1
|
Crisostomo-Panuera JS, Nieva ASDV, Ix-Balam MA, Díaz-Valderrama JR, Alviarez-Gutierrez E, Oliva-Cruz SM, Cumpa-Velásquez LM. Diversity and functional assessment of indigenous culturable bacteria inhabiting fine-flavor cacao rhizosphere: Uncovering antagonistic potential against Moniliophthora roreri. Heliyon 2024; 10:e28453. [PMID: 38601674 PMCID: PMC11004713 DOI: 10.1016/j.heliyon.2024.e28453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 03/18/2024] [Accepted: 03/19/2024] [Indexed: 04/12/2024] Open
Abstract
The Peruvian Amazonian native cacao faces ongoing challenges that significantly undermine its productivity. Among them, frosty pod rot disease and cadmium accumulation result in losses that need for effective and environmentally safe strategies, such as those based on bacteria. To explore the biological resources in the cacao soil, a descriptive study was conducted to assess the diversity of culturable bacteria across three production districts in the Amazonas region: La Peca, Imaza, and Cajaruro. The study also focused on the functional properties of these bacteria, particularly those related to the major issues limiting cacao cultivation. For this purpose, 90 native bacterial isolates were obtained from the cacao rhizosphere. According to diversity analysis, the community was composed of 19 bacterial genera, with a dominance of the Bacillaceae family and variable distribution among the districts. This variability was statistically supported by the PCoA plots and is related to the pH of the soil environment. The functional assessment revealed that 56.8% of the isolates showed an antagonism index greater than 75% after 7 days of confrontation. After 15 days of confrontation with Moniliophthora roreri, 68.2% of the bacterial population demonstrated this attribute. This capability was primarily exhibited by Bacillus strains. On the other hand, only 4.5% were capable of removing cadmium, highlighting the biocontrol potential of the bacterial community. In addition, some isolates produced siderophores (13.63%), solubilized phosphate (20.45%), and solubilized zinc (4.5%). Interestingly, these traits showed an uneven distribution, which correlated with the divergence found by the beta diversity. Our results revealed a diverse bacterial community inhabiting the Amazonian cacao rhizosphere, showcasing crucial functional properties related to the biocontrol of M. roreri. The information generated serves as a significant resource for the development of further biotechnological tools that can be applied to native Amazonian cacao.
Collapse
Affiliation(s)
- Jhusephin Sheshira Crisostomo-Panuera
- Laboratorio de Investigación en Sanidad Vegetal, Instituto de Investigación para El Desarrollo Sustentable de Ceja de Selva (INDES-CES), Universidad Nacional Toribio Rodríguez de Mendoza (UNTRM), Calle Higos Urco 342, Chachapoyas, Amazonas, Peru
| | - Amira Susana del Valle Nieva
- Centro Regional de Energía y Ambiente para el Desarrollo Sustentable (CREAS-CONICET-UNCA). Nuñez del Prado 366, Catamarca, Argentina
| | - Manuel Alejandro Ix-Balam
- Laboratorio de Investigación en Sanidad Vegetal, Instituto de Investigación para El Desarrollo Sustentable de Ceja de Selva (INDES-CES), Universidad Nacional Toribio Rodríguez de Mendoza (UNTRM), Calle Higos Urco 342, Chachapoyas, Amazonas, Peru
| | - Jorge Ronny Díaz-Valderrama
- Laboratorio de Investigación en Sanidad Vegetal, Instituto de Investigación para El Desarrollo Sustentable de Ceja de Selva (INDES-CES), Universidad Nacional Toribio Rodríguez de Mendoza (UNTRM), Calle Higos Urco 342, Chachapoyas, Amazonas, Peru
| | - Eliana Alviarez-Gutierrez
- Laboratorio de Investigación en Sanidad Vegetal, Instituto de Investigación para El Desarrollo Sustentable de Ceja de Selva (INDES-CES), Universidad Nacional Toribio Rodríguez de Mendoza (UNTRM), Calle Higos Urco 342, Chachapoyas, Amazonas, Peru
| | - Segundo Manuel Oliva-Cruz
- Laboratorio de Investigación en Sanidad Vegetal, Instituto de Investigación para El Desarrollo Sustentable de Ceja de Selva (INDES-CES), Universidad Nacional Toribio Rodríguez de Mendoza (UNTRM), Calle Higos Urco 342, Chachapoyas, Amazonas, Peru
| | - Liz Marjory Cumpa-Velásquez
