, Department of Internal Medicine, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Kim Ravnskjaer
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense M, Denmark
- Center for Functional Genomics and Tissue Plasticity (ATLAS), University of Southern Denmark, Odense M, Denmark
| | - Shin-Ichi Horike
- Research Center for Experimental Modeling of Human Disease, Kanazawa University, Kanazawa, Japan
| | - Shuichi Kaneko
- Department of Gastroenterology, Graduate School of Medicine, Kanazawa University, Kanazawa, Japan
| | - Masato Kasuga
- The Institute of Medical Science, Asahi Life Foundation, Tokyo, Japan
| | - Hiroyasu Nakano
- Department of Biochemistry, Toho University School of Medicine, Tokyo, Japan
| | - Kenichi Harada
- Departments of Human Pathology, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Japan
| | - Hiroshi Inoue
- Metabolism and Nutrition Research Unit, Institute for Frontier Science Initiative, Kanazawa University, Kanazawa, Japan.
- Department of Physiology and Metabolism, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Japan.
| |
Collapse
|
10
|
Gutiérrez-Cuevas J, Lucano-Landeros S, López-Cifuentes D, Santos A, Armendariz-Borunda J. Epidemiologic, Genetic, Pathogenic, Metabolic, Epigenetic Aspects Involved in NASH-HCC: Current Therapeutic Strategies. Cancers (Basel) 2022; 15:23. [PMID: 36612019 PMCID: PMC9818030 DOI: 10.3390/cancers15010023] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 12/12/2022] [Accepted: 12/14/2022] [Indexed: 12/24/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is the most common primary liver cancer and is the sixth most frequent cancer in the world, being the third cause of cancer-related deaths. Nonalcoholic steatohepatitis (NASH) is characterized by fatty infiltration, oxidative stress and necroinflammation of the liver, with or without fibrosis, which can progress to advanced liver fibrosis, cirrhosis and HCC. Obesity, metabolic syndrome, insulin resistance, and diabetes exacerbates the course of NASH, which elevate the risk of HCC. The growing prevalence of obesity are related with increasing incidence of NASH, which may play a growing role in HCC epidemiology worldwide. In addition, HCC initiation and progression is driven by reprogramming of metabolism, which indicates growing appreciation of metabolism in the pathogenesis of this disease. Although no specific preventive pharmacological treatments have recommended for NASH, dietary restriction and exercise are recommended. This review focuses on the molecular connections between HCC and NASH, including genetic and risk factors, highlighting the metabolic reprogramming and aberrant epigenetic alterations in the development of HCC in NASH. Current therapeutic aspects of NASH/HCC are also reviewed.
Collapse
Affiliation(s)
- Jorge Gutiérrez-Cuevas
- Department of Molecular Biology and Genomics, Institute for Molecular Biology in Medicine and Gene Therapy, University of Guadalajara, CUCS, Guadalajara 44340, Jalisco, Mexico
| | - Silvia Lucano-Landeros
- Department of Molecular Biology and Genomics, Institute for Molecular Biology in Medicine and Gene Therapy, University of Guadalajara, CUCS, Guadalajara 44340, Jalisco, Mexico
| | - Daniel López-Cifuentes
- Department of Molecular Biology and Genomics, Institute for Molecular Biology in Medicine and Gene Therapy, University of Guadalajara, CUCS, Guadalajara 44340, Jalisco, Mexico
| | - Arturo Santos
- Tecnologico de Monterrey, EMCS, Campus Guadalajara, Zapopan 45201, Jalisco, Mexico
| | - Juan Armendariz-Borunda
- Department of Molecular Biology and Genomics, Institute for Molecular Biology in Medicine and Gene Therapy, University of Guadalajara, CUCS, Guadalajara 44340, Jalisco, Mexico
- Tecnologico de Monterrey, EMCS, Campus Guadalajara, Zapopan 45201, Jalisco, Mexico
| |
Collapse
|
11
|
Zhi YK, Li J, Yi L, Zhu RL, Luo JF, Shi QP, Bai SS, Li YW, Du Q, Cai JZ, Liu L, Wang PX, Zhou H, Dong Y. Sinomenine inhibits macrophage M1 polarization by downregulating α7nAChR via a feedback pathway of α7nAChR/ERK/Egr-1. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2022; 100:154050. [PMID: 35397284 DOI: 10.1016/j.phymed.2022.154050] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 03/08/2022] [Accepted: 03/11/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND Sinomenine (SIN) is an anti-inflammatory drug that has been used for decades in China to treat arthritis. In a previous study, SIN acted on α7 nicotinic acetylcholine receptor (α7nAChR) to inhibit inflammatory responses in macrophages, which indicates a new anti-inflammatory mechanism of SIN. However, the level of α7nAChR was increased in the inflammatory responses and was downregulated by SIN in vitro, so the underlying mechanisms of SIN acting on α7nAChR remain unclear. PURPOSE To analyze the role of α7nAChR in inflammation and the effect and mechanism of SIN regulation of α7nAChR. METHODS The effects of SIN on α7nAChR in endotoxemic mice and LPS-stimulated macrophages were observed. Nicotine (Nic) was used as a positive control, and berberine (Ber) was used as a negative control targeting α7nAChR. The antagonists of α7nAChR, α-bungarotoxin (BTX) and mecamylamine (Me), were used to block α7nAChR. In RAW264.7 macrophage cells in vitro, α7nAChR short hairpin RNA (shRNA) was used to knock down α7nAChR. Macrophage polarization was analyzed by the detection of TNF-α, IL-6, iNOS, IL-10, Arg-1, and Fizz1. U0126 was used to block ERK phosphorylation. The cytokines α7nAChR, ERK1/2, p-ERK1/2 and Egr-1 were detected. RESULTS SIN decreased the levels of TNF-α, IL-6 and the expression of α7nAChR increased by LPS in endotoxemic mice. The above effects of SIN were attenuated by BTX. In the α7nAChR shRNA transfected RAW264.7 cells, compared with the control, α7nAChR was knocked down, and M1 phenotype markers (including TNF-α, IL-6, and iNOS) were significantly downregulated, whereas M2 phenotype markers (including IL-10, Arg-1, and Fizz1) were significantly upregulated when stimulated by LPS. SIN inhibited the expression of p-ERK1/2 and the transcription factor Egr-1 induced by LPS in RAW264.7 cells, and the above effects of SIN were attenuated by BTX. The expression of α7nAChR was suppressed by U0126, which lessened the expression of p-ERK1/2 and Egr-1. CONCLUSIONS SIN acts on α7nAChR to inhibit inflammatory responses and downregulates high expression of α7nAChR in vivo and in vitro. The increase of α7nAChR expression is correlated with inflammatory responses and participates in macrophage M1 polarization. SIN downregulates α7nAChR via a feedback pathway of α7nAChR/ERK/Egr-1, which contributes to inhibiting macrophage M1 polarization and inflammatory responses.
