1
|
Yamashita S, Negishi JN, Nakagawa T, Aruga N, Toyoda K, Nakamura F. Effects of polluted groundwater on chum salmon (Oncorhynchus keta) survival and body size. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 363:125101. [PMID: 39393759 DOI: 10.1016/j.envpol.2024.125101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 10/01/2024] [Accepted: 10/08/2024] [Indexed: 10/13/2024]
Abstract
This study reports the effect of spatial variation in hyporheic water, partially influenced by urban-polluted groundwater, on the early life stage of chum salmon (Oncorhynchus keta) in the Toyohira River, Northern Japan. We hypothesized that increased groundwater influence would reduce the survival rate and body size of O. keta due to the combined effects (i.e., growth retardation effects) of chemical toxicants, low dissolved oxygen (DO), and high winter temperatures. Experimental tests were conducted in field and laboratory conditions to address the difficulties associated with field observations of fry emergence during snowmelt floods in spring and to examine the independent effects of water pollution in groundwater in relation to temperature and DO. Artificially fertilized eyed eggs, alevins, and fry of O. keta were monitored for several months with varying exposure to groundwater from winter to early spring. We noted that groundwater affected the fish by reducing their size and weight by >10% and by increasing their mortality in both tests. Moreover, independent effects of water pollution were identified in the swim-up fry stage in laboratory experiments, along with growth-retarding effects from warmer groundwater temperatures. Not all factorial combinations of potentially confounding factors were tested rigorously, and the specific toxicants are unidentified, leaving questions about how groundwater pollution affects Salmonidae fish. Immediate concerns regarding the current water quality (including DO) of hyporheic water associated with groundwater influence are low because no detrimental effects on survival were detected in the field. Nevertheless, spawning grounds formed in areas with high exposures to polluted groundwater require continuous management attention due to potential risks associated with low DO levels. Additionally, pollution-induced growth patterns could pose a risk of size- or weight-dependent mortality at the swim-up fry stage and in early juveniles.
Collapse
Affiliation(s)
- Shohei Yamashita
- Graduate School of Environmental Science, Hokkaido University, N10 W5, Sapporo, Hokkaido, 060-0810, Japan
| | - Junjiro N Negishi
- Faculty of Environmental Earth Science, Hokkaido University, N10 W5, Sapporo, Hokkaido, 060-0810, Japan.
| | - Tomohiro Nakagawa
- Graduate School of Environmental Science, Hokkaido University, N10 W5, Sapporo, Hokkaido, 060-0810, Japan
| | - Nozomi Aruga
- Sapporo Salmon Museum, Makomanai-kouen, Sapporo, Hokkaido, 005-0017, Japan
| | - Kazuhiro Toyoda
- Faculty of Environmental Earth Science, Hokkaido University, N10 W5, Sapporo, Hokkaido, 060-0810, Japan
| | - Futoshi Nakamura
- Research Faculty of Agriculture, Hokkaido University, N9 W9, Sapporo, Hokkaido, 060-8589, Japan
| |
Collapse
|
2
|
Cowan ZL, Green L, Clark TD, Blewett TA, De Bonville J, Gagnon T, Hoots E, Kuchenmüller L, Leeuwis RHJ, Navajas Acedo J, Rowsey LE, Scheuffele H, Skeeles MR, Silva-Garay L, Jutfelt F, Binning SA. Global change and premature hatching of aquatic embryos. GLOBAL CHANGE BIOLOGY 2024; 30:e17488. [PMID: 39238185 DOI: 10.1111/gcb.17488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 07/30/2024] [Accepted: 08/07/2024] [Indexed: 09/07/2024]
Abstract
Anthropogenically induced changes to the natural world are increasingly exposing organisms to stimuli and stress beyond that to which they are adapted. In aquatic systems, it is thought that certain life stages are more vulnerable than others, with embryos being flagged as highly susceptible to environmental stressors. Interestingly, evidence from across a wide range of taxa suggests that aquatic embryos can hatch prematurely, potentially as an adaptive response to external stressors, despite the potential for individual costs linked with underdeveloped behavioural and/or physiological functions. However, surprisingly little research has investigated the prevalence, causes and consequences of premature hatching, and no compilation of the literature exists. Here, we review what is known about premature hatching in aquatic embryos and discuss how this phenomenon is likely to become exacerbated with anthropogenically induced global change. Specifically, we (1) review the mechanisms of hatching, including triggers for premature hatching in experimental and natural systems; (2) discuss the potential implications of premature hatching at different levels of biological organisation from individuals to ecosystems; and (3) outline knowledge gaps and future research directions for understanding the drivers and consequences of premature hatching. We found evidence that aquatic embryos can hatch prematurely in response to a broad range of abiotic (i.e. temperature, oxygen, toxicants, light, pH, salinity) and biotic (i.e. predators, pathogens) stressors. We also provide empirical evidence that premature hatching appears to be a common response to rapid thermal ramping across fish species. We argue that premature hatching represents a fascinating yet untapped area of study, and the phenomenon may provide some additional resilience to aquatic communities in the face of ongoing global change.
