1
|
Li B, Liang C, Xu B, Song P, Liu D, Zhang J, Gu H, Jiang F, Gao H, Cai Z, Zhang T. Extreme winter environment dominates gut microbiota and metabolome of white-lipped deer. Microbiol Res 2025; 297:128182. [PMID: 40252261 DOI: 10.1016/j.micres.2025.128182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 03/23/2025] [Accepted: 04/10/2025] [Indexed: 04/21/2025]
Abstract
Qinghai-Tibet Plateau (QTP) is marked by harsh environments that drive the evolution of unique nutrient metabolism mechanism in indigenous animal gut microbiotas. Yet, responses of these microbiotas to different extreme environments remain poorly understood. White-lipped deer (Przewalskium albirostris), a native endangered species in the QTP, serves as an ideal model to study how gut microbiotas adapt to season and human disturbances. Here, a multi-omics integrated analysis of 16S rRNA, metagenomics, and untargeted metabolomics was performed to investigate the composition, function, and metabolic characteristics of gut microbiota in White-lipped deer across different seasons and living environments. Our results revealed that extreme winter environment dominated the composition, function, and metabolism of gut microbiota in white-lipped deer. The white-lipped deer exhibited an enriched gut microbiota associated with producing short-chain fatty acids in winter, with core feature genera including norank_o_Rhodospirillales, Rikenellaceae_RC9_gut_group, and unclassified_c_Clostridia. However, potential pathogenic bacteria and few short-chain fatty acid producers, with core feature genera including norank_f_p-2534-18B5_gut_group, Cellulosilyticum, and Paeniclostridium, showed enrichment in captivity. Pathways associated with carbohydrate metabolism, amino acid metabolism, and immune regulation showed enrichment in winter group as an adaptation to the cold and food scarcity. Among these, Rikenellaceae_RC9_gut_group and unclassified_c_Clostridia contributed significantly to these metabolic pathways. The gut microbiota of white-lipped deer exhibited enrichment in pathways related to intestinal inflammation and enhanced immune regulation to alleviate the stress of captivity. Among these, norank_f_p-2534-18B5_gut_group contributed the most to these pathways. Butyric, valeric, and valproic acids were significantly more abundant in the winter group, while 3-hydroxybutyric and (S)-beta-aminoisobutyric acids were higher in the captive group. Furthermore, enriched metabolites and associated pathways in both groups further supported the inferences on metagenomic functions. This study confirms the key role of specific gut microbiota in adapting to high-altitude winters and anthropogenic disturbances, emphasizing its importance for environmental resilience in wild, high-altitude mammals.
Collapse
Affiliation(s)
- Bin Li
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, China; College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China; Qinghai Provincial Key Laboratory of Animal Ecological Genomics, Xining, China
| | - Chengbo Liang
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, China; College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China; Qinghai Provincial Key Laboratory of Animal Ecological Genomics, Xining, China
| | - Bo Xu
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, China; College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China; Qinghai Provincial Key Laboratory of Animal Ecological Genomics, Xining, China
| | - Pengfei Song
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, China; College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China; Qinghai Provincial Key Laboratory of Animal Ecological Genomics, Xining, China
| | | | | | - Haifeng Gu
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, China; Qinghai Provincial Key Laboratory of Animal Ecological Genomics, Xining, China
| | - Feng Jiang
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, China; Qinghai Provincial Key Laboratory of Animal Ecological Genomics, Xining, China
| | - Hongmei Gao
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, China; Qinghai Provincial Key Laboratory of Animal Ecological Genomics, Xining, China
| | - Zhenyuan Cai
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, China; Qinghai Provincial Key Laboratory of Animal Ecological Genomics, Xining, China.
| | - Tongzuo Zhang
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, China; Qinghai Provincial Key Laboratory of Animal Ecological Genomics, Xining, China.
| |
Collapse
|
2
|
Li H, Zhang X, Zhaxi Y, Pan C, Zhang Z, Pan J, Shahzad K, Sun F, Zhen Y, Jinmei J, Zhao W, Song T. Integrative multi-omics analysis reveals liver-gut axis adaptation in high-altitude goats. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY. PART D, GENOMICS & PROTEOMICS 2025; 54:101422. [PMID: 39842302 DOI: 10.1016/j.cbd.2025.101422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Revised: 01/02/2025] [Accepted: 01/16/2025] [Indexed: 01/24/2025]
Abstract
The liver-gut axis is an important regulatory axis for the host's metabolic functions. The study of liver gene expression, changes in metabolic products and the regulation of gut microbial communities in plateau animals under harsh environments can reveal the mechanisms by which Tibetan goats adapt to the plateau environment. This study employs transcriptome, metabolome and metagenomic analyses to reveal the differences in genes, metabolism, and gut microbiota between Jianzhou big-eared goats (JBG) and Xizang cashmere goats (TCG), which is of significant importance for improving survival models of high-altitude ruminants. The results showed that there were 553 DEGs in the liver of JBG and TCG. Hepatic metabolomic analysis revealed significant differences in metabolic activity between the JBG and TCG groups, with notable increases in glycerophospholipid and retinol metabolic pathways. The gut microbiota, including Andreesenia, Dielma, Oscillibacter, Agrobacterium, Hyella and Thermosinus, interact with liver metabolites and can regulate the high-altitude adaptability of goats. This study reveals that TCG enhance immune regulation and energy utilization efficiency by regulating liver gene expression, modulating metabolic pathways, and improving gut microbiota, thereby helping TCG maintain healthy survival capabilities in hypoxic and high-radiation environments.
Collapse
Affiliation(s)
- Haiyan Li
- College of Life Sciences and Engineering, Southwest University of Science and Technology, Mianyang, Sichuan 621000, China; Institute of Animal Science, Xizang Academy of Agricultural and Animal Husbandry Science, Lhasa, Xizang 850009, China
| | - Xin Zhang
- College of Life Sciences and Engineering, Southwest University of Science and Technology, Mianyang, Sichuan 621000, China
| | - Yangzong Zhaxi
- Institute of Animal Science, Xizang Academy of Agricultural and Animal Husbandry Science, Lhasa, Xizang 850009, China; Key Laboratory of Animal Genetics and Breeding on Xizang Plateau, Ministry of Agriculture and Rural Affairs, Lhasa, Xizang 850009, China
| | - Cheng Pan
- College of Life Sciences and Engineering, Southwest University of Science and Technology, Mianyang, Sichuan 621000, China
| | - Zhenzhen Zhang
- College of Life Sciences and Engineering, Southwest University of Science and Technology, Mianyang, Sichuan 621000, China
| | - Junru Pan
- College of Life Sciences and Engineering, Southwest University of Science and Technology, Mianyang, Sichuan 621000, China
| | - Khuram Shahzad
- Department of Biosciences, COMSATS University Islamabad, Park Road, Islamabad 45550, Pakistan
| | - Fengbo Sun
- Xizang Animal Husbandry Station, Lhasa, Xizang 850000, China
| | - Yang Zhen
- Xizang Animal Husbandry Station, Lhasa, Xizang 850000, China
| | - Jiacuo Jinmei
- Xizang Animal Husbandry Station, Lhasa, Xizang 850000, China
| | - Wangsheng Zhao
- College of Life Sciences and Engineering, Southwest University of Science and Technology, Mianyang, Sichuan 621000, China.
| | - Tianzeng Song
- Institute of Animal Science, Xizang Academy of Agricultural and Animal Husbandry Science, Lhasa, Xizang 850009, China; Key Laboratory of Animal Genetics and Breeding on Xizang Plateau, Ministry of Agriculture and Rural Affairs, Lhasa, Xizang 850009, China.
| |
Collapse
|
3
|
Zhao JX, Elsheikha HM, Shang KM, Su JW, Wei YJ, Qin Y, Zhao ZY, Ma H, Zhang XX. Investigation of the genetic diversity of gut mycobiota of the wild and laboratory mice. Microbiol Spectr 2025; 13:e0284024. [PMID: 40162766 PMCID: PMC12054021 DOI: 10.1128/spectrum.02840-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Accepted: 03/05/2025] [Indexed: 04/02/2025] Open
Abstract
Mice are colonized by diverse gut fungi, known as the mycobiota, which have received much less attention than bacterial microbiota. Here, we studied the diversities and structures of cecal fungal communities in wild (Lasiopodomys brandtii, Apodemus agrarius, and Microtus fortis) vs laboratory C57BL/6J mice to disentangle the contributions of gut fungi to the adaptation of mice to genetic diversity. Using ITS1 gene sequencing, we obtained 2,912 amplicon sequence variants (ASVs) and characterized the composition and diversity of cecal mycobiota in mice. There were significant differences in the composition of cecal fungal communities between wild and C57BL/6J mice, with more species diversity and richness of fungi in wild mice than C57BL/6J mice. We cultured 428 fungal strains from the cecal mycobiota, sequenced the whole genome of 48 selected strains, and identified 500,849 genes. Functional annotation analysis revealed multiple pathways related to energy metabolism, carbohydrate metabolism, fatty acid metabolism, and enzymes involved in the degradation of polysaccharides, lipids, and proteins, and secondary metabolite biosynthesis. The functions and abundance of Hypocreales and Pleosporales, which included the majority of the crucial metabolic pathways, were significantly higher in wild mice than in C57BL/6J mice. The results suggest that variations in the fungal community composition may relate to the adaptability of mice to their environmental habitats. IMPORTANCE In this study, we analyzed the fungal microbiota of three wild mouse species alongside laboratory mice using ITS1 amplicon sequencing. By integrating whole-genome sequencing with culturomics, we sequenced the genomes of 48 fungi isolated from cultured strains and investigated their biological functions to understand the role of intestinal fungi in the environmental adaptability of wild mice. This investigation has expanded the functional gene repository of gut fungi and shed new light on the intricate interplay between mice and their gut fungal communities. The data offer valuable insight into the ecological adaptation in wild mice, emphasizing the complex and dynamic relationship between the murine hosts and their mycobiota.
Collapse
Affiliation(s)
- Ji-Xin Zhao
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, Shandong, China
| | - Hany M. Elsheikha
- Faculty of Medicine and Health Sciences, School of Veterinary Medicine and Science, University of Nottingham, Loughborough, United Kingdom
| | - Kai-Meng Shang
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, Shandong, China
| | - Jin-Wen Su
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, Shandong, China
| | - Yong-Jie Wei
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, Shandong, China
| | - Ya Qin
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, Shandong, China
- College of Veterinary Medicine, Jilin Agricultural University, Changchun, Jilin, China
| | - Zi-Yu Zhao
- College of Veterinary Medicine, Jilin Agricultural University, Changchun, Jilin, China
| | - He Ma
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, Shandong, China
| | - Xiao-Xuan Zhang
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, Shandong, China
| |
Collapse
|
4
|
Yang Y, Li B, Luo W, Xu B, Luo P, Zhang T, You Z. A high-quality Chromosome-level reference genome assembly of white-lipped deer (Przewalskium albirostris). Sci Data 2025; 12:727. [PMID: 40312415 PMCID: PMC12045946 DOI: 10.1038/s41597-025-04796-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Accepted: 03/11/2025] [Indexed: 05/03/2025] Open
Abstract
White-lipped deer (Przewalskium albirostris) is the sole species in the genus Przewalskium of the Cervidae family. And it is exclusively found in the Qinghai-Tibet Plateau, where it has evolved as a specialized deer on account of the extreme climates and geographical conditions. However, limited research on the genome of this species exists. Here, PacBio and Hi-C sequencing data were constructed to a high-quality Chromosome-level reference genome for the white-lipped deer. The assembly, totaling 2.99 GB, is composed of 34 chromosomes (32 autosomes and X, Y chromosomes), with a scaffold N50 length of 76.18 Mb. Furthermore, it achieved scores of 98.4% and 63.8 in Universal Single-Copy Ortholog (BUSCO) and quality value (QV), respectively. Subsequently, employing the egapx software for genome structural annotation, we identified a total of 21909 protein coding genes, annotating 21859 of them. The high-quality and completeness of our genome sequence and annotation was affirmed by these results. The assembly will significantly contribute to enhance the understanding of the adaptation mechanisms of the white-lipped deer to the extreme environments.
Collapse
Affiliation(s)
- Yuangang Yang
- Ecological Security and Protection Key Laboratory of Sichuan Province, Mianyang Normal University, Mianyang, Sichuan Province, China
| | - Bin Li
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, 810008, Qinghai, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
- Qinghai Provincial Key Laboratory of Animal Ecological Genomics, Xining, 810008, Qinghai, China
| | - Wei Luo
- Ecological Security and Protection Key Laboratory of Sichuan Province, Mianyang Normal University, Mianyang, Sichuan Province, China
| | - Bo Xu
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, 810008, Qinghai, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
- Qinghai Provincial Key Laboratory of Animal Ecological Genomics, Xining, 810008, Qinghai, China
| | - Peng Luo
- Ecological Security and Protection Key Laboratory of Sichuan Province, Mianyang Normal University, Mianyang, Sichuan Province, China
| | - Tongzuo Zhang
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, 810008, Qinghai, China.
- Qinghai Provincial Key Laboratory of Animal Ecological Genomics, Xining, 810008, Qinghai, China.
| | - Zhangqiang You
- Ecological Security and Protection Key Laboratory of Sichuan Province, Mianyang Normal University, Mianyang, Sichuan Province, China.
| |
Collapse
|
5
|
Yan X, Xie F, Yang S, Sun Y, Lei Y, Ren Q, Si H, Li Z, Qiu Q. Metagenomic Insights into the Rumen Microbiome in Solid and Liquid Fractions of Yaks and their Differences Compared to Other Ruminants. Integr Zool 2025. [PMID: 40265464 DOI: 10.1111/1749-4877.12984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/24/2025]
Abstract
The rumen microbiome plays a critical role in nutrient metabolism and adaptation of the yak (Bos grunniens), an import livestock animal of the Qinghai-Tibet Plateau renowned for their superior plant fiber degradation capacity. However, the microbiome among the different ecological niches within yak's rumen remains unelucidated. Through shotgun sequencing of rumen solid and liquid fractions from five yaks, we identified significant differences in the microbial communities and their genetic functions between the solid and liquid fractions. Solid fractions exhibited dominance by Ruminococcus, Succiniclasticum, and Aspergillus, while Prevotella, Paludibacter, Parabacteroides, and Bacteroides prevailed in liquid fractions. Comparative CAZyme profiling revealed solid fractions were significantly enriched in cellulose/hemicellulose-targeting enzymes (GH5, GH11, and CBM63), implicating their specialization in breaking down the fibrous grasses. In contrast, liquid fractions showed higher abundances of starch-degrading enzymes (GH13, CBM48) and host-glycan utilizers (GH92), suggesting roles in soluble nutrient extraction and host-microbe interactions. Comparative analysis of 574 metagenome-assembled genomes suggested that Methanomethylophilaceae_UBA71 and nitrate-respiring Ruminococcaceae_Firm-04 preferentially colonized in the solids, whereas propionate-producing Quinella and animal glycan-degrading Bacteroides were more prevalent in the liquids. Moreover, compared to Hu sheep, yak's rumen microbiome showed significantly enhanced utilization of plant polysaccharide capacity. Comparative analysis across 10 ruminant species further highlighted host phylogeny as a key driver of rumen microbiome variation. These findings advance our understanding of niche differentiation and functional specialization within the unique yak rumen ecosystem.