- Laboratorio de Investigación en Sanidad Vegetal, Instituto de Investigación para El Desarrollo Sustentable de Ceja de Selva (INDES-CES), Universidad Nacional Toribio Rodríguez de Mendoza (UNTRM), Calle Higos Urco 342, Chachapoyas, Amazonas, Peru
| |
Collapse
|
2
|
Ruiz J, de Celis M, Diaz‐Colunga J, Vila JCC, Benitez‐Dominguez B, Vicente J, Santos A, Sanchez A, Belda I. Predictability of the community-function landscape in wine yeast ecosystems. Mol Syst Biol 2023; 19:e11613. [PMID: 37548146 PMCID: PMC10495813 DOI: 10.15252/msb.202311613] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 07/26/2023] [Accepted: 07/26/2023] [Indexed: 08/08/2023] Open
Abstract
Predictively linking taxonomic composition and quantitative ecosystem functions is a major aspiration in microbial ecology, which must be resolved if we wish to engineer microbial consortia. Here, we have addressed this open question for an ecological function of major biotechnological relevance: alcoholic fermentation in wine yeast communities. By exhaustively phenotyping an extensive collection of naturally occurring wine yeast strains, we find that most ecologically and industrially relevant traits exhibit phylogenetic signal, allowing functional traits in wine yeast communities to be predicted from taxonomy. Furthermore, we demonstrate that the quantitative contributions of individual wine yeast strains to the function of complex communities followed simple quantitative rules. These regularities can be integrated to quantitatively predict the function of newly assembled consortia. Besides addressing theoretical questions in functional ecology, our results and methodologies can provide a blueprint for rationally managing microbial processes of biotechnological relevance.
Collapse
Affiliation(s)
- Javier Ruiz
- Department of Genetics, Physiology and Microbiology, Biology FacultyComplutense University of MadridMadridSpain
- Department of Microbial and Plant BiotechnologyCentre for Biological Research (CIB‐CSIC)MadridSpain
| | - Miguel de Celis
- Department of Genetics, Physiology and Microbiology, Biology FacultyComplutense University of MadridMadridSpain
- Department of Soil, Plant and Environmental QualityInstitute of Agricultural Sciences (ICA‐CSIC)MadridSpain
| | - Juan Diaz‐Colunga
- Department of Ecology & Evolutionary BiologyYale UniversityNew HavenCTUSA
- Department of Microbial BiotechnologyNational Centre for Biotechnology (CNB‐CSIC)MadridSpain
| | - Jean CC Vila
- Department of Ecology & Evolutionary BiologyYale UniversityNew HavenCTUSA
- Department of BiologyStanford UniversityStanfordCAUSA
| | - Belen Benitez‐Dominguez
- Department of Genetics, Physiology and Microbiology, Biology FacultyComplutense University of MadridMadridSpain
| | - Javier Vicente
- Department of Genetics, Physiology and Microbiology, Biology FacultyComplutense University of MadridMadridSpain
| | - Antonio Santos
- Department of Genetics, Physiology and Microbiology, Biology FacultyComplutense University of MadridMadridSpain
| | - Alvaro Sanchez
- Department of Ecology & Evolutionary BiologyYale UniversityNew HavenCTUSA
- Department of Microbial BiotechnologyNational Centre for Biotechnology (CNB‐CSIC)MadridSpain
| | - Ignacio Belda
- Department of Genetics, Physiology and Microbiology, Biology FacultyComplutense University of MadridMadridSpain
| |
Collapse
|
3
|
Guillier L, Palma F, Fritsch L. Taking account of genomics in quantitative microbial risk assessment: what methods? what issues? Curr Opin Food Sci 2022. [DOI: 10.1016/j.cofs.2022.100922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
4
|
Moen DS, Cabrera-Guzmán E, Caviedes-Solis IW, González-Bernal E, Hanna AR. Phylogenetic analysis of adaptation in comparative physiology and biomechanics: overview and a case study of thermal physiology in treefrogs. J Exp Biol 2022; 225:274250. [PMID: 35119071 DOI: 10.1242/jeb.243292] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Accepted: 10/06/2021] [Indexed: 12/14/2022]
Abstract