Collapse
Affiliation(s)
- Zara-Louise Cowan
- Natural Resources Institute Finland (Luke), Oulu, Finland
- Department of Biology, Faculty of Natural Sciences, Norwegian University of Science and Technology, Trondheim, Norway
| | - Leon Green
- Department of Biology and Environmental Sciences, Faculty of Natural Sciences, Kristineberg Center, University of Gothenburg, Fiskebäckskil, Sweden
| | - Timothy D Clark
- School of Life and Environmental Sciences, Deakin University, Geelong, Victoria, Australia
| | - Tamzin A Blewett
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - Jeremy De Bonville
- Département de Sciences Biologiques, Université de Montréal, Montreal, Quebec, Canada
| | - Thomas Gagnon
- Département de Sciences Biologiques, Université de Montréal, Montreal, Quebec, Canada
| | - Elizabeth Hoots
- School of Life and Environmental Sciences, Deakin University, Geelong, Victoria, Australia
| | - Luis Kuchenmüller
- School of Life and Environmental Sciences, Deakin University, Geelong, Victoria, Australia
| | - Robine H J Leeuwis
- Department of Biology, Faculty of Natural Sciences, Norwegian University of Science and Technology, Trondheim, Norway
| | | | - Lauren E Rowsey
- Department of Biological Sciences, University of New Brunswick, Saint John, New Brunswick, Canada
| | - Hanna Scheuffele
- School of Life and Environmental Sciences, Deakin University, Geelong, Victoria, Australia
| | | | - Lorena Silva-Garay
- Department of Biology, Faculty of Natural Sciences, Norwegian University of Science and Technology, Trondheim, Norway
| | - Fredrik Jutfelt
- Department of Biology, Faculty of Natural Sciences, Norwegian University of Science and Technology, Trondheim, Norway
- Department of Biological and Environmental Sciences, Faculty of Science, University of Gothenburg, Gothenburg, Sweden
| | - Sandra A Binning
- Département de Sciences Biologiques, Université de Montréal, Montreal, Quebec, Canada
| |
Collapse
|
3
|
Seaborn T, Griffith D, Kliskey A, Caudill CC. Building a bridge between adaptive capacity and adaptive potential to understand responses to environmental change. GLOBAL CHANGE BIOLOGY 2021; 27:2656-2668. [PMID: 33666302 DOI: 10.1111/gcb.15579] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Accepted: 02/16/2021] [Indexed: 06/12/2023]
Abstract
Adaptive capacity is a topic at the forefront of environmental change research with roots in both social, ecological, and evolutionary science. It is closely related to the evolutionary biology concept of adaptive potential. In this systematic literature review, we: (1) summarize the history of these topics and related fields; (2) assess relationship(s) between the concepts among disciplines and the use of the terms in climate change research, and evaluate methodologies, metrics, taxa biases, and the geographic scale of studies; and (3) provide a synthetic conceptual framework to clarify concepts. Bibliometric analyses revealed the terms have been used most frequently in conservation and evolutionary biology journals, respectively. There has been a greater growth in studies of adaptive potential than adaptive capacity since 2001, but a greater geographical extent of adaptive capacity studies. Few studies include both, and use is often superficial. Our synthesis considers adaptive potential as one process contributing to adaptive capacity of complex systems, notes "sociological" adaptive capacity definitions include actions aimed at desired outcome (i.e., policies) as a system driver whereas "biological" definitions exclude such drivers, and suggests models of adaptive capacity require integration of evolutionary and social-ecological system components.
