1
|
House CM, Duffield K, Rapkin J, Sakaluk SK, Hunt J. The transfer of male cuticular hydrocarbons provides a reliable cue of the risk and intensity of sperm competition in decorated crickets. Evolution 2024; 78:1606-1618. [PMID: 38864438 DOI: 10.1093/evolut/qpae088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 05/14/2024] [Accepted: 06/10/2024] [Indexed: 06/13/2024]
Abstract
Theoretically, males should increase their ejaculate expenditure when the probability of sperm competition occurring (or risk) is high but decrease ejaculate expenditure as the number of competing ejaculates (or intensity) increases. Here we examine whether male decorated crickets (Gryllodes sigillatus) use cuticular hydrocarbons (CHCs) transferred to females by rival males at mating to assess the risk and intensity of sperm competition and adjust their ejaculate accordingly. Unmated females and those perfumed with CHCs extracted from one, three, or five males could be distinguished chemically, providing a reliable cue of the risk and intensity of sperm competition. In agreement with theory, males mating with these females increased sperm number with the risk of sperm competition and decreased sperm number with the intensity of sperm competition. Similarly, as the risk of sperm competition increased, males produced a larger and more attractive spermatophylax (an important non-sperm component of the ejaculate) but these traits did not vary with the intensity of sperm competition. Our results therefore demonstrate that both sperm and non-sperm components of the male ejaculate respond to the risk and intensity of sperm competition in different ways and that CHCs provide males with an important cue to strategically tailor their ejaculate.
Collapse
Affiliation(s)
- Clarissa M House
- School of Science, Western Sydney University, Hawkesbury Campus, Locked Bag 1797, Richmond, NSW 2753, Australia
| | - Kristin Duffield
- Crop Bioprotection Research Unit, National Centre for Agricultural Utilization Research, USDA-ARS, Peoria, IL 61604, United States
- School of Biological Sciences, Illinois State University, Normal, IL 61790, United States
| | - James Rapkin
- Centre for Ecology and Conservation, University of Exeter, Cornwall Campus, Penryn TR10 9EZ, United Kingdom
| | - Scott K Sakaluk
- School of Biological Sciences, Illinois State University, Normal, IL 61790, United States
| | - John Hunt
- School of Science, Western Sydney University, Hawkesbury Campus, Locked Bag 1797, Richmond, NSW 2753, Australia
- Centre for Ecology and Conservation, University of Exeter, Cornwall Campus, Penryn TR10 9EZ, United Kingdom
| |
Collapse
|
2
|
Burns-Dunn S, Mortys T, House CM, Mitchell C, Duffield KR, Foquet B, Sadd BM, Sakaluk SK, Hunt J. Sexually antagonistic coevolution of the male nuptial gift and female feeding behaviour in decorated crickets. Proc Biol Sci 2024; 291:20240804. [PMID: 38955230 DOI: 10.1098/rspb.2024.0804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 06/11/2024] [Indexed: 07/04/2024] Open
Abstract
The evolution of nuptial gifts has traditionally been considered a harmonious affair, providing benefits to both mating partners. There is growing evidence, however, that receiving a nuptial gift can be actively detrimental to the female. In decorated crickets (Gryllodes sigillatus), males produce a gelatinous spermatophylax that enhances sperm transfer but provides little nutritional benefit and hinders female post-copulatory mate choice. Here, we examine the sexually antagonistic coevolution of the spermatophylax and the female feeding response to this gift in G. sigillatus maintained in experimental populations with either a male-biased or female-biased adult sex ratio. After 25 generations, males evolving in male-biased populations produced heavier spermatophylaxes with a more manipulative combination of free amino acids than those evolving in female-biased populations. Moreover, when the spermatophylax originated from the same selection regime, females evolving in male-biased populations always had shorter feeding durations than those evolving in female-biased populations, indicating the evolution of greater resistance. Across populations, female feeding duration increased with the mass and manipulative combination of free amino acids in the spermatophylax, suggesting sexually antagonistic coevolution. Collectively, our work demonstrates a key role for interlocus sexual conflict and sexually antagonistic coevolution in the mating system of G. sigillatus.