Collapse
Affiliation(s)
- Ying-Kun Zhi
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong Province, P.R. China
| | - Jing Li
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong Province, P.R. China
| | - Lang Yi
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong Province, P.R. China
| | - Rui-Li Zhu
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong Province, P.R. China
| | - Jin-Fang Luo
- Faculty of Chinese Medicine and State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa, Macao, P.R. China
| | - Qing-Ping Shi
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong Province, P.R. China
| | - Sha-Sha Bai
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong Province, P.R. China
| | - Yan-Wu Li
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong Province, P.R. China
| | - Qun Du
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong Province, P.R. China
| | - Jia-Zhong Cai
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong Province, P.R. China
| | - Liang Liu
- Faculty of Chinese Medicine and State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa, Macao, P.R. China
| | - Pei-Xun Wang
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong Province, P.R. China
| | - Hua Zhou
- Faculty of Chinese Medicine and State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa, Macao, P.R. China.
| | - Yan Dong
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong Province, P.R. China.
| |
Collapse
|
12
|
Huang X, Xu J, Hu Y, Huang K, Luo Y, He X. Broccoli ameliorate NAFLD by increasing lipolysis and promoting liver macrophages polarize toward M2-type. J Funct Foods 2022. [DOI: 10.1016/j.jff.2021.104898] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
|
13
|
Stegemann A, Raker V, Del Rey A, Steinbrink K, Böhm M. Expression of the α7 Nicotinic Acetylcholine Receptor Is Critically Required for the Antifibrotic Effect of PHA-543613 on Skin Fibrosis. Neuroendocrinology 2022; 112:446-456. [PMID: 34120115 DOI: 10.1159/000517772] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Accepted: 06/09/2021] [Indexed: 11/19/2022]
Abstract
INTRODUCTION Targeting the α7 nicotinic acetylcholine receptor (α7nAChR) has recently been suggested as a potential new treatment for fibrotic skin diseases. Here, we performed a genetic and pharmacologic approach to clarify the role of this receptor in the bleomycin (BLM) mouse model of skin fibrosis using α7nAChR KO mice. METHODS We analyzed the expression of extracellular matrix (ECM) components in murine skin using quantitative RT-PCR, pepsin digestion/SDS-PAGE of proteins and performed hydroxyproline assays as well as histological/immunohistochemical staining of skin sections. To identity the target cells of the α7nAChR agonist PHA-543613, we used murine dermal fibroblasts (MDF). We tested their response to the profibrotic cytokine transforming growth factor-β1 (TGF-β1) and utilized gene silencing to elucidate the role of the α7nAChR. RESULTS We confirmed our previous findings on C3H/HeJ mice and detected a suppressive effect of PHA-543613 on BLM-induced skin fibrosis in the mouse strain C57BL/6J. This antifibrotic effect of PHA-543613 was abrogated in α7nAChR-KO mice. Interestingly, α7nAChR-KO animals exhibited a basal profibrotic signature by higher RNA expression of ECM genes and hydroxyproline content than WT mice. In WT MDF, PHA-543613 suppressed ECM gene expression induced by TGF-β1. Gene silencing of α7nAChR by small interfering RNA neutralized the effects of PHA-543613 on TGF-β1-mediated ECM gene expression. CONCLUSION In summary, we have identified the α7nAChR as the essential mediator of the antifibrotic effect of PHA-543613. MDF are directly targeted by PHA-543613 to suppress collagen synthesis. Our findings emphasize therapeutic exploitation of α7nAChR receptor agonists in fibrotic skin diseases.
Collapse
Affiliation(s)
- Agatha Stegemann
- Department of Dermatology, University of Münster, Münster, Germany
| | - Verena Raker
- Department of Dermatology, University of Münster, Münster, Germany
- Department of Dermatology, University of Mainz, Mainz, Germany
| | - Adriana Del Rey
- Institute for Physiology and Pathophysiology, University of Marburg, Marburg, Germany
| | | | - Markus Böhm
- Department of Dermatology, University of Münster, Münster, Germany
| |
Collapse
|
14
|
Zhu X, Dai S, Xia B, Gong J, Ma B. Activation of the alpha 7 nicotinic acetylcholine receptor mitigates osteoarthritis progression by inhibiting NF-κB/NLRP3 inflammasome activation and enhancing autophagy. PLoS One 2021; 16:e0256507. [PMID: 34941874 PMCID: PMC8699641 DOI: 10.1371/journal.pone.0256507] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 12/09/2021] [Indexed: 11/18/2022] Open
Abstract
Osteoarthritis (OA) is a chronic degenerative joint disease characterized by cartilage degradation. Alpha 7 nicotinic acetylcholine receptor (α7nAChR) is associated with inflammatory and metabolic responses in OA. However, the mechanisms underlying the pathological process of OA remain unclear. The aim of the present study was to examine the role and mechanisms of α7nAChR-mediated autophagy and anti-inflammatory response in chondroprotection. Monosodium iodoacetate (MIA)-induced Wistar rat OA model was used to assess the in vivo effects of the ɑ7nAChR agonist (PNU-282987). The histopathological characteristics of OA were evaluated by immunohistochemistry (IHC), and the levels of autophagy markers were determined by western blotting and transmission electron microscopy. The anti-inflammatory effect of the ɑ7nAChR agonist was assessed by IHC, quantitative real-time polymerase chain reaction, and western blotting. Parallel experiments to determine the molecular mechanisms through which the ɑ7nAChR agonist prevents OA were performed using interleukin-1β (IL-1β)-treated chondrocytes. Our results showed that PNU-282987 reduced cartilage degeneration and matrix metalloproteinase (MMP)-1 and MMP-13 expressions. Activating α7nAChR with PNU-282987 significantly promoted MIA/IL-1β-induced chondrocyte autophagy, as demonstrated by the increase in LC3-II/LC3-I ratio, Beclin-1 levels, and autophagosome number. Furthermore, treating chondrocyte with ULK1 siRNA attenuated the PNU282987-induced enhancement of LC3-II/LC3-I ratio and Beclin-1 level. Additionally, PNU282987 suppressed NF-κB/NLRP3 inflammasome activation by inhibiting the ROS/TXNIP pathway and suppressed tumor necrosis factor-ɑ and IL-1β secretion in MIA/IL-1β-treated chondrocytes. Our results demonstrate that the activation of α7nAChR promotes chondrocyte autophagy and attenuates inflammation to mitigate OA progression, providing a novel target for the treatment of OA.
