1
|
Usui R, Hamamoto Y, Imura M, Omori Y, Yamazaki Y, Kuwata H, Tatsuoka H, Shimomura K, Murotani K, Yamada Y, Seino Y. Differential effects of imeglimin and metformin on insulin and incretin secretion-An exploratory randomized controlled trial. Diabetes Obes Metab 2025; 27:856-865. [PMID: 39592886 PMCID: PMC11701202 DOI: 10.1111/dom.16086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 11/08/2024] [Accepted: 11/09/2024] [Indexed: 11/28/2024]
Abstract
AIMS Imeglimin is a new oral anti-diabetic drug with a similar structure to that of metformin; however, unlike metformin, clinical trials indicate that imeglimin elicits its glucose-lowering effect mainly by enhancement of insulin secretion. The comparative effects of the two drugs on incretin secretion remains to be elucidated. MATERIALS AND METHODS A single-center, open-label, randomized controlled trial was conducted in patients with type 2 diabetes who were drug-naïve or were on a single oral hypoglycaemic agent (OHA). For patients taking a single OHA, an 8-week washout period was employed before randomization. Participants were randomized to the imeglimin group (IME, 2000 mg/day) or the metformin group (MET, 1000 mg/day), and OGTT was performed before treatment and after 12 and 24 weeks of treatment. RESULTS The reduction in HbA1c at 24 weeks was similar in IME and MET. OGTT revealed a comparable decrease in post-challenge blood glucose excursion in both groups, but insulin levels were increased only in IME. Total and active glucagon-like peptide-1 (GLP-1) levels were increased in both IME and MET; however, total and active glucose-dependent insulinotropic peptide (GIP) levels were increased only in IME. Interestingly, while an increase in insulin levels in IME was positively correlated with an increase in GLP-1 at 12 weeks, it was correlated only with an increase in GIP at 24 weeks. CONCLUSIONS Unlike metformin, imeglimin enhances GIP secretion as well as GLP-1 secretion, in addition to its direct insulinotropic mechanism of glucose control, emphasizing its potential as a therapeutic option in the treatment of patients with diabetes.
Collapse
Affiliation(s)
- Ryota Usui
- Center for Diabetes, Endocrinology and MetabolismKansai Electric Power HospitalOsakaJapan
- Yutaka Seino Distinguished Center for Diabetes ResearchKansai Electric Power Medical Research InstituteKyotoJapan
| | - Yoshiyuki Hamamoto
- Center for Diabetes, Endocrinology and MetabolismKansai Electric Power HospitalOsakaJapan
- Yutaka Seino Distinguished Center for Diabetes ResearchKansai Electric Power Medical Research InstituteKyotoJapan
| | - Masahiro Imura
- Center for Diabetes, Endocrinology and MetabolismKansai Electric Power HospitalOsakaJapan
- Yutaka Seino Distinguished Center for Diabetes ResearchKansai Electric Power Medical Research InstituteKyotoJapan
| | - Yasuhiro Omori
- Center for Diabetes, Endocrinology and MetabolismKansai Electric Power HospitalOsakaJapan
- Yutaka Seino Distinguished Center for Diabetes ResearchKansai Electric Power Medical Research InstituteKyotoJapan
| | - Yuji Yamazaki
- Center for Diabetes, Endocrinology and MetabolismKansai Electric Power HospitalOsakaJapan
- Yutaka Seino Distinguished Center for Diabetes ResearchKansai Electric Power Medical Research InstituteKyotoJapan
| | - Hitoshi Kuwata
- Center for Diabetes, Endocrinology and MetabolismKansai Electric Power HospitalOsakaJapan
- Yutaka Seino Distinguished Center for Diabetes ResearchKansai Electric Power Medical Research InstituteKyotoJapan
| | - Hisato Tatsuoka
- Yutaka Seino Distinguished Center for Diabetes ResearchKansai Electric Power Medical Research InstituteKyotoJapan
- Research and Development departmentGeneral Incorporated Association Kansai Healthcare Science InformaticsKyotoJapan
| | | | | | - Yuichiro Yamada
- Center for Diabetes, Endocrinology and MetabolismKansai Electric Power HospitalOsakaJapan
- Yutaka Seino Distinguished Center for Diabetes ResearchKansai Electric Power Medical Research InstituteKyotoJapan
| | - Yutaka Seino
- Center for Diabetes, Endocrinology and MetabolismKansai Electric Power HospitalOsakaJapan
- Yutaka Seino Distinguished Center for Diabetes ResearchKansai Electric Power Medical Research InstituteKyotoJapan
| |
Collapse
|
2
|
Itsukaichi A, Yoshikawa F, Fuchigami A, Iwata Y, Sato G, Miyagi M, Hirose T, Uchino H. Effect of Imeglimin, a Novel Anti-Diabetic Agent, on Insulin Secretion and Glycemic Variability in Type 2 Diabetes Treated with DPP-4 Inhibitor: A 16-Week, Open Label, Pilot Study. Diabetes Metab Syndr Obes 2025; 18:101-111. [PMID: 39807125 PMCID: PMC11727693 DOI: 10.2147/dmso.s495930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2024] [Accepted: 12/31/2024] [Indexed: 01/16/2025] Open
Abstract
Purpose Imeglimin is a novel oral antidiabetic agent that improves glucose tolerance. This study aimed to investigate the efficacy of combining imeglimin with dipeptidyl peptidase-4 inhibitor (DPP-4i), the most frequently prescribed first-line treatment for patients with type 2 diabetes (T2D) in Japan, to improve glycemic control. Patients and Methods Eleven patients with T2D treated with DPP-4i alone (6.5% ≤ hemoglobin A1C [HbA1c] < 10%) received 1000 mg imeglimin twice daily for 16 weeks. A meal tolerance test (MTT) was conducted on seven of these patients to assess parameters associated with islet function or insulin tolerance, such as homeostasis model assessment (HOMA)-β-cell function (HOMA-β), HOMA-insulin resistance (HOMA-IR), C-peptide immunoreactivity (CPR) index, and glucagon kinetics. Continuous glucose monitoring was conducted to evaluate parameters for glycemic variability. Results Sixteen weeks after imeglimin administration, the HbA1c level improved from 7.5%±1.3% to 6.5%±0.5% (p < 0.05), the casual blood glucose level significantly improved from 168.2±55.4 to 127.8±20.0 mg/dL (p=0.027), time in range increased from 65.0%±0.34% to 90.0%±0.08% (p < 0.05), and time above range reduced from 34.0%±0.034% to 9.0%±0.08% (p < 0.05). During MTT, we observed significantly reduced area under the curve (AUC)0-180 glucose, increased AUC0-180 CPR/AUC0-180 glucose, CPR index, and HOMA-β (p<0.05). HOMA-IR and glucagon kinetics did not change with the addition of imeglimin. Conclusion The addition of imeglimin to DPP-4i significantly improved glycemic control and glycemic variability, based on increased glucose-induced insulin secretion, indicating its potential as a therapeutic option for patients with T2D.
