1
|
Zagumyonnaya ON, Zagumyonnyi DG, Gerasimova EA, Tikhonenkov DV. A protozoan perspective on climate change and biosafety threats: differences in testate amoebae in lakes in forest-swamp and forest-steppe zones in Western Siberia. Appl Environ Microbiol 2025:e0033025. [PMID: 40366178 DOI: 10.1128/aem.00330-25] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2025] [Accepted: 03/17/2025] [Indexed: 05/15/2025] Open
Abstract
The problem of increasing salinity and mineralization in natural and artificial freshwater bodies with climate warming is very relevant nowadays, as it leads to changes in the species composition of planktonic organisms. Testate amoebae are one of the responsive bioindicators that are sensitive to even minor changes in environmental conditions. In this study, a comparative analysis of the species diversity of planktonic testate amoebae was carried out in a number of lakes in the forest-steppe and forest-swamp natural zones of Western Siberia using microscopy and metabarcoding. One new species, Pseudodifflugia siemensmai sp. nov., was described. The detection frequency and the number of reads of amplicon sequence variants of potentially pathogenic testate amoebae belonging to the genera Rhogostoma and Fisculla were higher in forest-steppe lakes. Universal eukaryotic primers for the 18S rRNA gene are well suited for identifying testate amoebae from the supergroup Cercozoa but are practically not applicable for identifying Amoebozoa testaceans. The plankton of the lakes with the highest mineralization and salinity was characterized by the most specific species composition. These results should be taken into account when predicting changes in aquatic communities with further climate warming, which may also be associated with an increase in the occurrence of pathogenic testaceans that pose biosafety threats.IMPORTANCEMicroscopic and metabarcoding analyses reveal important differences in testate amoebae communities in lakes in two natural and climatic zones of Western Siberia that should be taken into account when predicting changes in aquatic communities with further climate warming, which may also be associated with an increase in the occurrence of pathogenic testaceans that pose biosafety threats.
Collapse
Affiliation(s)
- Olga N Zagumyonnaya
- AquaBioSafe Laboratory, University of Tyumen, Tyumen, Russia
- Papanin Institute for Biology of Inland Waters, Russian Academy of Sciences, Borok, Russia
| | - Dmitry G Zagumyonnyi
- AquaBioSafe Laboratory, University of Tyumen, Tyumen, Russia
- Papanin Institute for Biology of Inland Waters, Russian Academy of Sciences, Borok, Russia
| | | | - Denis V Tikhonenkov
- AquaBioSafe Laboratory, University of Tyumen, Tyumen, Russia
- Papanin Institute for Biology of Inland Waters, Russian Academy of Sciences, Borok, Russia
| |
Collapse
|
2
|
Sidón-Ceseña K, Martínez-Mercado MA, Chong-Robles J, Ortega-Saad Y, Camacho-Ibar VF, Linacre L, Lago-Lestón A. The protist community of the oligotrophic waters of the Gulf of Mexico is distinctly shaped by depth-specific physicochemical conditions during the warm season. FEMS Microbiol Ecol 2025; 101:fiaf009. [PMID: 39875193 PMCID: PMC11800482 DOI: 10.1093/femsec/fiaf009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 11/18/2024] [Accepted: 01/13/2025] [Indexed: 01/30/2025] Open
Abstract
Marine protists are key components of biogeochemical cycles and microbial food webs, which respond quickly to environmental factors. In the Gulf of Mexico (GoM), the Loop Current intensifies in summer and supplies the gulf with warm and oligotrophic waters. However, the cyclonic eddies within the GoM create favorable conditions for biological productivity by bringing nutrient-rich water to the subsurface layer. In this study, we investigated the response of the protist community to the regional physicochemical conditions, its spatial and temporal variability, the influence of mesoscale structures, and its ecological roles in the mixed layer (ML) and deep chlorophyll maximum (DCM). This is the first study to conduct a V9-18S rRNA gene survey for this community in the Mexican Exclusive Economic Zone of the GoM. The regional distribution, temporal changes, and mesoscale structures significantly affected the structure of the protist community in the ML. In contrast, only mesoscale structures significantly affected the protist community in the DCM. Different protist assemblages were also present between the ML and DCM, with the Alveolata representing ∼60% of the community in both layers, followed by haptophytes and MAST (Marine Stramenopiles) in the ML; pelagophytes and radiolarians were the more prevalent taxa in the DCM. Finally, co-occurrence analyses revealed that competition, parasitism, and predation were the potential interactions shaping these communities at both depths.
Collapse
Affiliation(s)
- Karla Sidón-Ceseña
- Posgrado de Ciencias de la Vida, Centro de Investigación Científica y de Educación Superior de Ensenada, Ensenada, 22860, México
| | - Miguel Angel Martínez-Mercado
- Departamento de Biotecnología Marina, Centro de Investigación Científica y de Educación Superior de Ensenada, Ensenada, 22860, México
| | - Jennyfers Chong-Robles
- Departamento de Innovación Biomédica, Centro de Investigación Científica y de Educación Superior de Ensenada, Ensenada, 22860, México
| | - Yamne Ortega-Saad
- Departamento de Innovación Biomédica, Centro de Investigación Científica y de Educación Superior de Ensenada, Ensenada, 22860, México
| | - Victor Froylán Camacho-Ibar
- Instituto de Investigaciones Oceanológicas, Universidad Autónoma de Baja California, Ensenada, 22860, México
| | - Lorena Linacre
- Departamento de Oceanografía Biológica, Centro de Investigación Científica y de Educación Superior de Ensenada, Ensenada, 22860, México
| | - Asunción Lago-Lestón
- Departamento de Innovación Biomédica, Centro de Investigación Científica y de Educación Superior de Ensenada, Ensenada, 22860, México
| |
Collapse
|
3
|
Wu C, Xue Y, Song Q, Yin J, Zhang Y, Shen P. Strong seasonality and unsuspected diversity of haptophytes explored by metabarcoding analysis in the Chinese seas. MARINE ENVIRONMENTAL RESEARCH 2024; 202:106792. [PMID: 39447349 DOI: 10.1016/j.marenvres.2024.106792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 09/19/2024] [Accepted: 10/11/2024] [Indexed: 10/26/2024]
Abstract
The haptophytes, are essential components of the marine pico- and nano-plankton but little is known about their diversity and abundance due to the small size. In this study, the taxonomic composition, geographical distribution, and seasonal variation of the haptophytes in the Bohai Sea, the Yellow Sea, and the East China Sea were investigated using DNA metabarcoding in April and October of 2021. A total of 623 and 3756 haptophyte amplicon sequence variants (ASVs) were obtained in spring and autumn, respectively. All currently described or detected haptophyte orders were retrieved, including several deep-branching novel environmental lineages with relative high abundance. The predominant groups were Chrysochromulina, Clade HAP 2-3-4-5, Phaeocystis, and Prymnesium in spring, and Chrysochromulina, Phaeocystis, and Emiliania/Gephyrocapsa compelx in autumn. The richness and diversity showed seasonal variation, with higher alpha diversity occurred in autumn than that of spring. Different haptophyte taxa exhibited unique spatial distribution patterns and water temperature was significantly correlated with the observed community dissimilarities and was the most influential driving factor in both seasons. Our results highlight the high hidden diversity and seasonal variations of haptophytes in the Chinese seas.
Collapse
Affiliation(s)
- Cunchao Wu
- Ocean School, Yantai University, Yantai, 264005, China
| | - Yue Xue
- Ocean School, Yantai University, Yantai, 264005, China
| | | | - Jiehui Yin
- Ocean School, Yantai University, Yantai, 264005, China
| | - Yanying Zhang
- Ocean School, Yantai University, Yantai, 264005, China
| | - Pingping Shen
- Ocean School, Yantai University, Yantai, 264005, China.
| |
Collapse
|
4
|
Fon M, Šupraha L, Andersen T, Uhlig S, Edvardsen B. Optimal growth conditions of the haptophyte Chrysochromulina leadbeateri causing massive fish mortality in Northern Norway. HARMFUL ALGAE 2024; 139:102709. [PMID: 39567085 DOI: 10.1016/j.hal.2024.102709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 08/09/2024] [Accepted: 08/12/2024] [Indexed: 11/22/2024]
Abstract
The haptophyte Chrysochromulina leadbeateri formed the most devastating fish-killing algal bloom ever recorded in Norway, in May and June 2019. The bloom resulted in the death of 14,500 tons of farmed salmon in Nordland and Troms Counties and large economic losses to the aquaculture industry in the region. Fish mortalities due to blooms of this species have occurred before in this region in 1991. Environmental conditions promoting bloom formation and growth of C. leadbeateri are, however, still poorly understood. Here we investigated growth as a function of temperature, salinity and irradiance in combinations using a high throughput experimental set-up. Three strains of C. leadbeateri isolated from the 2019 event and an earlier bloom in 1991 were examined. The highest maximal specific growth rate was found at salinities 28-30 and temperatures between 13 and 15 °C, with growth rate generally increasing with irradiance. The upper temperature tolerance for growth for all strains was at 17-19 °C. Further, analyses of the geographical distribution of C. leadbeateri in previous DNA-based studies compiled in the metaPR2 database revealed several ribotypes, and that a cold-water ribotype of C. leadbeateri caused both the 1991 and 2019 blooms.