Collapse
Affiliation(s)
- Samuel Burns-Dunn
- School of Science, Western Sydney University, Hawkesbury Campus, Richmond, NSW 2753, Australia
| | - Tassie Mortys
- School of Science, Western Sydney University, Hawkesbury Campus, Richmond, NSW 2753, Australia
| | - Clarissa M House
- School of Science, Western Sydney University, Hawkesbury Campus, Richmond, NSW 2753, Australia
| | - Christopher Mitchell
- Centre for Ecology & Conservation, School of Biosciences, University of Exeter, Cornwall Campus, Penryn TR10 9EZ, UK
| | - Kristin R Duffield
- Crop BioProtection Research Unit, Agricultural Research Services, United States Department of Agriculture, National Centre for Agricultural Utilization Research, Peoria, IL, USA
| | - Bert Foquet
- School of Biological Sciences, Illinois State University, Normal, IL 61790-4120, USA
| | - Ben M Sadd
- School of Biological Sciences, Illinois State University, Normal, IL 61790-4120, USA
| | - Scott K Sakaluk
- School of Biological Sciences, Illinois State University, Normal, IL 61790-4120, USA
| | - John Hunt
- School of Science, Western Sydney University, Hawkesbury Campus, Richmond, NSW 2753, Australia
| |
Collapse
|
3
|
Foquet B, Rapkin J, Sharma MD, Sadd BM, Sakaluk SK, Hunt J. Transcriptomic responses of females to consumption of nuptial food gifts as a potential mediator of sexual conflict in decorated crickets. J Evol Biol 2023; 36:183-194. [PMID: 36357978 DOI: 10.1111/jeb.14114] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 08/16/2022] [Accepted: 09/02/2022] [Indexed: 11/12/2022]
Abstract
Nuptial food gift provisioning by males to females at mating is a strategy in many insects that is thought to be shaped by sexual conflict or sexual selection, as it affords males access to a female's physiology. While males often attempt to use these gifts to influence female behaviour to their own advantage, females can evolve counter mechanisms. In decorated crickets, the male's nuptial gift comprises part of the spermatophore, the spermatophylax, the feeding on which deters the female from prematurely terminating sperm transfer. However, ingested compounds in the spermatophylax and attachment of the sperm-containing ampulla could further influence female physiology and behaviour. We investigated how mating per se and these two distinct routes of potential male-mediated manipulation influence the female transcriptomic response. We conducted an RNA sequencing experiment on gut and head tissues from females for whom nuptial food gift consumption and receipt of an ejaculation were independently manipulated. In the gut tissue, we found that females not permitted to feed during mating exhibited decreased overall gene expression, possibly caused by a reduced gut function, but this was countered by feeding on the spermatophylax or a sham gift. In the head tissue, we found only low numbers of differentially expressed genes, but a gene co-expression network analysis revealed that ampulla attachment and spermatophylax consumption independently induce distinct gene expression patterns. This study provides evidence that spermatophylax feeding alters the female post-mating transcriptomic response in decorated crickets, highlighting its potential to mediate sexual conflict in this system.
Collapse
Affiliation(s)
- Bert Foquet
- Behavior, Ecology, Evolution & Systematics Section, School of Biological Sciences, Illinois State University, Normal, Illinois, USA
| | - James Rapkin
- Center for Ecology and Conservation, University of Exeter, Cornwall, UK
| | - Manmohan D Sharma
- Center for Ecology and Conservation, University of Exeter, Cornwall, UK
| | - Ben M Sadd
- Behavior, Ecology, Evolution & Systematics Section, School of Biological Sciences, Illinois State University, Normal, Illinois, USA
| | - Scott K Sakaluk
- Behavior, Ecology, Evolution & Systematics Section, School of Biological Sciences, Illinois State University, Normal, Illinois, USA
| | - John Hunt
- Center for Ecology and Conservation, University of Exeter, Cornwall, UK.,School of Science, Western Sydney University, Richmond, New South Wales, Australia
| |
Collapse
|
4
|
Male and female genotype and a genotype-by-genotype interaction mediate the effects of mating on cellular but not humoral immunity in female decorated crickets. Heredity (Edinb) 2020; 126:477-490. [PMID: 33219366 DOI: 10.1038/s41437-020-00384-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 10/22/2020] [Accepted: 10/26/2020] [Indexed: 12/12/2022] Open
Abstract
