1
|
Alencar LRV, Schwery O, Gade MR, Domínguez-Guerrero SF, Tarimo E, Bodensteiner BL, Uyeda JC, Muñoz MM. Opportunity begets opportunity to drive macroevolutionary dynamics of a diverse lizard radiation. Evol Lett 2024; 8:623-637. [PMID: 39328284 PMCID: PMC11424082 DOI: 10.1093/evlett/qrae022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 04/15/2024] [Accepted: 05/14/2024] [Indexed: 09/28/2024] Open
Abstract
Evolution proceeds unevenly across the tree of life, with some lineages accumulating diversity more rapidly than others. Explaining this disparity is challenging as similar evolutionary triggers often do not result in analogous shifts across the tree, and similar shifts may reflect different evolutionary triggers. We used a combination of approaches to directly consider such context-dependency and untangle the complex network of processes that shape macroevolutionary dynamics, focusing on Pleurodonta, a diverse radiation of lizards. Our approach shows that some lineage-wide signatures are lost when conditioned on sublineages: while viviparity appears to accelerate diversification, its effect size is overestimated by its association with the Andean mountains. Conversely, some signals that erode at broader phylogenetic scales emerge at shallower ones. Mountains, in general, do not affect speciation rates; rather, the occurrence in the Andean mountains specifically promotes diversification. Likewise, the evolution of larger sizes catalyzes diversification rates, but only within certain ecological and geographical settings. We caution that conventional methods of fitting models to entire trees may mistakenly assign diversification heterogeneity to specific factors despite evidence against their plausibility. Our study takes a significant stride toward disentangling confounding factors and identifying plausible sources of ecological opportunities in the diversification of large evolutionary radiations.
Collapse
Affiliation(s)
- Laura R V Alencar
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT, United States
| | - Orlando Schwery
- Department of Biological Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA, United States
| | - Meaghan R Gade
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT, United States
| | | | - Eliza Tarimo
- Department of Biological Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA, United States
| | - Brooke L Bodensteiner
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT, United States
| | - Josef C Uyeda
- Department of Biological Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA, United States
| | - Martha M Muñoz
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT, United States
| |
Collapse
|
2
|
Ulrich NJ, Shen G, Bryant DA, Miller SR. Ecological diversification of a cyanobacterium through divergence of its novel chlorophyll d-based light-harvesting system. Curr Biol 2024; 34:2972-2979.e4. [PMID: 38851184 DOI: 10.1016/j.cub.2024.05.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 05/07/2024] [Accepted: 05/13/2024] [Indexed: 06/10/2024]
Abstract
The evolution of novel traits can have important consequences for biological diversification. Novelties such as new structures are associated with changes in both genotype and phenotype that often lead to changes in ecological function.1,2 New ecological opportunities provided by a novel trait can trigger subsequent trait modification or niche partitioning3; however, the underlying mechanisms of novel trait diversification are still poorly understood. Here, we report that the innovation of a new chlorophyll (Chl) pigment, Chl d, by the cyanobacterium Acaryochloris marina was followed by the functional divergence of its light-harvesting complex. We identified three major photosynthetic spectral types based on Chl fluorescence properties for a collection of A. marina laboratory strains for which genome sequence data are available,4,5 with shorter- and longer-wavelength types more recently derived from an ancestral intermediate phenotype. Members of the different spectral types exhibited extensive variation in the Chl-binding proteins as well as the Chl energy levels of their photosynthetic complexes. This spectral-type divergence is associated with differences in the wavelength dependence of both growth rate and photosynthetic oxygen evolution. We conclude that the divergence of the light-harvesting apparatus has consequently impacted A. marina ecological diversification through specialization on different far-red photons for photosynthesis.
Collapse
Affiliation(s)
- Nikea J Ulrich
- Division of Biological Sciences, University of Montana, 32 Campus Drive, Missoula, MT 59812, USA
| | - Gaozhong Shen
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, 406 Althouse Lab, University Park, PA 16802, USA
| | - Donald A Bryant
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, 406 Althouse Lab, University Park, PA 16802, USA
| | - Scott R Miller
- Division of Biological Sciences, University of Montana, 32 Campus Drive, Missoula, MT 59812, USA.
| |
Collapse
|
3
|
Heinicke MP, Nielsen SV, Bauer AM, Kelly R, Geneva AJ, Daza JD, Keating SE, Gamble T. Reappraising the evolutionary history of the largest known gecko, the presumably extinct Hoplodactylus delcourti, via high-throughput sequencing of archival DNA. Sci Rep 2023; 13:9141. [PMID: 37336900 DOI: 10.1038/s41598-023-35210-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 05/15/2023] [Indexed: 06/21/2023] Open
Abstract
Hoplodactylus delcourti is a presumably extinct species of diplodactylid gecko known only from a single specimen of unknown provenance. It is by far the largest known gekkotan, approximately 50% longer than the next largest-known species. It has been considered a member of the New Zealand endemic genus Hoplodactylus based on external morphological features including shared toe pad structure. We obtained DNA from a bone sample of the only known specimen to generate high-throughput sequence data suitable for phylogenetic analysis of its evolutionary history. Complementary sequence data were obtained from a broad sample of diplodactylid geckos. Our results indicate that the species is not most closely related to extant Hoplodactylus or any other New Zealand gecko. Instead, it is a member of a clade whose living species are endemic to New Caledonia. Phylogenetic comparative analyses indicate that the New Caledonian diplodactylid clade has evolved significantly more disparate body sizes than either the Australian or New Zealand clades. Toe pad structure has changed repeatedly across diplodactylids, including multiple times in the New Caledonia clade, partially explaining the convergence in form between H. delcourti and New Zealand Hoplodactylus. Based on the phylogenetic results, we place H. delcourti in a new genus.
Collapse
Affiliation(s)
| | - Stuart V Nielsen
- Louisiana State University Shreveport, Shreveport, LA, USA
- Florida Museum of Natural History, University of Florida, Gainesville, FL, USA
| | | | - Ryan Kelly
- University of Michigan-Dearborn, Dearborn, MI, USA
| | | | - Juan D Daza
- Sam Houston State University, Huntsville, TX, USA
| | | | - Tony Gamble
- Marquette University, Milwaukee, WI, USA
- The Bell Museum of Natural History, University of Minnesota, Saint Paul, MN, USA
- Milwaukee Public Museum, Milwaukee, WI, USA
| |
Collapse
|
4
|
Eliason CM, McCullough JM, Hackett SJ, Andersen MJ. Complex plumages spur rapid color diversification in kingfishers (Aves: Alcedinidae). eLife 2023; 12:83426. [PMID: 37083474 PMCID: PMC10121218 DOI: 10.7554/elife.83426] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 03/22/2023] [Indexed: 04/22/2023] Open
Abstract
Colorful signals in nature provide some of the most stunning examples of rapid phenotypic evolution. Yet, studying color pattern evolution has been historically difficult owing to differences in perceptual ability of humans and analytical challenges with studying how complex color patterns evolve. Island systems provide a natural laboratory for testing hypotheses about the direction and magnitude of phenotypic change. A recent study found that plumage colors of island species are darker and less complex than continental species. Whether such shifts in plumage complexity are associated with increased rates of color evolution remains unknown. Here, we use geometric morphometric techniques to test the hypothesis that plumage complexity and insularity interact to influence color diversity in a species-rich clade of colorful birds-kingfishers (Aves: Alcedinidae). In particular, we test three predictions: (1) plumage complexity enhances interspecific rates of color evolution, (2) plumage complexity is lower on islands, and (3) rates of plumage color evolution are higher on islands. Our results show that more complex plumages result in more diverse colors among species and that island species have higher rates of color evolution. Importantly, we found that island species did not have more complex plumages than their continental relatives. Thus, complexity may be a key innovation that facilitates evolutionary response of individual color patches to distinct selection pressures on islands, rather than being a direct target of selection itself. This study demonstrates how a truly multivariate treatment of color data can reveal evolutionary patterns that might otherwise go unnoticed.