Collapse
Affiliation(s)
- Xianjie Zhu
- Department of Orthopedics, Qingdao Municipal Hospital, Qingdao, Shandong, China
| | - Shiyou Dai
- Department of Orthopedics, Qingdao Municipal Hospital, Qingdao, Shandong, China
| | - Baohua Xia
- Department of Clinical Skills Training Center, Qingdao Municipal Hospital, Qingdao, Shandong, China
| | - Jianbao Gong
- Department of Orthopedics, Qingdao Municipal Hospital, Qingdao, Shandong, China
| | - Bingzheng Ma
- Department of Orthopedics, Qingdao Municipal Hospital, Qingdao, Shandong, China
- * E-mail:
| |
Collapse
|
15
|
Buchmann Godinho D, da Silva Fiorin F, Schneider Oliveira M, Furian AF, Rechia Fighera M, Freire Royes LF. The immunological influence of physical exercise on TBI-induced pathophysiology: Crosstalk between the spleen, gut, and brain. Neurosci Biobehav Rev 2021; 130:15-30. [PMID: 34400178 DOI: 10.1016/j.neubiorev.2021.08.006] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 08/04/2021] [Accepted: 08/08/2021] [Indexed: 12/16/2022]
Abstract
Traumatic brain injury (TBI) is a non-degenerative and non-congenital insult to the brain and is recognized as a global public health problem, with a high incidence of neurological disorders. Despite the causal relationship not being entirely known, it has been suggested that multiorgan inflammatory response involving the autonomic nervous system and the spleen-gut brain axis dysfunction exacerbate the TBI pathogenesis in the brain. Thus, applying new therapeutic tools, such as physical exercise, have been described in the literature to act on the immune modulation induced by brain injuries. However, there are caveats to consider when interpreting the effects of physical exercise on this neurological injury. Given the above, this review will highlight the main findings of the literature involving peripheral immune responses in TBI-induced neurological damage and how changes in the cellular metabolism of the spleen-gut brain axis elicited by different protocols of physical exercise alter the pathophysiology induced by this neurological injury.
Collapse
Affiliation(s)
- Douglas Buchmann Godinho
- Laboratório de Bioquímica do Exercício, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil; Programa de Pós-Graduação em Bioquímica Toxicológica, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil
| | - Fernando da Silva Fiorin
- Programa de Pós-Graduação em Neuroengenharia, Instituto Internacional de Neurociências Edmond e Lily Safra, Instituto Santos Dumont, Macaíba, RN, Brazil
| | - Mauro Schneider Oliveira
- Centro de Ciências da Saúde, Programa de Pós-Graduação em Farmacologia, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil
| | - Ana Flavia Furian
- Centro de Ciências da Saúde, Programa de Pós-Graduação em Farmacologia, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil
| | - Michele Rechia Fighera
- Laboratório de Bioquímica do Exercício, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil; Centro de Ciências da Saúde, Departamento de Clínica Médica e Pediatria, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil
| | | |
Collapse
|
16
|
Pavlov VA. The evolving obesity challenge: targeting the vagus nerve and the inflammatory reflex in the response. Pharmacol Ther 2021; 222:107794. [PMID: 33310156 PMCID: PMC8027699 DOI: 10.1016/j.pharmthera.2020.107794] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Accepted: 12/04/2020] [Indexed: 02/06/2023]
Abstract
Obesity and the metabolic syndrome (MetS), which have reached pandemic proportions significantly increase the risk for type 2 diabetes, cardiovascular disease, and other serious conditions. Recent data with COVID-19 patients indicate that obesity also is a significant risk factor for this novel viral disease and poor outcome of associated critical illness. These findings considerably change the view of obesity as a driver of serious, but slowly-progressing chronic diseases, and emphasize the urgency to explore new therapeutic approaches. Inflammation is a recognized driver of metabolic derangements in obesity and MetS, and a core feature of COVID-19 pathobiology. Recent advances in our understanding of inflammatory regulation have highlighted the role of the nervous system and the vagus nerve-based inflammatory reflex. Current bioelectronic and pharmacological therapeutic explorations centered on the inflammatory reflex offer new approaches for conditions characterized by immune and metabolic dysregulation and for ameliorating the escalating burden of obesity, MetS, and COVID-19.
Collapse
Affiliation(s)
- Valentin A Pavlov
- Institute of Bioelectronic Medicine, The Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY 11030, USA; Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY 11549, USA.
| |
Collapse
|
17
|
Di Maro M, Cataldi M, Santillo M, Chiurazzi M, Damiano S, De Conno B, Colantuoni A, Guida B. The Cholinergic and ACE-2-Dependent Anti-Inflammatory Systems in the Lung: New Scenarios Emerging From COVID-19. Front Physiol 2021; 12:653985. [PMID: 34054572 PMCID: PMC8155253 DOI: 10.3389/fphys.2021.653985] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Accepted: 04/19/2021] [Indexed: 01/08/2023] Open
Abstract
The renin angiotensin system and the cholinergic anti-inflammatory pathway have been recently shown to modulate lung inflammation in patients with COVID-19. We will show how studies performed on this disease are starting to provide evidence that these two anti-inflammatory systems may functionally interact with each other, a mechanism that could have a more general physiological relevance than only COVID-19 infection.