Comparative phylogenetic studies of adaptation are uncommon in biomechanics and physiology. Such studies require data collection from many species, a challenge when this is experimentally intensive. Moreover, researchers struggle to employ the most biologically appropriate phylogenetic tools for identifying adaptive evolution. Here, we detail an established but greatly underutilized phylogenetic comparative framework - the Ornstein-Uhlenbeck process - that explicitly models long-term adaptation. We discuss challenges in implementing and interpreting the model, and we outline potential solutions. We demonstrate use of the model through studying the evolution of thermal physiology in treefrogs. Frogs of the family Hylidae have twice colonized the temperate zone from the tropics, and such colonization likely involved a fundamental change in physiology due to colder and more seasonal temperatures. However, which traits changed to allow colonization is unclear. We measured cold tolerance and characterized thermal performance curves in jumping for 12 species of treefrogs distributed from the Neotropics to temperate North America. We then conducted phylogenetic comparative analyses to examine how tolerances and performance curves evolved and to test whether that evolution was adaptive. We found that tolerance to low temperatures increased with the transition to the temperate zone. In contrast, jumping well at colder temperatures was unrelated to biogeography and thus did not adapt during dispersal. Overall, our study shows how comparative phylogenetic methods can be leveraged in biomechanics and physiology to test the evolutionary drivers of variation among species.
Collapse
Affiliation(s)
- Daniel S Moen
- Department of Integrative Biology, Oklahoma State University, Stillwater, OK 74078, USA
| | - Elisa Cabrera-Guzmán
- Department of Integrative Biology, Oklahoma State University, Stillwater, OK 74078, USA
| | - Itzue W Caviedes-Solis
- Science Unit, Lingnan University, Hong Kong S.A.R., China.,Department of Biology, University of Washington, Seattle, WA 98105, USA
| | - Edna González-Bernal
- CONACYT - CIIDIR Oaxaca, Instituto Politécnico Nacional, Santa Cruz Xoxocotlán, C.P. 71230, Oaxaca, México
| | - Allison R Hanna
- Department of Integrative Biology, Oklahoma State University, Stillwater, OK 74078, USA
| |
Collapse
|
5
|
Wan W, Gadd GM, Gu JD, He D, Liu W, Yuan W, Ye L, Yang Y. Dredging alleviates cyanobacterial blooms by weakening diversity maintenance of bacterioplankton community. WATER RESEARCH 2021; 202:117449. [PMID: 34332188 DOI: 10.1016/j.watres.2021.117449] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 07/14/2021] [Accepted: 07/15/2021] [Indexed: 06/13/2023]
Abstract
Disentangling ecological mechanisms behind dredging is meaningful to implement environmental policy for improving water quality. However, environmental adaptation and community assembly processes of bacterioplankton in response to dredging disturbance are poorly understood. Based on Illumine MiSeq sequencing and multiple statistical analyses, we estimated interactions, functions, environmental breadths, phylogenetic signals, phylogenetic clustering, and ecological assembly processes of bacterioplankton community before and after dredging. We found distinct change in community composition, comparable decreases in diversity, functional redundancy and conflicting interaction, relatively low phylogenetic clustering, and relatively weak environmental adaptation after dredging. The bacterioplankton community assembly was affected by both stochastic and deterministic processes before dredging, but dominated by stochasticity after dredging. Sediment total phosphorus was a decisive factor in balancing determinism and stochasticity for bacterioplankton community assembly before and after dredging. Consequently, taxonomic and phylogenetic α-diversities of bacterioplankton exhibited higher contributions to the water trophic level represented by chlorophyl α before dredging than afterwards. Our results emphasized bacterioplankton in response to environmental changes caused by dredging, with nutrient loss and ecological drift playing important roles. These findings extend knowledge of contribution of bacterioplankton diversity to water trophic level and decipher mechanisms of bacterioplankton diversity maintenance in response to dredging, which is useful for guiding mitigation of cyanobacterial blooms.