Collapse
Affiliation(s)
- Mathias Fon
- Norwegian Veterinary Institute, Ås, Norway; University of Oslo, Department of Biosciences, Oslo, Norway
| | - Luka Šupraha
- University of Oslo, Department of Biosciences, Oslo, Norway; Norwegian Institute for Water Research, Oslo, Norway
| | - Tom Andersen
- University of Oslo, Department of Biosciences, Oslo, Norway
| | | | - Bente Edvardsen
- University of Oslo, Department of Biosciences, Oslo, Norway.
| |
Collapse
|
5
|
Maciel F, Madureira L, Geada P, Teixeira JA, Silva J, Vicente AA. The potential of Pavlovophyceae species as a source of valuable carotenoids and polyunsaturated fatty acids for human consumption. Biotechnol Adv 2024; 74:108381. [PMID: 38777244 DOI: 10.1016/j.biotechadv.2024.108381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 05/17/2024] [Accepted: 05/17/2024] [Indexed: 05/25/2024]
Abstract
Microalgae are a group of microorganisms, mostly photoautotrophs with high CO2 fixation capacity, that have gained increased attention in the last decades due to their ability to produce a wide range of valuable metabolites, such as carotenoids and polyunsaturated fatty acids, for application in food/feed, pharmaceutical, and cosmeceutical industries. Their increasing relevance has highlighted the importance of identifying and culturing new bioactive-rich microalgae species, as well as of a thorough understanding of the growth conditions to optimize the biomass production and master the biochemical composition according to the desired application. Thus, this review intends to describe the main cell processes behind the production of carotenoids and polyunsaturated fatty acids, in order to understand the possible main triggers responsible for the accumulation of those biocompounds. Their economic value and the biological relevance for human consumption are also summarized. In addition, an extensive review of the impact of culture conditions on microalgae growth performance and their biochemical composition is presented, focusing mainly on the studies involving Pavlovophyceae species. A complementary description of the biochemical composition of these microalgae is also presented, highlighting their potential applications as a promising bioresource of compounds for large-scale production and human and animal consumption.
Collapse
Affiliation(s)
- Filipe Maciel
- CEB - Centre of Biological Engineering, University of Minho, Campus de Gualtar, Braga, Portugal; LABBELS -Associate Laboratory, Braga/Guimarães, Portugal.
| | - Leandro Madureira
- CEB - Centre of Biological Engineering, University of Minho, Campus de Gualtar, Braga, Portugal.
| | - Pedro Geada
- CEB - Centre of Biological Engineering, University of Minho, Campus de Gualtar, Braga, Portugal; LABBELS -Associate Laboratory, Braga/Guimarães, Portugal.
| | - José António Teixeira
- CEB - Centre of Biological Engineering, University of Minho, Campus de Gualtar, Braga, Portugal; LABBELS -Associate Laboratory, Braga/Guimarães, Portugal.
| | - Joana Silva
- ALLMICROALGAE, Natural Products S.A., R&D Department, Rua 25 de Abril 19, 2445-287 Pataias, Portugal.
| | - António Augusto Vicente
- CEB - Centre of Biological Engineering, University of Minho, Campus de Gualtar, Braga, Portugal; LABBELS -Associate Laboratory, Braga/Guimarães, Portugal.
| |
Collapse
|
6
|
Mora D, Schlüsener M, Fischer H, Kleinteich J, Schulz M, Ternes T, Thiel J, Wick A, Krenek S. From genes to toxins: Profiling Prymnesium parvum during a riverine harmful algal bloom. HARMFUL ALGAE 2024; 136:102644. [PMID: 38876525 DOI: 10.1016/j.hal.2024.102644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 04/19/2024] [Accepted: 05/12/2024] [Indexed: 06/16/2024]
Abstract
Blooms of Prymnesium parvum, a unicellular alga globally distributed in marine and brackish environments, frequently result in massive fish kills due to the production of toxins called prymnesins by this haptophyte. In August 2022, a harmful algal bloom (HAB) of this species occurred in the lower Oder River (Poland and Germany), which caused mass mortalities of fish and other organisms. This HAB was linked to low discharge of the Oder and mining activities that caused a significant increase in salinity. In this context, we report on the molecular detection and screening of this haptophyte and its toxins in environmental samples and clonal cultures derived thereof. Both conventional PCR and droplet digital PCR assays reliably detected P. parvum in environmental samples. eDNA metabarcoding using the V4 region of the 18S rRNA gene revealed a single Prymnesium sequence variant, but failed to identify it to species level. Four clonal cultures established from environmental samples were unambiguously identified as P. parvum by molecular phylogenetics (near full-length 18S rRNA gene) and light microscopy. Phylogenetic analysis (ITS1-5.8S-ITS2 marker region) placed the cultured phylotype within a clade containing other P. parvum strains known to produce B-type prymnesins. Toxin-screening of the cultures using liquid chromatography-electrospray ionization - time of flight mass spectrometry identified B-type prymnesins, which were also detected in extracts of filter residues from water samples of the Oder collected during the HAB. Overall, our investigation provides a detailed characterization of P. parvum, including their prymnesins, during this HAB in the Oder River, contributing valuable insights into this ecological disaster. In addition, the droplet digital PCR assay established here will be useful for future monitoring of low levels of P. parvum on the Oder River or any other salt-impacted and brackish water bodies.
Collapse
Affiliation(s)
- Demetrio Mora
- Federal Institute of Hydrology (BfG), Am Mainzer Tor 1, 56068 Koblenz, Germany; Current address: Observatory for Climate, Environment and Biodiversity (OCEB), Luxembourg Institute of Science and Technology (LIST), 41 rue du Brill, 4422 Belvaux, Luxembourg
| | - Michael Schlüsener
- Federal Institute of Hydrology (BfG), Am Mainzer Tor 1, 56068 Koblenz, Germany
| | - Helmut Fischer
- Federal Institute of Hydrology (BfG), Am Mainzer Tor 1, 56068 Koblenz, Germany
| | - Julia Kleinteich
- Federal Institute of Hydrology (BfG), Am Mainzer Tor 1, 56068 Koblenz, Germany
| | - Manoj Schulz
- Federal Institute of Hydrology (BfG), Am Mainzer Tor 1, 56068 Koblenz, Germany
| | - Thomas Ternes
- Federal Institute of Hydrology (BfG), Am Mainzer Tor 1, 56068 Koblenz, Germany
| | - Joana Thiel
- Federal Institute of Hydrology (BfG), Am Mainzer Tor 1, 56068 Koblenz, Germany
| | - Arne Wick
- Federal Institute of Hydrology (BfG), Am Mainzer Tor 1, 56068 Koblenz, Germany
| | - Sascha Krenek
- Federal Institute of Hydrology (BfG), Am Mainzer Tor 1, 56068 Koblenz, Germany.
| |
Collapse
|
7
|
Yang P, Guo K, Yang Y, Lyu M, Liu J, Li X, Feng Y. Phylogeny and genetic variations of the three genome compartments in haptophytes shed light on the rapid evolution of coccolithophores. Gene 2023; 887:147716. [PMID: 37604324 DOI: 10.1016/j.gene.2023.147716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 08/15/2023] [Indexed: 08/23/2023]
Abstract
Haptophyte algae, including coccolithophores, play key roles in global carbon cycling and ecosystem. They exhibit exceptional morphological and functional diversity. However, their phylogeny is mostly based on short markers and genome researches are always limited to few species, hindering a better understanding about their evolution and diversification. In this study, by assembling 69 new plastid genomes, 65 new mitochondrial genomes, and 55 nuclear drafts, we systematically analyzed their genome variations and built the most comprehensive phylogenies in haptophytes and Noelaerhabdaceae, with the latter is the family of the model coccolithophore Emiliania huxleyi. The haptophyte genomes vary significantly in size, gene content, and structure. We detected phylogenetic incongruence of Prymnesiales between genome compartments. In Noelaerhabdaceae, by including Reticulofenestra sessilis and a proper outgroup, we found R. sessilis was not the basal taxon of this family. Noelaerhabdaceae strains have very similar genomic features and conserved sequences, but different gene content and dynamic structure. We speculate that was caused by DNA double-strand break repairs. Our results provide valuable genetic resources and new insights into the evolution of haptophytes, especially coccolithophores.