Collapse
Affiliation(s)
- Martina Di Maro
- Department of Clinical Medicine and Surgery, Physiology Nutrition Unit, University of Naples Federico II, Naples, Italy
| | - Mauro Cataldi
- Department of Neuroscience, Reproductive Sciences and Dentistry, Division of Pharmacology, University of Naples Federico II, Naples, Italy
| | - Mariarosaria Santillo
- Department of Clinical Medicine and Surgery, Physiology Nutrition Unit, University of Naples Federico II, Naples, Italy
| | - Martina Chiurazzi
- Department of Clinical Medicine and Surgery, Physiology Nutrition Unit, University of Naples Federico II, Naples, Italy
| | - Simona Damiano
- Department of Clinical Medicine and Surgery, Physiology Nutrition Unit, University of Naples Federico II, Naples, Italy
| | - Barbara De Conno
- Department of Clinical Medicine and Surgery, Physiology Nutrition Unit, University of Naples Federico II, Naples, Italy
| | - Antonio Colantuoni
- Department of Clinical Medicine and Surgery, Physiology Nutrition Unit, University of Naples Federico II, Naples, Italy
| | - Bruna Guida
- Department of Clinical Medicine and Surgery, Physiology Nutrition Unit, University of Naples Federico II, Naples, Italy
| |
Collapse
|
18
|
Mazzoccoli G, Kvetnoy I, Mironova E, Yablonskiy P, Sokolovich E, Krylova J, Carbone A, Anderson G, Polyakova V. The melatonergic pathway and its interactions in modulating respiratory system disorders. Biomed Pharmacother 2021; 137:111397. [PMID: 33761613 DOI: 10.1016/j.biopha.2021.111397] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 02/09/2021] [Accepted: 02/10/2021] [Indexed: 02/08/2023] Open
Abstract
Melatonin is a key intracellular neuroimmune-endocrine regulator and coordinator of multiple complex and interrelated biological processes. The main functions of melatonin include the regulation of neuroendocrine and antioxidant system activity, blood pressure, rhythms of the sleep-wake cycle, the retardation of ageing processes, as well as reseting and optimizing mitochondria and thereby the cells of the immune system. Melatonin and its agonists have therefore been mooted as a treatment option across a wide array of medical disorders. This article reviews the role of melatonin in the regulation of respiratory system functions under normal and pathological conditions. Melatonin can normalize the structural and functional organization of damaged lung tissues, by a number of mechanisms, including the regulation of signaling molecules, oxidant status, lipid raft function, optimized mitochondrial function and reseting of the immune response over the circadian rhythm. Consequently, melatonin has potential clinical utility for bronchial asthma, chronic obstructive pulmonary disease, lung cancer, lung vascular diseases, as well as pulmonary and viral infections. The integration of melatonin's effects with the alpha 7 nicotinic receptor and the aryl hydrocarbon receptor in the regulation of mitochondrial function are proposed as a wider framework for understanding the role of melatonin across a wide array of diverse pulmonary disorders.
Collapse
Affiliation(s)
- Gianluigi Mazzoccoli
- Department of Medical Sciences, Division of Internal Medicine and Chronobiology Laboratory, Fondazione IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo 71013, Italy.
| | - Igor Kvetnoy
- Saint Petersburg Institute of Phthisiopulmonology, Lygovsky Ave. 2-4, Saint Petersburg 191036, Russian Federation; Department of Pathology, Saint Petersburg State University, University Embankment, 7/9, Saint Petersburg 199034, Russian Federation
| | - Ekaterina Mironova
- Saint Petersburg Institute of Bioregulation and Gerontology, Dynamo Ave., 3, Saint Petersburg 197110, Russian Federation
| | - Petr Yablonskiy
- Saint Petersburg Institute of Phthisiopulmonology, Lygovsky Ave. 2-4, Saint Petersburg 191036, Russian Federation
| | - Evgenii Sokolovich
- Saint Petersburg Institute of Phthisiopulmonology, Lygovsky Ave. 2-4, Saint Petersburg 191036, Russian Federation
| | - Julia Krylova
- Saint Petersburg Institute of Phthisiopulmonology, Lygovsky Ave. 2-4, Saint Petersburg 191036, Russian Federation; Pavlov First Saint Petersburg State Medical University, Lev Tolstoy str. 6-8, Saint Petersburg 197022, Russian Federation
| | - Annalucia Carbone
- Department of Medical Sciences, Division of Internal Medicine and Chronobiology Laboratory, Fondazione IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo 71013, Italy
| | | | - Victoria Polyakova
- Saint Petersburg Institute of Phthisiopulmonology, Lygovsky Ave. 2-4, Saint Petersburg 191036, Russian Federation; St. Petersburg State Pediatric Medical University, Litovskaia str. 2, Saint-Petersburg 194100, Russian Federation
| |
Collapse
|
19
|
Youssef ME, Abdelrazek HM, Moustafa YM. Cardioprotective role of GTS-21 by attenuating the TLR4/NF-κB pathway in streptozotocin-induced diabetic cardiomyopathy in rats. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2021; 394:11-31. [PMID: 32776158 DOI: 10.1007/s00210-020-01957-4] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Accepted: 07/30/2020] [Indexed: 12/13/2022]
Abstract
The cholinergic anti-inflammatory pathway (CAP) was investigated in a variety of inflammatory conditions and constitutes a valuable line in their treatment. In the current study, we investigated the anti-inflammatory effect of GTS-21 (GTS) as a partial selective α7 nicotinic acetylcholine receptor (α7-nAchR) agonist in diabetic cardiomyopathy model in rats. This mechanism was elaborated to study whether it could alleviate the electrocardiographic, histopathological, and molecular levels of Toll-like receptor 4 (TLR4)/nuclear factor κB (NF-κB) pathway proteins. Diabetes was induced by the injection of streptozotocin (STZ) (50 mg/kg). Diabetic rats were treated with GTS (1 or 2 mg/kg/day), methyllycaconitine (MLA), a selective α7-nAchR antagonist (2 mg/kg/day) plus GTS (2 mg/kg/day), or the vehicle. All treatments were given by the intraperitoneal route. Ventricular rate and different electrocardiograph (ECG) anomalies were detected. Plasma levels of cardiac troponin T (cTnT) and creatine kinase MB (CK-MB) were measured by ELISA. Additionally, we elucidated the levels of several proteins involved in the TLR4/NF-κB pathway. Cardiac levels of TLR4 and phosphorylated protein kinase B (p-Akt) were detected by ELISA. The cardiac expression of myeloid differentiation primary response 88 (Myd88), tumor necrosis factor receptor-associated factor 6 (TRAF6), NF-κB, interleukin 1β (IL-1β), and active caspase-1 were evaluated by immunohistochemical staining. Finally, the cardiac levels of interleukin 6 (IL-6) and tumor necrosis factor α (TNF-α) were determined by ELISA. Diabetic rats showed (i) ECG signs of cardiomyopathy such as significant ST segment elevations, prolonged QRS, QT intervals, and ventricular tachycardia; (ii) increased plasma levels of cTnT and CK-MB; (iii) increased expression of cardiac TLR4; (iv) elevated immunohistochemical expression of cardiac, Myd88, TRAF6, and NF-κB; (v) diminution in the cardiac expression of p-Akt; and (vi) adaptive increases in cardiac expression of TNF-α and IL-6. These effects were ameliorated in diabetic rats treated with both doses of GTS. Pretreatment with MLA did not completely reverse the ameliorative effect of GTS on cTnT, TRAF6, TNF-α, and IL-6, thereby reinforcing the presence of possible α7-nAchR-independent mechanisms. The activation of α7-nAchR with GTS offers a promising prophylactic strategy for diabetic cardiomyopathy by attenuating the TLR4/NF-κB pathway.