Collapse
Affiliation(s)
- Chad M Eliason
- Grainger Bioinformatics Center, Field Museum of Natural History, Chicago, United States
- Negaunee Integrative Research Center, Field Museum of Natural History, Chicago, United States
| | - Jenna M McCullough
- Department of Biology and Museum of Southwestern Biology, University of New Mexico, Albuquerque, United States
| | - Shannon J Hackett
- Negaunee Integrative Research Center, Field Museum of Natural History, Chicago, United States
| | - Michael J Andersen
- Department of Biology and Museum of Southwestern Biology, University of New Mexico, Albuquerque, United States
| |
Collapse
|
5
|
Miller AH, Stroud JT, Losos JB. The ecology and evolution of key innovations. Trends Ecol Evol 2023; 38:122-131. [PMID: 36220711 DOI: 10.1016/j.tree.2022.09.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 09/06/2022] [Accepted: 09/08/2022] [Indexed: 11/05/2022]
Abstract
The idea of 'key innovations' has long been influential in theoretical and empirical approaches to understanding adaptive diversification. Despite originally revolving around traits inducing major ecological shifts, the key innovation concept itself has evolved, conflating lineage diversification with trait-dependent ecological shifts. In this opinion article we synthesize the history of the term, clarify the relationship between key innovations and adaptive radiation, and propose a return to the original concept of key innovations: the evolution of organismal features which permit a species to occupy a previously inaccessible ecological state. Ultimately, we suggest an integrative approach to studying key innovations, necessitating experimental approaches of form and function, natural history studies of resource use, and phylogenetic comparative perspectives.
Collapse
Affiliation(s)
- Aryeh H Miller
- Department of Biology, Washington University, St Louis, MO, USA.
| | - James T Stroud
- Department of Biology, Washington University, St Louis, MO, USA.
| | - Jonathan B Losos
- Department of Biology, Washington University, St Louis, MO, USA.
| |
Collapse
|
6
|
Giles SAW, Arbuckle K. Diversification dynamics of chameleons (Chamaeleonidae). J Zool (1987) 2022. [DOI: 10.1111/jzo.13019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- S. A. W. Giles
- Department of Biosciences, Faculty of Science and Engineering Swansea University Swansea UK
| | - K. Arbuckle
- Department of Biosciences, Faculty of Science and Engineering Swansea University Swansea UK
| |
Collapse
|
7
|
Howell BK, Winchell KM, Hagey TJ. Geometric Morphometrics Reveal Shape Differences in the Toes of Urban Lizards. Integr Org Biol 2022; 4:obac028. [PMID: 35999968 PMCID: PMC9391197 DOI: 10.1093/iob/obac028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Urbanization, despite its destructive effects on natural habitats, offers species an opportunity to colonize novel niches. Previous research found that urban Anolis lizards in Puerto Rico had increased adhesive toepad area and more ventral toepad scales, traits that are likely adaptive and genetically based. We further investigated these phenotypic changes using geometric morphometrics to measure differences in toe shape, toepad shape, and lamellar morphology. Our results indicate that the increased toepad area of urban Anolis cristatellus lizards in Puerto Rico is not simply an isometric increase in toe size. Toes of urban populations exhibit multiple disproportional changes compared to forest lizards, with a larger proportion of the toe length covered in adhesive toepad. In addition, the toepads of urban lizards increase more in length than width. Lastly, lizards in urban populations exhibit both increased number of lamellae as well as increased spacing between individual lamellae. We also observed regional variation, with urban specimens having significantly more disparity, suggesting similar processes of urban adaptation are likely happening in parallel across the island, yet with region-specific idiosyncrasies, possibly generating more variation in toepad morphology across urban specimens as compared to forest specimens. Considering the use of geometric morphometrics, we found that specimen preparation, specifically how flat and straight toes are during imaging, to be an important factor affecting our data, more so than specimen size or any other meaningful morphological variation. In addition, we found that landmark and semilandmark data can be used to directly estimate toepad area, offering the opportunity to streamline future studies. In conclusion, our results highlight the value of considering toepad morphology in more detail beyond adhesive pad area or number of lamellae. Geometric morphometrics tools may be employed to elucidate subtle differences in shape to better allow researchers to connect changes in morphology to ecology and adhesive performance.
Collapse
Affiliation(s)
- Bailey K Howell
- Department of Biological Sciences, Virginia Tech , Blacksburg, VA 24061 , USA
- Department of Science and Mathematics, Mississippi University for Women , Columbus, MS 39701 , USA
| | - Kristin M Winchell
- Department of Biology, Washington University St. Louis , St. Louis, MO 63130 , USA
- Ecology and Evolutionary Biology, Princeton University , Princeton, NJ 08544 , USA
| | - Travis J Hagey
- Department of Science and Mathematics, Mississippi University for Women , Columbus, MS 39701 , USA
| |
Collapse
|
8
|
Niche expansion and adaptive divergence in the global radiation of crows and ravens. Nat Commun 2022; 13:2086. [PMID: 35449129 PMCID: PMC9023458 DOI: 10.1038/s41467-022-29707-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Accepted: 03/09/2022] [Indexed: 11/20/2022] Open
Abstract
The processes that allow some lineages to diversify rapidly at a global scale remain poorly understood. Although earlier studies emphasized the importance of dispersal, global expansions expose populations to novel environments and may also require adaptation and diversification across new niches. In this study, we investigated the contributions of these processes to the global radiation of crows and ravens (genus Corvus). Combining a new phylogeny with comprehensive phenotypic and climatic data, we show that Corvus experienced a massive expansion of the climatic niche that was coupled with a substantial increase in the rates of species and phenotypic diversification. The initiation of these processes coincided with the evolution of traits that promoted dispersal and niche expansion. Our findings suggest that rapid global radiations may be better understood as processes in which high dispersal abilities synergise with traits that, like cognition, facilitate persistence in new environments. Traits that facilitate adaptive responses to novel environments may facilitate global radiations. Here, the authors describe diversification dynamics of crows, finding that their global radiation coincides with high rates of phenotypic and climatic niche evolution.