Collapse
Affiliation(s)
- Wenjie Wan
- Key Laboratory of Aquatic Botany and Watershed Ecology Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, PR China; Center of the Plant Ecology, Core Botanical Gardens, Chinese Academy of Sciences, Wuhan 430074, PR China
| | - Geoffrey Michael Gadd
- Geomicrobiology Group, School of Life Sciences, University of Dundee, Dundee, Scotland DD1 5EH, UK; State Key Laboratory of Heavy Oil Processing, State Key Laboratory of Petroleum Pollution Control, China University of Petroleum, Beijing 102249, PR China
| | - Ji-Dong Gu
- Environmental Science and Engineering Group, Guangdong Technion-Israel Institute of Technology, 241 Daxue Road, Shantou, Guangdong 515063, PR China
| | - Donglan He
- College of Life Science, South-Central University for Nationalities, Wuhan 430074, PR China
| | - Wenzhi Liu
- Key Laboratory of Aquatic Botany and Watershed Ecology Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, PR China; Center of the Plant Ecology, Core Botanical Gardens, Chinese Academy of Sciences, Wuhan 430074, PR China
| | - Wenke Yuan
- Key Laboratory of Aquatic Botany and Watershed Ecology Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, PR China; Center of the Plant Ecology, Core Botanical Gardens, Chinese Academy of Sciences, Wuhan 430074, PR China
| | - Luping Ye
- Key Laboratory of Aquatic Botany and Watershed Ecology Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, PR China; Center of the Plant Ecology, Core Botanical Gardens, Chinese Academy of Sciences, Wuhan 430074, PR China
| | - Yuyi Yang
- Key Laboratory of Aquatic Botany and Watershed Ecology Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, PR China; Center of the Plant Ecology, Core Botanical Gardens, Chinese Academy of Sciences, Wuhan 430074, PR China.
| |
Collapse
|
6
|
Martin G, Rissanen AJ, Garcia SL, Mehrshad M, Buck M, Peura S. Candidatus Methylumidiphilus Drives Peaks in Methanotrophic Relative Abundance in Stratified Lakes and Ponds Across Northern Landscapes. Front Microbiol 2021; 12:669937. [PMID: 34456882 PMCID: PMC8397446 DOI: 10.3389/fmicb.2021.669937] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Accepted: 06/30/2021] [Indexed: 11/21/2022] Open
Abstract
Boreal lakes and ponds produce two-thirds of the total natural methane emissions above the latitude of 50° North. These lake emissions are regulated by methanotrophs which can oxidize up to 99% of the methane produced in the sediments and the water column. Despite their importance, the diversity and distribution of the methanotrophs in lakes are still poorly understood. Here, we used shotgun metagenomic data to explore the diversity and distribution of methanotrophs in 40 oxygen-stratified water bodies in boreal and subarctic areas in Europe and North America. In our data, gammaproteobacterial methanotrophs (order Methylococcales) generally dominated the methanotrophic communities throughout the water columns. A recently discovered lineage of Methylococcales, Candidatus Methylumidiphilus, was present in all the studied water bodies and dominated the methanotrophic community in lakes with a high relative abundance of methanotrophs. Alphaproteobacterial methanotrophs were the second most abundant group of methanotrophs. In the top layer of the lakes, characterized by low CH4 concentration, their abundance could surpass that of the gammaproteobacterial methanotrophs. These results support the theory that the alphaproteobacterial methanotrophs have a high affinity for CH4 and can be considered stress-tolerant strategists. In contrast, the gammaproteobacterial methanotrophs are competitive strategists. In addition, relative abundances of anaerobic methanotrophs, Candidatus Methanoperedenaceae and Candidatus Methylomirabilis, were strongly correlated, suggesting possible co-metabolism. Our data also suggest that these anaerobic methanotrophs could be active even in the oxic layers. In non-metric multidimensional scaling, alpha- and gammaproteobacterial methanotrophs formed separate clusters based on their abundances in the samples, except for the gammaproteobacterial Candidatus Methylumidiphilus, which was separated from these two clusters. This may reflect similarities in the niche and environmental requirements of the different genera within alpha- and gammaproteobacterial methanotrophs. Our study confirms the importance of O2 and CH4 in shaping the methanotrophic communities and suggests that one variable cannot explain the diversity and distribution of the methanotrophs across lakes. Instead, we suggest that the diversity and distribution of freshwater methanotrophs are regulated by lake-specific factors.