Collapse
Affiliation(s)
- Travis Seaborn
- Department of Fish and Wildlife Sciences, University of Idaho, Moscow, ID, USA
| | - David Griffith
- Center for Resilient Communities, University of Idaho, Moscow, ID, USA
| | - Andrew Kliskey
- Center for Resilient Communities, University of Idaho, Moscow, ID, USA
| | | |
Collapse
|
4
|
Bloomer J, Sear D, Kemp P. Does variation in egg structure among five populations of Atlantic salmon ( Salmo salar) influence their survival in low oxygen conditions? ROYAL SOCIETY OPEN SCIENCE 2019; 6:181020. [PMID: 30800355 PMCID: PMC6366189 DOI: 10.1098/rsos.181020] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Accepted: 11/30/2018] [Indexed: 06/09/2023]
Abstract
Oxygen supply to the salmonid egg surface can be limited by external factors such as sedimentation and groundwater upwelling, while the egg membrane itself can impede diffusion from the egg surface to the embryo. Therefore, the structure of egg membranes could affect the rate at which embryos obtain oxygen from their surroundings. Published field data indicate that oxygen stress experienced by salmonid eggs can vary widely among populations. Therefore, if membrane architecture influences diffusion rate to the embryo, selection for more permeable membranes could occur in oxygen-stressed environments. Using electron microscopy, the membrane structure of eggs obtained from five UK Atlantic salmon (Salmo salar) populations is described. Membrane thickness, porosity and permeability to dissolved oxygen varied among populations. Furthermore, comparison of membranes of eggs that survived laboratory controlled low-oxygen conditions compared to those that died suggested that ova with less permeable membranes were more susceptible to hypoxia-induced mortality. In addition, membrane porosity was lower than previously reported indicating that oxygen requirements during incubation have been underestimated, so models such as the mass transfer theory that predict incubation success could currently overestimate ova survival. Variation in egg membrane structure influences low oxygen tolerance of Atlantic salmon embryos and could represent adaptation to low oxygen stress. Consequently, stock enhancement techniques such as supportive breeding that relieve incubation stress could erode structural adaptations.
Collapse
Affiliation(s)
- Jack Bloomer
- Department of Geography and the Environment, University of Southampton, Building 44, University Road, Southampton SO17 1BJ, UK
| | - David Sear
- Department of Geography and the Environment, University of Southampton, Building 44, University Road, Southampton SO17 1BJ, UK
| | - Paul Kemp
- International Centre for Ecohydraulics Research, Faculty of Engineering and the Environment, University of Southampton, Highfield, Southampton SO17 1BJ, UK
| |
Collapse
|
5
|
She Z, Li L, Meng J, Jia Z, Que H, Zhang G. Population resequencing reveals candidate genes associated with salinity adaptation of the Pacific oyster Crassostrea gigas. Sci Rep 2018; 8:8683. [PMID: 29875442 PMCID: PMC5989259 DOI: 10.1038/s41598-018-26953-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2017] [Accepted: 05/17/2018] [Indexed: 02/07/2023] Open
Abstract
The Pacific oyster Crassostrea gigas is an important cultivated shellfish. As a euryhaline species, it has evolved adaptive mechanisms responding to the complex and changeable intertidal environment that it inhabits. To investigate the genetic basis of this salinity adaptation mechanism, we conducted a genome-wide association study using phenotypically differentiated populations (hyposalinity and hypersalinity adaptation populations, and control population), and confirmed our results using an independent population, high-resolution melting, and mRNA expression analysis. For the hyposalinity adaptation, we determined 24 genes, including Cg_CLCN7 (chloride channel protein 7) and Cg_AP1 (apoptosis 1 inhibitor), involved in the ion/water channel and transporter mechanisms, free amino acid and reactive oxygen species metabolism, immune responses, and chemical defence. Three SNPs located on these two genes were significantly differentiated between groups, as was Cg_CLCN7. For the hypersalinity adaptation, the biological process for positive regulating the developmental process was enriched. Enriched gene functions were focused on transcriptional regulation, signal transduction, and cell growth and differentiation, including calmodulin (Cg_CaM) and ficolin-2 (Cg_FCN2). These genes and polymorphisms possibly play an important role in oyster hyposalinity and hypersalinity adaptation. They not only further our understanding of salinity adaptation mechanisms but also provide markers for highly adaptable oyster strains suitable for breeding.