Collapse
Affiliation(s)
- Atsushi Itsukaichi
- Department of Diabetes, Metabolism and Endocrinology, Toho University Graduate School of Medicine, Tokyo, Japan
| | - Fukumi Yoshikawa
- Department of Diabetes, Metabolism and Endocrinology, Toho University Graduate School of Medicine, Tokyo, Japan
| | - Ayako Fuchigami
- Department of Diabetes, Metabolism and Endocrinology, Toho University Graduate School of Medicine, Tokyo, Japan
| | - Yoko Iwata
- Department of Diabetes, Metabolism and Endocrinology, Toho University Graduate School of Medicine, Tokyo, Japan
| | - Genki Sato
- Department of Diabetes, Metabolism and Endocrinology, Toho University Graduate School of Medicine, Tokyo, Japan
| | - Masahiko Miyagi
- Department of Diabetes, Metabolism and Endocrinology, Toho University Graduate School of Medicine, Tokyo, Japan
| | - Takahisa Hirose
- Department of Diabetes, Metabolism and Endocrinology, Toho University Graduate School of Medicine, Tokyo, Japan
| | - Hiroshi Uchino
- Department of Diabetes, Metabolism and Endocrinology, Toho University Graduate School of Medicine, Tokyo, Japan
| |
Collapse
|
3
|
Kikuchi O, Ikeuchi Y, Kobayashi M, Tabei Y, Yokota‐Hashimoto H, Kitamura T. Imeglimin enhances glucagon secretion through an indirect mechanism and improves fatty liver in high-fat, high-sucrose diet-fed mice. J Diabetes Investig 2024; 15:1177-1190. [PMID: 38874179 PMCID: PMC11363097 DOI: 10.1111/jdi.14249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 05/03/2024] [Accepted: 05/24/2024] [Indexed: 06/15/2024] Open
Abstract
AIMS/INTRODUCTION Imeglimin is a recently approved oral antidiabetic agent that improves insulin resistance, and promotes insulin secretion from pancreatic β-cells. Here, we investigated the effects of imeglimin on glucagon secretion from pancreatic α-cells. MATERIALS AND METHODS Experiments were carried out in high-fat, high-sucrose diet-fed mice. The effects of imeglimin were examined using insulin and glucose tolerance tests, glucose clamp studies, and measurements of glucagon secretion from isolated islets. Glucagon was measured using both the standard and the sequential protocol of Mercodia sandwich enzyme-linked immunosorbent assay; the latter eliminates cross-reactivities with other proglucagon-derived peptides. RESULTS Plasma glucagon, insulin and glucagon-like peptide-1 levels were increased by imeglimin administration in high-fat, high-sucrose diet-fed mice. Glucose clamp experiments showed that the glucagon increase was not caused by reduced blood glucose levels. After both single and long-term administration of imeglimin, glucagon secretions were significantly enhanced during glucose tolerance tests. Milder enhancement was observed when using the sequential protocol. Long-term administration of imeglimin did not alter α-cell mass. Intraperitoneal imeglimin administration did not affect glucagon secretion, despite significantly decreased blood glucose levels. Imeglimin did not enhance glucagon secretion from isolated islets. Imeglimin administration improved fatty liver by suppressing de novo lipogenesis through decreasing sterol regulatory element binding protein-1c and carbohydrate response element binding protein and their target genes, while enhancing fatty acid oxidation through increasing carnitine palmitoyltransferase I. CONCLUSIONS Overall, the present results showed that imeglimin enhances glucagon secretion through an indirect mechanism. Our findings also showed that glucagon secretion promoted by imeglimin could contribute to improvement of fatty liver through suppressing de novo lipogenesis and enhancing fatty acid oxidation.
Collapse
Affiliation(s)
- Osamu Kikuchi
- Metabolic Signal Research CenterInstitute for Molecular and Cellular Regulation, Gunma UniversityGunmaJapan
| | - Yuichi Ikeuchi
- Metabolic Signal Research CenterInstitute for Molecular and Cellular Regulation, Gunma UniversityGunmaJapan
| | - Masaki Kobayashi
- Metabolic Signal Research CenterInstitute for Molecular and Cellular Regulation, Gunma UniversityGunmaJapan
| | - Yoko Tabei
- Metabolic Signal Research CenterInstitute for Molecular and Cellular Regulation, Gunma UniversityGunmaJapan
| | - Hiromi Yokota‐Hashimoto
- Metabolic Signal Research CenterInstitute for Molecular and Cellular Regulation, Gunma UniversityGunmaJapan
| | - Tadahiro Kitamura
- Metabolic Signal Research CenterInstitute for Molecular and Cellular Regulation, Gunma UniversityGunmaJapan
| |
Collapse
|
4
|
Takahashi N, Kimura AP, Yoshizaki T, Ohmura K. Imeglimin modulates mitochondria biology and facilitates mitokine secretion in 3T3-L1 adipocytes. Life Sci 2024; 349:122735. [PMID: 38768776 DOI: 10.1016/j.lfs.2024.122735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2024] [Revised: 04/22/2024] [Accepted: 05/15/2024] [Indexed: 05/22/2024]
Abstract
AIMS Imeglimin, a novel antidiabetic drug, has recently been reported to affect pancreatic β-cells and hepatocytes. Adipose tissue plays a crucial role in systemic metabolism. However, its effect on adipocytes remains unexplored. Herein, we investigated the effects of imeglimin on adipocytes, particularly in the mitochondria. MAIN METHODS The 3T3-L1 adipocytes were treated with imeglimin. Mitochondrial respiratory complex I activity and NAD+, NADH, and AMP levels were measured. Protein expression levels were determined by western blotting, mitochondrial DNA and mRNA expression levels were determined using quantitative polymerase chain reaction, and secreted adipocytokine and mitokine levels were determined using adipokine array and enzyme-linked immunosorbent assay. KEY FINDINGS Imeglimin inhibited complex I activity, decreased the NAD+/NADH ratio, and increased AMP levels, which were associated with the enhanced phosphorylation of AMP-activated protein kinase. In addition, imeglimin increased the mitochondrial DNA content and levels of mitochondrial transcription factor A and peroxisome proliferator-activated receptor-γ coactivator 1-α mRNA, which were abolished by Ly294002, a phosphoinositide 3-kinase inhibitor. Furthermore, imeglimin facilitated the expression levels of markers of the mitochondrial unfolded protein response, and the gene expression and secretion of two mitokines, fibroblast growth factor 21 and growth differentiation factor 15. The production of both mitokines was transcriptionally regulated and abolished by phosphoinositide 3-kinase and Akt inhibitors. SIGNIFICANCE Imeglimin modulates mitochondrial biology in adipocytes and may exert a mitohormetic effect through mitokine secretion.