Collapse
Affiliation(s)
- Penghao Yang
- Fudan University, Shanghai 200433, China; Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang 310030, China
| | - Kangning Guo
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang 310030, China; Institute of Biology, Westlake Institute for Advanced Study, Hangzhou, Zhejiang 310024, China
| | - Yuqing Yang
- Fudan University, Shanghai 200433, China; Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang 310030, China
| | - Mingjie Lyu
- Institute of Crop Germplasm and Biotechnology, Tianjin Academy of Agricultural Sciences, Tianjin 300380, China
| | - Jingwen Liu
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, China
| | - Xiaobo Li
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang 310030, China; Institute of Biology, Westlake Institute for Advanced Study, Hangzhou, Zhejiang 310024, China
| | - Yanlei Feng
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang 310030, China; Institute of Biology, Westlake Institute for Advanced Study, Hangzhou, Zhejiang 310024, China.
| |
Collapse
|
8
|
Endo H, Umezawa Y, Takeda S, Suzuki K. Haptophyte communities along the Kuroshio current reveal their geographical sources and ecological traits. Mol Ecol 2023; 32:110-123. [PMID: 36221794 DOI: 10.1111/mec.16734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 09/27/2022] [Accepted: 09/29/2022] [Indexed: 12/29/2022]
Abstract
Haptophytes are one of the most ecologically successful phytoplankton groups in the modern ocean and tend to maintain balanced and stable communities across various environments. However, little is known about the mechanisms that enable community stability and ecological success. To reveal the community characteristics and interactions among haptophytes, we conducted comprehensive observations from the upstream to downstream regions of the Kuroshio Current. Haptophyte abundance and taxonomy were assessed using quantitative polymerase chain reaction and metabarcoding of 18S rRNA sequences, respectively. The haptophyte community structure changed abruptly at sites on the shelf-slope of the East China Sea, indicating the strong influence of shelf waters with high phytoplankton biomass on downstream communities. Correlation network analysis combined with the phylogeny suggested that haptophytes can coexist with their close relatives, possibly owing to their nutritional flexibility, thereby escaping from resource competition. Consistently, some noncalcifying haptophyte genera with high mixotrophic capacities such as Chrysochromulina constituted a major component of the co-occurrence network, whereas coccolithophores such as Emiliania/Gephyrocapsa were rarely observed. Our study findings suggest that noncalcifying haptophytes play crucial roles in community diversity and stability, and in sustaining the food web structure in the Kuroshio ecosystems.
Collapse
Affiliation(s)
- Hisashi Endo
- Bioinformatics Center, Institute for Chemical Research, Kyoto University, Kyoto, Japan
| | - Yu Umezawa
- Department of Environmental Science on Biosphere, Tokyo University of Agriculture and Technology, Tokyo, Japan
| | - Shigenobu Takeda
- Faculty of Environmental Earth Science, Hokkaido University, Hokkaido, Sapporo, Japan
| | - Koji Suzuki
- Graduate School of Fisheries and Environmental Sciences, Nagasaki University, Nagasaki, Japan
| |
Collapse
|
9
|
John U, Šupraha L, Gran-Stadniczeñko S, Bunse C, Cembella A, Eikrem W, Janouškovec J, Klemm K, Kühne N, Naustvoll L, Voss D, Wohlrab S, Edvardsen B. Spatial and biological oceanographic insights into the massive fish-killing bloom of the haptophyte Chrysochromulina leadbeateri in northern Norway. HARMFUL ALGAE 2022; 118:102287. [PMID: 36195411 DOI: 10.1016/j.hal.2022.102287] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 05/04/2022] [Accepted: 07/03/2022] [Indexed: 06/16/2023]
Abstract
A bloom of the fish-killing haptophyte Chrysochromulina leadbeateri in northern Norway during May and June 2019 was the most harmful algal event ever recorded in the region, causing massive mortalities of farmed salmon. Accordingly, oceanographic and biodiversity aspects of the bloom were studied in unprecedented detail, based on metabarcoding and physico-chemical and biotic factors related with the dynamics and distribution of the bloom. Light- and electron-microscopical observations of nanoplankton samples from diverse locations confirmed that C. leadbeateri was dominant in the bloom and the primary cause of associated fish mortalities. Cell counts by light microscopy and flow cytometry were obtained throughout the regional bloom within and adjacent to five fjord systems. Metabarcoding sequences of the V4 region of the 18S rRNA gene from field material collected during the bloom and a cultured isolate from offshore of Tromsøy island confirmed the species identification. Sequences from three genetic markers (18S, 28S rRNA gene and ITS region) verified the close if not identical genetic similarity to C. leadbeateri from a previous massive fish-killing bloom in 1991 in northern Norway. The distribution and cell abundance of C. leadbeateri and related Chrysochromulina species in the recent incident were tracked by integrating observations from metabarcoding sequences of the V4 region of the 18S rRNA gene. Metabarcoding revealed at least 14 distinct Chrysochromulina variants, including putative cryptic species. C. leadbeateri was by far the most abundant of these species, but with high intraspecific genetic variability. Highest cell abundance of up to 2.7 × 107 cells L - 1 of C. leadbeateri was found in Balsfjorden; the high cell densities were associated with stratification near the pycnocline (at ca. 12 m depth) within the fjord. The cell abundance of C. leadbeateri showed positive correlations with temperature, negative correlation with salinity, and a slightly positive correlation with ambient phosphate and nitrate concentrations. The spatio-temporal succession of the C. leadbeateri bloom suggests independent initiation from existing pre-bloom populations in local zones, perhaps sustained and supplemented over time by northeastward advection of the bloom from the fjords.
Collapse
Affiliation(s)
- Uwe John
- Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research, Am Handelshafen 12, 27570 Bremerhaven, Germany; Helmholtz Institute for Functional Marine Biodiversity at the University of Oldenburg (HIFMB), Ammerländer Heersstraße 231, 26129 Oldenburg, Germany.