Sexually antagonistic coevolution is predicted to lead to the divergence of male and female genotypes related to the effects of substances transferred by males at mating on female physiology. The outcome of mating should thus depend on the specific combination of mating genotypes. Although mating has been shown to influence female immunity in diverse insect taxa, a male-female genotype-by-genotype effect on female immunity post mating remains largely unexplored. Here, we investigate the effects of mating on female decorated cricket baseline immunity and the potential for a male-genotype-by-female-genotype interaction affecting this response. Females from three distinct genotypic backgrounds were left unmated or singly mated in a fully reciprocal design to males from the same three genotypic backgrounds. Hemocytes and hemocyte microaggregations were quantified for female cellular immunity, and phenoloxidase, involved in melanization, and antibacterial activity for humoral immunity. In this system, female cellular immunity was more reactive to mating, and mating effects were genotype-dependent. Specifically, for hemocytes, a genotype-by-mating status interaction mediated the effect of mating per se, and a significant male-female genotype-by-genotype interaction determined hemocyte depletion post mating. Microaggregations were influenced by the female's genotype or that of her mate. Female humoral immune measures were unaffected, indicating that the propensity for post-mating effects on females is dependent on the component of baseline immunity. The genotype-by-genotype effect on hemocytes supports a role of sexual conflict in post-mating immune suppression, suggesting divergence of male genotypes with respect to modification of female post-mating immunity, and divergence of female genotypes in resistance to these effects.
Collapse
|
5
|
Sirot LK. Modulation of seminal fluid molecules by males and females. CURRENT OPINION IN INSECT SCIENCE 2019; 35:109-116. [PMID: 31472462 DOI: 10.1016/j.cois.2019.07.009] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Revised: 07/18/2019] [Accepted: 07/22/2019] [Indexed: 06/10/2023]
Abstract
In insects, seminal fluid molecules (SFMs) influence female post-mating phenotypes that affect reproductive success including egg development, sperm use, mating behavior, attractiveness, and lifespan. Yet, the magnitude of these effects can be quite variable, even within inbred strains. This variation is important because it could impact post-copulatory reproductive success of both males and females. One likely cause of this variation is modulation by males or females of the quantities or qualities (e.g. stability or activity state) of SFMs, or, in the case of females, of their sensitivity to SFMs. Here, I review opportunities for SFM modulation by males and females and propose that these processes could provide mechanisms by which information received before and during copulation influences post-copulatory reproductive success.
Collapse
Affiliation(s)
- Laura King Sirot
- Department of Biology, The College of Wooster, Wooster, OH 44691, United States.
| |
Collapse
|
6
|
Duffield KR, Hampton KJ, Houslay TM, Hunt J, Sadd BM, Sakaluk SK. Inbreeding alters context-dependent reproductive effort and immunity in male crickets. J Evol Biol 2019; 32:731-741. [PMID: 30985046 DOI: 10.1111/jeb.13478] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Accepted: 04/08/2019] [Indexed: 01/05/2023]
Abstract
Infection can cause hosts to drastically alter their investment in key life-history traits of reproduction and defence. Infected individuals are expected to increase investment in defence (e.g., by increasing immune function) and, due to trade-offs, investment in other traits (e.g., current reproduction) should decrease. However, the terminal investment hypothesis postulates that decreased lifespan due to infection and the associated reduction in the expectation for future offspring will favour increased investment towards current reproduction. Variation in intrinsic condition will likely influence shifts in reproductive investment post-infection, but this is often not considered in such assessments. For example, the extent of inbreeding can significantly impact an individual's lifetime fitness and may influence its reproductive behaviour following a threat of infection. Here, we investigated the effects of inbreeding status on an individual's reproductive investment upon infection, including the propensity to terminally invest. Male crickets (Gryllodes sigillatus) from four genetically distinct inbred lines and one outbred line were subjected to a treatment from an increasing spectrum of simulated infection cue intensities, using heat-killed bacteria. We then measured reproductive effort (calling effort), survival and immune function (antibacterial activity, circulating haemocytes and haemocyte microaggregations). Inbred and outbred males diverged in how they responded to a low-dose infection cue: relative to unmanipulated males, outbred males decreased calling effort, whereas inbred males increased calling effort. Moreover, we found that inbred males exhibited higher antibacterial activity and numbers of circulating haemocytes compared with outbred males. These results suggest that an individual's inbreeding status may have consequences for context-dependent shifts in reproductive strategies, such as those triggered by infection.