Collapse
Affiliation(s)
- Nobuhiko Takahashi
- Division of Internal Medicine, Department of Human Biology and Pathophysiology, School of Dentistry, Health Sciences University of Hokkaido, 1757 Kanazawa, Ishikari-Tobetsu, Hokkaido 061-0023, Japan.
| | - Atsushi P Kimura
- Department of Biological Sciences, Faculty of Science, Hokkaido University, Sapporo, Hokkaido 060-0810, Japan
| | - Takayuki Yoshizaki
- Department of Biotechnology, Faculty of Life Science and Biotechnology, Fukuyama University, Hiroshima 729-0292, Japan
| | - Kazumasa Ohmura
- Division of Internal Medicine, Department of Human Biology and Pathophysiology, School of Dentistry, Health Sciences University of Hokkaido, 1757 Kanazawa, Ishikari-Tobetsu, Hokkaido 061-0023, Japan
| |
Collapse
|
5
|
Li Y, Lou N, Liu X, Zhuang X, Chen S. Exploring new mechanisms of Imeglimin in diabetes treatment: Amelioration of mitochondrial dysfunction. Biomed Pharmacother 2024; 175:116755. [PMID: 38772155 DOI: 10.1016/j.biopha.2024.116755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Revised: 04/26/2024] [Accepted: 05/13/2024] [Indexed: 05/23/2024] Open
Abstract
With the increasing prevalence of type 2 diabetes mellitus (T2DM), it has become critical to identify effective treatment strategies. In recent years, the novel oral hypoglycaemic drug Imeglimin has attracted much attention in the field of diabetes treatment. The mechanisms of its therapeutic action are complex and are not yet fully understood by current research. Current evidence suggests that pancreatic β-cells, liver, and skeletal muscle are the main organs in which Imeglimin lowers blood glucose levels and that it acts mainly by targeting mitochondrial function, thereby inhibiting hepatic gluconeogenesis, enhancing insulin sensitivity, promoting pancreatic β-cell function, and regulating energy metabolism. There is growing evidence that the drug also has a potentially volatile role in the treatment of diabetic complications, including metabolic cardiomyopathy, diabetic vasculopathy, and diabetic neuroinflammation. According to available clinical studies, its efficacy and safety profile are more evident than other hypoglycaemic agents, and it has synergistic effects when combined with other antidiabetic drugs, and also has potential in the treatment of T2DM-related complications. This review aims to shed light on the latest research progress in the treatment of T2DM with Imeglimin, thereby providing clinicians and researchers with the latest insights into Imeglimin as a viable option for the treatment of T2DM.
Collapse
Affiliation(s)
- Yilin Li
- Department of Endocrinology and Metabolism, The Second Hospital of Shandong University, Jinan 250033, China
| | - Nenngjun Lou
- Department of Endocrinology and Metabolism, The Second Hospital of Shandong University, Jinan 250033, China
| | - Xiaojing Liu
- Department of Endocrinology and Metabolism, The Second Hospital of Shandong University, Jinan 250033, China
| | - Xianghua Zhuang
- Department of Endocrinology and Metabolism, The Second Hospital of Shandong University, Jinan 250033, China; Multidisciplinary Innovation Center for Nephrology of the Second Hospital of Shandong University, Jinan 250033, China.
| | - Shihong Chen
- Department of Endocrinology and Metabolism, The Second Hospital of Shandong University, Jinan 250033, China; Multidisciplinary Innovation Center for Nephrology of the Second Hospital of Shandong University, Jinan 250033, China.
| |
Collapse
|
6
|
Sultan J, Agarwal N, Sharma S. Characteristics and Biological Properties of Imeglimin Hydrochlo ride, A Novel Antidiabetic Agent: A Systematic Review. Curr Diabetes Rev 2024; 20:e171023222286. [PMID: 37855361 DOI: 10.2174/0115733998260331231009104035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 07/10/2023] [Accepted: 08/23/2023] [Indexed: 10/20/2023]
Abstract
BACKGROUND WHO indicates that diabetes will become the 7th leading reason for death by 2030. The physiopathology of dysfunctioning is associated with obesity, weight gain and predominantly insulin resistance in insulin-sensitive cells and continuous deterioration of pancreatic beta cell function..Imeglimin is an investigational novel oral anti-diabetic drug. OBJECTIVES The motive of the review is to comprehensively explore the chemistry, biological and analytical analysis of the Imeglimin hydrochloride. METHODS To enhance the understanding, a systematic review was conducted by forming a database of relevant existing studies from electronic resources like Web of Science, ScienceDirect and PubMed. The methodology is reflected in the PRISMA design. RESULT The drug was approved in the year 2021 for therapeutic purposes in Japan. It is the novel and first approved drug for this type of Anti-diabetic treatment. It is a small molecular drug whose molecular weight is 191.6 grams per mole utilized for oral administration. Imeglimin is thought to have both activities, as the amount of glucose is dependent on insulin secretory impact and insulin sensitivity is increased. CONCLUSION Therapeutic, pharmacological, and analytical considerations for the novel drug Imeglimin hydrochloride are discussed in this review.
Collapse
Affiliation(s)
- Jasira Sultan
- Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, SVKM's NMIMS Deemed to be University, Vile Parle West, Mumbai, Maharashtra 400056, India
| | - Nikhil Agarwal
- Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, SVKM's NMIMS Deemed to be University, Vile Parle West, Mumbai, Maharashtra 400056, India
| | - Sanjay Sharma
- Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, SVKM's NMIMS Deemed to be University, Vile Parle West, Mumbai, Maharashtra 400056, India
| |
Collapse
|
7
|
Ishibashi R, Hirayama K, Watanabe S, Okano K, Kuroda Y, Baba Y, Kanayama T, Ito C, Kasahara K, Aiba S, Iga R, Ohtani R, Inaba Y, Koshizaka M, Maezawa Y, Yokote K. Imeglimin-mediated glycemic control in maternally inherited deafness and diabetes. J Diabetes Investig 2023; 14:1419-1422. [PMID: 37715448 PMCID: PMC10688119 DOI: 10.1111/jdi.14085] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Revised: 08/22/2023] [Accepted: 09/01/2023] [Indexed: 09/17/2023] Open
Abstract
Mitochondrial dysfunction causes maternally inherited deafness and diabetes (MIDD). Herein, we report improved glycemic control in a 47-year-old Japanese woman with MIDD using imeglimin without major adverse effects. Biochemical tests and metabolome analysis were performed before and after imeglimin administration. Blood glucose level fluctuations were determined. Sulfonylureas, dipeptidyl peptidase-4 inhibitors (DPP4is), and sodium glucose transporter-2 inhibitors (SGLT2i) were administered to evaluate the efficacy of their combination with imeglimin. Imeglimin decreased the HbA1c and ammonia levels and increased the time-in-range, C-peptide reactivity, and glucagon level. Elevated citrulline and histamine levels were decreased by imeglimin. The hypoglycemic effect was not enhanced by imeglimin when combined with sulfonylurea or DPP4i, but the blood glucose level was improved when combined with SGLT2i. Imeglimin improved glucose concentration-dependent insulin secretion and maximized the insulin secretory capacity by improving mitochondrial function and glutamine metabolism and urea circuit abnormalities by promoting glucagon secretion. Imeglimin could improve glycemic control in MIDD.