| | - Luka Šupraha
- Section for Aquatic Biology and Toxicology, Department of Biosciences, University of Oslo, P.O. Box 1066 Blindern, 0316 Oslo, Norway
| | - Sandra Gran-Stadniczeñko
- Section for Aquatic Biology and Toxicology, Department of Biosciences, University of Oslo, P.O. Box 1066 Blindern, 0316 Oslo, Norway
| | - Carina Bunse
- Helmholtz Institute for Functional Marine Biodiversity at the University of Oldenburg (HIFMB), Ammerländer Heersstraße 231, 26129 Oldenburg, Germany; ICBM: Institute for Chemistry and Biology of the Marine Environment, University of Oldenburg, Carl-von-Ossietzky-Straße 9-11, 26129 Oldenburg, Germany
| | - Allan Cembella
- Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research, Am Handelshafen 12, 27570 Bremerhaven, Germany
| | - Wenche Eikrem
- Section for Aquatic Biology and Toxicology, Department of Biosciences, University of Oslo, P.O. Box 1066 Blindern, 0316 Oslo, Norway
| | - Jan Janouškovec
- Section for Aquatic Biology and Toxicology, Department of Biosciences, University of Oslo, P.O. Box 1066 Blindern, 0316 Oslo, Norway
| | - Kerstin Klemm
- Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research, Am Handelshafen 12, 27570 Bremerhaven, Germany
| | - Nancy Kühne
- Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research, Am Handelshafen 12, 27570 Bremerhaven, Germany
| | - Lars Naustvoll
- Institute of Marine Research, P.O box 1871 Nordnes, NO-5817 Bergen, Norway
| | - Daniela Voss
- ICBM: Institute for Chemistry and Biology of the Marine Environment, University of Oldenburg, Carl-von-Ossietzky-Straße 9-11, 26129 Oldenburg, Germany
| | - Sylke Wohlrab
- Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research, Am Handelshafen 12, 27570 Bremerhaven, Germany; Helmholtz Institute for Functional Marine Biodiversity at the University of Oldenburg (HIFMB), Ammerländer Heersstraße 231, 26129 Oldenburg, Germany
| | - Bente Edvardsen
- Section for Aquatic Biology and Toxicology, Department of Biosciences, University of Oslo, P.O. Box 1066 Blindern, 0316 Oslo, Norway
| |
Collapse
|
10
|
Sildever S, Nishi N, Inaba N, Asakura T, Kikuchi J, Asano Y, Kobayashi T, Gojobori T, Nagai S. Monitoring harmful microalgal species and their appearance in Tokyo Bay, Japan, using metabarcoding. METABARCODING AND METAGENOMICS 2022. [DOI: 10.3897/mbmg.6.79471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
During the recent decade, high-throughput sequencing (HTS) techniques, in particular, DNA metabarcoding, have facilitated increased detection of biodiversity, including harmful algal bloom (HAB) species. In this study, the presence of HAB species and their appearance patterns were investigated by employing molecular and light microscopy-based monitoring in Tokyo Bay, Japan. The potential co-appearance patterns between the HAB species, as well as with other eukaryotes and prokaryotes were investigated using correlation and association rule-based time-series analysis. In total, 40 unique HAB species were detected, including 12 toxin-producing HAB species previously not reported from the area. More than half of the HAB species were present throughout the sampling season (summer to autumn) and no structuring or succession patterns associated with the environmental conditions could be detected. Statistically significant (p < 0.05, rS ranging from −0.88 to 0.90) associations were found amongst the HAB species and other eukaryotic and prokaryotic species, including genera containing growth-limiting bacteria. However, significant correlations between species differed amongst the years, indicating that variability in environmental conditions between the years may have a stronger influence on the microalgal community structure and interspecies interactions than the variability during the sampling season. The association rule-based time-series analysis allowed the detection of a previously reported negative relationship between Synechococcus sp. and Skeletonema sp. in nature. Overall, the results support the applicability of metabarcoding and HTS-based microalgae monitoring, as it facilitates more precise species identification compared to light microscopy, as well as provides input for investigating potential interactions amongst different species/groups through simultaneous detection of multiple species/genera.
Collapse
|
11
|
Evolutionary Rates in the Haptophyta: Exploring Molecular and Phenotypic Diversity. JOURNAL OF MARINE SCIENCE AND ENGINEERING 2022. [DOI: 10.3390/jmse10060798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/10/2022]
Abstract
Haptophytes are photosynthetic protists found in both freshwater and marine environments with an origin possibly dating back to the Neoproterozoic era. The most recent molecular phylogeny reveals several haptophyte “mystery clades” that await morphological verification, but it is otherwise highly consistent with morphology-based phylogenies, including that of the coccolithophores (calcifying haptophytes). The fossil coccolith record offers unique insights into extinct lineages, including the adaptive radiations that produced extant descendant species. By combining molecular data of extant coccolithophores and phenotype-based studies of their ancestral lineages, it has become possible to probe the modes and rates of speciation in more detail, although this approach is still limited to only few taxa because of the lack of whole-genome datasets. The evolution of calcification likely involved several steps, but its origin can be traced back to an early association with organic scales typical for all haptophytes. Other key haptophyte traits, including the haplo-diplontic life cycle, are herein mapped upon the coccolithophorid phylogeny to help navigate a discussion of their ecological benefits and trade-offs in a rapidly changing ocean.
Collapse
|
12
|
Keck F, Blackman RC, Bossart R, Brantschen J, Couton M, Hürlemann S, Kirschner D, Locher N, Zhang H, Altermatt F. Meta-analysis shows both congruence and complementarity of DNA and eDNA metabarcoding to traditional methods for biological community assessment. Mol Ecol 2022; 31:1820-1835. [PMID: 35075700 PMCID: PMC9303474 DOI: 10.1111/mec.16364] [Citation(s) in RCA: 59] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 01/11/2022] [Accepted: 01/17/2022] [Indexed: 11/29/2022]
Abstract
DNA metabarcoding is increasingly used for the assessment of aquatic communities, and numerous studies have investigated the consistency of this technique with traditional morpho‐taxonomic approaches. These individual studies have used DNA metabarcoding to assess diversity and community structure of aquatic organisms both in marine and freshwater systems globally over the last decade. However, a systematic analysis of the comparability and effectiveness of DNA‐based community assessment across all of these studies has hitherto been lacking. Here, we performed the first meta‐analysis of available studies comparing traditional methods and DNA metabarcoding to measure and assess biological diversity of key aquatic groups, including plankton, microphytobentos, macroinvertebrates, and fish. Across 215 data sets, we found that DNA metabarcoding provides richness estimates that are globally consistent to those obtained using traditional methods, both at local and regional scale. DNA metabarcoding also generates species inventories that are highly congruent with traditional methods for fish. Contrastingly, species inventories of plankton, microphytobenthos and macroinvertebrates obtained by DNA metabarcoding showed pronounced differences to traditional methods, missing some taxa but at the same time detecting otherwise overseen diversity. The method is generally sufficiently advanced to study the composition of fish communities and replace more invasive traditional methods. For smaller organisms, like macroinvertebrates, plankton and microphytobenthos, DNA metabarcoding may continue to give complementary rather than identical estimates compared to traditional approaches. Systematic and comparable data collection will increase the understanding of different aspects of this complementarity, and increase the effectiveness of the method and adequate interpretation of the results.
Collapse
Affiliation(s)
- François Keck
- Eawag: Swiss Federal Institute of Aquatic Science and Technology, Department of Aquatic Ecology, Überlandstrasse 133, CH-8600, Dübendorf, Switzerland
| | - Rosetta C Blackman
- Eawag: Swiss Federal Institute of Aquatic Science and Technology, Department of Aquatic Ecology, Überlandstrasse 133, CH-8600, Dübendorf, Switzerland.,Department of Evolutionary Biology and Environmental Studies, University of Zurich, Winterthurerstr. 190, CH-8057, Zürich, Switzerland.,Research Priority Programme Global Change and Biodiversity (URPP-GCB), University of Zurich, Winterthurerstr. 190, CH-8057, Zürich, Switzerland
| | - Raphael Bossart
- Eawag: Swiss Federal Institute of Aquatic Science and Technology, Department of Aquatic Ecology, Überlandstrasse 133, CH-8600, Dübendorf, Switzerland
| | - Jeanine Brantschen
- Eawag: Swiss Federal Institute of Aquatic Science and Technology, Department of Aquatic Ecology, Überlandstrasse 133, CH-8600, Dübendorf, Switzerland.,Department of Evolutionary Biology and Environmental Studies, University of Zurich, Winterthurerstr. 190, CH-8057, Zürich, Switzerland.,Research Priority Programme Global Change and Biodiversity (URPP-GCB), University of Zurich, Winterthurerstr. 190, CH-8057, Zürich, Switzerland
| | - Marjorie Couton
- Eawag: Swiss Federal Institute of Aquatic Science and Technology, Department of Aquatic Ecology, Überlandstrasse 133, CH-8600, Dübendorf, Switzerland
| | - Samuel Hürlemann
- Eawag: Swiss Federal Institute of Aquatic Science and Technology, Department of Aquatic Ecology, Überlandstrasse 133, CH-8600, Dübendorf, Switzerland
| | - Dominik Kirschner
- Eawag: Swiss Federal Institute of Aquatic Science and Technology, Department of Aquatic Ecology, Überlandstrasse 133, CH-8600, Dübendorf, Switzerland.,Landscape Ecology, Institute of Terrestrial Ecosystems, Department of Environmental System Science, ETH Zürich, Universitätstr. 16, 8092, Zürich, Switzerland.,Landscape Ecology, Land Change Science, Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Zürcherstrasse 111, 8903, Birmensdorf, Switzerland
| | - Nadine Locher
- Eawag: Swiss Federal Institute of Aquatic Science and Technology, Department of Aquatic Ecology, Überlandstrasse 133, CH-8600, Dübendorf, Switzerland
| | - Heng Zhang
- Eawag: Swiss Federal Institute of Aquatic Science and Technology, Department of Aquatic Ecology, Überlandstrasse 133, CH-8600, Dübendorf, Switzerland.,Department of Evolutionary Biology and Environmental Studies, University of Zurich, Winterthurerstr. 190, CH-8057, Zürich, Switzerland.,Research Priority Programme Global Change and Biodiversity (URPP-GCB), University of Zurich, Winterthurerstr. 190, CH-8057, Zürich, Switzerland
| | - Florian Altermatt
- Eawag: Swiss Federal Institute of Aquatic Science and Technology, Department of Aquatic Ecology, Überlandstrasse 133, CH-8600, Dübendorf, Switzerland.,Department of Evolutionary Biology and Environmental Studies, University of Zurich, Winterthurerstr. 190, CH-8057, Zürich, Switzerland.,Research Priority Programme Global Change and Biodiversity (URPP-GCB), University of Zurich, Winterthurerstr. 190, CH-8057, Zürich, Switzerland
| |
Collapse
|
13
|
Sun P, Liao Y, Wang Y, Yang EJ, Jiao N, Lee Y, Jung J, Cho KH, Moon JK, Xu D. Contrasting Community Composition and Co-Occurrence Relationships of the Active Pico-Sized Haptophytes in the Surface and Subsurface Chlorophyll Maximum Layers of the Arctic Ocean in Summer. Microorganisms 2022; 10:248. [PMID: 35208705 PMCID: PMC8877492 DOI: 10.3390/microorganisms10020248] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 01/13/2022] [Accepted: 01/17/2022] [Indexed: 12/10/2022] Open
Abstract
Haptophytes (Hacrobia: Haptophyta), which can perform phototrophic, phagotrophic, or mixotrophic nutritional modes, are critical for element cycling in a variety of aquatic ecosystems. However, their diversity, particularly in the changing Arctic Ocean (AO), remains largely unknown. In the present study, the biodiversity, community composition, and co-occurrence networks of pico-sized haptophytes in the surface water and subsurface chlorophyll maximum (SCM) layer of the AO were explored. Our results found higher alpha diversity estimates in the surface water compared with in the SCM based on high-throughput sequencing of haptophyte specific 18S rRNA. The community composition of the surface water was significantly different from that of the SCM, and water temperature was identified as the primary factor shaping the community compositions. Prymnesiales (mostly Chrysochromulina), uncultured Prymnesiophyceae, and Phaeocystis dominated the surface water communities, whereas Phaeocystis dominated the SCM communities, followed by Chrysochromulina, uncultured Prymnesiophyceae, and the remaining taxa. The communities of the surface water and SCM layer developed relatively independent modules in the metacommunity network. Nodes in the surface water were more closely connected to one another than those in the SCM. Network stability analysis revealed that surface water networks were more stable than SCM networks. These findings suggest that SCM communities are more susceptible to environmental fluctuations than those in surface water and that future global changes (e.g., global warming) may profoundly influence the development, persistence, and service of SCM in the AO.