Collapse
Affiliation(s)
- Xiaoting Yan
- Shaanxi Key Laboratory of Qinling Ecological Intelligent Monitoring and Protection, School of Ecology and Environment, Northwestern Polytechnical University, Xi'an, China
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
| | - Fei Xie
- Shaanxi Key Laboratory of Qinling Ecological Intelligent Monitoring and Protection, School of Ecology and Environment, Northwestern Polytechnical University, Xi'an, China
| | - Shuo Yang
- Institute of Feed Research of Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yishan Sun
- Shaanxi Key Laboratory of Qinling Ecological Intelligent Monitoring and Protection, School of Ecology and Environment, Northwestern Polytechnical University, Xi'an, China
| | - Yu Lei
- College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Qingmiao Ren
- The Precision Medicine Laboratory, The First Hospital of Lanzhou University, Lanzhou, Gansu, China
| | - Huazhe Si
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
| | - Zhipeng Li
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
- Key Lab of Animal Production, Product Quality and Security, Ministry of Education, Jilin Agricultural University, Changchun, China
| | - Qiang Qiu
- Shaanxi Key Laboratory of Qinling Ecological Intelligent Monitoring and Protection, School of Ecology and Environment, Northwestern Polytechnical University, Xi'an, China
| |
Collapse
|
6
|
Bhagat NR, Bharti VK, Shukla G, Rishi P, Chaurasia OP. Gut bacteriome dynamics in high altitude-adapted chicken lines: a key to future poultry therapeutics. Sci Rep 2025; 15:11910. [PMID: 40195460 PMCID: PMC11976950 DOI: 10.1038/s41598-025-96178-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Accepted: 03/26/2025] [Indexed: 04/09/2025] Open
Abstract
High-altitude-adapted chickens harbor a unique gut bacteriome essential for their survival under extremely cold and hypoxic environment, however, little is known about their population and functional dynamics, limiting their application in poultry production. Hence, this study employed amplicon-based metagenomics to examine the gut bacterial diversity and their functional profile in two high-altitude-adapted chicken lines, e.g. LEHBRO-1 and LEHBRO-3. The results revealed significant variations in taxonomic abundance at the phylum level, with Firmicutes, Proteobacteria, Bacteroidetes, and Actinobacteria predominating in LEHBRO-1, whereas Firmicutes, Proteobacteria, Bacteroidetes, Planctomycetes, and Actinobacteria predominated in LEHBRO-3. Genus-level diversity and Linear Discriminant Analysis Effect Size (LEfSe) biomarker analysis also substantiated the differences in the gut bacterial communities between the two chicken lines. Furthermore, functional profiling revealed enrichment of carbohydrate, nucleotide, lipid, amino acid, fatty acid, energy, and glycan metabolic pathways in the gut bacteriomes of these high-altitude chicken lines. The Statistical Analysis of Metagenomic Profiles (STAMP) for metabolic profiling identified a significant difference in purine and protein metabolism between these two chicken lines. These findings indicate the unique gut bacteriome and their functional diversity in high-altitude-adapted chickens, which would provide a foundation for future research on gut therapeutics to improve chicken health and productivity in high-altitude areas.
Collapse
Affiliation(s)
- Neha R Bhagat
- DRDO-Defence Institute of High Altitude Research (DIHAR), Leh, UT Ladakh, 194101, India
- Department of Microbiology, Panjab University, Chandigarh, India
| | - Vijay K Bharti
- DRDO-Defence Institute of High Altitude Research (DIHAR), Leh, UT Ladakh, 194101, India.
| | - Geeta Shukla
- Department of Microbiology, Panjab University, Chandigarh, India
| | - Praveen Rishi
- Department of Microbiology, Panjab University, Chandigarh, India
| | - O P Chaurasia
- DRDO-Defence Institute of High Altitude Research (DIHAR), Leh, UT Ladakh, 194101, India
| |
Collapse
|
7
|
Wang H, Huang N, Tan M, Zhang X, Chen J, Wei Q. Characteristics of cell adhesion molecules expression and environmental adaptation in yak lung tissue. Sci Rep 2025; 15:10914. [PMID: 40158021 PMCID: PMC11954989 DOI: 10.1038/s41598-025-95882-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2025] [Accepted: 03/24/2025] [Indexed: 04/01/2025] Open
Abstract
Cell Adhesion Molecules (CAMs) play a crucial role in regulating immune responses and repairing damage caused by hypoxia. However, the relationship between the expression characteristics of CAMs in yak lung tissues and their adaptation to the plateau environment remains unclear. To address this question, we compared lung tissues from yaks and cattle at the same altitude. After digesting the lung tissues with trypsin or Type I collagenase for varying durations, we observed that fewer cells were isolated from yak tissues compared to cattle. RNA sequencing (RNA-seq) analysis revealed that the Differentially Expressed Genes (DEGs) in lung tissues of yaks and cattle were significantly enriched in cell adhesion-related pathways. Quantitative real-time PCR (qRT-PCR) further identified changes in the expression levels of five distinct types of CAMs. Among these, the cadherin family (CDH1, CDH2, CDH11, PCDH12, CD34) exhibited significantly higher expression in yaks than in cattle. These cadherins play a critical role in regulating lung inflammation and maintaining the alveolar-capillary barrier, thereby ensuring the structural stability of the lungs. Immunohistochemical staining demonstrated that the expression patterns of cell adhesion-related proteins (CDH1, CDH11, ITGB6, SELP, CD44) were largely consistent with the qRT-PCR results. In conclusion, compared to cattle, the enhanced cell adhesion capacity of yak lung tissues contributes to their superior adaptation to the harsh plateau environment.
Collapse
Affiliation(s)
- Huizhen Wang
- College of Eco-Environmental Engineering, Qinghai University, Xining, Qinghai, China
| | - Nating Huang
- College of Eco-Environmental Engineering, Qinghai University, Xining, Qinghai, China
| | - Minglu Tan
- Livestock and Veterinary Station of Huangyuan County, Xining, Qinghai, China
| | - Xun Zhang
- College of Eco-Environmental Engineering, Qinghai University, Xining, Qinghai, China
| | - Jiarui Chen
- College of Eco-Environmental Engineering, Qinghai University, Xining, Qinghai, China
| | - Qing Wei
- College of Eco-Environmental Engineering, Qinghai University, Xining, Qinghai, China.
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining, Qinghai, China.
| |
Collapse
|
8
|
Zhu Y, Cidan Y, Ali M, Lu S, Javed U, Cisang Z, Gusang D, Danzeng Q, Li K, Basang W. Evaluating the Effect of Dietary Protein-Energy Ratios on Yak Intestinal Microbiota Using High-Throughput 16S rRNA Gene Sequencing. Vet Sci 2025; 12:208. [PMID: 40266935 PMCID: PMC11945990 DOI: 10.3390/vetsci12030208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2025] [Revised: 02/16/2025] [Accepted: 02/23/2025] [Indexed: 04/25/2025] Open
Abstract
This study investigated the impact of varying dietary protein-energy ratios on the intestinal microbiota composition in postpartum weaned female yak. For this study, forty yaks were divided into four groups and provided with different dietary treatments (group FA: high-energy high-protein, FB: high-energy low-protein, FC: low-energy high-protein, and FD: control group, provided with 48% alfalfa hay, 48% oat grass, and 4% premix) to investigate the variations in microflora profiles and metabolic responses. Rectal fecal samples (n = 24 × 2) were collected at day 15 and 30, from all four groups, and total DNA was extracted to estimate microbial heterogeneity and community structures by 16S rRNA sequencing focusing V3-V4 regions, using the Illumina Nova Seq 6000 platform. The results revealed a total of 5,669,645 raw data sequences (3,189,115 and 2,480,530 from day 15 and day 30, respectively). Results showed that groups FA and FB had enhanced protein metabolism and microbial diversity, which was marked by a significant increase (p < 0.05) in abundance of Ruminococcus. Conversely, the FD group showed a low level of microbial diversity with a significant (p < 0.05) predominance of Clostridium and Proteobacteria, indicating microbial dysbiosis and metabolic stress. It was concluded that imbalanced diets (groups FC and FD) upregulated the stress-related pathways with no favorable microbial shifts, whereas, dietary treatments in group FA and FB significantly (p < 0.05) supported the pathways involved in amino acids and carbohydrate metabolism and beneficially shifted the gut microbiota. These findings emphasize the importance of postpartum supplementation with appropriate proportions of protein and energy feed to promote optimal microbial health and metabolic functioning, particularly for yaks inhabiting high-altitude regions, which is a challenging environment.
Collapse
Affiliation(s)
- Yanbin Zhu
- Institute of Animal Husbandry and Veterinary Medicine, Tibet Academy of Agriculture and Animal Husbandry Sciences, Lhasa 850009, China; (Y.Z.); (Y.C.)
| | - Yangji Cidan
- Institute of Animal Husbandry and Veterinary Medicine, Tibet Academy of Agriculture and Animal Husbandry Sciences, Lhasa 850009, China; (Y.Z.); (Y.C.)
| | - Munwar Ali
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China; (M.A.)
| | - Sijia Lu
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China; (M.A.)
| | - Usama Javed
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China; (M.A.)
| | - Zhuoma Cisang
- Institute of Animal Husbandry and Veterinary Medicine, Tibet Academy of Agriculture and Animal Husbandry Sciences, Lhasa 850009, China; (Y.Z.); (Y.C.)
| | - Deji Gusang
- Institute of Animal Husbandry and Veterinary Medicine, Tibet Academy of Agriculture and Animal Husbandry Sciences, Lhasa 850009, China; (Y.Z.); (Y.C.)
| | - Quzha Danzeng
- Institute of Animal Husbandry and Veterinary Medicine, Tibet Academy of Agriculture and Animal Husbandry Sciences, Lhasa 850009, China; (Y.Z.); (Y.C.)
| | - Kun Li
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China; (M.A.)
| | - Wangdui Basang
- Institute of Animal Husbandry and Veterinary Medicine, Tibet Academy of Agriculture and Animal Husbandry Sciences, Lhasa 850009, China; (Y.Z.); (Y.C.)
| |
Collapse
|
9
|
Liu T, Li L, Yang Y, Li J, Yang X, Li L, Zheng Z, Yang B, Zhang P, Liu H. Effects of chronic cold stress and thermal stress on growth performance, hepatic apoptosis, oxidative stress, immune response and gut microbiota of juvenile hybrid sturgeon (Acipenser baerii ♀ × A. schrenkii ♂). FISH & SHELLFISH IMMUNOLOGY 2025; 157:110078. [PMID: 39642947 DOI: 10.1016/j.fsi.2024.110078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 11/10/2024] [Accepted: 12/03/2024] [Indexed: 12/09/2024]
Abstract
The current study was conducted to investigate the effects of chronic cold stress and thermal stress on the growth performance, hepatic oxidative status, immune response, apoptosis and gut microbiota in juvenile hybrid sturgeon. The fish (initial mean weight: 21.4 ± 0.3 g) was reared at three temperatures (14 °C, 22 °C, and 30 °C) for 16 d, which were termed as low temperature group (LT), moderate temperature group (MT), and high temperature group (HT), respectively, and the second group was regarded as control group in this study. Each group was assigned randomly to three tanks with 15 fish per replica. The results indicated that cold stress resulted in a significant reduction of growth metrics and a significant increase of feed conversion ratio in fish compared with MT group. Interestingly, cold stress increased hepatocyte apoptosis revealed by TUNEL staining, along with nuclear disappearance in H&E-stained sections and elevated serum alanine aminotransferase (ALT) and aspartate aminotransferase (AST) levels. Transcriptional levels of apoptosis-related genes and toll-like receptor signaling pathway components were significantly up-regulated in liver under cold stress. Compared with control group, in terms of thermal stress, the growth performance and feed utilization of fish were declined to some extent compared with MT group. Moreover, high temperature significantly elevated hepatic productions of malondialdehyde and hydrogen peroxide, as well as increased activities of some antioxidant enzymes in liver. In addition, low and high temperature induce changes in the composition of gut microbiota. Overall, the results suggested that cold stress decelerated growth performance, induced hepatocyte apoptosis, and enhanced innate immunity in hybrid sturgeon to cope with additional stressors. Whereas, thermal stress resulted in hepatic oxidative stress in liver and the protective responses in the antioxidant enzymes in fish were activated. These results provided insights into the different physiological adaptation strategies in responsive to cold stress and thermal stress in this cold-water fish.
Collapse
Affiliation(s)
- Tianyu Liu
- Laboratory of Aquatic Animal Nutrition and Ecology, College of Life Sciences, Hebei Normal University, Shijiazhuang, 050024, China
| | - Ling Li
- Laboratory of Aquatic Animal Nutrition and Ecology, College of Life Sciences, Hebei Normal University, Shijiazhuang, 050024, China
| | - Yanchao Yang
- Laboratory of Aquatic Animal Nutrition and Ecology, College of Life Sciences, Hebei Normal University, Shijiazhuang, 050024, China
| | - Jiarou Li
- Laboratory of Aquatic Animal Nutrition and Ecology, College of Life Sciences, Hebei Normal University, Shijiazhuang, 050024, China
| | - Xutong Yang
- Laboratory of Aquatic Animal Nutrition and Ecology, College of Life Sciences, Hebei Normal University, Shijiazhuang, 050024, China
| | - Lei Li
- Laboratory of Aquatic Animal Nutrition and Ecology, College of Life Sciences, Hebei Normal University, Shijiazhuang, 050024, China
| | - Ziyao Zheng
- Laboratory of Aquatic Animal Nutrition and Ecology, College of Life Sciences, Hebei Normal University, Shijiazhuang, 050024, China
| | - Boyu Yang
- Laboratory of Aquatic Animal Nutrition and Ecology, College of Life Sciences, Hebei Normal University, Shijiazhuang, 050024, China
| | - Peiyu Zhang
- Laboratory of Aquatic Animal Nutrition and Ecology, College of Life Sciences, Hebei Normal University, Shijiazhuang, 050024, China; Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, Shijiazhuang, 050024, China; Hebei Collaborative Innovation Center for Eco-Environment, Shijiazhuang, 050024, China.
| | - Haiyan Liu
- Laboratory of Aquatic Animal Nutrition and Ecology, College of Life Sciences, Hebei Normal University, Shijiazhuang, 050024, China; Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, Shijiazhuang, 050024, China; Hebei Collaborative Innovation Center for Eco-Environment, Shijiazhuang, 050024, China.
| |
Collapse
|
10
|
Zhang C, Yu Y, Yue L, Chen Y, Chen Y, Liu Y, Guo C, Su Q, Xiang Z. Gut microbiota profiles of sympatric snub-nosed monkeys and macaques in Qinghai-Tibetan Plateau show influence of phylogeny over diet. Commun Biol 2025; 8:95. [PMID: 39833341 PMCID: PMC11747120 DOI: 10.1038/s42003-025-07538-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Accepted: 01/13/2025] [Indexed: 01/22/2025] Open
Abstract
The unique environment of the Qinghai-Tibetan Plateau provides a great opportunity to study how primate intestinal microorganisms adapt to ecosystems. The 16S rRNA gene amplicon and metagenome analysis were conducted to investigate the correlation between gut microbiota in primates and other sympatric animal species living between 3600 and 4500 m asl. Results showed that within the same geographical environment, Macaca mulatta and Rhinopithecus bieti exhibited a gut microbiome composition similar to that of Tibetan people, influenced by genetic evolution of host, while significantly differing from other distantly related animals. The gut microbiota of plateau species has developed similar strategies to facilitate their hosts' adaptation to specific environments, including broadening its dietary niche and enhancing energy absorption. These findings will enhance our comprehension of the significance of primate gut microbiota in adapting to specific habitats.