Collapse
Affiliation(s)
- Ryoichi Ishibashi
- Division of Diabetes, Endocrinology and Metabolism, Department of MedicineKimitsu Chuo HospitalKisarazu, ChibaJapan
- Department of Endocrinology, Hematology, and GerontologyChiba University Graduate School of MedicineChibaJapan
| | - Kiichi Hirayama
- Division of Diabetes, Endocrinology and Metabolism, Department of MedicineKimitsu Chuo HospitalKisarazu, ChibaJapan
| | - Suzuka Watanabe
- Division of Diabetes, Endocrinology and Metabolism, Department of MedicineKimitsu Chuo HospitalKisarazu, ChibaJapan
- Department of Endocrinology, Hematology, and GerontologyChiba University Graduate School of MedicineChibaJapan
| | - Kosuke Okano
- Division of Diabetes, Endocrinology and Metabolism, Department of MedicineKimitsu Chuo HospitalKisarazu, ChibaJapan
- Department of Endocrinology, Hematology, and GerontologyChiba University Graduate School of MedicineChibaJapan
| | - Yuta Kuroda
- Division of Diabetes, Endocrinology and Metabolism, Department of MedicineKimitsu Chuo HospitalKisarazu, ChibaJapan
- Department of Endocrinology, Hematology, and GerontologyChiba University Graduate School of MedicineChibaJapan
| | - Yusuke Baba
- Division of Diabetes, Endocrinology and Metabolism, Department of MedicineKimitsu Chuo HospitalKisarazu, ChibaJapan
| | - Takuma Kanayama
- Division of Diabetes, Endocrinology and Metabolism, Department of MedicineKimitsu Chuo HospitalKisarazu, ChibaJapan
| | - Chiho Ito
- Division of Diabetes, Endocrinology and Metabolism, Department of MedicineKimitsu Chuo HospitalKisarazu, ChibaJapan
| | - Keisuke Kasahara
- Division of Diabetes, Endocrinology and Metabolism, Department of MedicineKimitsu Chuo HospitalKisarazu, ChibaJapan
| | - Saki Aiba
- Division of Diabetes, Endocrinology and Metabolism, Department of MedicineKimitsu Chuo HospitalKisarazu, ChibaJapan
| | - Ryo Iga
- Division of Diabetes, Endocrinology and Metabolism, Department of MedicineKimitsu Chuo HospitalKisarazu, ChibaJapan
| | - Ryohei Ohtani
- Department of Medicine, Division of NeurologyKimitsu Chuo HospitalKisarazu, ChibaJapan
| | - Yosuke Inaba
- Clinical Research CenterChiba University HospitalChibaJapan
| | - Masaya Koshizaka
- Department of Endocrinology, Hematology, and GerontologyChiba University Graduate School of MedicineChibaJapan
| | - Yoshiro Maezawa
- Department of Endocrinology, Hematology, and GerontologyChiba University Graduate School of MedicineChibaJapan
| | - Koutaro Yokote
- Department of Endocrinology, Hematology, and GerontologyChiba University Graduate School of MedicineChibaJapan
| |
Collapse
|
8
|
Ishibashi R, Hirayama K, Watanabe S, Okano K, Kuroda Y, Baba Y, Kanayama T, Ito C, Kasahara K, Aiba S, Iga R, Ohtani R, Inaba Y, Koshizaka M, Maezawa Y, Yokote K. Imeglimin-mediated glycemic control in maternally inherited deafness and diabetes. J Diabetes Investig 2023; 14:1419-1422. [PMID: 37715448 PMCID: PMC10688119 DOI: 10.1111/jdi.14085 10.1111/jdi.14085] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Revised: 08/22/2023] [Accepted: 09/01/2023] [Indexed: 12/09/2023] Open
Abstract
Mitochondrial dysfunction causes maternally inherited deafness and diabetes (MIDD). Herein, we report improved glycemic control in a 47-year-old Japanese woman with MIDD using imeglimin without major adverse effects. Biochemical tests and metabolome analysis were performed before and after imeglimin administration. Blood glucose level fluctuations were determined. Sulfonylureas, dipeptidyl peptidase-4 inhibitors (DPP4is), and sodium glucose transporter-2 inhibitors (SGLT2i) were administered to evaluate the efficacy of their combination with imeglimin. Imeglimin decreased the HbA1c and ammonia levels and increased the time-in-range, C-peptide reactivity, and glucagon level. Elevated citrulline and histamine levels were decreased by imeglimin. The hypoglycemic effect was not enhanced by imeglimin when combined with sulfonylurea or DPP4i, but the blood glucose level was improved when combined with SGLT2i. Imeglimin improved glucose concentration-dependent insulin secretion and maximized the insulin secretory capacity by improving mitochondrial function and glutamine metabolism and urea circuit abnormalities by promoting glucagon secretion. Imeglimin could improve glycemic control in MIDD.
Collapse
Affiliation(s)
- Ryoichi Ishibashi
- Division of Diabetes, Endocrinology and Metabolism, Department of MedicineKimitsu Chuo HospitalKisarazu, ChibaJapan
- Department of Endocrinology, Hematology, and GerontologyChiba University Graduate School of MedicineChibaJapan
| | - Kiichi Hirayama
- Division of Diabetes, Endocrinology and Metabolism, Department of MedicineKimitsu Chuo HospitalKisarazu, ChibaJapan
| | - Suzuka Watanabe
- Division of Diabetes, Endocrinology and Metabolism, Department of MedicineKimitsu Chuo HospitalKisarazu, ChibaJapan
- Department of Endocrinology, Hematology, and GerontologyChiba University Graduate School of MedicineChibaJapan
| | - Kosuke Okano
- Division of Diabetes, Endocrinology and Metabolism, Department of MedicineKimitsu Chuo HospitalKisarazu, ChibaJapan
- Department of Endocrinology, Hematology, and GerontologyChiba University Graduate School of MedicineChibaJapan
| | - Yuta Kuroda
- Division of Diabetes, Endocrinology and Metabolism, Department of MedicineKimitsu Chuo HospitalKisarazu, ChibaJapan
- Department of Endocrinology, Hematology, and GerontologyChiba University Graduate School of MedicineChibaJapan
| | - Yusuke Baba
- Division of Diabetes, Endocrinology and Metabolism, Department of MedicineKimitsu Chuo HospitalKisarazu, ChibaJapan
| | - Takuma Kanayama
- Division of Diabetes, Endocrinology and Metabolism, Department of MedicineKimitsu Chuo HospitalKisarazu, ChibaJapan
| | - Chiho Ito
- Division of Diabetes, Endocrinology and Metabolism, Department of MedicineKimitsu Chuo HospitalKisarazu, ChibaJapan
| | - Keisuke Kasahara
- Division of Diabetes, Endocrinology and Metabolism, Department of MedicineKimitsu Chuo HospitalKisarazu, ChibaJapan
| | - Saki Aiba
- Division of Diabetes, Endocrinology and Metabolism, Department of MedicineKimitsu Chuo HospitalKisarazu, ChibaJapan
| | - Ryo Iga
- Division of Diabetes, Endocrinology and Metabolism, Department of MedicineKimitsu Chuo HospitalKisarazu, ChibaJapan