Collapse
Affiliation(s)
- Ping Sun
- State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen 361102, China; (P.S.); (Y.L.); (Y.W.); (N.J.)
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystem, College of the Environment and Ecology, Xiamen University, Xiamen 361102, China
- Fujian Provincial Key Laboratory for Coastal Ecology and Environmental Studies, Xiamen University, Xiamen 361102, China
| | - Yuyu Liao
- State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen 361102, China; (P.S.); (Y.L.); (Y.W.); (N.J.)
- Institute of Marine Microbes and Ecospheres, College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, China
| | - Ying Wang
- State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen 361102, China; (P.S.); (Y.L.); (Y.W.); (N.J.)
- Institute of Marine Microbes and Ecospheres, College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, China
| | - Eun-Jin Yang
- Division of Polar Ocean Science, Korea Polar Research Institute, 26, Songdomirae-ro, Yeonsu-gu, Incheon 21990, Korea; (E.-J.Y.); (Y.L.); (J.J.); (K.-H.C.); (J.-K.M.)
| | - Nianzhi Jiao
- State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen 361102, China; (P.S.); (Y.L.); (Y.W.); (N.J.)
- Institute of Marine Microbes and Ecospheres, College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, China
| | - Youngju Lee
- Division of Polar Ocean Science, Korea Polar Research Institute, 26, Songdomirae-ro, Yeonsu-gu, Incheon 21990, Korea; (E.-J.Y.); (Y.L.); (J.J.); (K.-H.C.); (J.-K.M.)
| | - Jinyoung Jung
- Division of Polar Ocean Science, Korea Polar Research Institute, 26, Songdomirae-ro, Yeonsu-gu, Incheon 21990, Korea; (E.-J.Y.); (Y.L.); (J.J.); (K.-H.C.); (J.-K.M.)
| | - Kyoung-Ho Cho
- Division of Polar Ocean Science, Korea Polar Research Institute, 26, Songdomirae-ro, Yeonsu-gu, Incheon 21990, Korea; (E.-J.Y.); (Y.L.); (J.J.); (K.-H.C.); (J.-K.M.)
| | - Jong-Kuk Moon
- Division of Polar Ocean Science, Korea Polar Research Institute, 26, Songdomirae-ro, Yeonsu-gu, Incheon 21990, Korea; (E.-J.Y.); (Y.L.); (J.J.); (K.-H.C.); (J.-K.M.)
| | - Dapeng Xu
- State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen 361102, China; (P.S.); (Y.L.); (Y.W.); (N.J.)
- Institute of Marine Microbes and Ecospheres, College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, China
| |
Collapse
|
14
|
Sildever S, Laas P, Kolesova N, Lips I, Lips U, Nagai S. Plankton biodiversity and species co-occurrence based on environmental DNA – a multiple marker study. METABARCODING AND METAGENOMICS 2021. [DOI: 10.3897/mbmg.5.72371] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Metabarcoding in combination with high-throughput sequencing (HTS) allows simultaneous detection of multiple taxa by targeting single or several taxonomically informative gene regions from environmental DNA samples. In this study, a multiple-marker HTS approach was applied to investigate the plankton diversity and seasonal succession in the Baltic Sea from winter to autumn. Four different markers targeting the 16S, 18S, and 28S ribosomal RNA genes were employed, including a marker for more efficient dinoflagellate detection. Typical seasonal changes were observed in phyto- and bacterioplankton communities. In phytoplankton, the appearance patterns of selected common, dominant, or harmful species followed the patterns also confirmed based on 20 years of phytoplankton monitoring data. In the case of zooplankton, both macro- and microzooplankton species were detected. However, no seasonal patterns were detected in their appearance. In total, 15 and 2 new zoo- and phytoplankton species were detected from the Baltic Sea. HTS approach was especially useful for detecting microzooplankton species as well as for investigating the co-occurrence and potential interactions of different taxa. The results of this study further exemplify the efficiency of metabarcoding for biodiversity monitoring and the advantage of employing multiple markers through the detection of species not identifiable based on a single marker survey and/or by traditional morphology-based methods.
Collapse
|
15
|
Hulatt CJ, Wijffels RH, Posewitz MC. The Genome of the Haptophyte Diacronema lutheri (Pavlova lutheri, Pavlovales): A Model for Lipid Biosynthesis in Eukaryotic Algae. Genome Biol Evol 2021; 13:6337978. [PMID: 34343248 PMCID: PMC8379373 DOI: 10.1093/gbe/evab178] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/27/2021] [Indexed: 12/28/2022] Open
Abstract
Haptophytes are biogeochemically and industrially important protists with underexplored genomic diversity. We present a nuclear genome assembly for the class Pavlovales, which was assembled with PacBio long-read data into highly contiguous sequences. We sequenced strain Diacronema lutheri NIVA-4/92, formerly known as Pavlova lutheri, because it has established roles in aquaculture and has been a key organism for studying microalgal lipid biosynthesis. Our data show that D. lutheri has the smallest and most streamlined haptophycean genome assembled to date, with an assembly size of 43.503 Mb and 14,446 protein-coding genes. Together with its high nuclear GC content, Diacronema is an important genus for investigating selective pressures on haptophyte genome evolution, contrasting with the much larger and more repetitive genome of the coccolithophore Emiliania huxleyi. The D. lutheri genome will be a valuable resource for resolving the genetic basis of algal lipid biosynthesis and metabolic remodeling that takes place during adaptation and stress response in natural and engineered environments.