Collapse
Affiliation(s)
- Chen Zhang
- College of Forestry, Central South University of Forestry and Technology, Changsha, Hunan, China
| | - Yang Yu
- College of Life Sciences and Technology, Central South University of Forestry and Technology, Changsha, Hunan, China
| | - Ling Yue
- Panzhihua Animal Disease Prevention and Control Center, Panzhihua, Sichuan, China
| | - Yi Chen
- College of Forestry, Central South University of Forestry and Technology, Changsha, Hunan, China
| | - Yixin Chen
- College of Life Sciences and Technology, Central South University of Forestry and Technology, Changsha, Hunan, China
| | - Yang Liu
- College of Forestry, Central South University of Forestry and Technology, Changsha, Hunan, China
| | - Cheng Guo
- College of Life Sciences and Technology, Central South University of Forestry and Technology, Changsha, Hunan, China
| | - Qianqian Su
- College of Forestry, Central South University of Forestry and Technology, Changsha, Hunan, China.
| | - Zuofu Xiang
- College of Forestry, Central South University of Forestry and Technology, Changsha, Hunan, China.
| |
Collapse
|
11
|
Xu B, Song P, Jiang F, Cai Z, Gu H, Gao H, Li B, Liang C, Qin W, Zhang J, Yan J, Liu D, Sun G, Zhang T. Large-scale metagenomic assembly provide new insights into the genetic evolution of gut microbiomes in plateau ungulates. NPJ Biofilms Microbiomes 2024; 10:120. [PMID: 39505908 PMCID: PMC11541592 DOI: 10.1038/s41522-024-00597-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Accepted: 10/25/2024] [Indexed: 11/08/2024] Open
Abstract
Trillions of microbes colonize the ungulate gastrointestinal tract, playing a pivotal role in enhancing host nutrient utilization by breaking down cellulose and hemicellulose present in plants. Here, through large-scale metagenomic assembly, we established a catalog of 131,416 metagenome-assembled genomes (MAGs) and 11,175 high-quality species-level genome bins (SGBs) from 17 species of ungulates in China. Our study revealed the convergent evolution of high relative abundances of carbohydrate-active enzymes (CAZymes) in the gut microbiomes of plateau-dwelling ungulates. Notably, two significant factors contribute to this phenotype: structural variations in their gut microbiome genomes, which contain more CAZymes, and the presence of novel gut microbiota species, particularly those in the genus Cryptobacteroides, which are undergoing independent rapid evolution and speciation and have higher gene densities of CAZymes. Furthermore, these enrichment CAZymes in the gut microbiomes are highly enrichment in known metabolic pathways for short-chain fatty acid (SCFA) production. Our findings not only provide a valuable genomic resource for understanding the gut microbiomes of ungulates but also offer fresh insights into the interaction between gut microbiomes and their hosts, as well as the co-adaptation of hosts and their gut microbiomes to their environments.
Collapse
Affiliation(s)
- Bo Xu
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, 810008, Qinghai, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
- Qinghai Provincial Key Laboratory of Animal Ecological Genomics, Xining, 810008, Qinghai, China
| | - Pengfei Song
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, 810008, Qinghai, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
- Qinghai Provincial Key Laboratory of Animal Ecological Genomics, Xining, 810008, Qinghai, China
| | - Feng Jiang
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, 810008, Qinghai, China
- Qinghai Provincial Key Laboratory of Animal Ecological Genomics, Xining, 810008, Qinghai, China
| | - Zhenyuan Cai
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, 810008, Qinghai, China
- Qinghai Provincial Key Laboratory of Animal Ecological Genomics, Xining, 810008, Qinghai, China
| | - Haifeng Gu
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, 810008, Qinghai, China
- Qinghai Provincial Key Laboratory of Animal Ecological Genomics, Xining, 810008, Qinghai, China
| | - Hongmei Gao
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, 810008, Qinghai, China
- Qinghai Provincial Key Laboratory of Animal Ecological Genomics, Xining, 810008, Qinghai, China
| | - Bin Li
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, 810008, Qinghai, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
- Qinghai Provincial Key Laboratory of Animal Ecological Genomics, Xining, 810008, Qinghai, China
| | - Chengbo Liang
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, 810008, Qinghai, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
- Qinghai Provincial Key Laboratory of Animal Ecological Genomics, Xining, 810008, Qinghai, China
| | - Wen Qin
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University 10743, Xining, 810016, Qinghai, China
| | - Jingjie Zhang
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University 10743, Xining, 810016, Qinghai, China
| | - Jingyan Yan
- College of Agriculture and Animal Husbandry, Qinghai University 10743, Xining, 810016, Qinghai, China
| | - Daoxin Liu
- College of Agriculture and Animal Husbandry, Qinghai University 10743, Xining, 810016, Qinghai, China
| | - Guo Sun
- College of Agriculture and Animal Husbandry, Qinghai University 10743, Xining, 810016, Qinghai, China
| | - Tongzuo Zhang
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, 810008, Qinghai, China.
- Qinghai Provincial Key Laboratory of Animal Ecological Genomics, Xining, 810008, Qinghai, China.
| |
Collapse
|
12
|
Zeng T, Cao Y, Yin J, Feng P, Tian Y, Sun H, Gu T, Zong Y, Ma X, Zhao Z, Chen L, Xu W, Han W, Lu L. Unraveling the gut microbiota of Tibetan chickens: insights into highland adaptation and ecological advantages. Microbiol Spectr 2024; 12:e0051924. [PMID: 39345125 PMCID: PMC11536995 DOI: 10.1128/spectrum.00519-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Accepted: 08/15/2024] [Indexed: 10/01/2024] Open
Abstract
Tibetan animals have several unique advantages owing to the harsh ecological conditions under which they live. However, compared to Tibetan mammals, understanding of the advantages and underlying mechanisms of the representative high-latitude bird, the Tibetan chicken (Gallus gallus, TC), remains limited. The gut microbiota of animals has been conclusively shown to be closely related to both host health and host environmental adaptation. This study aimed to explore the relationships between the cecal microbiome and the advantages of TCs based on comparisons among three populations: native TCs residing on the plateau, domestic TCs living in the plain, and one native plain species. Metatranscriptomic sequencing revealed a significant enrichment of active Bacteroidetes but a loss of active Firmicutes in native TCs. Additionally, the upregulated expression of genes in the cecal microbiome of native TCs showed enriched pathways related to energy metabolism, glycan metabolism, and the immune response. Furthermore, the expression of genes involved in the biosynthesis of short-chain fatty acids (SCFAs) and secondary bile acids (SBAs) was upregulated in the cecal microbiome of native TCs. Data from targeted metabolomics further confirmed elevated levels of certain SCFAs and SBAs in the cecum of native TCs. Based on the multi-omics association analysis, we proposed that the higher ratio of active Bacteroidetes/Firmicutes may be attributed to the efficient energy metabolism and stronger immunological activity of native TCs. Our findings provide a better understanding of the interactions between gut microbiota and highland adaptation, and novel insights into the mechanisms by which Tibetan chickens adapt to the plateau hypoxic environment. IMPORTANCE The composition and function of the active cecal microbiome were significantly different between the plateau Tibetan chicken population and the plain chicken population. Higher expression genes related to energy metabolism and immune response were found in the cecal microbiome of the plateau Tibetan chicken population. The cecal microbiome in the plateau Tibetan chicken population exhibited higher biosynthesis of short-chain fatty and secondary bile acids, resulting in higher cecal content of these metabolites. The active Bacteroidetes/Firmicutes ratio in the cecal microbiome may contribute to the high-altitude adaptive advantage of the plateau Tibetan chicken population.
Collapse
Affiliation(s)
- Tao Zeng
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Animal Husbandry and Veterinary Science, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
- Key Laboratory of Livestock and Poultry Resources (Poultry) Evaluation and Utilization, Ministry of Agriculture and Rural Affairs, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Yongqing Cao
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Animal Husbandry and Veterinary Science, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
- Key Laboratory of Livestock and Poultry Resources (Poultry) Evaluation and Utilization, Ministry of Agriculture and Rural Affairs, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Jianmei Yin
- National Chickens Genetic Resources, Jiangsu Institute of Poultry Science, Yangzhou, China
| | - Peishi Feng
- Zhejiang University of Technology, Hangzhou, China
| | - Yong Tian
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Animal Husbandry and Veterinary Science, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
- Key Laboratory of Livestock and Poultry Resources (Poultry) Evaluation and Utilization, Ministry of Agriculture and Rural Affairs, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Hanxue Sun
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Animal Husbandry and Veterinary Science, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
- Key Laboratory of Livestock and Poultry Resources (Poultry) Evaluation and Utilization, Ministry of Agriculture and Rural Affairs, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Tiantian Gu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Animal Husbandry and Veterinary Science, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
- Key Laboratory of Livestock and Poultry Resources (Poultry) Evaluation and Utilization, Ministry of Agriculture and Rural Affairs, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Yibo Zong
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Animal Husbandry and Veterinary Science, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
- Key Laboratory of Livestock and Poultry Resources (Poultry) Evaluation and Utilization, Ministry of Agriculture and Rural Affairs, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Xueying Ma
- Institute of Animal Husbandry and Veterinary Medicine, Tibet Academy Agricultural and Animal Husbandry Sciences, Lhasa, China
| | - Zelong Zhao
- Shanghai BIOZERON Biotechnology Co. Ltd., Shanghai, China
| | - Li Chen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Animal Husbandry and Veterinary Science, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
- Key Laboratory of Livestock and Poultry Resources (Poultry) Evaluation and Utilization, Ministry of Agriculture and Rural Affairs, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Wenwu Xu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Animal Husbandry and Veterinary Science, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
- Key Laboratory of Livestock and Poultry Resources (Poultry) Evaluation and Utilization, Ministry of Agriculture and Rural Affairs, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Wei Han
- National Chickens Genetic Resources, Jiangsu Institute of Poultry Science, Yangzhou, China
| | - Lizhi Lu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Animal Husbandry and Veterinary Science, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
- Key Laboratory of Livestock and Poultry Resources (Poultry) Evaluation and Utilization, Ministry of Agriculture and Rural Affairs, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| |
Collapse
|
13
|
Peng W, Shi L, Huang Q, Li T, Jian W, Zhao L, Xu R, Liu T, Zhang B, Wang H, Tong L, Tang H, Wang Y. Metabolite profiles of distinct obesity phenotypes integrating impacts of altitude and their association with diet and metabolic disorders in Tibetans. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 949:174754. [PMID: 39032745 DOI: 10.1016/j.scitotenv.2024.174754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 06/20/2024] [Accepted: 07/11/2024] [Indexed: 07/23/2024]
Abstract
OBJECTIVE Improved understanding of metabolic obesity phenotypes holds great promise for personalized strategies to combat obesity and its co-morbidities. Such investigation is however lacking in Tibetans with unique living environments and lifestyle in the highlands. Effects of altitude on heterogeneous metabolic obesity phenotypes remain unexplored. METHODS We defined metabolic obesity phenotypes i.e., metabolically healthy/unhealthy and obesity/normal weight in Tibetans (n = 1204) living at 2800 m in the suburb or over 4000 m in pastoral areas. 129 lipoprotein parameters and 25 low-molecular-weight metabolites were quantified and their associations with each phenotype were assessed using logistic regression models adjusting for potential confounders. The metabolic BMI (mBMI) was generated using a machine learning strategy and its relationship with prevalence of obesity co-morbidities and dietary exposures were investigated. RESULTS Ultrahigh altitude positively associated with the metabolically healthy and non-obese phenotype and had a tendency towards a negative association with metabolically unhealthy phenotype. Phenotype-specific associations were found for 107 metabolites (e.g., lipoprotein subclasses, N-acetyl-glycoproteins, amino acids, fatty acids and lactate, p < 0.05), among which 55 were manipulated by altitude. The mBMI showed consistent yet more pronounced associations with cardiometabolic outcomes than BMI. The ORs for diabetes, prediabetes and hypertriglyceridemia were reduced in individuals residing at ultrahigh altitude compared to those residing at high altitude. The mBMI mediated the negative association between pastoral diet and prevalence of prediabetes, hypertension and hypertriglyceridemia, respectively. CONCLUSIONS We found metabolite markers representing distinct obesity phenotypes associated with obesity co-morbidities and the modification effect of altitude, deciphering mechanisms underlying protective effect of ultrahigh altitude and the pastoral diet on metabolic health.