Collapse
Affiliation(s)
- Zhicai She
- Guangxi Key Laboratory of Beibu Gulf Marine Biodiversity Conservation, Qinzhou University, Qinzhou, 535011, Guangxi, China
| | - Li Li
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, Shandong, China. .,Laboratory for Marine Fisheries and Aquaculture, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266071, Shandong, China. .,National & Local Joint Engineering Laboratory of Ecological Mariculture, Qingdao, 266071, Shandong, China.
| | - Jie Meng
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, Shandong, China.,Laboratory for Marine Fisheries and Aquaculture, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266071, Shandong, China.,National & Local Joint Engineering Laboratory of Ecological Mariculture, Qingdao, 266071, Shandong, China
| | - Zhen Jia
- Guangxi Key Laboratory of Beibu Gulf Marine Biodiversity Conservation, Qinzhou University, Qinzhou, 535011, Guangxi, China
| | - Huayong Que
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, Shandong, China.,National & Local Joint Engineering Laboratory of Ecological Mariculture, Qingdao, 266071, Shandong, China
| | - Guofan Zhang
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, Shandong, China. .,Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266071, Shandong, China. .,National & Local Joint Engineering Laboratory of Ecological Mariculture, Qingdao, 266071, Shandong, China.
| |
Collapse
|
6
|
He X, Chaganti SR, Heath DD. Population-Specific Responses to Interspecific Competition in the Gut Microbiota of Two Atlantic Salmon (Salmo salar) Populations. MICROBIAL ECOLOGY 2018; 75:140-151. [PMID: 28714057 DOI: 10.1007/s00248-017-1035-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2017] [Accepted: 07/04/2017] [Indexed: 05/27/2023]
Abstract
The gut microbial community in vertebrates plays a role in nutrient digestion and absorption, development of intestine and immune systems, resistance to infection, regulation of bone mass and even host behavior and can thus impact host fitness. Atlantic salmon (Salmo salar) reintroduction efforts into Lake Ontario, Canada, have been unsuccessful, likely due to competition with non-native salmonids. In this study, we explored interspecific competition effects on the gut microbiota of two Atlantic salmon populations (LaHave and Sebago) resulting from four non-native salmonids. After 10 months of rearing in semi-natural stream tanks under six interspecific competition treatments, we characterized the gut microbiota of 178 Atlantic salmon by parallel sequencing the 16S rRNA gene. We found 3978 bacterial OTUs across all samples. Microbiota alpha diversity and abundance of 27 OTUs significantly differed between the two populations. Interspecific competition reduced relative abundance of potential beneficial bacteria (six genera of lactic acid bacteria) as well as 13 OTUs, but only in the LaHave population, indicating population-specific competition effects. The pattern of gut microbiota response to interspecific competition may reflect local adaptation of the host-microbiota interactions and can be used to select candidate populations for improved species reintroduction success.