Collapse
Affiliation(s)
- Chris J Hulatt
- Faculty of Biosciences and Aquaculture, Nord University, Mørkvedbukta Research Station, Bodø, Norway.,Department of Chemistry, Colorado School of Mines, Golden, Colorado, USA
| | - René H Wijffels
- Faculty of Biosciences and Aquaculture, Nord University, Mørkvedbukta Research Station, Bodø, Norway.,Bioprocess Engineering, AlgaePARC, Wageningen University and Research, The Netherlands
| | - Matthew C Posewitz
- Department of Chemistry, Colorado School of Mines, Golden, Colorado, USA
| |
Collapse
|
16
|
Pujari L, Narale D, Kan J, Wu C, Zhang G, Ding C, Li L, Sun J. Distribution of Chromophytic Phytoplankton in the Eddy-Induced Upwelling Region of the West Pacific Ocean Revealed Using rbcL Genes. Front Microbiol 2021; 12:596015. [PMID: 33737916 PMCID: PMC7960667 DOI: 10.3389/fmicb.2021.596015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Accepted: 01/19/2021] [Indexed: 11/17/2022] Open
Abstract
Marine chromophytic phytoplankton are a diverse group of algae and contribute significantly to the total oceanic primary production. However, the spatial distribution of chromophytic phytoplankton is understudied in the West Pacific Ocean (WPO). In this study, we have investigated the community structure and spatial distribution of chromophytic phytoplankton using RuBisCO genes (Form ID rbcL). Our results showed that Haptophyceae, Pelagophyceae, Cyanophyceae, Xanthophyceae, and Bacillariophyceae were the dominant groups. Further, chromophytic phytoplankton can be distinguished between upwelling and non-upwelling zones of the WPO. Surface and 75 m depths of a non-upwelling area were dominated by Prochlorococcus strains, whereas chromophytic phytoplankton were homogenously distributed at the surface layer in the upwelling zone. Meanwhile, Pelagomonas-like sequences were dominant at DCM (75 m) and 150 m depths of the upwelling zone. Non-metric multidimensional scaling (NMDS) analysis did not differentiate between chromophytic phytoplankton in the upwelling and non-upwelling areas, however, it showed clear trends of them at different depths. Further, redundancy analysis (RDA) showed the influence of physicochemical parameters on the distribution of chromophytic phytoplankton. Along with phosphate (p < 0.01), temperature and other dissolved nutrients were important in driving community structure. The upwelling zone was impacted by a decrease in temperature, salinity, and re-supplement of nutrients, where Pelagomonas-like sequences outnumbered other chromophytic groups presented.
Collapse
Affiliation(s)
- Laxman Pujari
- Research Center for Indian Ocean Ecosystem, Tianjin University of Science and Technology, Tianjin, China
| | - Dhiraj Narale
- Research Center for Indian Ocean Ecosystem, Tianjin University of Science and Technology, Tianjin, China
| | - Jinjun Kan
- Stroud Water Research Center, Avondale, PA, United States
| | - Chao Wu
- Research Center for Indian Ocean Ecosystem, Tianjin University of Science and Technology, Tianjin, China
| | - Guicheng Zhang
- Research Center for Indian Ocean Ecosystem, Tianjin University of Science and Technology, Tianjin, China
| | - Changling Ding
- Research Center for Indian Ocean Ecosystem, Tianjin University of Science and Technology, Tianjin, China
| | - Liuyang Li
- Research Center for Indian Ocean Ecosystem, Tianjin University of Science and Technology, Tianjin, China.,School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Jun Sun
- College of Marine Science and Technology, China University of Geosciences, Wuhan, China
| |
Collapse
|
17
|
Wang KJ, Huang Y, Majaneva M, Belt ST, Liao S, Novak J, Kartzinel TR, Herbert TD, Richter N, Cabedo-Sanz P. Group 2i Isochrysidales produce characteristic alkenones reflecting sea ice distribution. Nat Commun 2021; 12:15. [PMID: 33397905 PMCID: PMC7782803 DOI: 10.1038/s41467-020-20187-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Accepted: 11/12/2020] [Indexed: 01/29/2023] Open
Abstract
Alkenones are biomarkers produced solely by algae in the order Isochrysidales that have been used to reconstruct sea surface temperature (SST) since the 1980s. However, alkenone-based SST reconstructions in the northern high latitude oceans show significant bias towards warmer temperatures in core-tops, diverge from other SST proxies in down core records, and are often accompanied by anomalously high relative abundance of the C37 tetra-unsaturated methyl alkenone (%C37:4). Elevated %C37:4 is widely interpreted as an indicator of low sea surface salinity from polar water masses, but its biological source has thus far remained elusive. Here we identify a lineage of Isochrysidales that is responsible for elevated C37:4 methyl alkenone in the northern high latitude oceans through next-generation sequencing and lab-culture experiments. This Isochrysidales lineage co-occurs widely with sea ice in marine environments and is distinct from other known marine alkenone-producers, namely Emiliania huxleyi and Gephyrocapsa oceanica. More importantly, the %C37:4 in seawater filtered particulate organic matter and surface sediments is significantly correlated with annual mean sea ice concentrations. In sediment cores from the Svalbard region, the %C37:4 concentration aligns with the Greenland temperature record and other qualitative regional sea ice records spanning the past 14 kyrs, reflecting sea ice concentrations quantitatively. Our findings imply that %C37:4 is a powerful proxy for reconstructing sea ice conditions in the high latitude oceans on thousand- and, potentially, on million-year timescales.
Collapse
Affiliation(s)
- Karen Jiaxi Wang
- grid.40263.330000 0004 1936 9094Department of Earth, Environmental and Planetary Sciences, Brown University, Providence, RI 02912 USA ,grid.40263.330000 0004 1936 9094Institute at Brown for Environment and Society, Brown University, Providence, RI 02912 USA
| | - Yongsong Huang
- grid.40263.330000 0004 1936 9094Department of Earth, Environmental and Planetary Sciences, Brown University, Providence, RI 02912 USA ,grid.40263.330000 0004 1936 9094Institute at Brown for Environment and Society, Brown University, Providence, RI 02912 USA
| | - Markus Majaneva
- grid.420127.20000 0001 2107 519XNorwegian Institute for Nature Research (NINA), NO-7485 Trondheim, Norway
| | - Simon T. Belt
- grid.11201.330000 0001 2219 0747Biogeochemistry Research Centre, School of Geography, Earth and Environmental Sciences, Plymouth University, Plymouth, PL4 8AA UK
| | - Sian Liao
- grid.40263.330000 0004 1936 9094Institute at Brown for Environment and Society, Brown University, Providence, RI 02912 USA ,grid.40263.330000 0004 1936 9094Department of Chemistry, Brown University, Providence, RI 02912 USA
| | - Joseph Novak
- grid.40263.330000 0004 1936 9094Department of Earth, Environmental and Planetary Sciences, Brown University, Providence, RI 02912 USA
| | - Tyler R. Kartzinel
- grid.40263.330000 0004 1936 9094Institute at Brown for Environment and Society, Brown University, Providence, RI 02912 USA ,grid.40263.330000 0004 1936 9094Department of Ecology and Evolutionary Biology, Brown University, Providence, RI 02912 USA
| | - Timothy D. Herbert
- grid.40263.330000 0004 1936 9094Department of Earth, Environmental and Planetary Sciences, Brown University, Providence, RI 02912 USA ,grid.40263.330000 0004 1936 9094Institute at Brown for Environment and Society, Brown University, Providence, RI 02912 USA
| | - Nora Richter
- grid.40263.330000 0004 1936 9094Department of Earth, Environmental and Planetary Sciences, Brown University, Providence, RI 02912 USA ,grid.40263.330000 0004 1936 9094Institute at Brown for Environment and Society, Brown University, Providence, RI 02912 USA ,grid.10914.3d0000 0001 2227 4609Department of Marine Microbiology and Biogeochemistry, NIOZ Royal Netherlands Institute for Sea Research, Texel, The Netherlands
| | - Patricia Cabedo-Sanz
- grid.11201.330000 0001 2219 0747Biogeochemistry Research Centre, School of Geography, Earth and Environmental Sciences, Plymouth University, Plymouth, PL4 8AA UK
| |
Collapse
|
18
|
Nagai S, Chen H, Kawakami Y, Yamamoto K, Sildever S, Kanno N, Oikawa H, Yasuike M, Nakamura Y, Hongo Y, Fujiwara A, Kobayashi T, Gojobori T. Monitoring of the toxic dinoflagellate Alexandrium catenella in Osaka Bay, Japan using a massively parallel sequencing (MPS)-based technique. HARMFUL ALGAE 2019; 89:101660. [PMID: 31672234 DOI: 10.1016/j.hal.2019.101660] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Revised: 08/10/2019] [Accepted: 08/28/2019] [Indexed: 06/10/2023]
Abstract
Since 2002, blooms of Alexandrium catenella sensu Fraga et al. (2015) and paralytic shellfish toxicity events have occurred almost yearly in Osaka Bay, Japan. To better understand the triggers for reoccurring A. catenella blooms in Osaka Bay, phytoplankton community was monitored during the spring seasons of 2012-2015. Monitoring was performed using massively parallel sequencing (MPS)-based technique on amplicon sequences of the 18S rRNA gene. Dense blooms of A. catenella occurred every year except in 2012, however, there was no significant correlation with the environmental parameters investigated. Plankton community diversity decreased before and middle of the A. catenella blooms, suggesting that the decline in diversity could be an indicator for the bloom occurrence. The yearly abundance pattern of A. catenella cells obtained by morphology-based counting coincided with the relative sequence abundances, which supports the effectiveness of MPS-based phytoplankton monitoring.