Collapse
Affiliation(s)
- Wen Peng
- Department of Public Health, Qinghai University Medical College, No. 16 Kunlun Rd, Xining, 810008, China; Nutrition and Health Promotion Center, Qinghai University Medical College, No. 16 Kunlun Rd, Xining 810008, China; Qinghai Provincial Key Laboratory of Prevention and Control of Glucolipid Metabolic Diseases with Traditional Chinese Medicine, Medical College, Qinghai University, No. 16 Kunlun Rd, Xining 810008, China.
| | - Lin Shi
- School of Food Engineering and Nutritional Science, Shaanxi Normal University, No. 199 Chang'an South Rd, Xi'an, Shaanxi 710062, China
| | - Qingxia Huang
- State Key Laboratory of Genetic Engineering, Zhongshan Hospital and School of Life Sciences, Human Phenome Institute, Metabonomics and Systems Biology Laboratory at Shanghai International Centre for Molecular Phenomics, Fudan University, No. 825 Zhangheng Rd, Shanghai 200438, China
| | - Tiemei Li
- Department of Public Health, Qinghai University Medical College, No. 16 Kunlun Rd, Xining, 810008, China; Nutrition and Health Promotion Center, Qinghai University Medical College, No. 16 Kunlun Rd, Xining 810008, China
| | - Wenxiu Jian
- Department of Public Health, Qinghai University Medical College, No. 16 Kunlun Rd, Xining, 810008, China; Nutrition and Health Promotion Center, Qinghai University Medical College, No. 16 Kunlun Rd, Xining 810008, China
| | - Lei Zhao
- Department of Public Health, Qinghai University Medical College, No. 16 Kunlun Rd, Xining, 810008, China; Nutrition and Health Promotion Center, Qinghai University Medical College, No. 16 Kunlun Rd, Xining 810008, China
| | - Ruijie Xu
- Global Health Institute, School of Public Health, Xi'an Jiaotong University, Room 3104, No. 21 Hongren Building, West China Science and Technology lnnovation Harbour (iHarbour), Xi'an 710061, China
| | - Tianqi Liu
- School of Food Engineering and Nutritional Science, Shaanxi Normal University, No. 199 Chang'an South Rd, Xi'an, Shaanxi 710062, China
| | - Bin Zhang
- School of Mathematics and Statistics, Qinghai Nationalities University, No. 3 Bayi Middle Rd, Xining 810007, China
| | - Haijing Wang
- Department of Public Health, Qinghai University Medical College, No. 16 Kunlun Rd, Xining, 810008, China; Nutrition and Health Promotion Center, Qinghai University Medical College, No. 16 Kunlun Rd, Xining 810008, China
| | - Li Tong
- Qinghai Provincial Key Laboratory of Prevention and Control of Glucolipid Metabolic Diseases with Traditional Chinese Medicine, Medical College, Qinghai University, No. 16 Kunlun Rd, Xining 810008, China
| | - Huiru Tang
- State Key Laboratory of Genetic Engineering, Zhongshan Hospital and School of Life Sciences, Human Phenome Institute, Metabonomics and Systems Biology Laboratory at Shanghai International Centre for Molecular Phenomics, Fudan University, No. 825 Zhangheng Rd, Shanghai 200438, China.
| | - Youfa Wang
- Global Health Institute, School of Public Health, Xi'an Jiaotong University, Room 3104, No. 21 Hongren Building, West China Science and Technology lnnovation Harbour (iHarbour), Xi'an 710061, China.
| |
Collapse
|
14
|
Bai J, Tang L, Bi Y, Li M. Multi-omics insights into the energy compensation of rumen microbiota of grazing yaks in cold season. Front Microbiol 2024; 15:1467841. [PMID: 39444681 PMCID: PMC11496799 DOI: 10.3389/fmicb.2024.1467841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Accepted: 09/23/2024] [Indexed: 10/25/2024] Open
Abstract
Background The ability of yaks to adapt to the extreme environment of low temperatures and hypoxia at cold seasons on the Qinghai-Tibet Plateau (QTP) is related to the host genome; however, the convergent evolution of rumen microbiomes in host adaption is unknown. Methods Here, we conducted a multi-omics study on the rumen fluid of grazing yaks from warm (July) and cold (December) seasons on the QTP to evaluate the convergent evolution of rumen microbiomes in the adaptation of grazing yaks to cold-seasons environments. Results The results showed that grazing yaks at cold seasons had higher fibrolytic enzyme activities and volatile fatty acids (VFAs) concentrations, and the relative abundance of Firmicutes and the ratio Firmicutes to Bacteroidetes was significantly higher than that of yaks at warm seasons. Macrogenomic analyses showed that genes involved in forming VFAs and arginine were significantly enriched in cold-season yaks. Transcriptome analyses of the rumen epithelium showed that 72 genes associated with VFAs absorption and transport were significantly upregulated in cold-season yaks. Metabolomic analyses showed that the levels of ornithine, related to efficient nitrogen utilization, were significantly upregulated in cold-season yaks. Conclusion The synergistic role of rumen microbiomes in the adaptation of grazing yaks to extreme environments at cold seasons was revealed by multi-omics study.
Collapse
Affiliation(s)
- Jie Bai
- Key Laboratory for Grassland Ecosystem of Ministry of Education, College of Pratacultural Science, Gansu Agricultural University, Lanzhou, China
| | - Lijuan Tang
- Key Laboratory for Grassland Ecosystem of Ministry of Education, College of Pratacultural Science, Gansu Agricultural University, Lanzhou, China
| | - Yanliang Bi
- National Engineering Research Center of Biological Feed, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Mingliang Li
- Livestock and Poultry Genetic Resources Protection and Utilization Center in Qinghai Province, Xining, China
| |
Collapse
|
15
|
Yang YH, Yan F, Shi PS, Yang LC, Cui DJ. HIF-1α Pathway Orchestration by LCN2: A Key Player in Hypoxia-Mediated Colitis Exacerbation. Inflammation 2024; 47:1491-1519. [PMID: 38819583 DOI: 10.1007/s10753-024-01990-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 01/19/2024] [Accepted: 02/09/2024] [Indexed: 06/01/2024]
Abstract
In this study, we investigated the role of hypoxia in the development of chronic inflammatory bowel disease (IBD), focusing on its impact on the HIF-1α signaling pathway through the upregulation of lipocalin 2 (LCN2). Using a murine model of colitis induced by sodium dextran sulfate (DSS) under hypoxic conditions, transcriptome sequencing revealed LCN2 as a key gene involved in hypoxia-mediated exacerbation of colitis. Bioinformatics analysis highlighted the involvement of crucial pathways, including HIF-1α and glycolysis, in the inflammatory process. Immune infiltration analysis demonstrated the polarization of M1 macrophages in response to hypoxic stimulation. In vitro studies using RAW264.7 cells further elucidated the exacerbation of inflammation and its impact on M1 macrophage polarization under hypoxic conditions. LCN2 knockout cells reversed hypoxia-induced inflammatory responses, and the HIF-1α pathway activator dimethyloxaloylglycine (DMOG) confirmed LCN2's role in mediating inflammation via the HIF-1α-induced glycolysis pathway. In a DSS-induced colitis mouse model, oral administration of LCN2-silencing lentivirus and DMOG under hypoxic conditions validated the exacerbation of colitis. Evaluation of colonic tissues revealed altered macrophage polarization, increased levels of inflammatory factors, and activation of the HIF-1α and glycolysis pathways. In conclusion, our findings suggest that hypoxia exacerbates colitis by modulating the HIF-1α pathway through LCN2, influencing M1 macrophage polarization in glycolysis. This study contributes to a better understanding of the mechanisms underlying IBD, providing potential therapeutic targets for intervention.
Collapse
Affiliation(s)
- Yun-Han Yang
- Department of Gastroenterology, Guizhou Inflammatory Bowel Disease Research Center, National Institution of Drug Clinical Trial, Guizhou Provincial People's Hospital, Medical College of Guizhou University, No.83 Zhongshan East Road, Guiyang, 550002, Guizhou Province, China
| | - Fang Yan
- Department of Gastroenterology, Guizhou Inflammatory Bowel Disease Research Center, National Institution of Drug Clinical Trial, Guizhou Provincial People's Hospital, Medical College of Guizhou University, No.83 Zhongshan East Road, Guiyang, 550002, Guizhou Province, China
| | - Peng-Shuang Shi
- Department of Gastroenterology, Guizhou Inflammatory Bowel Disease Research Center, National Institution of Drug Clinical Trial, Guizhou Provincial People's Hospital, Medical College of Guizhou University, No.83 Zhongshan East Road, Guiyang, 550002, Guizhou Province, China
| | - Liu-Chan Yang
- Department of Gastroenterology, Guizhou Inflammatory Bowel Disease Research Center, National Institution of Drug Clinical Trial, Guizhou Provincial People's Hospital, Medical College of Guizhou University, No.83 Zhongshan East Road, Guiyang, 550002, Guizhou Province, China
| | - De-Jun Cui
- Department of Gastroenterology, Guizhou Inflammatory Bowel Disease Research Center, National Institution of Drug Clinical Trial, Guizhou Provincial People's Hospital, Medical College of Guizhou University, No.83 Zhongshan East Road, Guiyang, 550002, Guizhou Province, China.
| |
Collapse
|
16
|
Zhang S, Zhou C, Dong Z, Feng K, Peng K, Wang Z, Jiang Y, Jin L, Zhang P, Wu Y. The diet-intestinal microbiota dynamics and adaptation in an elevational migration bird, the Himalayan bluetail ( Tarsiger rufilatus). Ecol Evol 2024; 14:e11617. [PMID: 38952660 PMCID: PMC11214064 DOI: 10.1002/ece3.11617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 06/05/2024] [Accepted: 06/10/2024] [Indexed: 07/03/2024] Open
Abstract
Migratory birds experience changes in their environment and diet during seasonal migrations, thus requiring interactions between diet and gut microbes. Understanding the co-evolution of the host and gut microbiota is critical for elucidating the rapid adaptations of avian gut microbiota. However, dynamics of gut microbial adaptations concerning elevational migratory behavior, which is prevalent but understudied in montane birds remain poorly understood. We focused on the Himalayan bluetail (Tarsiger rufilatus) in the montane forests of Mt. Gongga to understand the diet-gut microbial adaptations of elevational migratory birds. Our findings indicate that elevational migratory movements can rapidly alter gut microbial composition and function within a month. There was a significant interaction between an animal-based diet and gut microbiota across migration stages, underscoring the importance of diet in shaping microbial communities. Furthermore, the gut microbial composition of T. rufilatus may be potentially altered by high-altitude acclimatization. An increase in fatty acid and amino acid metabolism was observed in response to low temperatures and limited resources, resulting in enhanced energy extraction and nutrient utilization. Moreover, microbial communities in distinct gut segments varied in relative abundance and responses to environmental changes. While the bird jejunum exhibited greater susceptibility to food and environmental fluctuations, there was no significant difference in metabolic capacity among gut segments. This study provides initial evidence of rapid diet-gut microbial changes in distinct gut segments of elevational migratory birds and highlights the importance of seasonal sample collection. Our findings provide a deeper understanding of the unique high-altitude adaptation patterns of the gut microbiota for montane elevational migratory birds.
Collapse
Affiliation(s)
- Shangmingyu Zhang
- Key Laboratory of Bio‐resources and Eco‐environment of Ministry of Education, College of Life SciencesSichuan UniversityChengduChina
| | - Chuang Zhou
- Key Laboratory of Bio‐resources and Eco‐environment of Ministry of Education, College of Life SciencesSichuan UniversityChengduChina
| | - Zhehan Dong
- Key Laboratory of Bio‐resources and Eco‐environment of Ministry of Education, College of Life SciencesSichuan UniversityChengduChina
| | - Kaize Feng
- Key Laboratory of Bio‐resources and Eco‐environment of Ministry of Education, College of Life SciencesSichuan UniversityChengduChina
| | - Kexin Peng
- Key Laboratory of Bio‐resources and Eco‐environment of Ministry of Education, College of Life SciencesSichuan UniversityChengduChina
| | - Zhengyang Wang
- Department of Organismic and Evolutionary BiologyHarvard UniversityCambridgeMassachusettsUSA
| | - Yong Jiang
- Administration of Gongga Mountain National Nature ReserveKangdingGanzi Tibetan Autonomous PrefectureChina
| | - Linyu Jin
- Chengdu Tianfu International Airport Branch of Sichuan Airport Group Limited CompanyChengduChina
| | - Ping Zhang
- Chengdu Tianfu International Airport Branch of Sichuan Airport Group Limited CompanyChengduChina
| | - Yongjie Wu
- Key Laboratory of Bio‐resources and Eco‐environment of Ministry of Education, College of Life SciencesSichuan UniversityChengduChina
| |
Collapse
|
17
|
Giraud-Billoud M, Moreira DC, Minari M, Andreyeva A, Campos ÉG, Carvajalino-Fernández JM, Istomina A, Michaelidis B, Niu C, Niu Y, Ondei L, Prokić M, Rivera-Ingraham GA, Sahoo D, Staikou A, Storey JM, Storey KB, Vega IA, Hermes-Lima M. REVIEW: Evidence supporting the 'preparation for oxidative stress' (POS) strategy in animals in their natural environment. Comp Biochem Physiol A Mol Integr Physiol 2024; 293:111626. [PMID: 38521444 DOI: 10.1016/j.cbpa.2024.111626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 03/12/2024] [Accepted: 03/19/2024] [Indexed: 03/25/2024]
Abstract
Hypometabolism is a common strategy employed by resilient species to withstand environmental stressors that would be life-threatening for other organisms. Under conditions such as hypoxia/anoxia, temperature and salinity stress, or seasonal changes (e.g. hibernation, estivation), stress-tolerant species down-regulate pathways to decrease energy expenditures until the return of less challenging conditions. However, it is with the return of these more favorable conditions and the reactivation of basal metabolic rates that a strong increase of reactive oxygen and nitrogen species (RONS) occurs, leading to oxidative stress. Over the last few decades, cases of species capable of enhancing antioxidant defenses during hypometabolic states have been reported across taxa and in response to a variety of stressors. Interpreted as an adaptive mechanism to counteract RONS formation during tissue hypometabolism and reactivation, this strategy was coined "Preparation for Oxidative Stress" (POS). Laboratory experiments have confirmed that over 100 species, spanning 9 animal phyla, apply this strategy to endure harsh environments. However, the challenge remains to confirm its occurrence in the natural environment and its wide applicability as a key survival element, through controlled experimentation in field and in natural conditions. Under such conditions, numerous confounding factors may complicate data interpretation, but this remains the only approach to provide an integrative look at the evolutionary aspects of ecophysiological adaptations. In this review, we provide an overview of representative cases where the POS strategy has been demonstrated among diverse species in natural environmental conditions, discussing the strengths and weaknesses of these results and conclusions.
