1
|
Shambhavi S, Mondal S, Chakraborty A, Shukla N, Panda BK, Kumar S, Kinatukara P, Pal B, Kamat SS, Sankaranarayanan R. Emergence of Dip2-mediated specific DAG-based PKC signalling axis in eukaryotes. eLife 2025; 14:RP104011. [PMID: 40327034 PMCID: PMC12055004 DOI: 10.7554/elife.104011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/07/2025] Open
Abstract
Diacylglycerols (DAGs) are used for metabolic purposes and are tightly regulated secondary lipid messengers in eukaryotes. DAG subspecies with different fatty-acyl chains are proposed to be involved in the activation of distinct PKC isoforms, resulting in diverse physiological outcomes. However, the molecular players and the regulatory origin for fine-tuning the PKC pathway are unknown. Here, we show that Dip2, a conserved DAG regulator across Fungi and Animalia, has emerged as a modulator of PKC signalling in yeast. Dip2 maintains the level of a specific DAG subpopulation, required for the activation of PKC-mediated cell wall integrity pathway. Interestingly, the canonical DAG-metabolism pathways, being promiscuous, are decoupled from PKC signalling. We demonstrate that these DAG subspecies are sourced from a phosphatidylinositol pool generated by the acyl-chain remodelling pathway. Furthermore, we provide insights into the intimate coevolutionary relationship between the regulator (Dip2) and the effector (PKC) of DAG-based signalling. Hence, our study underscores the establishment of Dip2-PKC axis about 1.2 billion years ago in Opisthokonta, which marks the rooting of the first specific DAG-based signalling module of eukaryotes.
Collapse
Affiliation(s)
- Sakshi Shambhavi
- CSIR-Centre for Cellular and Molecular BiologyHyderabadIndia
- Academy of Scientific and Innovative Research (AcSIR)GhaziabadIndia
| | - Sudipta Mondal
- CSIR-Centre for Cellular and Molecular BiologyHyderabadIndia
| | - Arnab Chakraborty
- Department of Biology, Indian Institute of Science Education and Research (IISER)PuneIndia
| | - Nikita Shukla
- CSIR-Centre for Cellular and Molecular BiologyHyderabadIndia
| | | | - Santhosh Kumar
- CSIR-Centre for Cellular and Molecular BiologyHyderabadIndia
- Academy of Scientific and Innovative Research (AcSIR)GhaziabadIndia
| | | | - Biswajit Pal
- CSIR-Centre for Cellular and Molecular BiologyHyderabadIndia
| | - Siddhesh S Kamat
- Department of Biology, Indian Institute of Science Education and Research (IISER)PuneIndia
| | - Rajan Sankaranarayanan
- CSIR-Centre for Cellular and Molecular BiologyHyderabadIndia
- Academy of Scientific and Innovative Research (AcSIR)GhaziabadIndia
| |
Collapse
|
2
|
Izquierdo F, Fernández Vadillo C, Fenoy S, Hurtado-Marcos C, Magnet A, Higes M, Martín-Hernández R, Del Aguila C. Production and characterization of monoclonal antibodies for specific detection of Nosema ceranae and Nosema apis in beehive samples. Int J Parasitol 2025; 55:163-172. [PMID: 39638107 DOI: 10.1016/j.ijpara.2024.11.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 11/19/2024] [Accepted: 11/29/2024] [Indexed: 12/07/2024]
Abstract
Two microsporidian species infect honeybees worldwide, Nosema apis and Nosema ceranae. Two different clinical patterns are considered: nosemosis type A (N. apis) and nosemosis type C (N. ceranae). Nosemosis type A is characterized in acute forms and nosemosis type C shows no clear outward clinical signs. The development of a rapid and simple tool for Nosema detection could allow beekeepers or veterinarians to carry out diagnostic tests in situ. Currently, PCR and microscopy are expensive techniques that require qualified staff and may not be available in every laboratory. The present study describes the production and characterization of four monoclonal antibodies (mAbs) against N. ceranae and N. apis, and the development of an IFAT. An IFAT using the mAbs was compared with microscopy and PCR for 180 beehive samples. The diagnostic test revealed similar sensitivity and specificity percentages to IFAT (97.79% and 93.18%, respectively) and microscopy (97.79% and 95.45%), considering 100% for the PCR as the 'gold standard'. A mAb (7D2) was patented for its high specificity for N. ceranae. The IFAT using the mAbs is a good alternative to microscopy and PCR in laboratories where PCR is not available for the detection and identification of both Nosema spp.