Collapse
Affiliation(s)
- Kristin R Duffield
- Behavior, Ecology, Evolution & Systematics Section, School of Biological Sciences, Illinois State University, Normal, Illinois
| | - Kylie J Hampton
- Behavior, Ecology, Evolution & Systematics Section, School of Biological Sciences, Illinois State University, Normal, Illinois
| | | | - John Hunt
- School of Science and Health, Hawkesbury Institute for the Environment, Western Sydney University, Penrith, New South Wales, Australia.,Centre for Ecology and Conservation, University of Exeter, Penryn, Cornwall, UK
| | - Ben M Sadd
- Behavior, Ecology, Evolution & Systematics Section, School of Biological Sciences, Illinois State University, Normal, Illinois
| | - Scott K Sakaluk
- Behavior, Ecology, Evolution & Systematics Section, School of Biological Sciences, Illinois State University, Normal, Illinois
| |
Collapse
|
7
|
Rapkin J, Jensen K, Lane SM, House CM, Sakaluk SK, Hunt J. Macronutrient intake regulates sexual conflict in decorated crickets. J Evol Biol 2015; 29:395-406. [PMID: 26563682 DOI: 10.1111/jeb.12794] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2015] [Accepted: 11/06/2015] [Indexed: 11/30/2022]
Abstract
Sexual conflict results in a diversity of sex-specific adaptations, including chemical additions to ejaculates. Male decorated crickets (Gryllodes sigillatus) produce a gelatinous nuptial gift (the spermatophylax) that varies in size and free amino acid composition, which influences a female's willingness to fully consume this gift. Complete consumption of this gift maximizes sperm transfer through increased retention of the sperm-containing ampulla, but hinders post-copulatory mate choice. Here, we examine the effects of protein (P) and carbohydrate (C) intake on the weight and amino acid composition of the spermatophylax that describes its gustatory appeal to the female, as well as the ability of this gift to regulate sexual conflict via ampulla attachment time. Nutrient intake had similar effects on the expression of these traits with each maximized at a high intake of nutrients with a P : C ratio of 1 : 1.3. Under dietary choice, males actively regulated their nutrient intake but this regulation did not coincide with the peak of the nutritional landscape for any trait. Our results therefore demonstrate that a balanced intake of nutrients is central to regulating sexual conflict in G. sigillatus, but males are constrained from reaching the optima needed to bias the outcome of this conflict in their favour.
Collapse
Affiliation(s)
- J Rapkin
- Centre for Ecology and Conservation, College of Life and Environmental Science, University of Exeter, Penryn, UK
| | - K Jensen
- Centre for Ecology and Conservation, College of Life and Environmental Science, University of Exeter, Penryn, UK.,Department of Entomology, North Carolina State University, Raleigh, NC, USA
| | - S M Lane
- Centre for Ecology and Conservation, College of Life and Environmental Science, University of Exeter, Penryn, UK
| | - C M House
- Centre for Ecology and Conservation, College of Life and Environmental Science, University of Exeter, Penryn, UK
| | - S K Sakaluk
- Centre for Ecology and Conservation, College of Life and Environmental Science, University of Exeter, Penryn, UK.,Behavior, Ecology, Evolution & Systematics Section, School of Biological Sciences, Illinois State University, Normal, IL, USA
| | - J Hunt
- Centre for Ecology and Conservation, College of Life and Environmental Science, University of Exeter, Penryn, UK
| |
Collapse
|
8
|
Lewis SM, Vahed K, Koene JM, Engqvist L, Bussière LF, Perry JC, Gwynne D, Lehmann GUC. Emerging issues in the evolution of animal nuptial gifts. Biol Lett 2015; 10:rsbl.2014.0336. [PMID: 25030043 DOI: 10.1098/rsbl.2014.0336] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Uniquely positioned at the intersection of sexual selection, nutritional ecology and life-history theory, nuptial gifts are widespread and diverse. Despite extensive empirical study, we still have only a rudimentary understanding of gift evolution because we lack a unified conceptual framework for considering these traits. In this opinion piece, we tackle several issues that we believe have substantively hindered progress in this area. Here, we: (i) present a comprehensive definition and classification scheme for nuptial gifts (including those transferred by simultaneous hermaphrodites), (ii) outline evolutionary predictions for different gift types, and (iii) highlight some research directions to help facilitate progress in this field.