Collapse
Affiliation(s)
- Maximiliano Giraud-Billoud
- Instituto de Histología y Embriología de Mendoza (IHEM), Universidad Nacional de Cuyo-CONICET, Mendoza 5500, Argentina; Instituto de Fisiología, Facultad de Ciencias Médicas, Universidad Nacional de Cuyo, Mendoza 5500, Argentina; Departamento de Ciencias Básicas, Escuela de Ciencias de la Salud-Medicina, Universidad Nacional de Villa Mercedes, San Luis 5730, Argentina.
| | - Daniel C Moreira
- Department of Cell Biology, Institute of Biological Sciences, University of Brasilia, Brasilia, Brazil; Research Center in Morphology and Applied Immunology, Faculty of Medicine, University of Brasilia, Brasilia, Brazil
| | - Marina Minari
- Department of Cell Biology, Institute of Biological Sciences, University of Brasilia, Brasilia, Brazil
| | - Aleksandra Andreyeva
- A.O. Kovalevsky Institute of Biology of the Southern Seas of RAS, Moscow 119991, Russia; Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, St-Petersburg 194223, Russia
| | - Élida G Campos
- Department of Cell Biology, Institute of Biological Sciences, University of Brasilia, Brasilia, Brazil
| | - Juan M Carvajalino-Fernández
- Laboratory of Adaptations to Extreme Environments and Global Change Biology, Universidad Nacional de Colombia, Bogotá, Colombia
| | - Aleksandra Istomina
- V.I. Il'ichev Pacific Oceanological Institute, Far Eastern Branch, Russian Academy of Sciences, 690041 Vladivostok, Russia
| | - Basile Michaelidis
- Laboratory of Animal Physiology, Department of Zoology, School of Biology, University of Thessaloniki, GR-54006 Thessaloniki, Greece
| | - Cuijuan Niu
- Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, College of Life Sciences, Beijing Normal University, Beijing 100875, China
| | - Yonggang Niu
- Department of Life Sciences, Dezhou University, Dezhou, China
| | - Luciana Ondei
- Universidade Estadual de Goiás, Câmpus Central, 75132-903 Anápolis, GO, Brazil
| | - Marko Prokić
- Department of Physiology, Institute for Biological Research "Siniša Stanković", National Institute of the Republic of Serbia, University of Belgrade, Bulevar despota Stefana 142, 11060 Belgrade, Serbia
| | - Georgina A Rivera-Ingraham
- Australian Rivers Institute, Griffith University, Southport 4215, Gold Coast, Queensland. Australia; UMR9190-MARBEC, Centre National de la Recherche Scientifique (CNRS), Montpellier, 34090, France
| | - Debadas Sahoo
- Post Graduate Department of Zoology, S.C.S. Autonomous College, Puri, Odis ha-752001, India
| | - Alexandra Staikou
- Laboratory of Marine and Terrestrial Animal Diversity, Department of Zoology, School of Biology, University of Thessaloniki, GR-54006 Thessaloniki, Greece
| | - Janet M Storey
- Department of Biology and Institute of Biochemistry, Carleton University, Ottawa, ON, Canada
| | - Kenneth B Storey
- Department of Biology and Institute of Biochemistry, Carleton University, Ottawa, ON, Canada
| | - Israel A Vega
- Instituto de Histología y Embriología de Mendoza (IHEM), Universidad Nacional de Cuyo-CONICET, Mendoza 5500, Argentina; Instituto de Fisiología, Facultad de Ciencias Médicas, Universidad Nacional de Cuyo, Mendoza 5500, Argentina; Departamento de Biología, Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Cuyo, Mendoza 5500, Argentina
| | - Marcelo Hermes-Lima
- Department of Cell Biology, Institute of Biological Sciences, University of Brasilia, Brasilia, Brazil.
| |
Collapse
|
18
|
Fan K, Wang J, Zhu W, Zhang X, Deng F, Zhang Y, Zou S, Kong L, Shi H, Li Z, Shen G, Wang D, Wu Z, Li H, Xu Z. Urinary proteomics for noninvasive monitoring of biomarkers of chronic mountain sickness in a young adult population using data-independent acquisition (DIA)-based mass spectrometry. J Proteomics 2024; 302:105195. [PMID: 38734407 DOI: 10.1016/j.jprot.2024.105195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 04/28/2024] [Accepted: 05/06/2024] [Indexed: 05/13/2024]
Abstract
Different populations exhibit varying pathophysiological responses to plateau environments. Therefore, it is crucial to identify molecular markers in body fluids with high specificity and sensitivity to aid in determination. Proteomics offers a fresh perspective for investigating protein changes linked to diseases. We utilize urine as a specific biomarker for early chronic mountain sickness (CMS) detection, as it is a simple-to-collect biological fluid. We collected urine samples from three groups: plains health, plateau health and CMS. Using DIA's proteomic approach, we found differentially expressed proteins between these groups, which will be used as a basis for future studies to identify protein markers. Compared with the healthy plain population, 660 altering proteins were identified in plateau health, which performed the resistance to altitude response function by boosting substance metabolism and reducing immune stress function. Compared to the healthy plateau population, the CMS group had 140 different proteins identified, out of which 8 were potential biomarkers for CMS. Our study has suggested that CMS may be closely related to increased thyroid hormone levels, oxidative damage to the mitochondria, impaired cell detoxification function and inhibited hydrolase activity. SIGNIFICANCE: Our team has compiled a comprehensive dataset of urine proteomics for AMS disease. We successfully identified differentially expressed proteins between healthy and AMS groups using the DIA proteomic approach. We discovered that 660 proteins were altered in plateau health compared to the healthy plain population, resulting in a heightened resistance to altitude response function by boosting substance metabolism and reducing immune stress function. Additionally, we pinpointed 140 different proteins in the AMS group compared to the healthy plateau population, with 8 showing potential as biomarkers for AMS. Our findings suggest that the onset of AMS may be closely linked to increased thyroid hormone levels, oxidative damage to the mitochondria, impaired cell detoxification function and inhibited hydrolase activity.
Collapse
Affiliation(s)
- Kaiyuan Fan
- Central Laboratory, Logistics University of Chinese People's Armed Police Force, Tianjin 300309, PR China; Tianjin key laboratory for prevention and control of occupational and environmental hazards, Tianjin 300309, PR China
| | - Jin Wang
- Department of Clinical Laboratory, Tianjin Third Central Hospital, Tianjin 300170, PR China
| | - Wenqing Zhu
- Central Laboratory, Logistics University of Chinese People's Armed Police Force, Tianjin 300309, PR China; Tianjin key laboratory for prevention and control of occupational and environmental hazards, Tianjin 300309, PR China
| | - Xinan Zhang
- Xizang Corps Hospital of Chinese People's Armed Police Force, Lasa 850000, PR China
| | - Feng Deng
- Xizang Corps Hospital of Chinese People's Armed Police Force, Lasa 850000, PR China
| | - Yan Zhang
- Central Laboratory, Logistics University of Chinese People's Armed Police Force, Tianjin 300309, PR China; Tianjin key laboratory for prevention and control of occupational and environmental hazards, Tianjin 300309, PR China
| | - Shuang Zou
- Central Laboratory, Logistics University of Chinese People's Armed Police Force, Tianjin 300309, PR China; Tianjin key laboratory for prevention and control of occupational and environmental hazards, Tianjin 300309, PR China
| | - Lingjia Kong
- Central Laboratory, Logistics University of Chinese People's Armed Police Force, Tianjin 300309, PR China; Tianjin key laboratory for prevention and control of occupational and environmental hazards, Tianjin 300309, PR China
| | - He Shi
- Central Laboratory, Logistics University of Chinese People's Armed Police Force, Tianjin 300309, PR China; Tianjin key laboratory for prevention and control of occupational and environmental hazards, Tianjin 300309, PR China
| | - Ziling Li
- Central Laboratory, Logistics University of Chinese People's Armed Police Force, Tianjin 300309, PR China; Tianjin key laboratory for prevention and control of occupational and environmental hazards, Tianjin 300309, PR China
| | - Guozheng Shen
- Central Laboratory, Logistics University of Chinese People's Armed Police Force, Tianjin 300309, PR China; Tianjin key laboratory for prevention and control of occupational and environmental hazards, Tianjin 300309, PR China
| | - Dong Wang
- Central Laboratory, Logistics University of Chinese People's Armed Police Force, Tianjin 300309, PR China; Tianjin key laboratory for prevention and control of occupational and environmental hazards, Tianjin 300309, PR China
| | - Zhidong Wu
- Central Laboratory, Logistics University of Chinese People's Armed Police Force, Tianjin 300309, PR China; Tianjin key laboratory for prevention and control of occupational and environmental hazards, Tianjin 300309, PR China.
| | - Heng Li
- Central Laboratory, Logistics University of Chinese People's Armed Police Force, Tianjin 300309, PR China; Tianjin key laboratory for prevention and control of occupational and environmental hazards, Tianjin 300309, PR China.
| | - Zhongwei Xu
- Central Laboratory, Logistics University of Chinese People's Armed Police Force, Tianjin 300309, PR China; Tianjin key laboratory for prevention and control of occupational and environmental hazards, Tianjin 300309, PR China.
| |
Collapse
|
19
|
Ye Y, Xia C, Hu H, Tang S, Huan H. Metabolomics reveals altered metabolites in cirrhotic patients with severe portal hypertension in Tibetan population. Front Med (Lausanne) 2024; 11:1404442. [PMID: 39015788 PMCID: PMC11250582 DOI: 10.3389/fmed.2024.1404442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 06/17/2024] [Indexed: 07/18/2024] Open
Abstract
Background Portal hypertension (PHT) presents a challenging issue of liver cirrhosis. This study aims to identify novel biomarkers for severe PHT (SPHT) and explore the pathophysiological mechanisms underlying PHT progression. Methods Twenty-three Tibetan cirrhotic patients who underwent hepatic venous pressure gradient (HVPG) measurement were included. Eleven patients had an HVPG between 5 mmHg and 15 mmHg (MPHT), while 12 had an HVPG ≥16 mmHg (SPHT). Peripheral sera were analyzed using liquid chromatograph-mass spectrometer for metabolomic assessment. An additional 14 patients were recruited for validation of metabolites. Results Seven hundred forty-five metabolites were detected and significant differences in metabolomics between MPHT and SPHT patients were observed. Employing a threshold of p < 0.05 and a variable importance in projection score >1, 153 differential metabolites were identified. A significant number of these metabolites were lipids and lipid-like molecules. Pisumionoside and N-decanoylglycine (N-DG) exhibited the highest area under the curve (AUC) values (0.947 and 0.9091, respectively). Additional differential metabolites with AUC >0.8 included 6-(4-ethyl-2-methoxyphenoxy)-3,4,5-trihydroxyoxane-2-carboxylic acid, sphinganine 1-phosphate, 4-hydroxytriazolam, 4,5-dihydroorotic acid, 6-hydroxy-1H-indole-3-acetamide, 7alpha-(thiomethyl)spironolactone, 6-deoxohomodolichosterone, glutaminylisoleucine, taurocholic acid 3-sulfate, and Phe Ser. Enzyme-linked immunosorbent assay further confirmed elevated levels of sphinganine 1-phosphate, N-DG, and serotonin in SPHT patients. Significant disruptions in linoleic acid, amino acid, sphingolipid metabolisms, and the citrate cycle were observed in SPHT patients. Conclusion Pisumionoside and N-DG are identified as promising biomarkers for SPHT. The progression of PHT may be associated with disturbances in lipid, linoleic acid, and amino acid metabolisms, as well as alterations in the citrate cycle.
Collapse
Affiliation(s)
- Yanting Ye
- Lab of Gastroenterology and Hepatology, West China Hospital, Sichuan University, Chengdu, China
| | - Chao Xia
- Department of Radiology, and Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, China
- Huaxi MR Research Center (HMRRC), West China Hospital, Sichuan University, Chengdu, China
| | - Hong Hu
- Department of Gastroenterology, Hospital of Chengdu Office of People’s Government of Tibetan Autonomous Region, Chengdu, China
| | - Shihang Tang
- Department of Gastroenterology, Chongqing University Cancer Hospital, Chongqing, China
| | - Hui Huan
- Department of Gastroenterology, Hospital of Chengdu Office of People’s Government of Tibetan Autonomous Region, Chengdu, China
| |
Collapse
|
20
|
Liu D, Chen D, Xiao J, Wang W, Zhang LJ, Peng H, Han C, Yao H. High-altitude-induced alterations in intestinal microbiota. Front Microbiol 2024; 15:1369627. [PMID: 38784803 PMCID: PMC11111974 DOI: 10.3389/fmicb.2024.1369627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 04/22/2024] [Indexed: 05/25/2024] Open
Abstract
In high-altitude environments characterized by low pressure and oxygen levels, the intestinal microbiota undergoes significant alterations. Whether individuals are subjected to prolonged exposure or acute altitude changes, these conditions lead to shifts in both the diversity and abundance of intestinal microbiota and changes in their composition. While these alterations represent adaptations to high-altitude conditions, they may also pose health risks through certain mechanisms. Changes in the intestinal microbiota induced by high altitudes can compromise the integrity of the intestinal mucosal barrier, resulting in gastrointestinal dysfunction and an increased susceptibility to acute mountain sickness (AMS). Moreover, alterations in the intestinal microbiota have been implicated in the induction or exacerbation of chronic heart failure. Targeted modulation of the intestinal microbiota holds promise in mitigating high-altitude-related cardiac damage. Dietary interventions, such as adopting a high-carbohydrate, high-fiber, low-protein, and low-fat diet, can help regulate the effects of intestinal microbiota and their metabolic byproducts on intestinal health. Additionally, supplementation with probiotics, either through dietary sources or medications, offers a means of modulating the composition of the intestinal microbiota. These interventions may offer beneficial effects in preventing and alleviating AMS following acute exposure to high altitudes.
Collapse
Affiliation(s)
- Dan Liu
- Department of Endocrinology, General Hospital of the Chinese People’s Liberation Army Western Theater, Chengdu, Sichuan, China
| | - Dan Chen
- Department of Hematology and Hematopoietic Stem Cell Transplantation Center, General Hospital of the Chinese People’s Liberation Army Western Theater, Chengdu, Sichuan, China
| | - Jian Xiao
- Department of Endocrinology, General Hospital of the Chinese People’s Liberation Army Western Theater, Chengdu, Sichuan, China
| | - Wei Wang
- Department of Endocrinology, General Hospital of the Chinese People’s Liberation Army Western Theater, Chengdu, Sichuan, China
| | - Li-Juan Zhang
- Department of Endocrinology, General Hospital of the Chinese People’s Liberation Army Western Theater, Chengdu, Sichuan, China
| | - Hui Peng
- Department of Endocrinology, General Hospital of the Chinese People’s Liberation Army Western Theater, Chengdu, Sichuan, China
| | - Chuan Han
- Department of Endocrinology, General Hospital of the Chinese People’s Liberation Army Western Theater, Chengdu, Sichuan, China
| | - Hao Yao
- Department of Hematology and Hematopoietic Stem Cell Transplantation Center, General Hospital of the Chinese People’s Liberation Army Western Theater, Chengdu, Sichuan, China
| |
Collapse
|
21
|
Hao D, Niu H, Zhao Q, Shi J, An C, Wang S, Zhou C, Chen S, Fu Y, Zhang Y, He Z. Impact of high-altitude acclimatization and de-acclimatization on the intestinal microbiota of rats in a natural high-altitude environment. Front Microbiol 2024; 15:1371247. [PMID: 38774503 PMCID: PMC11106481 DOI: 10.3389/fmicb.2024.1371247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 04/18/2024] [Indexed: 05/24/2024] Open
Abstract
Introduction Intestinal microorganisms play an important role in the health of both humans and animals, with their composition being influenced by changes in the host's environment. Methods We evaluated the longitudinal changes in the fecal microbial community of rats at different altitudes across various time points. Rats were airlifted to high altitude (3,650 m) and acclimatized for 42 days (HAC), before being by airlifted back to low altitude (500 m) and de-acclimatized for 28 days (HADA); meanwhile, the control group included rats living at low altitude (500 m; LA). We investigated changes in the gut microbiota at 12 time points during high-altitude acclimatization and de-acclimatization, employing 16S rRNA gene sequencing technology alongside physiological indices, such as weight and daily autonomous activity time. Results A significant increase in the Chao1 index was observed on day 14 in the HAC and HADA groups compared to that in the LA group, indicating clear differences in species richness. Moreover, the principal coordinate analysis revealed that the bacterial community structures of HAC and HADA differed from those in LA. Long-term high-altitude acclimatization and de- acclimatization resulted in the reduced abundance of the probiotic Lactobacillus. Altitude and age significantly influenced intestinal microbiota composition, with changes in ambient oxygen content and atmospheric partial pressure being considered key causal factors of altitude-dependent alterations in microbiota composition. High-altitude may be linked to an increase in anaerobic bacterial abundance and a decrease in non-anaerobic bacterial abundance. Discussion In this study, the hypobaric hypoxic conditions at high-altitude increased the abundance of anaerobes, while reducing the abundance of probiotics; these changes in bacterial community structure may, ultimately, affect host health. Overall, gaining a comprehensive understanding of the intestinal microbiota alterations during high-altitude acclimatization and de-acclimatization is essential for the development of effective prevention and treatment strategies to better protect the health of individuals traveling between high- and low-altitude areas.