Collapse
Affiliation(s)
- Gaëtan Martin
- Department of Forest Mycology and Plant Pathology, Science for Life Laboratory, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Antti J. Rissanen
- Faculty of Engineering and Natural Sciences, Tampere University, Tampere, Finland
| | - Sarahi L. Garcia
- Department of Ecology, Environment and Plant Sciences, Science for Life Laboratory, Stockholm University, Stockholm, Sweden
| | - Maliheh Mehrshad
- Department of Aquatic Sciences and Assessment, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Moritz Buck
- Department of Aquatic Sciences and Assessment, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Sari Peura
- Department of Forest Mycology and Plant Pathology, Science for Life Laboratory, Swedish University of Agricultural Sciences, Uppsala, Sweden
| |
Collapse
|
7
|
Saleem M, Hu J, Jousset A. More Than the Sum of Its Parts: Microbiome Biodiversity as a Driver of Plant Growth and Soil Health. ANNUAL REVIEW OF ECOLOGY EVOLUTION AND SYSTEMATICS 2019. [DOI: 10.1146/annurev-ecolsys-110617-062605] [Citation(s) in RCA: 117] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Microorganisms drive several processes needed for robust plant growth and health. Harnessing microbial functions is thus key to productive and sustainable food production. Molecular methods have led to a greater understanding of the soil microbiome composition. However, translating species or gene composition into microbiome functionality remains a challenge. Community ecology concepts such as the biodiversity–ecosystem functioning framework may help predict the assembly and function of plant-associated soil microbiomes. Higher diversity can increase the number and resilience of plant-beneficial functions that can be coexpressed and unlock the expression of plant-beneficial traits that are hard to obtain from any species in isolation. We combine well-established community ecology concepts with molecular microbiology into a workable framework that may enable us to predict and enhance soil microbiome functionality to promote robust plant growth in a global change context.
Collapse
Affiliation(s)
- Muhammad Saleem
- Department of Biological Sciences, Alabama State University, Montgomery, Alabama 36104, USA
| | - Jie Hu
- Institute of Environmental Biology, Ecology and Biodiversity, Utrecht University, 3584 CH Utrecht, The Netherlands
| | - Alexandre Jousset
- Institute of Environmental Biology, Ecology and Biodiversity, Utrecht University, 3584 CH Utrecht, The Netherlands
| |
Collapse
|
8
|
Lajoie G, Kembel SW. Making the Most of Trait-Based Approaches for Microbial Ecology. Trends Microbiol 2019; 27:814-823. [PMID: 31296406 DOI: 10.1016/j.tim.2019.06.003] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Revised: 06/12/2019] [Accepted: 06/13/2019] [Indexed: 12/13/2022]
Abstract
There is an increasing interest in applying trait-based approaches to microbial ecology, but the question of how and why to do it is still lagging behind. By anchoring our discussion of these questions in a framework derived from epistemology, we broaden the scope of trait-based approaches to microbial ecology from one oriented mostly around explanation towards one inclusive of the predictive and integrative potential of these approaches. We use case studies from macro-organismal ecology to concretely show how these goals for knowledge development can be fulfilled and propose clear directions, adapted to the biological reality of microbes, to make the most of recent advancements in the measurement of microbial phenotypes and traits.
Collapse
Affiliation(s)
- Geneviève Lajoie
- Département des Sciences Biologiques, Université du Québec à Montréal, 141 Avenue du Président-Kennedy, Montréal, Canada, H2X 1Y4.