| | - Ryohei Ohtani
- Department of Medicine, Division of NeurologyKimitsu Chuo HospitalKisarazu, ChibaJapan
| | - Yosuke Inaba
- Clinical Research CenterChiba University HospitalChibaJapan
| | - Masaya Koshizaka
- Department of Endocrinology, Hematology, and GerontologyChiba University Graduate School of MedicineChibaJapan
| | - Yoshiro Maezawa
- Department of Endocrinology, Hematology, and GerontologyChiba University Graduate School of MedicineChibaJapan
| | - Koutaro Yokote
- Department of Endocrinology, Hematology, and GerontologyChiba University Graduate School of MedicineChibaJapan
| |
Collapse
|
9
|
Hagi K, Nitta M, Watada H, Kaku K, Ueki K. Efficacy, safety and tolerability of imeglimin in patients with type 2 diabetes mellitus: A meta-analysis of randomized controlled trials. J Diabetes Investig 2023; 14:1246-1261. [PMID: 37610062 PMCID: PMC10583642 DOI: 10.1111/jdi.14070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 07/19/2023] [Accepted: 08/03/2023] [Indexed: 08/24/2023] Open
Abstract
AIMS/INTRODUCTION This meta-analysis aimed to evaluate the efficacy and safety/tolerability of imeglimin, a novel oral antihyperglycemic agent, administered as monotherapy and adjunctive therapy in patients with type 2 diabetes mellitus. MATERIALS AND METHODS Parallel-group randomized controlled trials comparing imeglimin with placebo in adults with type 2 diabetes mellitus were included. Risk ratios or weighted mean differences (WMD) and 95% confidence intervals (CIs) were calculated using random effects models. The primary outcome for efficacy was the change in glycated hemoglobin (HbA1c). Secondary outcomes included other efficacy-related outcomes, specific adverse events, and changes in body weight and lipid parameters. RESULTS Nine randomized controlled trials (n = 1,655) were included. When analyzed by dose, there was a significant difference in glycated hemoglobin (%) between imeglimin monotherapy and placebo at doses >1,000 mg twice daily (1,000 mg: studies N = 3, patients n = 517, WMD = -0.714, P < 0.001; 1,500 mg: N = 5, n = 448, WMD = -0.531, P = 0.020; 2,000 mg: N = 1, n = 149, WMD = -0.450, P = 0.005). Imeglimin adjunctive therapy significantly improved glycated hemoglobin over placebo at doses of 1,000 mg (N = 1, n = 214, WMD = -0.600, P < 0.001) and 1,500 mg (N = 2, n = 324, WMD = -0.576, P < 0.001). Subgroup analysis of the primary outcome showed that imeglimin was effective regardless of chronic kidney disease category, with studies carried out in Japan and in patients with lower body mass index showing a trend toward improved imeglimin efficacy. There were no significant differences between imeglimin and placebo in the risk of all-cause discontinuation and the proportion of patients who presented with at least one adverse event. CONCLUSIONS Imeglimin is efficacious, safe, and well tolerated as monotherapy and adjunctive therapy.
Collapse
Affiliation(s)
| | | | - Hirotaka Watada
- Department of Metabolism and EndocrinologyJuntendo University Graduate School of MedicineTokyoJapan
| | - Kohei Kaku
- Department of Internal MedicineKawasaki Medical SchoolOkayamaJapan
| | - Kohjiro Ueki
- Department of Molecular Diabetic Medicine, Diabetes Research CenterNational Center for Global Health and MedicineTokyoJapan
| |
Collapse
|
10
|
Tanaka A, Kosuda M, Yamana M, Furukawa A, Nagasawa A, Fujishiro M, Kohno G, Ishihara H. A large-scale functional analysis of genes expressed differentially in insulin secreting MIN6 sublines with high versus mildly reduced glucose-responsiveness. Sci Rep 2023; 13:5654. [PMID: 37024560 PMCID: PMC10079668 DOI: 10.1038/s41598-023-32589-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Accepted: 03/29/2023] [Indexed: 04/08/2023] Open
Abstract
Molecular mechanisms of glucose-stimulated insulin secretion (GSIS) from pancreatic β-cells are not fully understood. GSIS deteriorations are believed to underlie the pathogenesis of type 2 diabetes mellitus. By comparing transcript levels of 3 insulin secreting MIN6 cell sublines with strong glucose-responsiveness and 3 with mildly reduced responsiveness, we identified 630 differentially expressed genes. Using our recently developed system based on recombinase-mediated cassette exchange, we conducted large-scale generation of stable clones overexpressing such genes in the doxycycline-regulated manner. We found that overexpressions of 18, out of 83, genes altered GSIS. Sox11 ((sex determining region Y)-box 11) was selected to confirm its roles in regulating insulin secretion, and the gene was subjected to shRNA-mediated suppression. While Sox11 overexpression decreased GSIS, its suppression increased GSIS, confirming the role of Sox11 as a negative regulator of insulin secretion. Furthermore, metabolic experiments using radiolabelled glucose showed Sox11 to participate in regulating glucose metabolism. Our data suggested that overexpression screening is a feasible option for systemic functional testing to identify important genes in GSIS.
Collapse
Affiliation(s)
- Aya Tanaka
- Division of Diabetes and Metabolic Diseases, Nihon University School of Medicine, 30-1 Oyaguchikami-cho, Itabashi, 173-8610, Japan
| | - Minami Kosuda
- Division of Diabetes and Metabolic Diseases, Nihon University School of Medicine, 30-1 Oyaguchikami-cho, Itabashi, 173-8610, Japan
| | - Midori Yamana
- Division of Diabetes and Metabolic Diseases, Nihon University School of Medicine, 30-1 Oyaguchikami-cho, Itabashi, 173-8610, Japan
| | - Asami Furukawa
- Division of Diabetes and Metabolic Diseases, Nihon University School of Medicine, 30-1 Oyaguchikami-cho, Itabashi, 173-8610, Japan
| | - Akiko Nagasawa
- Division of Diabetes and Metabolic Diseases, Nihon University School of Medicine, 30-1 Oyaguchikami-cho, Itabashi, 173-8610, Japan
| | - Midori Fujishiro
- Division of Diabetes and Metabolic Diseases, Nihon University School of Medicine, 30-1 Oyaguchikami-cho, Itabashi, 173-8610, Japan
| | - Genta Kohno
- Division of Diabetes and Metabolic Diseases, Nihon University School of Medicine, 30-1 Oyaguchikami-cho, Itabashi, 173-8610, Japan
| | - Hisamitsu Ishihara
- Division of Diabetes and Metabolic Diseases, Nihon University School of Medicine, 30-1 Oyaguchikami-cho, Itabashi, 173-8610, Japan.