Collapse
Affiliation(s)
- Mahmoud E Youssef
- Department of pharmacology and biochemistry, Faculty of pharmacy, Delta University for Science and Technology, Mansoura, Egypt.
| | - Heba M Abdelrazek
- Department of Physiology, Faculty of veterinary medicine, Suez Canal University, Ismailia, Egypt
| | - Yasser M Moustafa
- Department of Pharmacology and Toxicology, Dean of the Faculty of Pharmacy, Suez Canal University, Ismailia, Egypt
| |
Collapse
|
20
|
Stegemann A, Böhm M. Targeting the α7 nicotinic acetylcholine receptor-A novel road towards the future treatment of skin diseases. Exp Dermatol 2020; 29:924-931. [PMID: 32780438 DOI: 10.1111/exd.14173] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Revised: 08/05/2020] [Accepted: 08/07/2020] [Indexed: 12/11/2022]
Abstract
Nicotinic acetylcholine receptors (nAChRs) are members of the superfamily of neurotransmitter-gated ion channels. The natural ligand for nAChRs is the endogenous neurotransmitter acetylcholine. Among the nAChRs is the α7nAChR. It is not only expressed by neural tissues but also in the skin. A number of different resident cutaneous cell types including epidermal keratinocytes, sebocytes and dermal fibroblasts express functional α7nAChR. Moreover, cells of the immune system such as lymphocytes, macrophages and monocytes, playing an important role in skin homeostasis, also express α7nAChR. Translational research focusing on the exploitation of the α7nAChR in dermatology has revealed that this neuroendocrine receptor could be promising target for the treatment of inflammatory skin diseases. For example, α7nAChR agonists can counteract transforming growth factor-β1-mediated responses in dermal fibroblasts, key effector cells in scleroderma. In accordance with this α7nAChR, agonists are effective in both inflammation and non-inflammation-driven models of experimentally induced skin fibrosis. Moreover, α7nAChR agonists can modulate expression of proinflammatory cytokines in epidermal keratinocytes that are crucially involved in the pathogenesis of psoriasis and other inflammatory skin diseases. Finally, the capability of α7nAChR agonists to suppress ultraviolet light A/B-induced responses, for example production of proinflammatory cytokines and oxidative stress, the latter crucially involved in dermal photoageing, points to a potential of such agents in the prevention of extrinsic skin ageing. Therefore, emphasis on translational research targeting the α7nAChR in skin may lead to the development of new treatment and prevention modalities against fibrosclerotic skin diseases, psoriasis vulgaris, atopic dermatitis, acne, photodermatoses and extrinsic skin ageing.
Collapse
Affiliation(s)
| | - Markus Böhm
- Dept. of Dermatology, University of Münster, Germany
| |
Collapse
|
21
|
Hashiuchi E, Watanabe H, Kimura K, Matsumoto M, Inoue H, Inaba Y. Diet intake control is indispensable for the gluconeogenic response to sodium-glucose cotransporter 2 inhibition in male mice. J Diabetes Investig 2020; 12:35-47. [PMID: 32515547 PMCID: PMC7779272 DOI: 10.1111/jdi.13319] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 05/09/2020] [Accepted: 06/03/2020] [Indexed: 12/12/2022] Open
Abstract
Aims/Introduction Sodium–glucose cotransporter 2 inhibitor (SGLT2i) lowers blood glucose and causes a whole‐body energy deficit by boosting renal glucose excretion, thus affecting glucose and energy metabolism. This energy deficit not only decreases bodyweight, but also increases food intake. This food intake increase offsets the SGLT2i‐induced bodyweight decrease, but the effect of the food intake increase on the SGLT2i regulation of glucose metabolism remains unclear. Materials and Methods We administered SGLT2i (luseogliflozin) for 4 weeks to hepatic gluconeogenic enzyme gene G6pc reporter mice with/without obesity, which were either fed freely or under a 3‐hourly dietary regimen. The effect of feeding condition on the gluconeogenic response to SGLT2i was evaluated by plasma Gaussia luciferase activity, an index of the hepatic gluconeogenic response, in G6pc reporter mice. Energy expenditure was measured by indirect calorimetry. Results In the lean mice under controlled feeding, SGLT2i decreased bodyweight and plasma glucose, and increased the hepatic gluconeogenic response while decreasing blood insulin. SGLT2i also increased oxygen consumption under controlled feeding. However, free feeding negated all of these effects of SGLT2i. In the obese mice, SGLT2i decreased bodyweight, blood glucose and plasma insulin, ameliorated the upregulated hepatic gluconeogenic response, and increased oxygen consumption under controlled feeding. Under free feeding, although blood glucose was decreased and plasma insulin tended to decrease, the effects of SGLT2i – decreased bodyweight, alleviation of the hepatic gluconeogenic response and increased oxygen consumption – were absent. Conclusions Food intake management is crucial for SGLT2i to affect glucose and energy metabolism during type 2 diabetes treatment.