Collapse
|
9
|
Jennings WB. Evolutionary relationships among the snakelike pygopodid lizards: a review of phylogenetic studies of an enigmatic Australian adaptive radiation. PeerJ 2021; 9:e11502. [PMID: 34249485 PMCID: PMC8253114 DOI: 10.7717/peerj.11502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2021] [Accepted: 05/03/2021] [Indexed: 12/03/2022] Open
Abstract
Here, I review phylogenetic studies of the lizard family Pygopodidae, a group of 47 extant species that diversified in Australia and New Guinea. The goal of this study was to examine published phylogenetic and phylogenomic hypotheses on pygopodids to identify the strengths and weaknesses in our understanding of their phylogeny. Many parts of the pygopodid family tree are well established by multiple independent tree inferences including: (1) all multispecies genera (i.e., Aprasia, Delma, Lialis, Pletholax, and Pygopus) are monophyletic groups; (2) the root of the pygopodid tree is located along the branch leading to the Delma clade, thus showing that Delma is the sister group to all other pygopodid genera; (3) the Aprasia repens group, Delma tincta group, and several other groups of closely related species are demonstrated to be monophyletic entities; and (4) the monotypic Paradelma orientalis is the sister lineage to the Pygopus clade. Based on accumulated phylogenetic evidence, two taxonomic recommendations are given: Paradelma merits generic status rather than being subsumed into Pygopus as some earlier studies had suggested, and the monotypic Aclys concinna should be recognized as a member of Delma (following current practice) until future studies clarify its placement inside or outside the Delma clade. One chronic problem with phylogenetic studies of pygopodids, which has limited the explanatory power of many tree hypotheses, concerns the undersampling of known species. Although the continual addition of newly described species, especially over the past two decades, has been a major reason for these taxon sampling gaps, deficits in species sampling for ingroups and/or outgroups in several studies of pygopodid species complexes has confounded the testing of some ingroup monophyly hypotheses. Ancient hybridization between non-sister lineages may also be confounding attempts to recover the relationships among pygopodids using molecular data. Indeed, such a phenomenon can explain at least five cases of mito-nuclear discordance and conflicts among trees based on nuclear DNA datasets. Another problem has been the lack of consensus on the relationships among most pygopodid genera, an issue that may stem from rapid diversification of these lineages early in the group's history. Despite current weaknesses in our understanding of pygopodid phylogeny, enough evidence exists to clarify many major and minor structural parts of their family tree. Accordingly, a composite tree for the Pygopodidae was able to be synthesized. This novel tree hypothesis contains all recognized pygopodid species and reveals that about half of the clades are corroborated by multiple independent tree hypotheses, while the remaining clades have less empirical support.
Collapse
Affiliation(s)
- W. Bryan Jennings
- Department of Evolution, Ecology, & Organismal Biology, University of California, Riverside, Riverside, California, United States of America
- Departamento de Vertebrados, Museu Nacional, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brasil
| |
Collapse
|
10
|
Miller AH, Stroud JT. Novel Tests of the Key Innovation Hypothesis: Adhesive Toepads in Arboreal Lizards. Syst Biol 2021; 71:139-152. [PMID: 34109417 DOI: 10.1093/sysbio/syab041] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 05/28/2021] [Accepted: 06/04/2021] [Indexed: 11/14/2022] Open
Abstract
The evolution of key innovations-unique features that enable a lineage to interact with the environment in a novel way-may drive broad patterns of adaptive diversity. However, traditional tests of the key innovation hypothesis, those which attempt to identify the evolutionary effect of a purported key innovation by comparing patterns of diversity between lineages with and without the key trait, have been challenged on both conceptual and statistical grounds. Here, we explore alternative, untested hypotheses of the key innovation framework. In lizards, adhesive toepad structures increase grip strength on vertical and smooth surfaces such as tree trunks and leaves and have independently evolved multiple times. As such, toepads have been posited as a key innovation for the evolution of arboreality. Leveraging a habitat use dataset applied to a global phylogeny of 2692 lizard species, we estimated multiple origins of toepads in three major clades and more than 100 origins of arboreality widely across the phylogeny. Our results suggest that toepads arise adaptively in arboreal lineages and are subsequently rarely lost while maintaining arboreal ecologies. Padless lineages transition away from arboreality at a higher rate than those with toepads, and high rates of invasion of arboreal niches by non-arboreal padbearing lineages provides further evidence that toepads may be a key to unlocking evolutionary access to the arboreal zone. Our results and analytical framework provide novel insights to understand and evaluate the ecological and evolutionary consequences of key innovations.
Collapse
Affiliation(s)
- Aryeh H Miller
- Department of Biology, Washington University in St. Louis, St. Louis, MO, USA
| | - James T Stroud
- Department of Biology, Washington University in St. Louis, St. Louis, MO, USA
| |
Collapse
|
11
|
Riedel J, Zozaya SM, Hoskin CJ, Schwarzkopf L. Parallel evolution of toepads in rock-dwelling lineages of a terrestrial gecko (Gekkota: Gekkonidae: Heteronotia binoei). Zool J Linn Soc 2021. [DOI: 10.1093/zoolinnean/zlaa167] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Abstract
Selection for effective locomotion can lead to specialized morphological structures. Adhesive toepads, which have arisen independently in different lizard clades, facilitate the use of vertical and inverted substrates. Their evolution is poorly understood because functionally intermediate morphological configurations between padless and pad-bearing forms are rare. To shed light on toepad evolution, we assessed the subdigital morphology of phylogenetically distinct lineages of the Bynoe’s gecko species complex (Heteronotia binoei). Most populations of H. binoei are terrestrial, but two relatively distantly related saxicoline (rock-dwelling) lineages have enlarged terminal subdigital scales resembling toepads. We reconstructed the ancestral terminal subdigital scale size of nine lineages of H. binoei in eastern Australia, including these two saxicoline lineages. Additionally, we compared the subdigital microstructures of four lineages: the two saxicoline lineages and their respective terrestrial sister-lineages. Surprisingly, all four lineages had fully developed setae, but the setae of the two saxicoline lineages were significantly longer, branched more often and were more widely spaced than the terrestrial sister-lineages. We conclude that the saxicoline lineages represent examples of parallel evolution of enlarged adhesive structures in response to vertical substrate use, and their morphology represents a useful model as an intermediate state in toepad evolution.