Collapse
Affiliation(s)
- Satoshi Nagai
- National Research Institute of Fisheries Science, 2-12-4 Fukuura, Kanazawa-ku, Yokohama, Kanagawa, 236-8648, Japan.
| | - Hungyen Chen
- Department of Agronomy, National Taiwan University, No. 1, Sec. 4, Roosevelt Rd., Taipei, 10617, Taiwan
| | - Yoko Kawakami
- AXIOHELIX Co. Ltd, -12-17 Kandaizumicho, Chiyoda-ku, Tokyo, 101-0024, Japan
| | - Keigo Yamamoto
- Research Institute of Environment, Agriculture and Fisheries, Osaka Prefecture, 2926-1 Tanigawa, Misaki, Sen-Nan, Osaka, 599-0311, Japan
| | - Sirje Sildever
- National Research Institute of Fisheries Science, 2-12-4 Fukuura, Kanazawa-ku, Yokohama, Kanagawa, 236-8648, Japan
| | - Nanako Kanno
- National Research Institute of Fisheries Science, 2-12-4 Fukuura, Kanazawa-ku, Yokohama, Kanagawa, 236-8648, Japan
| | - Hiroshi Oikawa
- National Research Institute of Fisheries Science, 2-12-4 Fukuura, Kanazawa-ku, Yokohama, Kanagawa, 236-8648, Japan
| | - Motoshige Yasuike
- National Research Institute of Fisheries Science, 2-12-4 Fukuura, Kanazawa-ku, Yokohama, Kanagawa, 236-8648, Japan
| | - Yoji Nakamura
- National Research Institute of Fisheries Science, 2-12-4 Fukuura, Kanazawa-ku, Yokohama, Kanagawa, 236-8648, Japan
| | - Yuki Hongo
- National Research Institute of Fisheries Science, 2-12-4 Fukuura, Kanazawa-ku, Yokohama, Kanagawa, 236-8648, Japan
| | - Atushi Fujiwara
- National Research Institute of Fisheries Science, 2-12-4 Fukuura, Kanazawa-ku, Yokohama, Kanagawa, 236-8648, Japan
| | - Takanori Kobayashi
- National Research Institute of Fisheries Science, 2-12-4 Fukuura, Kanazawa-ku, Yokohama, Kanagawa, 236-8648, Japan
| | - Takashi Gojobori
- Computational Bioscience Research Center, King Abdullah University of Science and Technology, 4700 KAUST, Thuwal, 23955-6900, Saudi Arabia
| |
Collapse
|
19
|
Sildever S, Kawakami Y, Kanno N, Kasai H, Shiomoto A, Katakura S, Nagai S. Toxic HAB species from the Sea of Okhotsk detected by a metagenetic approach, seasonality and environmental drivers. HARMFUL ALGAE 2019; 87:101631. [PMID: 31349888 DOI: 10.1016/j.hal.2019.101631] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Revised: 05/30/2019] [Accepted: 06/10/2019] [Indexed: 06/10/2023]
Abstract
During recent decades, the distribution of harmful algal bloom (HAB) species has expanded worldwide together with the increase of blooms and toxicity events. In this study, the presence of toxic HAB species in the Sea of Okhotsk was investigated based on metagenetic data collected during 6 years of weekly monitoring. Operational taxonomic units (OTUs) associated with the toxic HAB species were detected based on amplifying 18S V7-V9 and 28S D1 rRNA gene regions. In total, 43 unique OTUs associated with toxic HAB species were revealed, with 26 of those previously not reported from the Sea of Okhotsk. More OTUs belonging to dinoflagellates were detected by 18S, whereas a similar number of OTUs associated with dinoflagellates and diatoms were detected by targeting the 28S region. Species belonging to genera Alexandrium, Karenia and Karlodinium were mainly associated with OTUs under Dinophyceae, whereas Bacillariophyceae was represented by the species belonging to genus Pseudo-nitzschia. From the detected OTUs, 22 showed a clear seasonal pattern with the majority of those appearing during summer-autumn. For Alexandrium pacificum, Aureococcus anophagefferens, and Pseudo-nitzschia pungens, the seasonal pattern was detected based on both rRNA regions. Additionally, 14 OTUs were detected during all seasons and two OTUs appeared sporadically. OTUs associated with the toxic species had low relative read abundances, which together with other factors such as similar and variable morphology as well as usage of fixatives, may explain why those species have previously not been detected by light microscopy. Environmental parameters, especially water temperature, significantly (<0.05) influenced the variability in OTU relative abundances and displayed significant (<0.05) correlations with the unique OTUs. The results of this study demonstrate the usefulness of the metagenetic approach for phytoplankton monitoring, which is especially relevant for detecting toxic HAB species.
Collapse
Affiliation(s)
- Sirje Sildever
- National Research Institute of Fisheries Science, Yokohama Kanagawa, 236-8648, Japan
| | - Yoko Kawakami
- AXIOHELIX Co. Ltd, Chiyoda-ku, Tokyo, 101-0024, Japan
| | - Nanako Kanno
- National Research Institute of Fisheries Science, Yokohama Kanagawa, 236-8648, Japan
| | - Hiromi Kasai
- Hokkaido National Fisheries Research Institute, Kushiro, Hokkaido, 085-0802, Japan
| | | | | | - Satoshi Nagai
- National Research Institute of Fisheries Science, Yokohama Kanagawa, 236-8648, Japan.
| |
Collapse
|
20
|
Deodato CR, Barlow SB, Hovde BT, Cattolico RA. Naked Chrysochromulina (Haptophyta) isolates from lake and river ecosystems: An electron microscopic comparison including new observations on the type species of this taxon. ALGAL RES 2019. [DOI: 10.1016/j.algal.2019.101492] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
21
|
Czech L, Stamatakis A. Scalable methods for analyzing and visualizing phylogenetic placement of metagenomic samples. PLoS One 2019; 14:e0217050. [PMID: 31136592 PMCID: PMC6538146 DOI: 10.1371/journal.pone.0217050] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Accepted: 05/05/2019] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND The exponential decrease in molecular sequencing cost generates unprecedented amounts of data. Hence, scalable methods to analyze these data are required. Phylogenetic (or Evolutionary) Placement methods identify the evolutionary provenance of anonymous sequences with respect to a given reference phylogeny. This increasingly popular method is deployed for scrutinizing metagenomic samples from environments such as water, soil, or the human gut. NOVEL METHODS Here, we present novel and, more importantly, highly scalable methods for analyzing phylogenetic placements of metagenomic samples. More specifically, we introduce methods for (a) visualizing differences between samples and their correlation with associated meta-data on the reference phylogeny, (b) clustering similar samples using a variant of the k-means method, and (c) finding phylogenetic factors using an adaptation of the Phylofactorization method. These methods enable to interpret metagenomic data in a phylogenetic context, to find patterns in the data, and to identify branches of the phylogeny that are driving these patterns. RESULTS To demonstrate the scalability and utility of our methods, as well as to provide exemplary interpretations of our methods, we applied them to 3 publicly available datasets comprising 9782 samples with a total of approximately 168 million sequences. The results indicate that new biological insights can be attained via our methods.