Collapse
Affiliation(s)
- Emi Hashiuchi
- Department of Physiology and Metabolism, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Ishikawa, Japan
| | - Hitoshi Watanabe
- Metabolism and Nutrition Research Unit, Institute for Frontier Science Initiative, Kanazawa University, Kanazawa, Ishikawa, Japan
| | - Kumi Kimura
- Metabolism and Nutrition Research Unit, Institute for Frontier Science Initiative, Kanazawa University, Kanazawa, Ishikawa, Japan
| | - Michihiro Matsumoto
- Department of Molecular Metabolic Regulation, Diabetes Research Center, Research Institute, National Center for Global Health and Medicine, Tokyo, Japan
| | - Hiroshi Inoue
- Department of Physiology and Metabolism, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Ishikawa, Japan.,Metabolism and Nutrition Research Unit, Institute for Frontier Science Initiative, Kanazawa University, Kanazawa, Ishikawa, Japan
| | - Yuka Inaba
- Metabolism and Nutrition Research Unit, Institute for Frontier Science Initiative, Kanazawa University, Kanazawa, Ishikawa, Japan
| |
Collapse
|
22
|
Matsuzaka T, Shimano H. New perspective on type 2 diabetes, dyslipidemia and non-alcoholic fatty liver disease. J Diabetes Investig 2020; 11:532-534. [PMID: 32232972 PMCID: PMC7232277 DOI: 10.1111/jdi.13258] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 03/16/2020] [Accepted: 03/17/2020] [Indexed: 12/12/2022] Open
Affiliation(s)
- Takashi Matsuzaka
- Department of Internal Medicine (Endocrinology and Metabolism), Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Hitoshi Shimano
- Department of Internal Medicine (Endocrinology and Metabolism), Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki, Japan
| |
Collapse
|
23
|
Dexmedetomidine attenuates inflammation and pancreatic injury in a rat model of experimental severe acute pancreatitis via cholinergic anti-inflammatory pathway. Chin Med J (Engl) 2020; 133:1073-1079. [PMID: 32265428 PMCID: PMC7213633 DOI: 10.1097/cm9.0000000000000766] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Excessive inflammatory responses play a critical role in the development of severe acute pancreatitis (SAP), and controlling such inflammation is vital for managing this often fatal disease. Dexmedetomidine has been reported to possess protective properties in inflammatory diseases. Therefore, this study aimed to investigate whether dexmedetomidine pre-treatment exerts an anti-inflammatory effect in rats with SAP induced by sodium taurocholate, and if so, to determine the potential mechanism. METHODS SAP was induced with sodium taurocholate. Rats received an intraperitoneal injection of dexmedetomidine 30 min before sodium taurocholate administration. α-bungarotoxin, a selective alpha-7 nicotinic acetylcholine receptor (α7nAchR) antagonist, was injected intra-peritoneally 30 min before dexmedetomidine administration. The role of the vagus nerve was evaluated by performing unilateral cervical vagotomy before the administration of dexmedetomidine. Efferent discharge of the vagal nerve was recorded by the BL-420F Data Acquisition & Analysis System. Six hours after onset, serum pro-inflammatory cytokine (tumor necrosis factor α [TNF-α] and interleukin 6 [IL-6]) levels and amylase levels were determined using an enzyme-linked immunosorbent assay and an automated biochemical analyzer, respectively. Histopathological changes in the pancreas were observed after hematoxylin and eosin staining and scored according to Schmidt criteria. RESULTS Pre-treatment with dexmedetomidine significantly decreased serum levels of TNF-α, IL-6, and amylase, strongly alleviating pathological pancreatic injury in the rat model of SAP (TNF-α: 174.2 ± 30.2 vs. 256.1±42.4 pg/ml; IL-6: 293.3 ± 46.8 vs. 421.7 ± 48.3 pg/ml; amylase: 2102.3 ± 165.3 vs. 3186.4 ± 245.2 U/L). However, the anti-inflammatory and pancreatic protective effects were abolished after vagotomy or pre-administration of α-bungarotoxin. Dexmedetomidine also significantly increased the discharge frequency and amplitude of the cervical vagus nerve in the SAP rat model (discharge frequency: 456.8 ± 50.3 vs. 332.4 ± 25.1 Hz; discharge amplitude: 33.4 ± 5.3 vs. 20.5 ± 2.9 μV). CONCLUSIONS Dexmedetomidine administration attenuated the systemic inflammatory response and local pancreatic injury caused by SAP in rats through the cholinergic anti-inflammatory pathway involving vagus- and α7nAChR-dependent mechanisms.
Collapse
|
24
|
Stegemann A, Flis D, Ziolkowski W, Distler JHW, Steinbrink K, Böhm M. The α7 Nicotinic Acetylcholine Receptor: A Promising Target for the Treatment of Fibrotic Skin Disorders. J Invest Dermatol 2020; 140:2371-2379. [PMID: 32335129 DOI: 10.1016/j.jid.2020.04.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Revised: 03/19/2020] [Accepted: 04/03/2020] [Indexed: 12/20/2022]
Abstract
Targeting neuroendocrine receptors can be considered as another interesting approach to treating fibrotic disorders. Previously, we could demonstrate that tropisetron, a classical serotonin receptor blocker, can modulate collagen synthesis and acts in vitro through the α7 nicotinic acetylcholine receptor (α7nAchR). Here, we used a pharmacologic approach with specific α7nAchR agonists to validate this hypothesis. PHA-543613, an α7nAchR-specific agonist, not only prevented but also reversed established skin fibrosis of mice injected with bleomycin. Interestingly, agonistic stimulation of α7nAchR also attenuated experimental skin fibrosis in the non-inflammation driven adenovirus coding for TGFβ receptor Iact mouse model, indicating fibroblast-mediated and not only anti-inflammatory effects of such agents. The fibroblast-mediated effects were confirmed in vitro using human dermal fibroblasts, in which the α7nAchR-specific agonists strongly reduced the impact of TGFβ1-mediated expression on collagen and myofibroblast marker expression. These actions were linked to modulation of the redox-sensitive transcription factor JunB and impairment of the mitochondrial respiratory system. Our results indicate that pharmacologic stimulation of the α7nAchR could be a promising target for treatment of patients with skin fibrotic diseases. Moreover, our results suggest a mechanistic axis of collagen synthesis regulation through the mitochondrial respiratory system.
Collapse
Affiliation(s)
- Agatha Stegemann
- Department of Dermatology, University of Münster, Münster, Germany.
| | - Damian Flis
- Department of Bioenergetics and Nutrition, Gdańsk University of Physical Education and Sport, Gdańsk, Poland
| | - Wieslaw Ziolkowski
- Department of Rehabilitation Medicine, Medical University of Gdańsk, Gdańsk, Poland
| | - Jörg H W Distler
- Institute for Rheumatology and Immunology, University of Erlangen, Erlangen, Germany
| | | | - Markus Böhm
- Department of Dermatology, University of Münster, Münster, Germany
| |
Collapse
|
25
|
Deng J, Wang M, Guo Y, Fischer H, Yu X, Kem D, Li H. Activation of α7nAChR via vagus nerve prevents obesity-induced insulin resistance via suppressing endoplasmic reticulum stress-induced inflammation in Kupffer cells. Med Hypotheses 2020; 140:109671. [PMID: 32182560 DOI: 10.1016/j.mehy.2020.109671] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Revised: 03/03/2020] [Accepted: 03/10/2020] [Indexed: 12/21/2022]
Abstract
Obesity is a major risk factor for type 2 diabetes mellitus and insulin resistance (IR). In the state of obesity, excess fat accumulates in the liver, a key organ in systemic metabolism, altering the inflammatory and metabolic signals contributing substantially to the development of hepatic IR. Current therapies for these metabolic disorders have not been able to reverse their rapidly rising prevalence. One of the reasons is that the effects of existing drugs are predominantly non-lasting [1,2]. The vagus nerve (VN) is known to play an essential role in maintaining metabolic homeostasis while decreased VN activity has been suggested to contribute to obesity associated metabolic syndrome [3,4]. Several studies have reported that activation of α7 nicotinic acetylcholine receptor (α7nAChR) cholinergic signaling with or without VN intervention has protective effects against obesity-related inflammation and other metabolic complications [5]. However, the molecular mechanisms are still not elucidated. Exaggerated endoplasmic reticulum (ER) stress and consequent dysregulated inflammation has been implicated in the development of lipid accumulation and IR [6]. Whether targeting α7nAChR can regulate IR through these pathways is rarely reported. Accordingly, the present proposal posits that activation of the α7nAChR by VNS attenuates ER stress induced inflammation, thus ameliorating hepatic IR in Kupffer cell. We will focus on the specific interaction between vagal cholinergic activity and the modulation of ER stress induced inflammation via the α7nAChR associated pathway during IR development. Recently, the Endocrine Society has emphasized the absence of specific evidence from basic science, clinical, and epidemiological literature to assess current knowledge regarding underlying mechanisms of obesity [7]. In this proposal, we assign a significant role to α7nAChR in obesity-induced hepatic IR, and suggest a possible therapeutic strategy with VNS intervention.