| |
Collapse
|
11
|
Uchida T, Ueno H, Konagata A, Taniguchi N, Kogo F, Nagatomo Y, Shimizu K, Yamaguchi H, Shimoda K. Improving the Effects of Imeglimin on Endothelial Function: A Prospective, Single-Center, Observational Study. Diabetes Ther 2023; 14:569-579. [PMID: 36732433 PMCID: PMC9981829 DOI: 10.1007/s13300-023-01370-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Accepted: 01/12/2023] [Indexed: 02/04/2023] Open
Abstract
INTRODUCTION Endothelial dysfunction is a risk factor for cardiovascular disease in patients with diabetes. We hypothesized that imeglimin, a novel oral hypoglycemic agent, would improve endothelial function. METHODS In this study, imeglimin was administered to patients with type 2 diabetes and HbA1c ≥ 6.5% who were not receiving insulin therapy. A meal tolerance test (592 kcal, glucose 75.0 g, fat 28.5 g) was performed before and 3 months after administration, and endothelial function, blood glucose, insulin, glucagon, and triglycerides were evaluated. Endothelial function was assessed by flow-mediated dilation (FMD). RESULTS Twelve patients (50% male) with a median age of 55.5 years old (interquartile range [IQR] 51.3-66.0) were enrolled. Fasting FMD did not differ before or 3 months after imeglimin administration (from 6.1 [3.9-8.5] to 6.6 [3.9-9.0], p = 0.092), but 2 h postprandial FMD was significantly improved 3 months after imeglimin administration (from 2.3 [1.9-3.4] to 2.9 [2.4-4.7], p = 0.013). In terms of the glucose profile, imeglimin administration significantly improved HbA1c (from 7.2 ± 0.6% to 6.9 ± 0.6%, p = 0.007), fasting glucose (from 138 ± 19 mg/dL to 128 ± 20 mg/dL, p = 0.020), and 2 h postprandial glucose (from 251 ± 47 mg/dL to 215 ± 68 mg/dL, p = 0.035). The change in 2 h postprandial FMD between before and 3 months after imeglimin administration (Δ2 h postprandial FMD) was negatively correlated with Δ2 h postprandial glucose (r = - 0.653, p = 0.021) in a univariate correlation coefficient analysis. Both patients with and without decreased postprandial glucose 3 months after imeglimin administration had improved postprandial FMD. CONCLUSION In this small study, imeglimin administration improved 2 h postprandial FMD. Both glycemic control-dependent and -independent mechanisms might contribute to improved endothelial function. TRIAL REGISTRATION This research was registered in the University Hospital Medical Information Network (UMIN, UMIN000046311).
Collapse
Affiliation(s)
- Taisuke Uchida
- Division of Hematology, Diabetes, and Endocrinology, Department of Internal Medicine, Faculty of Medicine, University of Miyazaki, 5200 Kihara, Kiyotake, Miyazaki, 889-1692, Japan
| | - Hiroaki Ueno
- Division of Hematology, Diabetes, and Endocrinology, Department of Internal Medicine, Faculty of Medicine, University of Miyazaki, 5200 Kihara, Kiyotake, Miyazaki, 889-1692, Japan.
| | - Ayaka Konagata
- Division of Hematology, Diabetes, and Endocrinology, Department of Internal Medicine, Faculty of Medicine, University of Miyazaki, 5200 Kihara, Kiyotake, Miyazaki, 889-1692, Japan
| | - Norifumi Taniguchi
- Division of Hematology, Diabetes, and Endocrinology, Department of Internal Medicine, Faculty of Medicine, University of Miyazaki, 5200 Kihara, Kiyotake, Miyazaki, 889-1692, Japan
| | - Fumiko Kogo
- Division of Hematology, Diabetes, and Endocrinology, Department of Internal Medicine, Faculty of Medicine, University of Miyazaki, 5200 Kihara, Kiyotake, Miyazaki, 889-1692, Japan
| | - Yuma Nagatomo
- Division of Hematology, Diabetes, and Endocrinology, Department of Internal Medicine, Faculty of Medicine, University of Miyazaki, 5200 Kihara, Kiyotake, Miyazaki, 889-1692, Japan
| | - Koichiro Shimizu
- Division of Hematology, Diabetes, and Endocrinology, Department of Internal Medicine, Faculty of Medicine, University of Miyazaki, 5200 Kihara, Kiyotake, Miyazaki, 889-1692, Japan
| | - Hideki Yamaguchi
- Division of Hematology, Diabetes, and Endocrinology, Department of Internal Medicine, Faculty of Medicine, University of Miyazaki, 5200 Kihara, Kiyotake, Miyazaki, 889-1692, Japan
| | - Kazuya Shimoda
- Division of Hematology, Diabetes, and Endocrinology, Department of Internal Medicine, Faculty of Medicine, University of Miyazaki, 5200 Kihara, Kiyotake, Miyazaki, 889-1692, Japan
| |
Collapse
|
12
|
Singh AK, Singh A, Singh R, Misra A. Efficacy and safety of imeglimin in type 2 diabetes: A systematic review and meta-analysis of randomized placebo-controlled trials. Diabetes Metab Syndr 2023; 17:102710. [PMID: 36702046 DOI: 10.1016/j.dsx.2023.102710] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 01/09/2023] [Accepted: 01/11/2023] [Indexed: 01/22/2023]
Abstract
BACKGROUND & AIMS Imeglimin is a novel new oral compound recently approved for treating type 2 diabetes (T2D) in India. We conducted a systematic review and meta-analysis to evaluate the efficacy of imeglimin in people with T2D in the approved dose of 1000 mg twice daily (BID). METHODS We systematically searched the database of PubMed until December 20, 2022, and retrieved all published double-blind, randomized, placebo-controlled trials (RCTs) conducted with imeglimin 1000 mg BID, using appropriate keywords and MeSH terms. A meta-analysis was conducted to study the HbA1c lowering effect of imeglimin 1000 mg BID in people with T2D using the Comprehensive meta-analysis (CMA) software Version 3, Biostat Inc. Englewood, NJ, USA. RESULTS Of the seven Phase 2 studies and three Phase 3 studies conducted so far, only three published double-blind RCTs have reported the efficacy and safety of imeglimin 1000 mg BID against the placebo. Our meta-analysis using the random-effects model from two monotherapy studies (n = 360) showed imeglimin 1000 mg BID reduce HbA1c significantly (Δ -0.9%, 95% Confidence Interval [CI], -1.1 to -0.74%; P < 0.0001) against the placebo, without any heterogeneity (I2 = 0%). The pooled meta-analysis from all three RCTs (n = 574) found a significant reduction in HbA1c with imeglimin 1000 mg BID (Δ -0.79%; 95% CI, -1.00 to -0.59%; P < 0.0001) compared to placebo with high heterogeneity. CONCLUSIONS This meta-analysis found a significant HbA1c lowering effect of imeglimin in people with T2D with an acceptable tolerability profile. Still, larger and longer studies are needed.