Collapse
Affiliation(s)
- Jendrian Riedel
- College of Science and Engineering, James Cook University, Townsville, Queensland, Australia
| | - Stephen M Zozaya
- College of Science and Engineering, James Cook University, Townsville, Queensland, Australia
| | - Conrad J Hoskin
- College of Science and Engineering, James Cook University, Townsville, Queensland, Australia
| | - Lin Schwarzkopf
- College of Science and Engineering, James Cook University, Townsville, Queensland, Australia
| |
Collapse
|
12
|
Larouche O, Hodge JR, Alencar LRV, Camper B, Adams DS, Zapfe K, Friedman ST, Wainwright PC, Price SA. Do key innovations unlock diversification? A case-study on the morphological and ecological impact of pharyngognathy in acanthomorph fishes. Curr Zool 2020; 66:575-588. [PMID: 33293935 PMCID: PMC7705508 DOI: 10.1093/cz/zoaa048] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Accepted: 08/26/2020] [Indexed: 12/04/2022] Open
Abstract
Key innovations may allow lineages access to new resources and facilitate the invasion of new adaptive zones, potentially influencing diversification patterns. Many studies have focused on the impact of key innovations on speciation rates, but far less is known about how they influence phenotypic rates and patterns of ecomorphological diversification. We use the repeated evolution of pharyngognathy within acanthomorph fishes, a commonly cited key innovation, as a case study to explore the predictions of key innovation theory. Specifically, we investigate whether transitions to pharyngognathy led to shifts in the rate of phenotypic evolution, as well as shifts and/or expansion in the occupation of morphological and dietary space, using a dataset of 8 morphological traits measured across 3,853 species of Acanthomorpha. Analyzing the 6 evolutionarily independent pharyngognathous clades together, we found no evidence to support pharyngognathy as a key innovation; however, comparisons between individual pharyngognathous lineages and their sister clades did reveal some consistent patterns. In morphospace, most pharyngognathous clades cluster in areas that correspond to deeper-bodied morphologies relative to their sister clades, while occupying greater areas in dietary space that reflects a more diversified diet. Additionally, both Cichlidae and Labridae exhibited higher univariate rates of phenotypic evolution compared with their closest relatives. However, few of these results were exceptional relative to our null models. Our results suggest that transitions to pharyngognathy may only be advantageous when combined with additional ecological or intrinsic factors, illustrating the importance of accounting for lineage-specific effects when testing key innovation hypotheses. Moreover, the challenges we experienced formulating informative comparisons, despite the ideal evolutionary scenario of multiple independent evolutionary origins of pharyngognathous clades, illustrates the complexities involved in quantifying the impact of key innovations. Given the issues of lineage specific effects and rate heterogeneity at macroevolutionary scales we observed, we suggest a reassessment of the expected impacts of key innovations may be warranted.
Collapse
Affiliation(s)
- Olivier Larouche
- Department of Biological Sciences, Clemson University, Clemson, SC, 29634, USA
| | - Jennifer R Hodge
- Department of Biological Sciences, Clemson University, Clemson, SC, 29634, USA
| | - Laura R V Alencar
- Department of Biological Sciences, Clemson University, Clemson, SC, 29634, USA
| | - Benjamin Camper
- Department of Biological Sciences, Clemson University, Clemson, SC, 29634, USA
| | - Danielle S Adams
- Department of Biological Sciences, Clemson University, Clemson, SC, 29634, USA
| | - Katerina Zapfe
- Department of Biological Sciences, Clemson University, Clemson, SC, 29634, USA
| | - Sarah T Friedman
- Department of Evolution & Ecology, University of California Davis, Davis, CA, 95616, USA
| | - Peter C Wainwright
- Department of Evolution & Ecology, University of California Davis, Davis, CA, 95616, USA
| | - Samantha A Price
- Department of Biological Sciences, Clemson University, Clemson, SC, 29634, USA
| |
Collapse
|
13
|
Ord TJ, Garcia-Porta J, Querejeta M, Collar DC. Gliding Dragons and Flying Squirrels: Diversifying versus Stabilizing Selection on Morphology following the Evolution of an Innovation. Am Nat 2020; 195:E51-E66. [DOI: 10.1086/706305] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
14
|
Niewiarowski PH, Dhinojwala A, Garner AM. A Physical Model Approach to Gecko Adhesion Opportunity and Constraint: How Rough Could It Be? Integr Comp Biol 2019; 59:203-213. [PMID: 31065674 DOI: 10.1093/icb/icz029] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
It has been nearly 20 years since Autumn and colleagues established the central role of van der Waals intermolecular forces in how geckos stick. Much has been discovered about the structure and function of fibrillar adhesives in geckos and other taxa, and substantial success has been achieved in translating natural models into bioinspired synthetic adhesives. Nevertheless, synthetics still cannot match the multidimensional performance observed in the natural gecko system that is simultaneously robust to dirt and water, resilient over thousands of cycles, and purportedly competent on surfaces that are rough at drastically different length scales. Apparent insensitivity of adhesion to variability in roughness is particularly interesting from both a theoretical and applied perspective. Progress on understanding the extent to which and the basis of how the gecko adhesive system is robust to variation in roughness is impeded by the complexity of quantifying roughness of natural surfaces and a dearth of data on free-ranging gecko substrate use. Here we review the main challenges in characterizing rough surfaces as they relate to collecting relevant estimates of variation in gecko adhesive performance across different substrates in their natural habitats. In response to these challenges, we propose a practical protocol (borrowing from thermal biophysical ecological methods) that will enable researchers to design detailed studies of structure-function relationships of the gecko fibrillar system. Employing such an approach will help provide specific hypotheses about how adhesive pad structure translates into a capacity for robust gecko adhesion across large variation in substrate roughness. Preliminary data we present on this approach suggest its promise in advancing the study of how geckos deal with roughness variation. We argue and outline how such data can help advance development of design parameters to improve bioinspired adhesives based on the gecko fibrillar system.
Collapse
Affiliation(s)
- Peter H Niewiarowski
- Integrated Bioscience Program, Department of Biology, University of Akron, Akron, OH 44325, USA
| | - Ali Dhinojwala
- Integrated Bioscience Program, Department of Biology, University of Akron, Akron, OH 44325, USA.,Department of Polymer Science, University of Akron, Akron, OH 44325, USA
| | - Austin M Garner
- Integrated Bioscience Program, Department of Biology, University of Akron, Akron, OH 44325, USA
| |
Collapse
|
15
|
Skipwith PL, Bi K, Oliver PM. Relicts and radiations: Phylogenomics of an Australasian lizard clade with east Gondwanan origins (Gekkota: Diplodactyloidea). Mol Phylogenet Evol 2019; 140:106589. [DOI: 10.1016/j.ympev.2019.106589] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Revised: 08/06/2019] [Accepted: 08/12/2019] [Indexed: 10/26/2022]
|
16
|
Huang JP, Kraichak E, Leavitt SD, Nelsen MP, Lumbsch HT. Accelerated diversifications in three diverse families of morphologically complex lichen-forming fungi link to major historical events. Sci Rep 2019; 9:8518. [PMID: 31253825 PMCID: PMC6599062 DOI: 10.1038/s41598-019-44881-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Accepted: 05/20/2019] [Indexed: 11/09/2022] Open
Abstract
Historical mass extinction events had major impacts on biodiversity patterns. The most recent and intensively studied event is the Cretaceous - Paleogene (K-Pg) boundary (ca. 66 million years ago [MYA]). However, the factors that may have impacted diversification dynamics vary across lineages. We investigated the macroevolutionary dynamics with a specific focus on the impact of major historical events such as the K-Pg mass extinction event on two major subclasses - Lecanoromycetidae and Ostropomycetidae - of lichen-forming fungi and tested whether variation in the rate of diversification can be associated with the evolution of a specific trait state - macrolichen. Our results reveal accelerated diversification events in three families of morphologically complex lichen-forming fungi - Cladoniaceae, Parmeliaceae, and Peltigeraceae - which are from the subclass Lecanoromycetidae and mostly composed of macrolichens, those that form three dimensional structures. Our RTT plot result for the subclass Lecanoromycetidae also reveals accelerated diversification. Changes in diversification rates occurred around the transition between Mesozoic and Cenozoic eras and was likely related to the K-Pg mass extinction event. The phylogenetic positions for rate increases estimated based on marginal shift probability are, however, scattered from 100 to 40 MYA preventing us from making explicit inference. Although we reveal that the phenotypic state of macrolichens is associated with a higher diversification rate than microlichens, we also show that the evolution of macrolichens predated the K-Pg event. Furthermore, the association between macrolichens and increased diversification is not universal and can be explained, in part, by phylogenetic relatedness. By investigating the macroevolutionary dynamics of lichen-forming fungi our study provides a new empirical system suitable to test the effect of major historical event on shaping biodiversity patterns and to investigate why changes in biodiversity patterns are not in concordance across clades. Our results imply that multiple historical events during the transition from Mesozoic to Cenozoic eras, including the K-Pg mass extinction event, impacted the evolutionary dynamics in lichen-forming fungi. However, future studies focusing on individual lichen-forming fungal families are required to ascertain whether diversification rates are associated with growth form and certain geological events.