Collapse
Affiliation(s)
- Jielin Deng
- Department of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK, China; Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan University, Wuhan, China
| | - Meng Wang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan University, Wuhan, China
| | - Yankai Guo
- Department of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK, China; Cardiac Pacing and Electrophysiology Department, the First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Hayley Fischer
- Department of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK, China
| | - Xichun Yu
- Department of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK, China
| | - David Kem
- Department of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK, China
| | - Hongliang Li
- Department of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK, China.
| |
Collapse
|
26
|
Alpha7 Nicotinic Acetylcholine Receptor Alleviates Inflammatory Bowel Disease Through Induction of AMPK-mTOR-p70S6K-Mediated Autophagy. Inflammation 2020; 42:1666-1679. [PMID: 31236857 DOI: 10.1007/s10753-019-01027-9] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Alpha7 nicotinic acetylcholine receptor (α7nAChR) has been reported to be protective in several kinds of disorders through inflammatory suppression. Here, we investigated the role of α7nAChR in inflammatory bowel disease (IBD) on α7nAChR deficient mice (α7nAChR-/-) and the wild-type mice (α7nAChR+/+). Three percent dextran sulfate sodium (DSS) was used for the creation of IBD mice model and lipopolysaccharides (LPS)/DSS as an inflammatory stressor in murine bone marrow-derived macrophages (BMDMs). The severity of IBD was determined and HE staining as well as enzyme-linked immunosorbent assay (ELISA) and real-time PCR were used to detect the level of inflammatory activation. Western blot was used to determine the levels of autophagy-related proteins. Transmission electron microscopy and mRFP-GFP-LC3 plasmid were applied to determine the levels of autophagy. We demonstrated that deficiency in α7nAChR produced a detrimental effect on IBD severity and inflammatory reaction in DSS-induced colitis models. Those effects were led to via autophagy dysfunction. α7nAChR deficiency attenuated the protective and anti-inflammatory effect of autophagy inducer in IBD mice and BMDMs challenged with LPS/DSS. The alleviative effect of activating α7nAChR was attenuated through inhibiting adenosine 5'-monophosphate (AMP)-activated protein kinase (AMPK)-mediated signaling. In conclusion, α7nAChR contributes to alleviate IBD through the induction of AMPK-mammalian target of rapamycin rabbit (mTOR)-p70 ribosomal protein S6 kinase (p70S6K)-mediated autophagy, thus providing a novel target for the treatment of IBD.
Collapse
|
27
|
Hashimoto N, Wakagi M, Ippoushi K, Takano-Ishikawa Y. Involvement of the hepatic branch of the vagus nerve in the regulation of plasma adipokine levels in rats fed a high-fructose diet. J Nutr Biochem 2019; 71:90-97. [DOI: 10.1016/j.jnutbio.2019.06.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Revised: 05/14/2019] [Accepted: 06/04/2019] [Indexed: 12/12/2022]
|
28
|
Arase Y, Shiraishi K, Anzai K, Sato H, Teramura E, Tsuruya K, Hirose S, Deguchi R, Toyoda M, Mine T, Kagawa T. Effect of Sodium Glucose Co-Transporter 2 Inhibitors on Liver Fat Mass and Body Composition in Patients with Nonalcoholic Fatty Liver Disease and Type 2 Diabetes Mellitus. Clin Drug Investig 2019; 39:631-641. [PMID: 30993553 PMCID: PMC6593121 DOI: 10.1007/s40261-019-00785-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
BACKGROUND AND OBJECTIVE Sodium glucose co-transporter 2 inhibitors increase urinary glucose excretion and reduce visceral adiposity and body weight, but their efficacy on patients with nonalcoholic fatty liver disease has not been sufficiently investigated. The aim of this study was to assess the effect of sodium glucose co-transporter 2 inhibitors on liver fat mass and body composition in patients with nonalcoholic fatty liver disease and type 2 diabetes mellitus. METHODS We retrospectively analyzed 17 patients with nonalcoholic fatty liver disease and type 2 diabetes who received sodium glucose co-transporter 2 inhibitors between November 2016 and July 2017. Changes in liver fat, subcutaneous and visceral fat, body composition, and liver function-related parameters were assessed after 24 weeks of sodium glucose co-transporter 2 inhibitor treatment and compared to baseline values. RESULTS Ten patients received dapagliflozin at 5 mg/day and seven patients received canagliflozin at 100 mg/day for 24 weeks. All patients completed the study without any serious adverse effects and achieved body weight loss and improved glycated hemoglobin levels. Liver fat mass evaluated by proton magnetic resonance spectroscopy was significantly reduced (19.1% vs. 9.2%, p < 0.01), and so were both subcutaneous and visceral fat mass. The body fat/body weight ratio decreased, whereas the skeletal muscle mass/body weight ratio increased. Liver function (aspartate aminotransferase, alanine aminotransferase, and γ-glutamyl transpeptidase) improved significantly. CONCLUSIONS Sodium glucose co-transporter 2 inhibitor treatment not only improved glycemic control but also reduced liver fat mass in patients with nonalcoholic fatty liver disease and type 2 diabetes. Body weight loss was primarily attributable to a reduction in fat mass, especially visceral fat. Thus, sodium glucose co-transporter 2 inhibitors could potentially serve as a therapeutic agent for patients with nonalcoholic fatty liver disease and type 2 diabetes.