Collapse
Affiliation(s)
| | - Akriti Singh
- Jawaharlal Nehru Medical College & Hospital, Kalyani, West Bengal, India
| | - Ritu Singh
- G. D Hospital & Diabetes Institute, Kolkata, West Bengal, India
| | - Anoop Misra
- Fortis C-DOC Hospital for Diabetes & Allied Sciences, New Delhi, India; National Diabetes, Obesity and Cholesterol Foundation, New Delhi, India; Diabetes Foundation (India), New Delhi, India
| |
Collapse
|
13
|
Nagamine J. [Pharmacological profile and clinical efficacy of imeglimin hydrochloride (TWYMEEG ®Tablets), the orally drug for type 2 diabetes mellitus with the first dual mode of action in the world]. Nihon Yakurigaku Zasshi 2023; 158:193-202. [PMID: 36858505 DOI: 10.1254/fpj.22095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/03/2023]
Abstract
Imeglimin hydrochloride (imeglimin) is an orally drug for type 2 diabetes mellitus, which was approved in Japan for the first in the world, with dual mode of actions: pancreatic action means amplifying glucose-stimulated insulin secretion (GSIS) in pancreatic β-cells, and extrapancreatic action means improving insulin sensitivity by which gluconeogenesis suppresses in hepatocytes and glucose uptake increases in skeletal muscles. Although the molecular target of imeglimin is still unknown, imeglimin exerts some of its actions through modulation of the mitochondrial function. In pancreatic islets, imeglimin enhanced adenosine triphosphate and Ca2+ under high-glucose conditions. Furthermore, imeglimin induced the synthesis of oxidized form nicotinamide adenine dinucleotide (NAD+) via the 'salvage pathway', and NAD+ metabolites may contribute to the increase in intracellular Ca2+. The in vivo studies indicated that imeglimin enhanced the sensitivity to insulin and modulated the mitochondrial function (restoring the deficient Complex III activity, decreasing Complex I activity and reactive oxygen species production), which contribute to the improvement of glucose metabolism in hepatocytes and skeletal muscles. In clinical trials, imeglimin's dual effects were demonstrated in foreign type 2 diabetic patients who received 1500 mg bid, which is different from the domestic approved dose. Imeglimin has been shown to evidence of statistically significant glucose lowering, a generally favorable safety and tolerability profile in patients with type 2 diabetes by monotherapy and combination therapy with 1,000 mg bid in four Japanese trials. Since imeglimin has dual effects, it may have shown a newly effective option, regardless of the pathophysiology of type 2 diabetic patients.
Collapse
|
14
|
Sox9 is required in regeneration of pancreatic β cells following injury. Exp Cell Res 2023; 422:113406. [PMID: 36332684 DOI: 10.1016/j.yexcr.2022.113406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Revised: 10/26/2022] [Accepted: 10/27/2022] [Indexed: 11/07/2022]
Abstract
The reduction of insulin secretion due to pancreatic β cell injury caused by autoimmune reaction is the pathological basis of Type 1 diabetes mellitus (T1DM). Therefore, seeking new molecular targets for alleviating pancreatic β cell injury will provide experimental basis for the prevention and treatment of T1DM. SRY-box 9 (Sox9) is not only an important molecule regulating the development of various organs, but also its high expression can aggravate the pathological process of various diseases. In addition, Sox9+ cells are also pancreatic progenitor cells, participating in pancreatic repair reaction induced by injury. In our study, elevated blood glucose and lack of pancreatic β cells almost returned to normal over time after streptozotocin (STZ)-induced pancreatic β cell damage, implying that pancreatic β cells were regenerated after STZ-induced injury. In particular, the expression of Sox9 was significantly elevated during pancreatic β cell regeneration. On this basis, we conducted in vitro experiments to verify whether overexpression of Sox9 could inhibit the damage of pancreatic β cells by inflammatory factors. Our results showed that overexpression of Sox9 alleviated the damage of pancreatic β cells by inflammatory factors and improved the inhibitory effect of inflammatory factors on insulin secretion of pancreatic β cells. Unsurprising, blood glucose levels, insulin content and pancreatic β cell number failed to return to near-normal levels timely after pancreatic β cells specific knockout Sox9 mice were treated with STZ, further confirming the importance of Sox9 in facilitating pancreatic β cell repair or regeneration. Our study indicate that enhanced Sox9 activity might protect pancreatic β cells from autoimmune induced damage and thus improve the pathological process of T1DM.
Collapse
|
15
|
Fauzi M, Murakami T, Yabe D, Inagaki N. Current understanding of imeglimin action on pancreatic β-cells: Involvement of mitochondria and endoplasmic reticulum homeostasis. J Diabetes Investig 2022; 14:186-188. [PMID: 36453164 PMCID: PMC9889698 DOI: 10.1111/jdi.13951] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 11/10/2022] [Accepted: 11/13/2022] [Indexed: 12/03/2022] Open
Abstract
Recent preclinical studies have provided insight on imeglimin's action on pancreatic β-cells and the mechanisms underlying its clinical benefits. Imeglimin may enhance glucose-induced insulin secretion (GIIS) and inhibit apoptosis of pancreatic ß-cells leading to preserved β-cell mass by maintaining or restoring the functional and structural integrity of the mitochondria and the endoplasmic reticulum homeostasis in pancreatic β-cells.
Collapse
Affiliation(s)
- Muhammad Fauzi
- Department of Diabetes, Endocrinology and Nutrition, Graduate School of MedicineKyoto UniversityKyotoJapan
| | - Takaaki Murakami
- Department of Diabetes, Endocrinology and Nutrition, Graduate School of MedicineKyoto UniversityKyotoJapan
| | - Daisuke Yabe
- Department of Diabetes, Endocrinology and Metabolism and Department of Rheumatology and Clinical Immunology, Graduate School of MedicineGifu UniversityGifuJapan
| | - Nobuya Inagaki
- Department of Diabetes, Endocrinology and Nutrition, Graduate School of MedicineKyoto UniversityKyotoJapan,Tazuke Kofukai Medical Research InstituteKitano HospitalOsakaJapan
| |
Collapse
|
16
|
Theurey P, Thang C, Pirags V, Mari A, Pacini G, Bolze S, Hallakou‐Bozec S, Fouqueray P. Phase 2 trial with imeglimin in patients with Type 2 diabetes indicates effects on insulin secretion and sensitivity. Endocrinol Diabetes Metab 2022; 5:e371. [PMID: 36239048 PMCID: PMC9659655 DOI: 10.1002/edm2.371] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 08/30/2022] [Accepted: 09/04/2022] [Indexed: 11/06/2022] Open
Abstract
INTRODUCTION The aim of the present study was to evaluate the effect of 18-week monotherapy with imeglimin on glucose tolerance and on insulin secretion/sensitivity in type 2 diabetic (T2D) patients. METHODS The study was an 18-week, double-blind clinical trial in T2D subjects previously treated with stable metformin therapy and washed out for 4 weeks. Subjects were randomized 1:1 to receive a 1500 mg bid of imeglimin or placebo. The primary endpoint was the effect of imeglimin vs placebo on changes from baseline to week 18 in glucose tolerance (glucose area under the curve [AUC]) during a 3 h-glucose tolerance test [OGTT]). Secondary endpoints included glycaemic control and calculated indices of insulin secretion and sensitivity. RESULTS A total of 59 subjects were randomized, 30 receiving imeglimin and 29 receiving placebo. The study met its primary endpoint. Least squares (LS) mean difference between treatment groups (imeglimin - placebo) for AUC glucose from baseline to week 18 was -429.6 mmol/L·min (p = .001). Two-hour post-dose fasting plasma glucose was significantly decreased with LS mean differences of -1.22 mmol/L (p = .022) and HbA1c was improved with LS mean differences of -0.62% (p = .013). The AUC0-180min ratio C-peptide/glucose [LS mean differences of 0.041 nmol/mmol (p < .001)] and insulinogenic index were significantly increased by imeglimin treatment. The increase in insulin secretion was associated with an increase in beta-cell glucose sensitivity. Additionally, the insulin sensitivity indices derived from the OGTT Stumvoll (p = .001) and Matsuda (not significant) were improved in the imeglimin group vs placebo. Imeglimin was well tolerated with 26.7% of subjects presenting at least one treatment-emergent adverse event versus 58.6% of subjects in the placebo group. CONCLUSIONS Results are consistent with a mode of action involving insulin secretion as well as improved insulin sensitivity and further support the potential for imeglimin to improve healthcare in T2D patients.