Collapse
Affiliation(s)
- Jen-Pan Huang
- Integrative Research Center, The Field Museum, Chicago, IL, 60605, USA. .,Biodiversity Research Center, Academia Sinica, Taipei, Taiwan.
| | - Ekaphan Kraichak
- Department of Botany, Faculty of Science, Kasetsart University, Bangkok, Thailand
| | - Steven D Leavitt
- Department of Biology and M. L. Bean Life Science Museum, Brigham Young University, Provo, UT, 84602, USA
| | - Matthew P Nelsen
- Integrative Research Center, The Field Museum, Chicago, IL, 60605, USA
| | | |
Collapse
|
17
|
Russell AP, Stark AY, Higham TE. The Integrative Biology of Gecko Adhesion: Historical Review, Current Understanding, and Grand Challenges. Integr Comp Biol 2019; 59:101-116. [DOI: 10.1093/icb/icz032] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Abstract
Geckos are remarkable in their ability to reversibly adhere to smooth vertical, and even inverted surfaces. However, unraveling the precise mechanisms by which geckos do this has been a long process, involving various approaches over the last two centuries. Our understanding of the principles by which gecko adhesion operates has advanced rapidly over the past 20 years and, with this knowledge, material scientists have attempted to mimic the system to create artificial adhesives. From a biological perspective, recent studies have examined the diversity in morphology, performance, and real-world use of the adhesive apparatus. However, the lack of multidisciplinarity is likely a key roadblock to gaining new insights. Our goals in this paper are to 1) present a historical review of gecko adhesion research, 2) discuss the mechanisms and morphology of the adhesive apparatus, 3) discuss the origin and performance of the system in real-world contexts, 4) discuss advancement in bio-inspired design, and 5) present grand challenges in gecko adhesion research. To continue to improve our understanding, and to more effectively employ the principles of gecko adhesion for human applications, greater intensity and scope of interdisciplinary research are necessary.
Collapse
Affiliation(s)
- Anthony P Russell
- Department of Biological Sciences, University of Calgary, Calgary, Alberta, Canada T2N 1N4
| | - Alyssa Y Stark
- Department of Biology, Villanova University, Villanova, PA 19085, USA
| | - Timothy E Higham
- Department of Evolution, Ecology and Organismal Biology, University of California, Riverside, CA 92521, USA
| |
Collapse
|
18
|
Russell AP, Gamble T. Evolution of the Gekkotan Adhesive System: Does Digit Anatomy Point to One or More Origins? Integr Comp Biol 2019; 59:131-147. [DOI: 10.1093/icb/icz006] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Abstract
Recently-developed, molecularly-based phylogenies of geckos have provided the basis for reassessing the number of times adhesive toe-pads have arisen within the Gekkota. At present both a single origin and multiple origin hypotheses prevail, each of which has consequences that relate to explanations about digit form and evolutionary transitions underlying the enormous variation in adhesive toe pad structure among extant, limbed geckos (pygopods lack pertinent features). These competing hypotheses result from mapping the distribution of toe pads onto a phylogenetic framework employing the simple binary expedient of whether such toe pads are present or absent. It is evident, however, that adhesive toe pads are functional complexes that consist of a suite of integrated structural components that interact to bring about adhesive contact with the substratum and release from it. We evaluated the competing hypotheses about toe pad origins using 34 features associated with digit structure (drawn from the overall form of the digits; the presence and form of adhesive scansors; the proportions and structure of the phalanges; aspects of digital muscular and tendon morphology; presence and form of paraphalangeal elements; and the presence and form of substrate compliance-enhancing structures). We mapped these onto a well-supported phylogeny to reconstruct their evolution. Nineteen of these characters proved to be informative for all extant, limbed geckos, allowing us to assess which of them exhibit co-occurrence and/or clade-specificity. We found the absence of adhesive toe pads to be the ancestral state for the extant Gekkota as a whole, and our data to be consistent with independent origins of adhesive toe pads in the Diplodactylidae, Sphaerodactylidae, Phyllodactylidae, and Gekkonidae, with a strong likelihood of multiple origins in the latter three families. These findings are consistent with recently-published evidence of the presence of adhesively-competent digits in geckos generally regarded as lacking toe pads. Based upon morphology we identify other taxa at various locations within the gekkotan tree that are promising candidates for the expression of the early phases of adhesively-assisted locomotion. Investigation of functionally transitional forms will be valuable for enhancing our understanding of what is necessary and sufficient for the transition to adhesively-assisted locomotion, and for those whose objectives are to develop simulacra of the gekkotan adhesive system for biotechnological applications.
Collapse
Affiliation(s)
- Anthony P Russell
- Department of Biological Sciences, University of Calgary, 2500 University Drive NW, Calgary, Alberta, Canada T2N 1N4
| | - Tony Gamble
- Department of Biological Sciences, Marquette University, Milwaukee, WI 53201, USA
- Bell Museum of Natural History, University of Minnesota, Saint Paul, MN 55113, USA
- Milwaukee Public Museum, Milwaukee, WI 53233, USA
| |
Collapse
|
19
|
Riedel J, Vucko MJ, Blomberg SP, Robson SKA, Schwarzkopf L. Ecological associations among epidermal microstructure and scale characteristics of Australian geckos (Squamata: Carphodactylidae and Diplodactylidae). J Anat 2019; 234:853-874. [PMID: 30861577 DOI: 10.1111/joa.12969] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/29/2019] [Indexed: 01/01/2023] Open
Abstract
A first step in examining factors influencing trait evolution is demonstrating associations between traits and environmental factors. Scale microstructure is a well-studied feature of squamate reptiles (Squamata), including geckos, but few studies examine ecology the of microstructures, and those focus mainly on toe pads. In this study, the ecomorphology of cutaneous microstructures on the dorsum was described for eight Australian species of carphodactylid (Squamata: Carphodactylidae) and 19 diplodactylid (Squamata: Diplodactylidae) geckos. We examined scale dimensions, spinule and cutaneous sensilla (CS) morphology, using scanning electron microscopy, and described associations of these traits with microhabitat selection (arboreal, saxicoline or terrestrial) and relative humidity of each species' habitat (xeric, mesic or humid). We used a phylogenetic flexible discriminant analysis (pFDA) to describe relationships among all traits and then a modeling approach to examine each trait individually. Our analysis showed that terrestrial species tended to have long spinules and CS with more bristles, saxicoline species larger diameter CS and arboreal species tended to have large granule scales and small intergranule scales. There was high overlap in cutaneous microstructural morphology among species from xeric and mesic environments, whereas species from humid environments had large diameter CS and few bristles. Significant associations between epidermal morphology and environmental humidity and habitat suggest that epidermal microstructures have evolved in response to environmental variables. In summary, long spinules, which aid self-cleaning in terrestrial geckos, are consistent with greater exposure to dirt and debris in this habitat. Long spinules were not clearly correlated to environmental humidity. Finally, more complex CS (larger diameter with more bristles) may facilitate better perception of environmental variation in geckos living in drier habitats.