Collapse
Affiliation(s)
- Xiaoping He
- Great Lakes Institute for Environmental Research, University of Windsor, Windsor, ON, N9B 3P4, Canada
| | - Subba Rao Chaganti
- Great Lakes Institute for Environmental Research, University of Windsor, Windsor, ON, N9B 3P4, Canada
| | - Daniel D Heath
- Great Lakes Institute for Environmental Research, University of Windsor, Windsor, ON, N9B 3P4, Canada.
| |
Collapse
|
7
|
Mari L, Garaud L, Evanno G, Lasne E. Higher temperature exacerbates the impact of sediments on embryo performances in a salmonid. Biol Lett 2016; 12:20160745. [PMID: 28003520 PMCID: PMC5206588 DOI: 10.1098/rsbl.2016.0745] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2016] [Accepted: 11/29/2016] [Indexed: 11/12/2022] Open
Abstract
In a warming climate, higher temperatures are likely to modulate positively or negatively the effect of other environmental factors on biota, although such interactions are poorly documented. Here, we explore under controlled conditions the combined effects of two common stressors in freshwater ecosystems, higher temperature and sediment load, on the embryonic development of arctic charr (Salvelinus alpinus L.). In the warm treatment, embryos had a lower survival, a longer incubation period and a smaller body size with a bigger yolk sac volume. Our data show a significant interaction between temperature and sediment load with temperature increasing dramatically the negative effects of sediment load on fitness-related traits. In the climate change context, these findings highlight the importance of taking into account different thermal scenarios when examining the effect of environmental or anthropogenic stressors.
Collapse
Affiliation(s)
| | - Laura Garaud
- UMR CARRTEL INRA/USMB, 74203 Thonon-les-Bains Cedex, France
| | | | - Emilien Lasne
- UMR CARRTEL INRA/USMB, 74203 Thonon-les-Bains Cedex, France
| |
Collapse
|
8
|
He X, Johansson ML, Heath DD. Role of genomics and transcriptomics in selection of reintroduction source populations. CONSERVATION BIOLOGY : THE JOURNAL OF THE SOCIETY FOR CONSERVATION BIOLOGY 2016; 30:1010-1018. [PMID: 26756292 DOI: 10.1111/cobi.12674] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2015] [Revised: 01/02/2016] [Accepted: 01/05/2016] [Indexed: 06/05/2023]
Abstract
The use and importance of reintroduction as a conservation tool to return a species to its historical range from which it has been extirpated will increase as climate change and human development accelerate habitat loss and population extinctions. Although the number of reintroduction attempts has increased rapidly over the past 2 decades, the success rate is generally low. As a result of population differences in fitness-related traits and divergent responses to environmental stresses, population performance upon reintroduction is highly variable, and it is generally agreed that selecting an appropriate source population is a critical component of a successful reintroduction. Conservation genomics is an emerging field that addresses long-standing challenges in conservation, and the potential for using novel molecular genetic approaches to inform and improve conservation efforts is high. Because the successful establishment and persistence of reintroduced populations is highly dependent on the functional genetic variation and environmental stress tolerance of the source population, we propose the application of conservation genomics and transcriptomics to guide reintroduction practices. Specifically, we propose using genome-wide functional loci to estimate genetic variation of source populations. This estimate can then be used to predict the potential for adaptation. We also propose using transcriptional profiling to measure the expression response of fitness-related genes to environmental stresses as a proxy for acclimation (tolerance) capacity. Appropriate application of conservation genomics and transcriptomics has the potential to dramatically enhance reintroduction success in a time of rapidly declining biodiversity and accelerating environmental change.
Collapse
Affiliation(s)
- Xiaoping He
- Great Lakes Institute for Environmental Research, University of Windsor, Windsor, ON, N9B 3P4, Canada
| | - Mattias L Johansson
- Great Lakes Institute for Environmental Research, University of Windsor, Windsor, ON, N9B 3P4, Canada
| | - Daniel D Heath
- Great Lakes Institute for Environmental Research, University of Windsor, Windsor, ON, N9B 3P4, Canada.