| | - Steven W Kembel
- Département des Sciences Biologiques, Université du Québec à Montréal, 141 Avenue du Président-Kennedy, Montréal, Canada, H2X 1Y4
| |
Collapse
|
9
|
Schnyder E, Bodelier PLE, Hartmann M, Henneberger R, Niklaus PA. Positive diversity-functioning relationships in model communities of methanotrophic bacteria. Ecology 2018; 99:714-723. [PMID: 29323701 DOI: 10.1002/ecy.2138] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2017] [Revised: 11/01/2017] [Accepted: 12/20/2017] [Indexed: 11/11/2022]
Abstract
Biodiversity enhances ecosystem functions such as biomass production and nutrient cycling. Although the majority of the terrestrial biodiversity is hidden in soils, very little is known about the importance of the diversity of microbial communities for soil functioning. Here, we tested effects of biodiversity on the functioning of methanotrophs, a specialized group of soil bacteria that plays a key role in mediating greenhouse gas emissions from soils. Using pure strains of methanotrophic bacteria, we assembled artificial communities of different diversity levels, with which we inoculated sterile soil microcosms. To assess the functioning of these communities, we measured methane oxidation by gas chromatography throughout the experiment and determined changes in community composition and community size at several time points by quantitative PCR and sequencing. We demonstrate that microbial diversity had a positive overyielding effect on methane oxidation, in particular at the beginning of the experiment. This higher assimilation of CH4 at high diversity translated into increased growth and significantly larger communities towards the end of the study. The overyielding of mixtures with respect to CH4 consumption and community size were positively correlated. The temporal CH4 consumption profiles of strain monocultures differed, raising the possibility that temporal complementarity of component strains drove the observed community-level strain richness effects; however, the community niche metric we derived from the temporal activity profiles did not explain the observed strain richness effect. The strain richness effect also was unrelated to both the phylogenetic and functional trait diversity of mixed communities. Overall, our results suggest that positive biodiversity-ecosystem-function relationships show similar patterns across different scales and may be widespread in nature. Additionally, biodiversity is probably also important in natural methanotrophic communities for the ecosystem function methane oxidation. Therefore, maintaining soil conditions that support a high diversity of methanotrophs may help to reduce the emission of the greenhouse gas methane.
Collapse
Affiliation(s)
- Elvira Schnyder
- Department of Evolutionary Biology and Environmental Studies, University of Zürich, Winterthurerstrasse 190, CH-8057, Zurich, Switzerland
| | - Paul L E Bodelier
- Department of Microbial Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Droevendaalsesteeg 10, 6708 PB, Wageningen, The Netherlands
| | - Martin Hartmann
- Forest Soils and Biogeochemistry, Swiss Federal Research Institute WSL, Zürcherstrasse 111, CH-8903, Birmensdorf, Switzerland
| | - Ruth Henneberger
- Institute of Biogeochemistry and Pollutant Dynamics, ETH Zurich, Universitätstrasse 16, CH-8092, Zurich, Switzerland
| | - Pascal A Niklaus
- Department of Evolutionary Biology and Environmental Studies, University of Zürich, Winterthurerstrasse 190, CH-8057, Zurich, Switzerland.,University of Zurich Research Priority Program Global Change and Biodiversity, University of Zürich, Winterthurerstrasse 190, CH-8057, Zurich, Switzerland
| |
Collapse
|
10
|
Ballhausen MB, Vandamme P, de Boer W. Trait Differentiation within the Fungus-Feeding (Mycophagous) Bacterial Genus Collimonas. PLoS One 2016; 11:e0157552. [PMID: 27309848 PMCID: PMC4911057 DOI: 10.1371/journal.pone.0157552] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2016] [Accepted: 06/01/2016] [Indexed: 12/02/2022] Open
Abstract
The genus Collimonas consists of facultative, fungus-feeding (mycophagous) bacteria. To date, 3 species (C. fungivorans, C. pratensis and C. arenae) have been described and over 100 strains have been isolated from different habitats. Functional traits of Collimonas bacteria that are potentially involved in interactions with soil fungi mostly negatively (fungal inhibition e.g.), but also positively (mineral weathering e.g.), affect fungal fitness. We hypothesized that variation in such traits between Collimonas strains leads to different mycophagous bacterial feeding patterns. We investigated a) whether phylogenetically closely related Collimonas strains possess similar traits, b) how far phylogenetic resolution influences the detection of phylogenetic signal (possession of similar traits by related strains) and c) if there is a pattern of co-occurrence among the studied traits. We measured genetically encoded (nifH genes, antifungal collimomycin gene cluster e.g.) as well as phenotypically expressed traits (chitinase- and siderophore production, fungal inhibition and others) and related those to a high-resolution phylogeny (MLSA), constructed by sequencing the housekeeping genes gyrB and rpoB and concatenating those with partial 16S rDNA sequences. Additionally, high-resolution and 16S rDNA derived phylogenies were compared. We show that MLSA is superior to 16SrDNA phylogeny when analyzing trait distribution and relating it to phylogeny at fine taxonomic resolution (a single bacterial genus). We observe that several traits involved in the interaction of collimonads and their host fungus (fungal inhibition e.g.) carry phylogenetic signal. Furthermore, we compare Collimonas trait possession with sister genera like Herbaspirillum and Janthinobacterium.