Collapse
Affiliation(s)
- Yoshitaka Arase
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Tokai University School of Medicine, 143 Shimokasuya, Isehara, Kanagawa, 259-1193, Japan.
- Division of Gastroenterology and Hepatology, Tokai University Oiso Hospital, Nakagun, Kanagawa, Japan.
| | - Koichi Shiraishi
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Tokai University School of Medicine, 143 Shimokasuya, Isehara, Kanagawa, 259-1193, Japan
- Division of Gastroenterology and Hepatology, Tokai University Tokyo Hospital, Tokyo, Japan
| | - Kazuya Anzai
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Tokai University School of Medicine, 143 Shimokasuya, Isehara, Kanagawa, 259-1193, Japan
- Division of Gastroenterology and Hepatology, Tokai University Oiso Hospital, Nakagun, Kanagawa, Japan
| | - Hirohiko Sato
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Tokai University School of Medicine, 143 Shimokasuya, Isehara, Kanagawa, 259-1193, Japan
- Division of Gastroenterology and Hepatology, Tokai University Oiso Hospital, Nakagun, Kanagawa, Japan
| | - Erika Teramura
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Tokai University School of Medicine, 143 Shimokasuya, Isehara, Kanagawa, 259-1193, Japan
- Division of Gastroenterology and Hepatology, Tokai University Oiso Hospital, Nakagun, Kanagawa, Japan
| | - Kota Tsuruya
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Tokai University School of Medicine, 143 Shimokasuya, Isehara, Kanagawa, 259-1193, Japan
| | - Shunji Hirose
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Tokai University School of Medicine, 143 Shimokasuya, Isehara, Kanagawa, 259-1193, Japan
| | - Ryuzo Deguchi
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Tokai University School of Medicine, 143 Shimokasuya, Isehara, Kanagawa, 259-1193, Japan
- Division of Gastroenterology and Hepatology, Tokai University Oiso Hospital, Nakagun, Kanagawa, Japan
| | - Masao Toyoda
- Division of Nephrology, Endocrinology and Metabolism, Department of Internal Medicine, Tokai University School of Medicine, Isehara, Kanagawa, Japan
| | - Tetsuya Mine
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Tokai University School of Medicine, 143 Shimokasuya, Isehara, Kanagawa, 259-1193, Japan
| | - Tatehiro Kagawa
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Tokai University School of Medicine, 143 Shimokasuya, Isehara, Kanagawa, 259-1193, Japan
| |
Collapse
|
29
|
Parent R, Gidron Y, Lebossé F, Decaens T, Zoulim F. The Potential Implication of the Autonomic Nervous System in Hepatocellular Carcinoma. Cell Mol Gastroenterol Hepatol 2019; 8:145-148. [PMID: 30981632 PMCID: PMC6599107 DOI: 10.1016/j.jcmgh.2019.03.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Revised: 03/05/2019] [Accepted: 03/13/2019] [Indexed: 12/22/2022]
Affiliation(s)
- Romain Parent
- UMR5286, CNRS, INSERM U1052, Lyon Cancer Research Center, Lyon, France; Department of Immunology and Virology, University of Lyon, Lyon, France; DevWeCan Laboratories of Excellence Network (Labex), Lyon, France.
| | - Yori Gidron
- SCALAB UMR CNRS 9193, University of Lille, Villeneuve d'Ascq, France
| | - Fanny Lebossé
- UMR5286, CNRS, INSERM U1052, Cancer Research Centre of Lyon, Lyon, France; Department of Immunology and Virology, University of Lyon, Lyon, France; Hepatogastroenterology Service, Hôpital de la Croix-Rousse, Hospices Civils de Lyon, Lyon, France
| | - Thomas Decaens
- University of Grenoble-Alpes, Grenoble, France; Department of Hepatogastroenterology, Centre Hospitalier Universitaire Grenoble-Alpes, La Tronche, France; Institute for Advanced Biosciences, CNRS UMR 5309, INSERM U1209, University of Grenoble-Alpes, Grenoble, France
| | - Fabien Zoulim
- UMR5286, CNRS, INSERM U1052, Cancer Research Centre of Lyon, Lyon, France; Department of Immunology and Virology, University of Lyon, Lyon, France; DevWeCan Laboratories of Excellence Network (Labex), Lyon, France; Hepatogastroenterology Service, Hôpital de la Croix-Rousse, Hospices Civils de Lyon, Lyon, France
| |
Collapse
|
30
|
Chang EH, Chavan SS, Pavlov VA. Cholinergic Control of Inflammation, Metabolic Dysfunction, and Cognitive Impairment in Obesity-Associated Disorders: Mechanisms and Novel Therapeutic Opportunities. Front Neurosci 2019; 13:263. [PMID: 31024226 PMCID: PMC6460483 DOI: 10.3389/fnins.2019.00263] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Accepted: 03/06/2019] [Indexed: 12/26/2022] Open
Abstract
Obesity and obesity-associated disorders have become world-wide epidemics, substantially increasing the risk of debilitating morbidity and mortality. A characteristic feature of these disorders, which include the metabolic syndrome (MetS) and type 2 diabetes, is chronic low-grade inflammation stemming from metabolic and immune dysregulation. Inflammation in the CNS (neuroinflammation) and cognitive impairment have also been associated with obesity-driven disorders. The nervous system has a documented role in the regulation of metabolic homeostasis and immune function, and recent studies have indicated the important role of vagus nerve and brain cholinergic signaling in this context. In this review, we outline relevant aspects of this regulation with a specific focus on obesity-associated conditions. We outline accumulating preclinical evidence for the therapeutic efficacy of cholinergic stimulation in alleviating obesity-associated inflammation, neuroinflammation, and metabolic derangements. Recently demonstrated beneficial effects of galantamine, a centrally acting cholinergic drug and cognitive enhancer, in patients with MetS are also summarized. These studies provide a rationale for further therapeutic developments using pharmacological and bioelectronic cholinergic modulation for clinical benefit in obesity-associated disorders.
Collapse
Affiliation(s)
- Eric H. Chang
- Center for Bioelectronic Medicine and Biomedical Sciences, Feinstein Institute for Medical Research, Northwell Health, Manhasset, NY, United States
- Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, United States
| | - Sangeeta S. Chavan
- Center for Bioelectronic Medicine and Biomedical Sciences, Feinstein Institute for Medical Research, Northwell Health, Manhasset, NY, United States
- Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, United States
| | - Valentin A. Pavlov
- Center for Bioelectronic Medicine and Biomedical Sciences, Feinstein Institute for Medical Research, Northwell Health, Manhasset, NY, United States
- Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, United States
| |
Collapse
|