Collapse
Affiliation(s)
- Doudou Hao
- Biobank, Hospital of Chengdu Office of People’s Government of Tibetan Autonomous Region, Chengdu, China
| | - Haomeng Niu
- Medical College, Tibet University, Lhasa, China
| | - Qin Zhao
- Biobank, Hospital of Chengdu Office of People’s Government of Tibetan Autonomous Region, Chengdu, China
| | - Jing Shi
- Biobank, Hospital of Chengdu Office of People’s Government of Tibetan Autonomous Region, Chengdu, China
| | - Chuanhao An
- Health Clinic, Training Base of the Armed Police Force of Tibet, Lhasa, China
| | - Siyu Wang
- Biobank, Hospital of Chengdu Office of People’s Government of Tibetan Autonomous Region, Chengdu, China
| | - Chaohua Zhou
- Biobank, Hospital of Chengdu Office of People’s Government of Tibetan Autonomous Region, Chengdu, China
| | - Siyuan Chen
- Biobank, Hospital of Chengdu Office of People’s Government of Tibetan Autonomous Region, Chengdu, China
| | - Yongxing Fu
- Biobank, Hospital of Chengdu Office of People’s Government of Tibetan Autonomous Region, Chengdu, China
| | - Yongqun Zhang
- Biobank, Hospital of Chengdu Office of People’s Government of Tibetan Autonomous Region, Chengdu, China
| | - Zeng He
- Biobank, Hospital of Chengdu Office of People’s Government of Tibetan Autonomous Region, Chengdu, China
| |
Collapse
|
22
|
Su C, Xie T, Jiang L, Wang Y, Wang Y, Nie R, Zhao Y, He B, Ma J, Yang Q, Hao J. Host genetics and larval host plant modulate microbiome structure and evolution underlying the intimate insect-microbe-plant interactions in Parnassius species on the Qinghai-Tibet Plateau. Ecol Evol 2024; 14:e11218. [PMID: 38606343 PMCID: PMC11007261 DOI: 10.1002/ece3.11218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 02/09/2024] [Accepted: 03/20/2024] [Indexed: 04/13/2024] Open
Abstract
Insects harbor a remarkable diversity of gut microbiomes critical for host survival, health, and fitness, but the mechanism of this structured symbiotic community remains poorly known, especially for the insect group consisting of many closely related species that inhabit the Qinghai-Tibet Plateau. Here, we firstly analyzed population-level 16S rRNA microbial dataset, comprising 11 Parnassius species covering 5 subgenera, from 14 populations mostly sampled in mountainous regions across northwestern-to-southeastern China, and meanwhile clarified the relative importance of multiple factors on gut microbial community structure and evolution. Our findings indicated that both host genetics and larval host plant modulated gut microbial diversity and community structure. Moreover, the effect analysis of host genetics and larval diet on gut microbiomes showed that host genetics played a critical role in governing the gut microbial beta diversity and the symbiotic community structure, while larval host plant remarkably influenced the functional evolution of gut microbiomes. These findings of the intimate insect-microbe-plant interactions jointly provide some new insights into the correlation among the host genetic background, larval host plant, the structure and evolution of gut microbiome, as well as the mechanisms of high-altitude adaptation in closely related species of this alpine butterfly group.
Collapse
Affiliation(s)
- Chengyong Su
- College of Life SciencesAnhui Normal UniversityWuhuChina
| | - Tingting Xie
- College of Life SciencesAnhui Normal UniversityWuhuChina
| | - Lijun Jiang
- College of Life SciencesAnhui Normal UniversityWuhuChina
| | - Yunliang Wang
- College of Life SciencesAnhui Normal UniversityWuhuChina
- College of Physical EducationAnhui Normal UniversityWuhuChina
| | - Ying Wang
- College of Life SciencesAnhui Normal UniversityWuhuChina
- College of Physical EducationAnhui Normal UniversityWuhuChina
| | - Ruie Nie
- College of Life SciencesAnhui Normal UniversityWuhuChina
| | - Youjie Zhao
- College of Life SciencesAnhui Normal UniversityWuhuChina
| | - Bo He
- College of Life SciencesAnhui Normal UniversityWuhuChina
| | - Junye Ma
- Key Laboratory of Palaeobiology and Petroleum Stratigraphy, Center for Excellence in Life and Palaeoenvironment, Nanjing Institute of Geology and PaleontologyChinese Academy of SciencesNanjingChina
| | - Qun Yang
- Key Laboratory of Palaeobiology and Petroleum Stratigraphy, Center for Excellence in Life and Palaeoenvironment, Nanjing Institute of Geology and PaleontologyChinese Academy of SciencesNanjingChina
- Nanjing CollegeUniversity of Chinese Academy of SciencesNanjingChina
| | - Jiasheng Hao
- College of Life SciencesAnhui Normal UniversityWuhuChina
| |
Collapse
|
23
|
Feng S, Zhang Y, He Z, Xi E, Ru D, Liang J, Yang Y. Chromosome-scale genome assembly of Lepus oiostolus (Lepus, Leporidae). Sci Data 2024; 11:183. [PMID: 38341484 PMCID: PMC10858874 DOI: 10.1038/s41597-024-03024-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 01/30/2024] [Indexed: 02/12/2024] Open
Abstract
Lepus oiostolus (L. oiostolus) is a species endemic to the Qinghai-Tibet Plateau. However, the absence of a reference genome limits genetic studies. Here, we reported a high-quality L. oiostolus genome assembly, with scaffolds anchored to 24 chromosomes and a total assembled length of 2.80 Gb (contig N50 = 64.25 Mb). Genomic annotation uncovered 22,295 protein-coding genes and identified 49.84% of the sequences as transposable elements. Long interspersed nuclear elements (LINEs) constitute a high proportion of the genome. Our study is at the first time to report the chromosome-scale genome for the species of the L. oiostolus. It provides a valuable genomic resource for future research on the evolution of the Leporidae.
Collapse
Affiliation(s)
- Shuo Feng
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining, 810016, China.
| | - Yaying Zhang
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining, 810016, China
| | - Zhaotong He
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining, 810016, China
| | - Erning Xi
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining, 810016, China
| | - Dafu Ru
- State Key Laboratory of Grassland Agro-Ecosystems, and College of Ecology, Lanzhou University, Lanzhou, 730000, China
| | - Jian Liang
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining, 810016, China
| | - Yongzhi Yang
- State Key Laboratory of Grassland Agro-Ecosystems, and College of Ecology, Lanzhou University, Lanzhou, 730000, China
| |
Collapse
|
24
|
Song X, Wu J, Zhou K, Zhang Z, Tang C, Zhang B. Prevalence of hepatitis E virus genotype 4 of probable human origin in Tibetan pigs from the Qinghai-Tibetan Plateau, China. Zoonoses Public Health 2024; 71:120-126. [PMID: 37817386 DOI: 10.1111/zph.13078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 08/15/2023] [Accepted: 09/15/2023] [Indexed: 10/12/2023]
Abstract
Hepatitis E virus (HEV) is the most common cause of acute viral hepatitis worldwide. In 2018-2022, we investigated the presence of HEV RNA in 1233 stool samples collected in the Qinghai-Tibetan Plateau, including humans (16), Tibetan pigs (624), yaks (312), sheep (267), and dogs (14). HEV RNA was only detected in Tibetan pig faecal samples (18.27%, 114/624). To perform molecular characterization of HEV strains in Tibetan pigs, we obtained 21 complete HEV genome sequences between 2018 and 2022. Sequence comparisons showed that 21 HEV strains from Tibetan pigs shared the mean nucleotide identities with the reference HEV strains ranging between 82.9% and 94.9% and 89.3% and 92.1% similarities with human HEV strains. Phylogenetic analysis confirmed that all HEV strains were genotype 4, closely related to human HEV strains. Sequence recombinant analysis showed five potential recombinant strains identified in this study, of which SWU/D18/2018 (GenBank No. MK410044) was recombinant with human and swine HEV strains, located 6509-6878 nt from the recombination point. Based on the Bayesian evolutionary trees, we found that most HEV strains diverged later than human HEV (16 Tibetan pig HEV strains diverged later than 1979, and seven human HEV strains diverged earlier than 1979). Therefore, we speculated that the prevalence of HEV 4 in Tibetan pigs possibly originated from humans in the Qinghai-Tibetan Plateau.
Collapse
Affiliation(s)
- Xin Song
- College of Animal & Veterinary Sciences, Southwest Minzu University, Chengdu, China
| | - Jinbo Wu
- Animal Husbandry Science Institute of ABa Autonomous Prefecture, Hongyuan, China
| | - Kelei Zhou
- Agricultural and Rural Bureau of Liangshan Yi Autonomous Prefecture of Sichuan Province, Liangshan, China
| | - Zhaohui Zhang
- Center for Animal Disease Control and Prevention, Ganzi Tibetan Autonomous Prefecture, Kangding, China
| | - Cheng Tang
- College of Animal & Veterinary Sciences, Southwest Minzu University, Chengdu, China
- Key Laboratory of Ministry of Education and Sichuan Province for Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Chengdu, China
| | - Bin Zhang
- College of Animal & Veterinary Sciences, Southwest Minzu University, Chengdu, China
- Key Laboratory of Ministry of Education and Sichuan Province for Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Chengdu, China
| |
Collapse
|
25
|
Ding P, Yu Y, Zhao Z, Li X, Wang X, Wang H, Huang X, Ding J, Zhao C. Behavior, intestinal health, and growth of small sea cucumbers Apostichopus japonicus in different color morphs. MARINE ENVIRONMENTAL RESEARCH 2024; 193:106300. [PMID: 38103303 DOI: 10.1016/j.marenvres.2023.106300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 11/20/2023] [Accepted: 12/07/2023] [Indexed: 12/19/2023]
Abstract
Selecting high-quality seeds with long-term advantages in behavior, intestinal health, and growth are the key to improve production efficiency of sea cucumber aquaculture. It is proposed to distinguish the seed quality of sea cucumbers by color morphs. In the present study, we carried out a 6-week experiment to investigate behavior, intestinal health, and growth of small sea cucumbers Apostichopus japonicus in different color morphs. We found that dark-colored seeds of sea cucumber were significantly more adhesive than those with light-colored seeds. This indicates that the dark-colored seeds of A. japonicus are more adaptive in complex environments in stock enhancement. Food consumption and defecation outputs of dark-colored seeds were significantly higher than those of light-colored seeds. In addition, the feces of dark-colored seeds of sea cucumber had significantly lower crude protein content and better intestinal morphology, but there was no advantage in digestive enzyme activities. This suggests that there are potential digestive benefits in dark-colored seeds. Further, dark-colored seeds of A. japonicus showed significantly better intestinal microbiota composition and faster growth rate than that of light-colored seeds. In conclusion, the present results prove that dark-colored seeds of sea cucumber have long-term advantages in behavior, intestinal health and growth. Overall, this study provides important information for the early selection of seeds and the consequent production efficiency in sea cucumber aquaculture.
Collapse
Affiliation(s)
- Peng Ding
- Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, Dalian, China
| | - Yushi Yu
- Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, Dalian, China
| | - Zihe Zhao
- Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, Dalian, China
| | - Xiang Li
- Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, Dalian, China
| | - Xiajing Wang
- Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, Dalian, China
| | - Huiyan Wang
- Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, Dalian, China
| | - Xiyuan Huang
- Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, Dalian, China
| | - Jun Ding
- Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, Dalian, China.
| | - Chong Zhao
- Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, Dalian, China.
| |
Collapse
|
26
|
Sun Y, Hao Y, Zhang Q, Liu X, Wang L, Li J, Li M, Li D. Coping with extremes: Alternations in diet, gut microbiota, and hepatic metabolic functions in a highland passerine. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 905:167079. [PMID: 37714349 DOI: 10.1016/j.scitotenv.2023.167079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 09/11/2023] [Accepted: 09/12/2023] [Indexed: 09/17/2023]
Abstract
In wild animals, diet and gut microbiota interactions are critical moderators of metabolic functions and are highly contingent on habitat conditions. Challenged by the extreme conditions of high-altitude environments, the strategies implemented by highland animals to adjust their diet and gut microbial composition and modulate their metabolic substrates remain largely unexplored. By employing a typical human commensal species, the Eurasian tree sparrow (Passer montanus, ETS), as a model species, we studied the differences in diet, digestive tract morphology and enzyme activity, gut microbiota, and metabolic energy profiling between highland (the Qinghai-Tibet Plateau, QTP; 3230 m) and lowland (Shijiazhuang, Hebei; 80 m) populations. Our results showed that highland ETSs had enlarged digestive organs and longer small intestinal villi, while no differences in key digestive enzyme activities were observed between the two populations. The 18S rRNA sequencing results revealed that the dietary composition of highland ETSs were more animal-based and less plant-based than those of the lowland ones. Furthermore, 16S rRNA sequencing results suggested that the intestinal microbial communities were structurally segregated between populations. PICRUSt metagenome predictions further indicated that the expression patterns of microbial genes involved in material and energy metabolism, immune system and infection, and xenobiotic biodegradation were strikingly different between the two populations. Analysis of liver metabolomics revealed significant metabolic differences between highland and lowland ETSs in terms of substrate utilization, as well as distinct sex-specific alterations in glycerophospholipids. Furthermore, the interplay between diet, liver metabolism, and gut microbiota suggests a dietary shift resulting in corresponding changes in gut microbiota and metabolic functions. Our findings indicate that highland ETSs have evolved to optimize digestion and absorption, rely on more protein-rich foods, and possess gut microbiota tailored to their dietary composition, likely adaptive physiological and ecological strategies adopted to cope with extreme highland environments.
Collapse
Affiliation(s)
- Yanfeng Sun
- Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang 050024, China; Ocean College, Hebei Agricultural University, Qinhuangdao 066003, China; Hebei Collaborative Innovation Center for Eco-Environment, Hebei Normal University, Shijiazhuang 050024, China
| | - Yaotong Hao
- Ocean College, Hebei Agricultural University, Qinhuangdao 066003, China
| | - Qian Zhang
- Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang 050024, China
| | - Xu Liu
- Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang 050024, China
| | - Limin Wang
- Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang 050024, China
| | - Juyong Li
- Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang 050024, China
| | - Mo Li
- College of Life Sciences, Cangzhou Normal University, Cangzhou 061001, China.
| | - Dongming Li
- Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang 050024, China; Hebei Collaborative Innovation Center for Eco-Environment, Hebei Normal University, Shijiazhuang 050024, China.
| |
Collapse
|
27
|
Lv J, Qi P, Yan X, Bai L, Zhang L. Structure and Metabolic Characteristics of Intestinal Microbiota in Tibetan and Han Populations of Qinghai-Tibet Plateau and Associated Influencing Factors. Microorganisms 2023; 11:2655. [PMID: 38004668 PMCID: PMC10672793 DOI: 10.3390/microorganisms11112655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 10/22/2023] [Accepted: 10/25/2023] [Indexed: 11/26/2023] Open
Abstract
Residents of the Qinghai-Tibet Plateau might experience shifts in their gut microbiota composition as a result of the plateau environment. For example, high altitudes can increase the abundance of obligate anaerobic bacteria, decrease the number of aerobic bacteria and facultative anaerobic bacteria, increase probiotics, and decrease pathogenic bacteria. This study aimed to determine the structure and metabolic differences in intestinal microbial communities among the Tibetan and Han populations on the Qinghai-Xizang Plateau and shed light on the factors that influence the abundance of the microbial communities in the gut. The structural characteristics of intestinal microorganisms were detected from blood and fecal samples using 16S rRNA sequencing. Metabolic characteristics were detected using gas chromatography-time-of-flight mass spectrometry (GC-TOFMS). The influencing factors were analyzed using Spearman's correlation analysis. Bacteroides and Bifidobacterium were dominant in the intestinal tract of the Han population, while Bacteroides and Prevotella were dominant in that of the Tibetan population, with marked differences in Pseudomonas, Prevotella, and other genera. Ferulic acid and 4-methylcatechol were the main differential metabolites between the Tibetan and Han ethnic groups. This may be the reason for the different adaptability of Tibetan and Han nationalities to the plateau. Alanine aminotransferase and uric acid also have a high correlation with different bacteria and metabolites, which may play a role. These results reveal notable disparities in the compositions and metabolic characteristics of gut microbial communities in the Tibetan and Han people residing on the Qinghai-Tibet Plateau and may provide insights regarding the mechanism of plateau adaptability.