Collapse
Affiliation(s)
- Max-Bernhard Ballhausen
- Department of Microbial Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Wageningen, the Netherlands
| | - Peter Vandamme
- Laboratory for Microbiology, Gent University, Gent, Belgium
| | - Wietse de Boer
- Department of Microbial Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Wageningen, the Netherlands
- Department of Soil Quality, Wageningen University, Wageningen, the Netherlands
- * E-mail:
| |
Collapse
|
11
|
Ho A, van den Brink E, Reim A, Krause SMB, Bodelier PLE. Recurrence and Frequency of Disturbance have Cumulative Effect on Methanotrophic Activity, Abundance, and Community Structure. Front Microbiol 2016; 6:1493. [PMID: 26779148 PMCID: PMC4700171 DOI: 10.3389/fmicb.2015.01493] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2015] [Accepted: 12/11/2015] [Indexed: 11/18/2022] Open
Abstract
Alternate prolonged drought and heavy rainfall is predicted to intensify with global warming. Desiccation-rewetting events alter the soil quality and nutrient concentrations which drive microbial-mediated processes, including methane oxidation, a key biogeochemical process catalyzed by methanotrophic bacteria. Although aerobic methanotrophs showed remarkable resilience to a suite of physical disturbances induced as a single event, their resilience to recurring disturbances is less known. Here, using a rice field soil in a microcosm study, we determined whether recurrence and frequency of desiccation-rewetting impose an accumulating effect on the methanotrophic activity. The response of key aerobic methanotroph subgroups (type Ia, Ib, and II) were monitored using qPCR assays, and was supported by a t-RFLP analysis. The methanotrophic activity was resilient to recurring desiccation-rewetting, but increasing the frequency of the disturbance by twofold significantly decreased methane uptake rate. Both the qPCR and t-RFLP analyses were congruent, showing the dominance of type Ia/Ib methanotrophs prior to disturbance, and after disturbance, the recovering community was predominantly comprised of type Ia (Methylobacter) methanotrophs. Both type Ib and type II (Methylosinus/Methylocystis) methanotrophs were adversely affected by the disturbance, but type II methanotrophs showed recovery over time, indicating relatively higher resilience to the disturbance. This revealed distinct, yet unrecognized traits among the methanotroph community members. Our results show that recurring desiccation-rewetting before a recovery in community abundance had an accumulated effect, compromising methanotrophic activity. While methanotrophs may recover well following sporadic disturbances, their resilience may reach a ‘tipping point’ where activity no longer recovered if disturbance persists and increase in frequency.
Collapse
Affiliation(s)
- Adrian Ho
- Department of Microbial Ecology, Netherlands Institute of Ecology Wageningen, Netherlands
| | - Erik van den Brink
- Department of Microbial Ecology, Netherlands Institute of Ecology Wageningen, Netherlands
| | - Andreas Reim
- Department of Biogeochemistry, Max Planck Institute for Terrestrial Microbiology Marburg, Germany
| | - Sascha M B Krause
- Department of Chemical Engineering, University of Washington, Seattle WA, USA
| | - Paul L E Bodelier
- Department of Microbial Ecology, Netherlands Institute of Ecology Wageningen, Netherlands
| |
Collapse
|
12
|
Knief C. Diversity and Habitat Preferences of Cultivated and Uncultivated Aerobic Methanotrophic Bacteria Evaluated Based on pmoA as Molecular Marker. Front Microbiol 2015; 6:1346. [PMID: 26696968 PMCID: PMC4678205 DOI: 10.3389/fmicb.2015.01346] [Citation(s) in RCA: 278] [Impact Index Per Article: 27.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Accepted: 11/16/2015] [Indexed: 01/06/2023] Open
Abstract