Collapse
Affiliation(s)
- Fernando Izquierdo
- Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, 28660 Boadilla del Monte, Spain
| | - Carmen Fernández Vadillo
- Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, 28660 Boadilla del Monte, Spain
| | - Soledad Fenoy
- Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, 28660 Boadilla del Monte, Spain
| | - Carolina Hurtado-Marcos
- Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, 28660 Boadilla del Monte, Spain
| | - Angela Magnet
- Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, 28660 Boadilla del Monte, Spain
| | - Mariano Higes
- Laboratorio de Patología Apícola, Centro de Investigación Apícola y Agroambiental (CIAPA), Instituto Regional de Investigación y Desarrollo Agroalimentario y Forestal (IRIAF), Consejería de Agricultura de la Junta de Comunidades de Castilla-La Mancha, 19180 Marchamalo, Spain
| | - Raquel Martín-Hernández
- Laboratorio de Patología Apícola, Centro de Investigación Apícola y Agroambiental (CIAPA), Instituto Regional de Investigación y Desarrollo Agroalimentario y Forestal (IRIAF), Consejería de Agricultura de la Junta de Comunidades de Castilla-La Mancha, 19180 Marchamalo, Spain
| | - Carmen Del Aguila
- Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, 28660 Boadilla del Monte, Spain.
| |
Collapse
|
3
|
Kutz J, Schmietendorf H, Rahman SA, Opel F, Pospiech H. HROB Is Implicated in DNA Replication. Genes (Basel) 2024; 15:1587. [PMID: 39766854 PMCID: PMC11675949 DOI: 10.3390/genes15121587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2024] [Revised: 11/29/2024] [Accepted: 12/05/2024] [Indexed: 01/11/2025] Open
Abstract
DNA replication represents a series of precisely regulated events performed by a complex protein machinery that guarantees accurate duplication of the genetic information. Since DNA replication is permanently faced by a variety of exogenous and endogenous stressors, DNA damage response, repair and replication must be closely coordinated to maintain genomic integrity. HROB has been identified recently as a binding partner and activator of the Mcm8/9 helicase involved in DNA interstrand crosslink (ICL) repair. We identified HROB independently as a nuclear protein whose expression is co-regulated with various DNA replication factors. Accordingly, the HROB protein level showed a maximum in S phase and a downregulation in quiescence. Structural prediction and homology searches revealed that HROB is a largely intrinsically disordered protein bearing a helix-rich region and a canonical oligonucleotide/oligosaccharide-binding-fold motif that originated early in eukaryotic evolution. Employing a flow cytometry Förster resonance energy transfer (FRET) assay, we detected associations between HROB and proteins of the DNA replication machinery. Moreover, ectopic expression of HROB protein led to an almost complete shutdown of DNA replication. The available data imply a function for HROB during DNA replication across barriers such as ICLs.
Collapse
Affiliation(s)
- Julia Kutz
- Project Group Biochemistry, Leibniz Institute on Aging—Fritz Lipmann Institute, D-07745 Jena, Germany; (J.K.); (H.S.); (S.A.R.); (F.O.)
- Institute of Biochemistry and Biophysics, Faculty of Biological Sciences, Friedrich Schiller University, D-07745 Jena, Germany
| | - Hannes Schmietendorf
- Project Group Biochemistry, Leibniz Institute on Aging—Fritz Lipmann Institute, D-07745 Jena, Germany; (J.K.); (H.S.); (S.A.R.); (F.O.)