| |
Collapse
|
9
|
Côte J, Roussel JM, Le Cam S, Guillaume F, Evanno G. Adaptive divergence in embryonic thermal plasticity among Atlantic salmon populations. J Evol Biol 2016; 29:1593-601. [PMID: 27177256 DOI: 10.1111/jeb.12896] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2014] [Revised: 05/02/2016] [Accepted: 05/10/2016] [Indexed: 11/28/2022]
Abstract
In the context of global changes, the long-term viability of populations of endangered ectotherms may depend on their adaptive potential and ability to cope with temperature variations. We measured responses of Atlantic salmon embryos from four populations to temperature variations and used a QST -FST approach to study the adaptive divergence among these populations. Embryos were reared under two experimental conditions: a low temperature regime at 4 °C until eyed-stage and 10 °C until the end of embryonic development and a high temperature regime with a constant temperature of 10 °C throughout embryonic development. Significant variations among populations and population × temperature interactions were observed for embryo survival, incubation time and length. QST was higher than FST in all but one comparison suggesting an important effect of divergent selection. QST was also higher under the high-temperature treatment than at low temperature for length and survival due to a higher variance among populations under the stressful warmer treatment. Interestingly, heritability was lower for survival under high temperature in relation to a lower additive genetic variance under that treatment. Overall, these results reveal an adaptive divergence in thermal plasticity in embryonic life stages of Atlantic salmon suggesting that salmon populations may differentially respond to temperature variations induced by climate change. These results also suggest that changes in temperature may alter not only the adaptive potential of natural populations but also the selection regimes among them.
Collapse
Affiliation(s)
- J Côte
- INRA, UMR 985 Ecologie et Santé des Ecosystèmes, Rennes, France.,Agrocampus Ouest, UMR ESE, Rennes, France.,UMR 5174 EDB (Laboratoire Evolution et Diversité Biologique), CNRS, Université Toulouse III Paul Sabatier, Toulouse, France
| | - J-M Roussel
- INRA, UMR 985 Ecologie et Santé des Ecosystèmes, Rennes, France.,Agrocampus Ouest, UMR ESE, Rennes, France
| | - S Le Cam
- INRA, UMR 985 Ecologie et Santé des Ecosystèmes, Rennes, France.,Agrocampus Ouest, UMR ESE, Rennes, France
| | - F Guillaume
- Institute of Evolutionary Biology and Environmental Studies, University of Zürich, Zürich, Switzerland
| | - G Evanno
- INRA, UMR 985 Ecologie et Santé des Ecosystèmes, Rennes, France.,Agrocampus Ouest, UMR ESE, Rennes, France
| |
Collapse
|
10
|
Outbreeding Depression in Atlantic Salmon Revealed by Hypoxic Stress During Embryonic Development. Evol Biol 2014. [DOI: 10.1007/s11692-014-9289-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
11
|
Crozier LG, Hutchings JA. Plastic and evolutionary responses to climate change in fish. Evol Appl 2014; 7:68-87. [PMID: 24454549 PMCID: PMC3894899 DOI: 10.1111/eva.12135] [Citation(s) in RCA: 185] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2013] [Accepted: 10/31/2013] [Indexed: 12/14/2022] Open
Abstract
The physical and ecological 'fingerprints' of anthropogenic climate change over the past century are now well documented in many environments and taxa. We reviewed the evidence for phenotypic responses to recent climate change in fish. Changes in the timing of migration and reproduction, age at maturity, age at juvenile migration, growth, survival and fecundity were associated primarily with changes in temperature. Although these traits can evolve rapidly, only two studies attributed phenotypic changes formally to evolutionary mechanisms. The correlation-based methods most frequently employed point largely to 'fine-grained' population responses to environmental variability (i.e. rapid phenotypic changes relative to generation time), consistent with plastic mechanisms. Ultimately, many species will likely adapt to long-term warming trends overlaid on natural climate oscillations. Considering the strong plasticity in all traits studied, we recommend development and expanded use of methods capable of detecting evolutionary change, such as the long term study of selection coefficients and temporal shifts in reaction norms, and increased attention to forecasting adaptive change in response to the synergistic interactions of the multiple selection pressures likely to be associated with climate change.
Collapse
Affiliation(s)
| | - Jeffrey A Hutchings
- Department of Biology, Dalhousie University Halifax, NS, Canada ; Department of Biosciences, Centre for Ecological and Evolutionary Synthesis, University of Oslo Oslo, Norway
| |
Collapse
|