Methane-oxidizing bacteria are characterized by their capability to grow on methane as sole source of carbon and energy. Cultivation-dependent and -independent methods have revealed that this functional guild of bacteria comprises a substantial diversity of organisms. In particular the use of cultivation-independent methods targeting a subunit of the particulate methane monooxygenase (pmoA) as functional marker for the detection of aerobic methanotrophs has resulted in thousands of sequences representing "unknown methanotrophic bacteria." This limits data interpretation due to restricted information about these uncultured methanotrophs. A few groups of uncultivated methanotrophs are assumed to play important roles in methane oxidation in specific habitats, while the biology behind other sequence clusters remains still largely unknown. The discovery of evolutionary related monooxygenases in non-methanotrophic bacteria and of pmoA paralogs in methanotrophs requires that sequence clusters of uncultivated organisms have to be interpreted with care. This review article describes the present diversity of cultivated and uncultivated aerobic methanotrophic bacteria based on pmoA gene sequence diversity. It summarizes current knowledge about cultivated and major clusters of uncultivated methanotrophic bacteria and evaluates habitat specificity of these bacteria at different levels of taxonomic resolution. Habitat specificity exists for diverse lineages and at different taxonomic levels. Methanotrophic genera such as Methylocystis and Methylocaldum are identified as generalists, but they harbor habitat specific methanotrophs at species level. This finding implies that future studies should consider these diverging preferences at different taxonomic levels when analyzing methanotrophic communities.
Collapse
Affiliation(s)
- Claudia Knief
- Institute of Crop Science and Resource Conservation – Molecular Biology of the Rhizosphere, University of BonnBonn, Germany
| |
Collapse
|
13
|
Krause S, Niklaus PA, Badwan Morcillo S, Meima Franke M, Lüke C, Reim A, Bodelier PLE. Compositional and functional stability of aerobic methane consuming communities in drained and rewetted peat meadows. FEMS Microbiol Ecol 2015; 91:fiv119. [PMID: 26449384 DOI: 10.1093/femsec/fiv119] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/30/2015] [Indexed: 11/13/2022] Open
Abstract
The restoration of peatlands is an important strategy to counteract subsidence and loss of biodiversity. However, responses of important microbial soil processes are poorly understood. We assessed functioning, diversity and spatial organization of methanotrophic communities in drained and rewetted peat meadows with different water table management and agricultural practice. Results show that the methanotrophic diversity was similar between drained and rewetted sites with a remarkable dominance of the genus Methylocystis. Enzyme kinetics depicted no major differences, indicating flexibility in the methane (CH4) concentrations that can be used by the methanotrophic community. Short-term flooding led to temporary elevated CH4 emission but to neither major changes in abundances of methane-oxidizing bacteria (MOB) nor major changes in CH4 consumption kinetics in drained agriculturally used peat meadows. Radiolabeling and autoradiographic imaging of intact soil cores revealed a markedly different spatial arrangement of the CH4 consuming zone in cores exposed to near-atmospheric and elevated CH4. The observed spatial patterns of CH4 consumption in drained peat meadows with and without short-term flooding highlighted the spatial complexity and responsiveness of the CH4 consuming zone upon environmental change. The methanotrophic microbial community is not generally altered and harbors MOB that can cover a large range of CH4 concentrations offered due to water-table fluctuations, effectively mitigating CH4 emissions.
Collapse
Affiliation(s)
- Sascha Krause
- Department of Microbial Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Wageningen, 6708 PB, the Netherlands Department of Chemical Engineering, University of Washington, Seattle, WA 98195, USA
| | - Pascal A Niklaus
- Institute of Evolutionary Biology and Environmental Studies, University of Zurich, Zurich 8057, Switzerland
| | - Sara Badwan Morcillo
- Department of Microbial Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Wageningen, 6708 PB, the Netherlands
| | - Marion Meima Franke
- Department of Microbial Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Wageningen, 6708 PB, the Netherlands
| | - Claudia Lüke
- Department of Microbiology, Radboud University Nijmegen, Nijmegen, 6525 AJ, the Netherlands
| | - Andreas Reim
- Department of Biogeochemistry, Max Planck Institute for Terrestrial Microbiology, Marburg 35043, Germany
| | - Paul L E Bodelier
- Department of Microbial Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Wageningen, 6708 PB, the Netherlands
| |
Collapse
|