Collapse
Affiliation(s)
- Jendrian Riedel
- College of Science and Engineering, James Cook University, Townsville, QLD, Australia
| | - Matthew J Vucko
- College of Science and Engineering, James Cook University, Townsville, QLD, Australia
| | - Simone P Blomberg
- School of Biological Sciences, University of Queensland, St. Lucia, QLD, Australia
| | - Simon K A Robson
- College of Science and Engineering, James Cook University, Townsville, QLD, Australia
| | - Lin Schwarzkopf
- College of Science and Engineering, James Cook University, Townsville, QLD, Australia
| |
Collapse
|
20
|
Sayol F, Downing PA, Iwaniuk AN, Maspons J, Sol D. Predictable evolution towards larger brains in birds colonizing oceanic islands. Nat Commun 2018; 9:2820. [PMID: 30065283 PMCID: PMC6068123 DOI: 10.1038/s41467-018-05280-8] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Accepted: 06/11/2018] [Indexed: 11/27/2022] Open
Abstract
Theory and evidence suggest that some selective pressures are more common on islands than in adjacent mainland habitats, leading evolution to follow predictable trends. The existence of predictable evolutionary trends has nonetheless been difficult to demonstrate, mainly because of the challenge of separating in situ evolution from sorting processes derived from colonization events. Here we use brain size measurements of >1900 avian species to reveal the existence of one such trend: increased brain size in island dwellers. Based on sister-taxa comparisons and phylogenetic ancestral trait estimations, we show that species living on islands have relatively larger brains than their mainland relatives and that these differences mainly reflect in situ evolution rather than varying colonization success. Our findings reinforce the view that in some instances evolution may be predictable, and yield insight into why some animals evolve larger brains despite substantial energetic and developmental costs.
Collapse
Affiliation(s)
- Ferran Sayol
- CREAF, Bellaterra (Cerdanyola del Vallès), 08193, Barcelona, Catalonia, Spain.
| | - Philip A Downing
- Department of Biology, Molecular Ecology and Evolution Laboratory, Lund University, 223 62, Lund, Sweden
| | - Andrew N Iwaniuk
- Department of Neuroscience, Canadian Centre for Behavioural Neuroscience, University of Lethbridge, Lethbridge, AB, T1K 3M4, Canada
| | - Joan Maspons
- CREAF, Bellaterra (Cerdanyola del Vallès), 08193, Barcelona, Catalonia, Spain
| | - Daniel Sol
- CREAF, Bellaterra (Cerdanyola del Vallès), 08193, Barcelona, Catalonia, Spain.
- CSIC, Bellaterra (Cerdanyola del Vallès), 08913, Barcelona, Catalonia, Spain.
| |
Collapse
|
21
|
Ashman LG, Bragg JG, Doughty P, Hutchinson MN, Bank S, Matzke NJ, Oliver P, Moritz C. Diversification across biomes in a continental lizard radiation. Evolution 2018; 72:1553-1569. [PMID: 29972238 DOI: 10.1111/evo.13541] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Revised: 06/15/2018] [Accepted: 06/15/2018] [Indexed: 12/23/2022]
Abstract
Ecological opportunity is a powerful driver of evolutionary diversification, and predicts rapid lineage and phenotypic diversification following colonization of competitor-free habitats. Alternatively, topographic or environmental heterogeneity could be key to generating and sustaining diversity. We explore these hypotheses in a widespread lineage of Australian lizards: the Gehyra variegata group. This clade occurs across two biomes: the Australian monsoonal tropics (AMT), where it overlaps a separate, larger bodied clade of Gehyra and is largely restricted to rocks; and in the larger Australian arid zone (AAZ) where it has no congeners and occupies trees and rocks. New phylogenomic data and coalescent analyses of AAZ taxa resolve lineages and their relationships and reveal high diversity in the western AAZ (Pilbara region). The AMT and AAZ radiations represent separate radiations with no difference in speciation rates. Most taxa occur on rocks, with small geographic ranges relative to widespread generalist taxa across the vast central AAZ. Rock-dwelling and generalist taxa differ morphologically, but only the lineage-poor central AAZ taxa have accelerated evolution. This accords with increasing evidence that lineage and morphological diversity are poorly correlated, and suggests environmental heterogeneity and refugial dynamics have been more important than ecological release in elevating lineage diversity.