Collapse
Affiliation(s)
- Jin Lv
- The First Clinical Medical College, Lanzhou University, Lanzhou 730000, China; (J.L.); (P.Q.); (X.Y.); (L.B.)
- Department of General Surgery, The First Hospital of Lanzhou University, Lanzhou 730000, China
- Key Laboratory of Biotherapy and Regenerative Medicine of Gansu Province, The First Hospital of Lanzhou University, Lanzhou 730000, China
| | - Ping Qi
- The First Clinical Medical College, Lanzhou University, Lanzhou 730000, China; (J.L.); (P.Q.); (X.Y.); (L.B.)
- Department of General Surgery, The First Hospital of Lanzhou University, Lanzhou 730000, China
- Key Laboratory of Biotherapy and Regenerative Medicine of Gansu Province, The First Hospital of Lanzhou University, Lanzhou 730000, China
| | - Xiangdong Yan
- The First Clinical Medical College, Lanzhou University, Lanzhou 730000, China; (J.L.); (P.Q.); (X.Y.); (L.B.)
- Department of General Surgery, The First Hospital of Lanzhou University, Lanzhou 730000, China
- Key Laboratory of Biotherapy and Regenerative Medicine of Gansu Province, The First Hospital of Lanzhou University, Lanzhou 730000, China
| | - Liuhui Bai
- The First Clinical Medical College, Lanzhou University, Lanzhou 730000, China; (J.L.); (P.Q.); (X.Y.); (L.B.)
- Department of General Surgery, The First Hospital of Lanzhou University, Lanzhou 730000, China
- Key Laboratory of Biotherapy and Regenerative Medicine of Gansu Province, The First Hospital of Lanzhou University, Lanzhou 730000, China
| | - Lei Zhang
- The First Clinical Medical College, Lanzhou University, Lanzhou 730000, China; (J.L.); (P.Q.); (X.Y.); (L.B.)
- Department of General Surgery, The First Hospital of Lanzhou University, Lanzhou 730000, China
- Key Laboratory of Biotherapy and Regenerative Medicine of Gansu Province, The First Hospital of Lanzhou University, Lanzhou 730000, China
| |
Collapse
|
28
|
Xiaoyue T, Qichuan Q, Jing G, Pengcuo S, Yu H, Tingxin L. Lipid levels in the Jiarong Tibetan's diet at high altitudes: a cross-sectional survey. Front Nutr 2023; 10:1207710. [PMID: 37435568 PMCID: PMC10330741 DOI: 10.3389/fnut.2023.1207710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 06/12/2023] [Indexed: 07/13/2023] Open
Abstract
Despite the ongoing debate on the inconsistent and controversial effects of Tibetan diet on blood lipid levels at high altitude, this cross-sectional study was conducted to analyze the relationship between dietary practices and blood lipid levels among Jiarong Tibetan population. A total of 476 Jiarong Tibetan residents were included, in which basic demographic data, physical activity records, simplified food frequency questionnaire, and biochemical data were collected. Using multivariate logistic regression analysis, the potential associations between the variables were examined, and it was found that fat energy supply ratio increased with the elevation of altitude, while the lipid level showed an inverted U-shaped variation. However, the findings suggested that a diet rich in unsaturated fatty acids might balance the effects of the Tibetan diet on the risk of lipid metabolism disorders. Therefore, it is crucial to concentrate on the fat composition rather than the amount of fat E% intake on the plateau. The results highlighted the importance of investigating the interaction between environment and genes in lipid levels among plateau Tibetan population. However, further large-scale prospective studies are required for better understanding of the complexities involved in dietary practices and their influences on blood lipid levels.
Collapse
Affiliation(s)
- Tang Xiaoyue
- Department of Health Management and Physical Examination, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, China
- Department of Clinical Nutrition, Yizheng Hospital of Nanjing Drum Tower Hospital Group, Yizheng, Jiangsu, China
| | - Qiao Qichuan
- Department of Health Management and Physical Examination, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, China
- Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, Chengdu, China
| | - Guo Jing
- Physical Examination, Aba Prefecture People’s Hospital, Maerkang, China
| | - Sanlang Pengcuo
- Physical Examination, Aba Prefecture People’s Hospital, Maerkang, China
| | - Huang Yu
- Department of Health Management and Physical Examination, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, China
- Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, Chengdu, China
| | - Li Tingxin
- Department of Health Management and Physical Examination, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, China
- Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, Chengdu, China
| |
Collapse
|
29
|
Cui X, Wang Z, Guo P, Li F, Chang S, Yan T, Zheng H, Hou F. Shift of Feeding Strategies from Grazing to Different Forage Feeds Reshapes the Rumen Microbiota To Improve the Ability of Tibetan Sheep (Ovis aries) To Adapt to the Cold Season. Microbiol Spectr 2023; 11:e0281622. [PMID: 36809032 PMCID: PMC10100778 DOI: 10.1128/spectrum.02816-22] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 01/22/2023] [Indexed: 02/23/2023] Open
Abstract
The dynamics of ruminant-rumen microbiome symbiosis associated with feeding strategies in the cold season were examined. Twelve pure-grazing adult Tibetan sheep (Ovis aries) (18 months old; body weight, 40 ± 0.23 kg) were transferred from natural pasture to two indoor feedlots and fed either a native-pasture diet (NPF group) or an oat hay diet (OHF group) (n = 6 per treatment), and then the flexibility of rumen microbiomes to adapt to these compositionally different feeding strategies was examined. Principal-coordinate analysis and similarity analysis indicated that the rumen bacterial composition correlated with altered feeding strategies. Microbial diversity was higher in the grazing group than in those fed with native pasture and an oat hay diet (P < 0.05). The dominant microbial phyla were Bacteroidetes and Firmicutes, and the core bacterial taxa comprised mostly (42.49% of shared operational taxonomic units [OTUs]) Ruminococcaceae (408 taxa), Lachnospiraceae (333 taxa), and Prevotellaceae (195 taxa), which were relatively stable across different treatments. Greater relative abundances of Tenericutes at the phylum level, Pseudomonadales at the order level, Mollicutes at the class level, and Pseudomonas at the genus level were observed in a grazing period than in the other two treatments (NPF and OHF) (P < 0.05). In the OHF group, due to the high nutritional quality of the forage, Tibetan sheep can produce high concentrations of short-chain fatty acids (SCFAs) and NH3-N by increasing the relative abundances of key bacteria in the rumen, such as Lentisphaerae, Negativicutes, Selenomonadales, Veillonellaceae, Ruminococcus 2, Quinella, Bacteroidales RF16 group, and Prevotella 1, to aid in nutrients degradation and energy utilization. The levels of beneficial bacteria were increased by the oat hay diet; these microbiotas are likely to help improve and maintain host health and metabolic ability in Tibetan sheep to adapt to cold environments. The rumen fermentation parameters were significantly influenced by feeding strategy in the cold season (P < 0.05). Overall, the results of this study demonstrate the strong effect of feeding strategies on the rumen microbiota of Tibetan sheep, which provided a new idea for the nutrition regulation of Tibetan sheep grazing in the cold season on the Qinghai-Tibetan Plateau. IMPORTANCE During the cold season, like other high-altitude mammals, Tibetan sheep have to adapt their physiological and nutritional strategies, as well as the structure and function of their rumen microbial community, to the seasonal variation of lower food availability and quality. This study focused on the changes and adaptability in the rumen microbiota of Tibetan sheep when they adapted from grazing to a high-efficiency feeding strategy during the cold season by analyzing the rumen microbiota of Tibetan sheep raised under the different management systems, and it shows the linkages among the rumen core and pan-bacteriomes, nutrient utilization, and rumen short-chain fatty acids. The findings from this study suggest that the feeding strategies potentially contribute to variations in the pan-rumen bacteriome, together with the core bacteriome. Fundamental knowledge on the rumen microbiomes and their roles in nutrient utilization furthers our understanding of how rumen microbial adaptation to harsh environments may function in hosts. The facts obtained from the present trial clarified the possible mechanisms of the positive effects of feeding strategy on nutrient utilization and rumen fermentation in harsh environments.
Collapse
Affiliation(s)
- Xiongxiong Cui
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, China
| | - Zhaofeng Wang
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, China
| | - Penghui Guo
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, China
| | - Fuhou Li
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, China
| | - Shenghua Chang
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, China
| | - Tianhai Yan
- Livestock Production Science Branch, Agri-Food and Biosciences Institute, Hillsborough, County Down, United Kingdom
| | - Huiru Zheng
- School of Computing, University of Ulster, Belfast, United Kingdom
| | - Fujiang Hou
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, China
| |
Collapse
|
30
|
Nan J, Yang S, Zhang X, Leng T, Zhuoma J, Zhuoma R, Yuan J, Pi J, Sheng Z, Li S. Identification of candidate genes related to highland adaptation from multiple Chinese local chicken breeds by whole genome sequencing analysis. Anim Genet 2023; 54:55-67. [PMID: 36305422 DOI: 10.1111/age.13268] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 08/30/2022] [Accepted: 09/20/2022] [Indexed: 01/07/2023]
Abstract
Understanding the genetic mechanism of highland adaptation is of great importance for breeding improvement of Tibetan chickens (TBC). Some studies of TBC have identified some candidate genes and pathways from multiple subgroups, but the related genetic mechanisms remain largely unknown. Different genetic backgrounds and the independent genetic basis of highland adaptation make it difficult to identity the selective region of highland adaptation with all TBC samples. In this study, we conducted pre-analysis in a large-scale population to select a TBC subgroup with the purest and highest level of highland-specific lineage for the further analysis. Finally, the 37 samples from a TBC subgroup and 19 Lahsa White chickens were used to represent the highland group for further analysis with 80 samples from five Chinese local lowland breeds as controls. Population structure analysis revealed that highland adaptation significantly affected population stratification in Chinese local chicken breeds. Genome-wide selection signal analysis identified 201 candidate genes associated with highland adaptation of TBC, and these genes were significantly enriched in calcium signaling, vascular smooth muscle contraction and the cellular response to oxidative stress pathways. Additionally, we identified a narrow 1.76 kb region containing an overlapping region between HBZ and an active enhancer, and our identified region showed a highly significant signal. The highland group selected the haplotype with high activity to improve the oxygen-carrying capacity, thus being adapted to a hypoxic environment. We also found that STX2 was significantly selected in the highland group, thus potentially reducing the oxidative stress caused by hypoxia, and that STX2 exhibited the opposite effects on highland adaptation and reproductive traits. Our findings advance our understanding of extreme environment adaptation of highland chickens, and provide some variants and genes beneficial to TBC genetic breeding improvement.
Collapse
Affiliation(s)
- Jiuhong Nan
- State Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Sendong Yang
- State Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Xiaojian Zhang
- State Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Tianze Leng
- State Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China.,Key Laboratory of Marine Ecosystem Dynamics, Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou, China
| | - Joan Zhuoma
- State Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China.,Neighborhood Committee Office, Xigaze City, China
| | - Rensang Zhuoma
- State Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China.,Luomai Township People's Government of Seni District, Naqu City, China
| | - Jingwei Yuan
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Jinsong Pi
- Institute of Animal Husbandry and Veterinary, Hubei Academy of Agricultural Science, Wuhan, China
| | - Zheya Sheng
- State Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Shijun Li
- State Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China.,Key Laboratory of Smart Farming for Agricultural Animals, Ministry of Education, Huazhong Agricultural University, Wuhan, China.,Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
31
|
Hu B, Wang J, Li Y, Ge J, Pan J, Li G, He Y, Zhong H, Wang B, Huang Y, Han S, Xing Y, He H. Gut microbiota facilitates adaptation of the plateau zokor ( Myospalax baileyi) to the plateau living environment. Front Microbiol 2023; 14:1136845. [PMID: 36910168 PMCID: PMC9998695 DOI: 10.3389/fmicb.2023.1136845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Accepted: 02/06/2023] [Indexed: 03/14/2023] Open
Abstract
Gut microbiota not only helps the hosts to perform many key physiological functions such as food digestion, energy harvesting and immune regulation, but also influences host ecology and facilitates adaptation of the host to extreme environments. Plateau zokors epitomize successful physiological adaptation to their living environment in the face of the harsh environment characterized by low temperature, low pressure and hypoxia in the Tibetan plateau region and high concentrations of CO2 in their burrows. Therefore, here we used a metagenomic sequencing approach to explore how gut microbiota contributed to the adaptive evolution of the plateau zokor on the Qinghai-Tibet Plateau. Our metagenomic results show that the gut microbiota of plateau zokors on the Tibetan plateau is not only enriched in a large number of species related to energy metabolism and production of short-chain fatty acids (SCFAs), but also significantly enriched the KO terms that involve carbohydrate uptake pathways, which well address energy uptake in plateau zokors while also reducing inflammatory responses due to low pressure, hypoxia and high CO2 concentrations. There was also a significant enrichment of tripeptidyl-peptidase II (TPPII) associated with antigen processing, apoptosis, DNA damage repair and cell division, which may facilitate the immune response and tissue damage repair in plateau zokors under extreme conditions. These results suggest that these gut microbiota and their metabolites together contribute to the physiological adaptation of plateau zokors, providing new insights into the contribution of the microbiome to the evolution of mammalian adaptation.