Collapse
Affiliation(s)
- Lucas Czech
- Computational Molecular Evolution Group, Heidelberg Institute for Theoretical Studies, Heidelberg, Germany
| | - Alexandros Stamatakis
- Computational Molecular Evolution Group, Heidelberg Institute for Theoretical Studies, Heidelberg, Germany
- Institute for Theoretical Informatics, Karlsruhe Institute of Technology, Karlsruhe, Germany
| |
Collapse
|
22
|
Richter N, Longo WM, George S, Shipunova A, Huang Y, Amaral‐Zettler L. Phylogenetic diversity in freshwater-dwelling Isochrysidales haptophytes with implications for alkenone production. GEOBIOLOGY 2019; 17:272-280. [PMID: 30720914 PMCID: PMC6590312 DOI: 10.1111/gbi.12330] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/04/2018] [Revised: 11/30/2018] [Accepted: 12/06/2018] [Indexed: 06/09/2023]
Abstract
Members of the order Isochrysidales are unique among haptophyte lineages in being the exclusive producers of alkenones, long-chain ketones that are commonly used for paleotemperature reconstructions. Alkenone-producing haptophytes are divided into three major groups based largely on molecular ecological data: Group I is found in freshwater lakes, Group II commonly occurs in brackish and coastal marine environments, and Group III consists of open ocean species. Each group has distinct alkenone distributions; however, only Groups II and III Isochrysidales currently have cultured representatives. The uncultured Group I Isochrysidales are distinguished geochemically by the presence of tri-unsaturated alkenone isomers (C37:3b Me, C38:3b Et, C38:3b Me, C39:3b Et) present in water column and sediment samples, yet their genetic diversity, morphology, and environmental controls are largely unknown. Using small-subunit (SSU) ribosomal RNA (rRNA) marker gene amplicon high-throughput sequencing of environmental water column and sediment samples, we show that Group I is monophyletic with high phylogenetic diversity and contains a well-supported clade separating the previously described "EV" clade from the "Greenland" clade. We infer the first partial large-subunit (LSU) rRNA gene Group I sequence phylogeny, which uncovered additional well-supported clades embedded within Group I. Relative to Group II, Group I revealed higher levels of genetic diversity despite conservation of alkenone signatures and a closer evolutionary relationship with Group III. In Group I, the presence of the tri-unsaturated alkenone isomers appears to be conserved, which is not the case for Group II. This suggests differing environmental influences on Group I and II and perhaps uncovers evolutionary constraints on alkenone biosynthesis.
Collapse
Affiliation(s)
- Nora Richter
- Department of Earth, Environmental and Planetary SciencesBrown UniversityProvidenceRhode Island
- The Josephine Bay Paul Center for Comparative Molecular Biology and EvolutionMarine Biological LaboratoryWoods HoleMassachusetts
| | - William M. Longo
- Department of Earth, Environmental and Planetary SciencesBrown UniversityProvidenceRhode Island
- Department of Marine Chemistry and GeochemistryWoods Hole Oceanographic InstitutionWoods HoleMassachusetts
| | - Sarabeth George
- Department of Earth, Environmental and Planetary SciencesBrown UniversityProvidenceRhode Island
- The Josephine Bay Paul Center for Comparative Molecular Biology and EvolutionMarine Biological LaboratoryWoods HoleMassachusetts
| | - Anna Shipunova
- The Josephine Bay Paul Center for Comparative Molecular Biology and EvolutionMarine Biological LaboratoryWoods HoleMassachusetts
| | - Yongsong Huang
- Department of Earth, Environmental and Planetary SciencesBrown UniversityProvidenceRhode Island
| | - Linda Amaral‐Zettler
- Department of Earth, Environmental and Planetary SciencesBrown UniversityProvidenceRhode Island
- The Josephine Bay Paul Center for Comparative Molecular Biology and EvolutionMarine Biological LaboratoryWoods HoleMassachusetts
- Department of Marine Microbiology and BiogeochemistryNIOZ Royal Netherlands Institute for Sea Research and Utrecht UniversityTexelThe Netherlands
- Department of Freshwater and Marine EcologyInstitute for Biodiversity and Ecosystem DynamicsUniversity of AmsterdamAmsterdamNetherlands
| |
Collapse
|
23
|
Gran‐Stadniczeñko S, Egge E, Hostyeva V, Logares R, Eikrem W, Edvardsen B. Protist Diversity and Seasonal Dynamics in Skagerrak Plankton Communities as Revealed by Metabarcoding and Microscopy. J Eukaryot Microbiol 2019; 66:494-513. [PMID: 30414334 PMCID: PMC6587730 DOI: 10.1111/jeu.12700] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Revised: 10/15/2018] [Accepted: 10/18/2018] [Indexed: 02/03/2023]
Abstract
Protist community composition and seasonal dynamics are of major importance for the production of higher trophic levels, such as zooplankton and fish. Our aim was to reveal how the protist community in the Skagerrak changes through the seasons by combining high-throughput sequencing and microscopy of plankton collected monthly over two years. The V4 region of the 18S rRNA gene was amplified by eukaryote universal primers from the total RNA/cDNA. We found a strong seasonal variation in protist composition and proportional abundances, and a difference between two depths within the euphotic zone. Highest protist richness was found in late summer-early autumn, and lowest in winter. Temperature was the abiotic factor explaining most of the variation in diversity. Dinoflagellates was the most abundant and diverse group followed by ciliates and diatoms. We found about 70 new taxa recorded for the first time in the Skagerrak. The seasonal pattern in relative read abundance of major phytoplankton groups was well in accordance with microscopical biovolumes. This is the first metabarcoding study of the protist plankton community of all taxonomic groups and through seasons in the Skagerrak, which may serve as a baseline for future surveys to reveal effects of climate and environmental changes.
Collapse
Affiliation(s)
| | - Elianne Egge
- Department of BiosciencesUniversity of OsloP. O. Box 1066 Blindern0316OsloNorway
| | | | - Ramiro Logares
- Department of Marine Biology and OceanographyInstitut de Ciències del Mar (CSIC)08003BarcelonaCataloniaSpain
| | - Wenche Eikrem
- Department of BiosciencesUniversity of OsloP. O. Box 1066 Blindern0316OsloNorway
- Norwegian Institute for Water ResearchGaustadalléen 210349OsloNorway
| | - Bente Edvardsen
- Department of BiosciencesUniversity of OsloP. O. Box 1066 Blindern0316OsloNorway
| |
Collapse
|
24
|
Abstract
Vitamin B1 (thiamin) is a cofactor for critical enzymatic processes and is scarce in surface oceans. Several eukaryotic marine algal species thought to rely on exogenous thiamin are now known to grow equally well on the precursor 4-amino-5-hydroxymethyl-2-methylpyrimidine (HMP), including the haptophyte Emiliania huxleyi Because the thiamin biosynthetic capacities of the diverse and ecologically important haptophyte lineage are otherwise unknown, we investigated the pathway in transcriptomes and two genomes from 30 species representing six taxonomic orders. HMP synthase is missing in data from all studied taxa, but the pathway is otherwise complete, with some enzymatic variations. Experiments on axenic species from three orders demonstrated that equivalent growth rates were supported by 1 µM HMP or thiamin amendment. Cellular thiamin quotas were quantified in the oceanic phytoplankter E. huxleyi using the thiochrome assay. E. huxleyi exhibited luxury storage in standard algal medium [(1.16 ± 0.18) × 10-6 pmol thiamin cell-1], whereas quotas in cultures grown under more environmentally relevant thiamin and HMP supplies [(2.22 ± 0.07) × 10-7 or (1.58 ± 0.14) × 10-7 pmol thiamin cell-1, respectively] were significantly lower than luxury values and prior estimates. HMP and its salvage-related analog 4-amino-5-aminomethyl-2-methylpyrimidine (AmMP) supported higher growth than thiamin under environmentally relevant supply levels. These compounds also sustained growth of the stramenopile alga Pelagomonas calceolata Together with identification of a salvage protein subfamily (TENA_E) in multiple phytoplankton, the results indicate that salvaged AmMP and exogenously acquired HMP are used by several groups for thiamin production. Our studies highlight the potential importance of thiamin pathway intermediates and their analogs in shaping phytoplankton community structure.IMPORTANCE The concept that vitamin B1 (thiamin) availability in seawater controls the productivity and structure of eukaryotic phytoplankton communities has been discussed for half a century. We examined B1 biosynthesis and salvage pathways in diverse phytoplankton species. These comparative genomic analyses as well as experiments show that phytoplankton thought to require exogenous B1 not only utilize intermediate compounds to meet this need but also exhibit stronger growth on these compounds than on thiamin. Furthermore, oceanic phytoplankton have lower cellular thiamin quotas than previously reported, and salvage of intermediate compounds is likely a key mechanism for meeting B1 requirements under environmentally relevant scenarios. Thus, several lines of evidence now suggest that availability of specific precursor molecules could be more important in structuring phytoplankton communities than the vitamin itself. This understanding of preferential compound utilization and thiamin quotas will improve biogeochemical model parameterization and highlights interaction networks among ocean microbes.
Collapse
|