Collapse
Affiliation(s)
- Sara M Lewis
- Department of Biology, Tufts University, Medford, MA 02155, USA
| | - Karim Vahed
- Department of Biological Sciences, University of Derby, Derby DE22 1GB, UK
| | - Joris M Koene
- Department of Ecological Science, Vrije Universiteit, Amsterdam 1081 HV, The Netherlands
| | - Leif Engqvist
- Evolutionary Biology, Bielefeld University, Bielefeld 33615, Germany Department of Behavioural Ecology, University of Bern, Hinterkappelen 3032, Switzerland
| | - Luc F Bussière
- Biological and Environmental Sciences, University of Stirling, Stirling FK9 4LA, UK
| | - Jennifer C Perry
- Edward Grey Institute, Department of Zoology, University of Oxford, Oxford OX1 3PS, UK Jesus College, University of Oxford, Oxford OX1 3DW, UK
| | - Darryl Gwynne
- Department of Zoology, University of Toronto Mississauga, Ontario, Canada L5L 1C6
| | | |
Collapse
|
9
|
Pauchet Y, Wielsch N, Wilkinson PA, Sakaluk SK, Svatoš A, ffrench-Constant RH, Hunt J, Heckel DG. What's in the Gift? Towards a Molecular Dissection of Nuptial Feeding in a Cricket. PLoS One 2015; 10:e0140191. [PMID: 26439494 PMCID: PMC4595131 DOI: 10.1371/journal.pone.0140191] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2015] [Accepted: 09/22/2015] [Indexed: 01/11/2023] Open
Abstract
Nuptial gifts produced by males and transferred to females during copulation are common in insects. Yet, their precise composition and subsequent physiological effects on the female recipient remain unresolved. Male decorated crickets Gryllodes sigillatus transfer a spermatophore to the female during copulation that is composed of an edible gift, the spermatophylax, and the ampulla that contains the ejaculate. After transfer of the spermatophore, the female detaches the spermatophylax and starts to eat it while sperm from the ampulla are evacuated into the female reproductive tract. When the female has finished consuming the spermatophylax, she detaches the ampulla and terminates sperm transfer. Hence, one simple function of the spermatophylax is to ensure complete sperm transfer by distracting the female from prematurely removing the ampulla. However, the majority of orally active components of the spermatophylax itself and their subsequent effects on female behavior have not been identified. Here, we report the first analysis of the proteome of the G. sigillatus spermatophylax and the transcriptome of the male accessory glands that make these proteins. The accessory gland transcriptome was assembled into 17,691 transcripts whilst about 30 proteins were detected within the mature spermatophylax itself. Of these 30 proteins, 18 were encoded by accessory gland encoded messages. Most spermatophylax proteins show no similarity to proteins with known biological functions and are therefore largely novel. A spermatophylax protein shows similarity to protease inhibitors suggesting that it may protect the biologically active components from digestion within the gut of the female recipient. Another protein shares similarity with previously characterized insect polypeptide growth factors suggesting that it may play a role in altering female reproductive physiology concurrent with fertilization. Characterization of the spermatophylax proteome provides the first step in identifying the genes encoding these proteins in males and in understanding their biological functions in the female recipient.