Collapse
Affiliation(s)
| | | | | | - Andrea Mari
- Institute of NeuroscienceNational Research CouncilPadovaItaly
| | | | | | | | | |
Collapse
|
17
|
Fallah HP, Ahuja E, Lin H, Qi J, He Q, Gao S, An H, Zhang J, Xie Y, Liang D. A Review on the Role of TRP Channels and Their Potential as Drug Targets_An Insight Into the TRP Channel Drug Discovery Methodologies. Front Pharmacol 2022; 13:914499. [PMID: 35685622 PMCID: PMC9170958 DOI: 10.3389/fphar.2022.914499] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 04/27/2022] [Indexed: 01/13/2023] Open
Abstract
Transient receptor potential (TRP) proteins are a large group of ion channels that control many physiological functions in our body. These channels are considered potential therapeutic drug targets for various diseases such as neurological disorders, cancers, cardiovascular disease, and many more. The Nobel Prize in Physiology/Medicine in the year 2021 was awarded to two scientists for the discovery of TRP and PIEZO ion channels. Improving our knowledge of technologies for their study is essential. In the present study, we reviewed the role of TRP channel types in the control of normal physiological functions as well as disease conditions. Also, we discussed the current and novel technologies that can be used to study these channels successfully. As such, Flux assays for detecting ionic flux through ion channels are among the core and widely used tools for screening drug compounds. Technologies based on these assays are available in fully automated high throughput set-ups and help detect changes in radiolabeled or non-radiolabeled ionic flux. Aurora's Ion Channel Reader (ICR), which works based on label-free technology of flux assay, offers sensitive, accurate, and reproducible measurements to perform drug ranking matching with patch-clamp (gold standard) data. The non-radiolabeled trace-based flux assay coupled with the ICR detects changes in various ion types, including potassium, calcium, sodium, and chloride channels, by using appropriate tracer ions. This technology is now considered one of the very successful approaches for analyzing ion channel activity in modern drug discovery. It could be a successful approach for studying various ion channels and transporters, including the different members of the TRP family of ion channels.
Collapse
Affiliation(s)
| | - Ekta Ahuja
- Aurora Biomed Inc., Vancouver, BC, Canada
| | | | - Jinlong Qi
- Department of Pharmacology, Hebei Medical University, Shijiazhuang, China
| | - Qian He
- Aurora Discovery Inc., Foshan, China
| | - Shan Gao
- Aurora Discovery Inc., Foshan, China
| | | | | | | | - Dong Liang
- Aurora Biomed Inc., Vancouver, BC, Canada
- Aurora Discovery Inc., Foshan, China
- Guangzhou Institute of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| |
Collapse
|
18
|
Pharmacokinetics of Imeglimin in Caucasian and Japanese Healthy Subjects. Clin Drug Investig 2022; 42:721-732. [PMID: 35867199 PMCID: PMC9427879 DOI: 10.1007/s40261-022-01181-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/03/2022] [Indexed: 02/05/2023]
Abstract
BACKGROUND Imeglimin is a first-in-class novel oral antidiabetic marketed in Japan as TWYMEEG® to treat type 2 diabetes mellitus. Its mode of action is distinct from all other anti-hyperglycemic classes. OBJECTIVE To assess the pharmacokinetic and safety profile of imeglimin in Caucasian and Japanese healthy individuals. METHODS Two randomized placebo-controlled phase 1 clinical studies were conducted in Caucasian subjects after single (250-8000 mg) and multiple (250-2000 mg twice daily) ascending doses and in Japanese subjects after single (500-6000 mg) and multiple (500-2000 mg twice daily) ascending doses. Imeglimin plasma and urine concentrations were measured. RESULTS All imeglimin doses achieved maximal concentration between 1 and 3.5 h in Caucasians, and 1.5 and 3 h in Japanese subjects. The elimination half-lives (t1/2) were dose-independent and means ranged between 9.03 and 20.2 h for Caucasians, and 4.45 and 12 h for Japanese subjects. Dose-normalized area under the plasma concentration-time curve decreased with dose in the 250-8000 mg and in the 500-6000 mg dose range in Caucasians and Japanese, respectively, suggesting a dose-dependent but less than dose-proportional effect in imeglimin exposure. Plasma accumulation was minimal following repeated dosing, and food did not affect the pharmacokinetics in either population. Exposures were generally similar between Caucasian and Japanese subjects with less than 20% difference, although there was a tendency for exposures in Japanese to be slightly higher. Imeglimin had an acceptable safety and tolerability profile, with dose-dependent mild gastrointestinal adverse events. CONCLUSION Imeglimin was safe and well tolerated in these two phases 1 studies, with pharmacokinetics comparable between the two populations. CLINICAL TRIAL REGISTRATIONS EudraCT 2005-001946-18 and 2014-004679-21.
Collapse
|
19
|
The calcium signaling enzyme CD38 - a paradigm for membrane topology defining distinct protein functions. Cell Calcium 2021; 101:102514. [PMID: 34896700 DOI: 10.1016/j.ceca.2021.102514] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 11/28/2021] [Accepted: 11/29/2021] [Indexed: 12/27/2022]
Abstract
CD38 is a single-pass transmembrane enzyme catalyzing the synthesis of two nucleotide second messengers, cyclic ADP-ribose (cADPR) from NAD and nicotinic acid adenine dinucleotide phosphate (NAADP) from NADP. The former mediates the mobilization of the endoplasmic Ca2+-stores in response to a wide range of stimuli, while NAADP targets the endo-lysosomal stores. CD38 not only possesses multiple enzymatic activities, it also exists in two opposite membrane orientations. Type III CD38 has the catalytic domain facing the cytosol and is responsible for producing cellular cADPR. The type II CD38 has an opposite orientation and is serving as a surface receptor mediating extracellular functions such as cell adhesion and lymphocyte activation. Its ecto-NADase activity also contributes to the recycling of external NAD released by apoptosis. Endocytosis can deliver surface type II CD38 to endo-lysosomes, which acidic environment favors the production of NAADP. This article reviews the rationale and evidence that have led to CD38 as a paradigm for membrane topology defining distinct functions of proteins. Also described is the recent discovery of a hitherto unknown cADPR-synthesizing enzyme, SARM1, ushering in a new frontier in cADPR-mediated Ca2+-signaling.
Collapse
|