Collapse
Affiliation(s)
- L G Ashman
- Research School of Biology, Australian National University, Canberra, ACT 0200, Australia
| | - J G Bragg
- Research School of Biology, Australian National University, Canberra, ACT 0200, Australia
- Royal Botanic Garden, Sydney, NSW 2000, Australia
| | - P Doughty
- Department of Terrestrial Zoology, Western Australian Museum, Perth, WA 6016, Australia
| | - M N Hutchinson
- South Australian Museum, Adelaide, SA 5000, Australia
- School of Biological Sciences, University of Adelaide, Adelaide, SA 5005, Australia
- School of Biological Sciences, Flinders University, Adelaide, SA 5042, Australia
| | - S Bank
- Research School of Biology, Australian National University, Canberra, ACT 0200, Australia
- Johann-Friedrich-Blumenbach Institute for Zoology and Anthropology, University of Göttingen, Göttingen 37073, Germany
| | - N J Matzke
- Research School of Biology, Australian National University, Canberra, ACT 0200, Australia
- School of Biological Sciences, University of Auckland, Auckland 1142, New Zealand
| | - P Oliver
- Research School of Biology, Australian National University, Canberra, ACT 0200, Australia
- Environmental Futures Research Institute, Griffith University, Nathan, QLD 4111, Australia
- Biodiversity and Geosciences Program, Queensland Museum, Brisbane, QLD 4101, Australia
| | - C Moritz
- Research School of Biology, Australian National University, Canberra, ACT 0200, Australia
| |
Collapse
|
22
|
Castiglione S, Tesone G, Piccolo M, Melchionna M, Mondanaro A, Serio C, Di Febbraro M, Raia P. A new method for testing evolutionary rate variation and shifts in phenotypic evolution. Methods Ecol Evol 2018. [DOI: 10.1111/2041-210x.12954] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Affiliation(s)
- Silvia Castiglione
- Dipartimento di Scienze della Terradell'Ambiente e delle RisorseUniversità di Napoli “Federico II” Napoli Italy
| | - Gianmarco Tesone
- Dipartimento di Scienze della Terradell'Ambiente e delle RisorseUniversità di Napoli “Federico II” Napoli Italy
| | - Martina Piccolo
- Dipartimento di Scienze della Terradell'Ambiente e delle RisorseUniversità di Napoli “Federico II” Napoli Italy
| | - Marina Melchionna
- Dipartimento di Scienze della Terradell'Ambiente e delle RisorseUniversità di Napoli “Federico II” Napoli Italy
| | - Alessandro Mondanaro
- Dipartimento di Scienze della Terradell'Ambiente e delle RisorseUniversità di Napoli “Federico II” Napoli Italy
| | - Carmela Serio
- Dipartimento di Scienze della Terradell'Ambiente e delle RisorseUniversità di Napoli “Federico II” Napoli Italy
| | - Mirko Di Febbraro
- Dipartimento di Bioscienze e TerritorioUniversità degli Studi del Molise Pesche, Isernia Italy
| | - Pasquale Raia
- Dipartimento di Scienze della Terradell'Ambiente e delle RisorseUniversità di Napoli “Federico II” Napoli Italy
| |
Collapse
|
23
|
Hagey TJ, Uyeda JC, Crandell KE, Cheney JA, Autumn K, Harmon LJ. Tempo and mode of performance evolution across multiple independent origins of adhesive toe pads in lizards. Evolution 2017; 71:2344-2358. [DOI: 10.1111/evo.13318] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2016] [Accepted: 06/20/2017] [Indexed: 01/15/2023]
Affiliation(s)
- Travis J. Hagey
- BEACON Center for Evolution in Action Michigan State University East Lansing Michigan 48824
| | - Josef C. Uyeda
- Department of Biological Sciences University of Idaho Moscow Idaho 83844
| | - Kristen E. Crandell
- Department of Zoology University of Cambridge Cambridge CB2‐3EJ United Kingdom
| | - Jorn A. Cheney
- Structure and Motion Laboratory, The Royal Veterinary College University of London Hatfield United Kingdom
| | - Kellar Autumn
- Biology Department Lewis & Clark College Portland Oregon 97219
| | - Luke J. Harmon
- Department of Biological Sciences University of Idaho Moscow Idaho 83844
| |
Collapse
|
24
|
Brennan IG, Oliver PM. Mass turnover and recovery dynamics of a diverse Australian continental radiation. Evolution 2017; 71:1352-1365. [PMID: 28213971 DOI: 10.1111/evo.13207] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2016] [Revised: 02/03/2017] [Accepted: 02/06/2017] [Indexed: 11/29/2022]
Abstract
Trends in global and local climate history have been linked to observed macroevolutionary patterns across a variety of organisms. These climatic pressures may unilaterally or asymmetrically influence the evolutionary trajectory of clades. To test and compare signatures of changing global (Eocene-Oligocene boundary cooling) and continental (Miocene aridification) environments on a continental fauna, we investigated the macroevolutionary dynamics of one of Australia's most diverse endemic radiations, pygopodoid geckos. We generated a time-calibrated phylogeny (>90% taxon coverage) to test whether (i) asymmetrical pygopodoid tree shape may be the result of mass turnover deep in the group's history, and (ii) how Miocene aridification shaped trends in biome assemblages. We find evidence of mass turnover in pygopodoids following the isolation of the Australian continental plate ∼30 million years ago, and in contrast, gradual aridification is linked to elevated speciation rates in the young arid zone. Surprisingly, our results suggest that invasion of arid habitats was not an evolutionary end point. Instead, arid Australia has acted as a source for diversity, with repeated outward dispersals having facilitated diversification of this group. This pattern contrasts trends in richness and distribution of other Australian vertebrates, illustrating the profound effects historical biome changes have on macroevolutionary patterns.
Collapse
Affiliation(s)
- Ian G Brennan
- Division of Ecology and Evolution, Research School of Biology, The Australian National University, Canberra, ACT, Australia
| | - Paul M Oliver
- Division of Ecology and Evolution, Research School of Biology, The Australian National University, Canberra, ACT, Australia
| |
Collapse
|
25
|
Ord TJ, Summers TC, Noble MM, Fulton CJ. Ecological Release from Aquatic Predation Is Associated with the Emergence of Marine Blenny Fishes onto Land. Am Nat 2017; 189:570-579. [PMID: 28410030 DOI: 10.1086/691155] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
An ecological release from competition or predation is a frequent adaptive explanation for the colonization of novel environments, but empirical data are limited. On the island of Rarotonga, several blenny fish species appear to be in the process of colonizing land. Anecdotal observations have implied that aquatic predation is an important factor in prompting such amphibious fish behavior. We provide evidence supporting this hypothesis by demonstrating that amphibious blennies shift their abundance up and down the shoreline to remain above predatory fishes that periodically move into intertidal areas during high tide. A predation experiment using blenny mimics confirmed a high risk of aquatic predation for blennies, significantly higher than predation experienced on land. These data suggest that predation has played an active role in promoting terrestrial activity in amphibious blennies and provide a rare example of how ecological release from predation could drive the colonization of a novel environment.
Collapse
|
26
|
Patterns of diversification in islands: A comparative study across three gecko genera in the Socotra Archipelago. Mol Phylogenet Evol 2016; 98:288-99. [DOI: 10.1016/j.ympev.2016.02.007] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2015] [Revised: 01/19/2016] [Accepted: 02/10/2016] [Indexed: 11/23/2022]
|
27
|
Garcia-Porta J, Šmíd J, Sol D, Fasola M, Carranza S. Testing the island effect on phenotypic diversification: insights from the Hemidactylus geckos of the Socotra Archipelago. Sci Rep 2016; 6:23729. [PMID: 27071837 PMCID: PMC4829864 DOI: 10.1038/srep23729] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2015] [Accepted: 03/08/2016] [Indexed: 11/08/2022] Open
Abstract
Island colonization is often assumed to trigger extreme levels of phenotypic diversification. Yet, empirical evidence suggests that it does not always so. In this study we test this hypothesis using a completely sampled mainland-island system, the arid clade of Hemidactylus, a group of geckos mainly distributed across Africa, Arabia and the Socotra Archipelago. To such purpose, we generated a new molecular phylogeny of the group on which we mapped body size and head proportions. We then explored whether island and continental taxa shared the same morphospace and differed in their disparities and tempos of evolution. Insular species produced the most extreme sizes of the radiation, involving accelerated rates of evolution and higher disparities compared with most (but not all) of the continental groups. In contrast, head proportions exhibited constant evolutionary rates across the radiation and similar disparities in islands compared with the continent. These results, although generally consistent with the notion that islands promote high morphological disparity, reveal at the same time a complex scenario in which different traits may experience different evolutionary patterns in the same mainland-island system and continental groups do not always present low levels of morphological diversification compared to insular groups.