Collapse
Affiliation(s)
- Yannick Pauchet
- Entomology, Max Planck Institute for Chemical Ecology, Jena, Germany
- * E-mail:
| | - Natalie Wielsch
- Mass spectrometry, Max Planck Institute for Chemical Ecology, Jena, Germany
| | - Paul A. Wilkinson
- Centre for Ecology and Conservation, College of Life and Environmental Sciences, University of Exeter, Cornwall Campus, Penryn, United Kingdom
| | - Scott K. Sakaluk
- Behavior, Ecology, Evolution & Systematics Section, School of Biological Sciences, Illinois State University, Normal, IL, United States of America
| | - Aleš Svatoš
- Mass spectrometry, Max Planck Institute for Chemical Ecology, Jena, Germany
| | - Richard H. ffrench-Constant
- Centre for Ecology and Conservation, College of Life and Environmental Sciences, University of Exeter, Cornwall Campus, Penryn, United Kingdom
| | - John Hunt
- Centre for Ecology and Conservation, College of Life and Environmental Sciences, University of Exeter, Cornwall Campus, Penryn, United Kingdom
| | - David G. Heckel
- Entomology, Max Planck Institute for Chemical Ecology, Jena, Germany
| |
Collapse
|
10
|
Duffield KR, Hunt J, Rapkin J, Sadd BM, Sakaluk SK. Terminal investment in the gustatory appeal of nuptial food gifts in crickets. J Evol Biol 2015. [PMID: 26201649 DOI: 10.1111/jeb.12703] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Investment in current versus future reproduction represents a prominent trade-off in life-history theory and is likely dependent on an individual's life expectancy. The terminal investment hypothesis posits that a reduction in residual reproductive value (i.e. potential for future offspring) will result in increased investment in current reproduction. We tested the hypothesis that male decorated crickets (Gryllodes sigillatus), when cued to their impending mortality, should increase their reproductive effort by altering the composition of their nuptial food gifts (i.e. spermatophylaxes) to increase their gustatory appeal to females. Using a repeated-measures design, we analysed the amino acid composition of spermatophylaxes derived from males both before and after injection of either a saline control or a solution of heat-killed bacteria. The latter, although nonpathogenic, represents an immune challenge that may signal an impending survival threat. One principal component explaining amino acid variation in spermatophylaxes, characterized by a high loading to histidine, was significantly lower in immune-challenged versus control males. The relevance of this difference for the gustatory appeal of gifts to females was assessed by mapping spermatophylax composition onto a fitness surface derived in an earlier study identifying the amino acid composition of spermatophylaxes preferred by females. We found that immune-challenged males maintained the level of attractiveness of their gifts post-treatment, whereas control males produced significantly less attractive gifts post-injection. These results are consistent with the hypothesis that cues of a survival-threatening infection stimulate terminal investment in male decorated crickets with respect to the gustatory appeal of their nuptial food gifts.
Collapse
Affiliation(s)
- K R Duffield
- Behavior, Ecology, Evolution & Systematics Section, School of Biological Sciences, Illinois State University, Normal, IL, USA
| | - J Hunt
- Center for Ecology & Conservation, College of Life and Environmental Sciences, University of Exeter, Penryn, UK
| | - J Rapkin
- Center for Ecology & Conservation, College of Life and Environmental Sciences, University of Exeter, Penryn, UK
| | - B M Sadd
- Behavior, Ecology, Evolution & Systematics Section, School of Biological Sciences, Illinois State University, Normal, IL, USA
| | - S K Sakaluk
- Behavior, Ecology, Evolution & Systematics Section, School of Biological Sciences, Illinois State University, Normal, IL, USA
| |
Collapse
|
11
|
Abstract
Sexual conflict occurs whenever there is sexually antagonistic selection on shared traits. When shared traits result from interactions (e.g., mating rate) and have a different genetic basis in each sex (i.e., interlocus conflict), then sex-specific traits that shift the value of these interaction traits toward the sex-specific optimum will be favored. Male traits can be favored that increase the fitness of their male bearers, but decrease the fitness of interacting females. Likewise, female traits that reduce the costs of interacting with harmful males may simultaneously impose costs on males. If the evolution of these antagonistic traits changes the nature of selection acting on the opposite sex, interesting coevolutionary dynamics will result. Here we examine three current issues in the study of sexually antagonistic interactions: the female side of sexual conflict, the ecological context of sexual conflict, and the strength of evidence for sexually antagonistic coevolution.
Collapse
Affiliation(s)
- Jennifer C Perry
- Jesus College, University of Oxford, Oxford OX1 3DW, United Kingdom Edward Grey Institute, Department of Zoology, University of Oxford, Oxford OX1 3PS, United Kingdom
| | - Locke Rowe
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, Ontario M5S 3B2, Canada
| |
Collapse
|
12
|
The trap of sex in social insects: From the female to the male perspective. Neurosci Biobehav Rev 2014; 46 Pt 4:519-33. [DOI: 10.1016/j.neubiorev.2014.09.014] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2014] [Revised: 09/14/2014] [Accepted: 09/22/2014] [Indexed: 01/27/2023]
|