Collapse
Affiliation(s)
- Bin Hu
- Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,College of Life Science, University of Chinese Academy of Sciences, Beijing, China
| | - Jiamin Wang
- Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,College of Life Science, University of Chinese Academy of Sciences, Beijing, China
| | - Ying Li
- College of Agriculture and Animal Husbandry, Qinghai University, Xining, China
| | - Jin Ge
- Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Jinchao Pan
- College of Animal Sciences, Anhui University of Science and Technology, Huainan, China
| | - Gaojian Li
- Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,College of Life Science, University of Chinese Academy of Sciences, Beijing, China
| | - Yongcai He
- College of Agriculture and Animal Husbandry, Qinghai University, Xining, China
| | - Haishun Zhong
- Animal Husbandry and Veterinary Station of Xunhua, Xining, Qinghai, China
| | - Bo Wang
- Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,College of Life Science, University of Chinese Academy of Sciences, Beijing, China
| | - Yanyi Huang
- Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,College of Life Science, University of Chinese Academy of Sciences, Beijing, China
| | - Shuyi Han
- Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,College of Life Science, University of Chinese Academy of Sciences, Beijing, China
| | - Yanan Xing
- Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,College of Life Science, University of Chinese Academy of Sciences, Beijing, China
| | - Hongxuan He
- Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
32
|
Zhang XX, Lv QB, Yan QL, Zhang Y, Guo RC, Meng JX, Ma H, Qin SY, Zhu QH, Li CQ, Liu R, Liu G, Li SH, Sun DB, Ni HB. A Catalog of over 5,000 Metagenome-Assembled Microbial Genomes from the Caprinae Gut Microbiota. Microbiol Spectr 2022; 10:e0221122. [PMID: 36321901 PMCID: PMC9769736 DOI: 10.1128/spectrum.02211-22] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 10/10/2022] [Indexed: 12/24/2022] Open
Abstract
Most microbiome studies regarding the ruminant digestive tract have focused on the rumen microbiota, whereas only a few studies were performed on investigating the gut microbiota of ruminants, which limits our understanding of this important component. Herein, the gut microbiota of 30 Caprinae animals (sheep and goats) from six provinces in China was characterized using ultradeep (>100 Gbp per sample) metagenome shotgun sequencing. An inventory of Caprinae gut microbial species containing 5,046 metagenomic assembly genomes (MAGs) was constructed. Particularly, 2,530 of the genomes belonged to uncultured candidate species. These genomes largely expanded the genomic repository of the current microbes in the Caprinae gut. Several enzymes and biosynthetic gene clusters encoded by these Caprinae gut species were identified. In summary, our study extends the gut microbiota characteristics of Caprinae and provides a basis for future studies on animal production and animal health. IMPORTANCE We constructed a microbiota catalog containing 5,046 MAGs from Caprinae gut from six regions of China. Most of the MAGs do not overlap known databases and appear to be potentially new species. We also characterized the functional spectrum of these MAGs and analyzed the differences between different regions. Our study enriches the understanding of taxonomic, functional, and metabolic diversity of Caprinae gut microbiota. We are confident that the manuscript will be of utmost interest to a wide range of readers and be widely applied in future research.
Collapse
Affiliation(s)
- Xiao-Xuan Zhang
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, Shandong Province, China
- Heilongjiang Provincial Key Laboratory of the Prevention and Control of Bovine Diseases, College of Animal Science, Heilongjiang Bayi Agriculture University, Daqing, Heilongjiang Province, China
- Key Laboratory of Bovine Disease Control in Northeast China, Ministry of Agriculture and Rural affairs of the People's Republic of China, Heilongjiang Provincial Key Laboratory of Prevention and Control of Bovine Diseases, College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Qing-Bo Lv
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, Shandong Province, China
- Heilongjiang Provincial Key Laboratory of the Prevention and Control of Bovine Diseases, College of Animal Science, Heilongjiang Bayi Agriculture University, Daqing, Heilongjiang Province, China
- Key Laboratory of Bovine Disease Control in Northeast China, Ministry of Agriculture and Rural affairs of the People's Republic of China, Heilongjiang Provincial Key Laboratory of Prevention and Control of Bovine Diseases, College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Qiu-Long Yan
- Department of Microbiology, College of Basic Medical Sciences, Dalian Medical University, Dalian, Liaoning Province, China
| | - Yue Zhang
- Puensum Genetech Institute, Wuhan, Hubei Province, China
| | - Ruo-Chun Guo
- Puensum Genetech Institute, Wuhan, Hubei Province, China
| | - Jin-Xin Meng
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, Shandong Province, China
| | - He Ma
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, Shandong Province, China
| | - Si-Yuan Qin
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, Jilin Province, China
- Center for Biological Disaster Prevention and Control, National Forestry and Grassland Administration, Shenyang, Liaoning Province, China
| | - Qing-He Zhu
- Heilongjiang Provincial Key Laboratory of the Prevention and Control of Bovine Diseases, College of Animal Science, Heilongjiang Bayi Agriculture University, Daqing, Heilongjiang Province, China
- Key Laboratory of Bovine Disease Control in Northeast China, Ministry of Agriculture and Rural affairs of the People's Republic of China, Heilongjiang Provincial Key Laboratory of Prevention and Control of Bovine Diseases, College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Chun-Qiu Li
- Heilongjiang Provincial Key Laboratory of the Prevention and Control of Bovine Diseases, College of Animal Science, Heilongjiang Bayi Agriculture University, Daqing, Heilongjiang Province, China
- Key Laboratory of Bovine Disease Control in Northeast China, Ministry of Agriculture and Rural affairs of the People's Republic of China, Heilongjiang Provincial Key Laboratory of Prevention and Control of Bovine Diseases, College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Rui Liu
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, Shandong Province, China
| | - Gang Liu
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, Shandong Province, China
| | - Sheng-Hui Li
- Puensum Genetech Institute, Wuhan, Hubei Province, China
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Dong-Bo Sun
- Heilongjiang Provincial Key Laboratory of the Prevention and Control of Bovine Diseases, College of Animal Science, Heilongjiang Bayi Agriculture University, Daqing, Heilongjiang Province, China
- Key Laboratory of Bovine Disease Control in Northeast China, Ministry of Agriculture and Rural affairs of the People's Republic of China, Heilongjiang Provincial Key Laboratory of Prevention and Control of Bovine Diseases, College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Hong-Bo Ni
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, Shandong Province, China
- Key Laboratory of Bovine Disease Control in Northeast China, Ministry of Agriculture and Rural affairs of the People's Republic of China, Heilongjiang Provincial Key Laboratory of Prevention and Control of Bovine Diseases, College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, China
| |
Collapse
|
33
|
Chen R, Duan ZY, Duan XH, Chen QH, Zheng J. Progress in research on gut microbiota in ethnic minorities in China and consideration of intervention strategies based on ethnic medicine: A review. Front Cell Infect Microbiol 2022; 12:1027541. [DOI: 10.3389/fcimb.2022.1027541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 09/22/2022] [Indexed: 11/13/2022] Open
Abstract
One of the variables affecting gut microbiota is ethnicity. There are 56 ethnic subgroups in China, and their intestinal flora differs. A wealth of medical resources has also been produced by the presence of numerous ethnic minorities. In this study, we reviewed the pertinent literature on the intestinal flora of ethnic minorities in China and abroad using the CiteSpace visualization software, and we used bibliometric techniques to find the most widely prescribed medications for preventing and treating endemic diseases in ethnic minorities. Based on the gut microbiology of minority populations, we suggest that by comprehensive development involving literature, experimental, and clinical research, the pharmacological action mechanisms for interventions in endemic diseases can be drawn from ethnic medicine. This point of view has not been discussed before and will offer a fresh perspective on the creation and application of ethnic medications as well as a fresh method for the management of prevalent diseases in ethnic communities.
Collapse
|
34
|
Li B, Jia G, Wen D, Zhao X, Zhang J, Xu Q, Zhao X, Jiang N, Liu Z, Wang Y. Rumen microbiota of indigenous and introduced ruminants and their adaptation to the Qinghai-Tibetan plateau. Front Microbiol 2022; 13:1027138. [PMID: 36299720 PMCID: PMC9589358 DOI: 10.3389/fmicb.2022.1027138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Accepted: 09/20/2022] [Indexed: 12/03/2022] Open
Abstract
The grassland in the Qinghai-Tibetan plateau provide habitat for many indigenous and introduced ruminants which perform important ecological functions that impact the whole Qinghai-Tibetan plateau ecosystem. These indigenous Tibetan ruminants have evolved several adaptive traits to withstand the severe environmental conditions, especially cold, low oxygen partial pressure, high altitude, strong UV radiation, and poor forage availability on the alpine rangelands. Despite the challenges to husbandry associated with the need for enhanced adaptation, several domesticated ruminants have also been successfully introduced to the alpine pasture regions to survive in the harsh environment. For ruminants, these challenging conditions affect not only the host, but also their commensal microbiota, especially the diversity and composition of the rumen microbiota; multiple studies have described tripartite interactions among host-environment-rumen microbiota. Thus, there are significant benefits to understanding the role of rumen microbiota in the indigenous and introduced ruminants of the Qinghai-Tibetan plateau, which has co-evolved with the host to ensure the availability of specific metabolic functions required for host survival, health, growth, and development. In this report, we systemically reviewed the dynamics of rumen microbiota in both indigenous and introduced ruminants (including gut microbiota of wild ruminants) as well as their structure, functions, and interactions with changing environmental conditions, especially low food availability, that enable survival at high altitudes. We summarized that three predominant driving factors including increased VFA production, enhanced fiber degradation, and lower methane production as indicators of higher efficiency energy harvest and nutrient utilization by microbiota that can sustain the host during nutrient deficit. These cumulative studies suggested alteration of rumen microbiota structure and functional taxa with genes that encode cellulolytic enzymes to potentially enhance nutrient and energy harvesting in response to low quality and quantity forage and cold environment. Future progress toward understanding ruminant adaptation to high altitudes will require the integration of phenotypic data with multi-omics analyses to identify host-microbiota co-evolutionary adaptations enabling survival on the Qinghai-Tibetan plateau.
Collapse
Affiliation(s)
- Bin Li
- Institute of Animal Husbandry and Veterinary, Tibet Academy of Agricultural and Animal Husbandry Sciences, Lhasa, China
- Agricultural College, Ningxia University, Yinchuan, China
| | - Gaobin Jia
- Institute of Animal Husbandry and Veterinary, Tibet Academy of Agricultural and Animal Husbandry Sciences, Lhasa, China
- Colleges of Life Science and Technology, Dalian University, Dalian Economic Technological Development Zone, Dalian, China
| | - Dongxu Wen
- Institute of Animal Husbandry and Veterinary, Tibet Academy of Agricultural and Animal Husbandry Sciences, Lhasa, China
| | - Xiuxin Zhao
- Agricultural College, Ningxia University, Yinchuan, China
| | - Junxing Zhang
- Agricultural College, Ningxia University, Yinchuan, China
| | - Qing Xu
- Institute of Life Sciences and Bio-Engineering, Beijing Jiaotong University, Beijing, China
| | - Xialing Zhao
- Institute of Animal Husbandry and Veterinary, Tibet Academy of Agricultural and Animal Husbandry Sciences, Lhasa, China
| | - Nan Jiang
- Colleges of Life Science and Technology, Dalian University, Dalian Economic Technological Development Zone, Dalian, China
| | - Zhenjiang Liu
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, China
| | - Yachun Wang
- Agricultural College, Ningxia University, Yinchuan, China
- Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture of China, National Engineering Laboratory of Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| |
Collapse
|
35
|
Highland adaptation of birds on the Qinghai-Tibet Plateau via gut microbiota. Appl Microbiol Biotechnol 2022; 106:6701-6711. [PMID: 36097173 DOI: 10.1007/s00253-022-12171-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 08/24/2022] [Accepted: 08/26/2022] [Indexed: 11/02/2022]
Abstract
Highland birds evolve multiple adaptive abilities to cope with the harsh environments; however, how they adapt to the high-altitude habitats via the gut microbiota remains understudied. Here we integrated evidences from comparative analysis of gut microbiota to explore the adaptive mechanism of black-necked crane, a typical highland bird in the Qinghai-Tibet Plateau. Firstly, the gut microbiota diversity and function was compared among seven crane species (one high-altitude species and six low-altitude species), and then among three populations of contrasting altitudes for the black-necked crane. Microbiota community diversity in black-necked crane was significantly lower than its low-altitude relatives, but higher microbiota functional diversity was observed in black-necked crane, suggesting that unique bacteria are developed and acquired due to the selection pressure of high-altitude environments. The functional microbial genes differed significantly between the low- and high-altitude black-necked cranes, indicating that altitude significantly impacted microbial communities' composition and structure. Adaptive changes in microbiota diversity and function are observed in response to high-altitude environments. These findings provide us a new insight into the adaptation mechanism to the high-altitude environment for birds via the gut microbiota. KEY POINTS: • The diversity and function of gut microbiota differed significantly between the low- and high-altitude crane species. • Black-necked crane adapts to the high-altitude environment via specific gut microbiota. • Altitude significantly impacted microbial communities' composition and structure.
Collapse
|
36
|
Zhang X, Huang S, Li S, Wang W. Effects of Altitude on the Digestion Performance, Serum Antioxidative Characteristics, Rumen Fermentation Parameters, and Rumen Bacteria of Sanhe Heifers. Front Microbiol 2022; 13:875323. [PMID: 35572662 PMCID: PMC9097872 DOI: 10.3389/fmicb.2022.875323] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Accepted: 04/04/2022] [Indexed: 12/15/2022] Open
Abstract
The production efficiency of dairy cows is affected by altitude, with lower efficiency reported at higher altitudes. However, only a few studies have investigated the digestion performance, serum antioxidative characteristics, rumen fermentation performance, and rumen bacteria of Sanhe heifers at different altitudes. Therefore, in this study, we explored the effects of altitude on these aspects of Sanhe heifers. We evaluated the effects of altitude on the apparent digestibility of nutrients, serum antioxidative characteristics, rumen fermentation parameters, and rumen bacteria in Sanhe heifers. Twenty Sanhe heifers from the same herd and managed with the same practice were used. However, the heifers were from two regions in China: 10 were fed in Hulunbuir City, Inner Mongolia Autonomous Region (119°57'E, 47°17'N; approximately 700 m altitude, named LA) and 10 were fed in Lhasa City, Tibet Autonomous Region (91°06'E, 29°36'N; approximately 3,750 m altitude, named HA). The dry matter intake (DMI), average daily gain (ADG), and DMI/ADG ratio were higher (p < 0.05) in LA than in HA heifers, whereas the apparent total tract digestibility of dry matter, ether extract, and crude proteins were higher (p < 0.05) in the HA group. Compared with LA heifers, the HA heifers showed decreased (p < 0.05) serum concentrations of superoxide dismutase and glutathione peroxidase and increased serum concentration of hydrogen peroxide (p < 0.05). Altitude did not significantly affect the volatile fatty acid concentration in the rumen, but HA presented a lower acetate-to-propionate ratio than LA. The 16S rRNA gene sequencing data showed that altitude significantly affected the rumen microbial composition. At the phylum level, the HA heifers presented a lower relative abundance of Actinobacteria (p < 0.05) and higher relative abundance of Spirochaetae (p < 0.05) than the LA heifers. The correlation analysis revealed that the operational taxonomic units belonging to the genus Prevotella_1 were correlated (p < 0.05) with altitude and DMI. The results indicate that altitude can influence the apparent digestibility of nutrients, serum antioxidant capacity, rumen fermentation, and rumen bacteria composition of Sanhe heifers. The study provides insights into the adaptation mechanism of Sanhe heifers to high-altitude areas.
Collapse
Affiliation(s)
| | | | - Shengli Li
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Wei Wang
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| |
Collapse
|