Collapse
Affiliation(s)
- Joan Garcia-Porta
- Institute of Evolutionary Biology (CSIC-Universitat Pompeu Fabra), Passeig Marítim de la Barceloneta, 37-49, 08003, Barcelona, Spain
| | - Jiří Šmíd
- Department of Zoology, National Museum, Prague, Czech Republic
| | - Daniel Sol
- Center for Ecological Research and Forestry Applications (CREAF), Spanish National Research Council (CSIC), Campus of the Autonomous University of Barcelona, Cerdanyola del Vallès, 08193 Catalonia, Spain
| | - Mauro Fasola
- Dipartimento di Scienze della Terra e dell’Ambiente, Università di Pavia, Via Ferrata 1, I-27100 Pavia, Italy
| | - Salvador Carranza
- Institute of Evolutionary Biology (CSIC-Universitat Pompeu Fabra), Passeig Marítim de la Barceloneta, 37-49, 08003, Barcelona, Spain
| |
Collapse
|
28
|
Brennan IG, Bauer AM, Jackman TR. Mitochondrial introgression via ancient hybridization, and systematics of the Australian endemic pygopodid gecko genus Delma. Mol Phylogenet Evol 2015; 94:577-590. [PMID: 26505536 DOI: 10.1016/j.ympev.2015.10.005] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2015] [Revised: 09/21/2015] [Accepted: 10/06/2015] [Indexed: 11/28/2022]
Abstract
Of the more than 1500 species of geckos found across six continents, few remain as unfamiliar as the pygopodids - Family Pygopodidae (Gray, 1845). These gekkotans are limited to Australia (44 species) and New Guinea (2 species), but have diverged extensively into the most ecologically diverse limbless radiation save Serpentes. Current phylogenetic understanding of the family has relied almost exclusively on two works, which have produced and synthesized an immense amount of morphological, geographical, and molecular data. However, current interspecific relationships within the largest genus Delma Gray 1831 are based chiefly upon data from two mitochondrial loci (16s, ND2). Here, we reevaluate the interspecific relationships within the genus Delma using two mitochondrial and four nuclear loci (RAG1, MXRA5, MOS, DYNLL1), and identify points of strong conflict between nuclear and mitochondrial genomic data. We address mito-nuclear discordance, and remedy this conflict by recognizing several points of mitochondrial introgression as the result of ancient hybridization events. Owing to the legacy value and intraspecific informativeness, we suggest the continued use of ND2 as a phylogenetic marker. Results identify strong support for species groups, but relationships among these clades, and the placement of several enigmatic taxa remain uncertain. We suggest a more careful review of Delma australis and the 'northwest Australia' clade. Accurately assessing and addressing species richness and relationships within this endemic Australian Gekkotan genus is relevant for understanding patterns of squamate speciation across the region.
Collapse
Affiliation(s)
- Ian G Brennan
- Department of Biology, Villanova University, 800 Lancaster Avenue, Villanova, PA 19085, USA.
| | - Aaron M Bauer
- Department of Biology, Villanova University, 800 Lancaster Avenue, Villanova, PA 19085, USA
| | - Todd R Jackman
- Department of Biology, Villanova University, 800 Lancaster Avenue, Villanova, PA 19085, USA
| |
Collapse
|
29
|
Aubret F. Island colonisation and the evolutionary rates of body size in insular neonate snakes. Heredity (Edinb) 2015; 115:349-56. [PMID: 25074570 PMCID: PMC4815452 DOI: 10.1038/hdy.2014.65] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2013] [Revised: 03/27/2014] [Accepted: 06/04/2014] [Indexed: 11/09/2022] Open
Abstract
Island colonisation by animal populations is often associated with dramatic shifts in body size. However, little is known about the rates at which these evolutionary shifts occur, under what precise selective pressures and the putative role played by adaptive plasticity on driving such changes. Isolation time played a significant role in the evolution of body size in island Tiger snake populations, where adaptive phenotypic plasticity followed by genetic assimilation fine-tuned neonate body and head size (hence swallowing performance) to prey size. Here I show that in long isolated islands (>6000 years old) and mainland populations, neonate body mass and snout-vent length are tightly correlated with the average prey body mass available at each site. Regression line equations were used to calculate body size values to match prey size in four recently isolated populations of Tiger snakes. Rates of evolution in body mass and snout-vent length, calculated for seven island snake populations, were significantly correlated with isolation time. Finally, rates of evolution in body mass per generation were significantly correlated with levels of plasticity in head growth rates. This study shows that body size evolution occurs at a faster pace in recently isolated populations and suggests that the level of adaptive plasticity for swallowing abilities may correlate with rates of body mass evolution. I hypothesise that, in the early stages of colonisation, adaptive plasticity and directional selection may combine and generate accelerated evolution towards an 'optimal' phenotype.
Collapse
Affiliation(s)
- F Aubret
- Station d'Ecologie Expérimentale du CNRS à Moulis, Saint-Girons, France
| |
Collapse
|
30
|
Duran A, Pie MR. Tempo and mode of climatic niche evolution in Primates. Evolution 2015; 69:2496-506. [DOI: 10.1111/evo.12730] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2015] [Accepted: 06/27/2015] [Indexed: 12/01/2022]
Affiliation(s)
- Andressa Duran
- Laboratório de Dinâmica Evolutiva e Sistemas Complexos, Departamento de Zoologia, Universidade Federal do Paraná, Centro Politécnico; Jardim das Américas; CEP 81531-990 Curitiba Paraná Brazil
- Programa de Pós-Graduação em Ecologia e Conservação, Universidade Federal do Paraná; Centro Politécnico, Setor de Ciências Biológicas, Jardim das Américas; CEP 81531-990 Curitiba Paraná Brazil
| | - Marcio R. Pie
- Laboratório de Dinâmica Evolutiva e Sistemas Complexos, Departamento de Zoologia, Universidade Federal do Paraná, Centro Politécnico; Jardim das Américas; CEP 81531-990 Curitiba Paraná Brazil
- Programa de Pós-Graduação em Ecologia e Conservação, Universidade Federal do Paraná; Centro Politécnico, Setor de Ciências Biológicas, Jardim das Américas; CEP 81531-990 Curitiba Paraná Brazil
| |
Collapse
|
31
|
Gamble T, Greenbaum E, Jackman TR, Bauer AM. Into the light: diurnality has evolved multiple times in geckos. Biol J Linn Soc Lond 2015. [DOI: 10.1111/bij.12536] [Citation(s) in RCA: 96] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Affiliation(s)
- Tony Gamble
- Department of Genetics, Cell Biology, and Development; University of Minnesota; Minneapolis MN USA
- Bell Museum of Natural History; University of Minnesota; Minneapolis MN USA
| | - Eli Greenbaum
- Department of Biological Sciences; The University of Texas at El Paso; El Paso TX USA
| | - Todd R. Jackman
- Department of Biology; Villanova University; Villanova PA USA
| | - Aaron M. Bauer
- Department of Biology; Villanova University; Villanova PA USA
| |
Collapse
|