- Institute of Biochemistry and Biophysics, Faculty of Biological Sciences, Friedrich Schiller University, D-07745 Jena, Germany
| | - Sheikh Anika Rahman
- Project Group Biochemistry, Leibniz Institute on Aging—Fritz Lipmann Institute, D-07745 Jena, Germany; (J.K.); (H.S.); (S.A.R.); (F.O.)
- Institute of Biochemistry and Biophysics, Faculty of Biological Sciences, Friedrich Schiller University, D-07745 Jena, Germany
| | - Franz Opel
- Project Group Biochemistry, Leibniz Institute on Aging—Fritz Lipmann Institute, D-07745 Jena, Germany; (J.K.); (H.S.); (S.A.R.); (F.O.)
- Department of Medical Engineering and Biotechnology, Ernst-Abbe University of Applied Sciences, D-07745 Jena, Germany
| | - Helmut Pospiech
- Project Group Biochemistry, Leibniz Institute on Aging—Fritz Lipmann Institute, D-07745 Jena, Germany; (J.K.); (H.S.); (S.A.R.); (F.O.)
- Institute of Biochemistry and Biophysics, Faculty of Biological Sciences, Friedrich Schiller University, D-07745 Jena, Germany
- Department of Obstetrics and Gynecology, University Hospital Düsseldorf and Heinrich-Heine University, D-40225 Düsseldorf, Germany
| |
Collapse
|
4
|
Bartošová-Sojková P, Butenko A, Richtová J, Fiala I, Oborník M, Lukeš J. Inside the Host: Understanding the Evolutionary Trajectories of Intracellular Parasitism. Annu Rev Microbiol 2024; 78:39-59. [PMID: 38684082 DOI: 10.1146/annurev-micro-041222-025305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2024]
Abstract
This review explores the origins of intracellular parasitism, an intriguing facet of symbiosis, where one organism harms its host, potentially becoming deadly. We focus on three distantly related groups of single-celled eukaryotes, namely Kinetoplastea, Holomycota, and Apicomplexa, which contain multiple species-rich lineages of intracellular parasites. Using comparative analysis of morphological, physiological, and molecular features of kinetoplastids, microsporidians, and sporozoans, as well as their closest free-living relatives, we reveal the evolutionary trajectories and adaptations that enabled the transition to intracellular parasitism. Intracellular parasites have evolved various efficient mechanisms for host acquisition and exploitation, allowing them to thrive in a variety of hosts. Each group has developed unique features related to the parasitic lifestyle, involving dedicated protein families associated with host cell invasion, survival, and exit. Indeed, parallel evolution has led to distinct lineages of intracellular parasites employing diverse traits and approaches to achieve similar outcomes.
Collapse
Affiliation(s)
- Pavla Bartošová-Sojková
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice, Czech Republic; , ,
| | - Anzhelika Butenko
- Life Science Research Centre, Faculty of Science, University of Ostrava, Ostrava, Czech Republic
- Faculty of Science, University of South Bohemia in České Budějovice, České Budějovice, Czech Republic
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice, Czech Republic; , ,
| | - Jitka Richtová
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice, Czech Republic; , ,
| | - Ivan Fiala
- Faculty of Science, University of South Bohemia in České Budějovice, České Budějovice, Czech Republic
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice, Czech Republic; , ,
| | - Miroslav Oborník
- Faculty of Science, University of South Bohemia in České Budějovice, České Budějovice, Czech Republic
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice, Czech Republic; , ,
| | - Julius Lukeš
- Faculty of Science, University of South Bohemia in České Budějovice, České Budějovice, Czech Republic
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice, Czech Republic; , ,
| |
Collapse
|
5
|
Gross M, Rajter Ľ, Mahé F, Bass D, Berney C, Henry N, de Vargas C, Dunthorn M. O short-branch Microsporidia, where art thou? Identifying diversity hotspots for future sampling. Eur J Protistol 2024; 96:126119. [PMID: 39396432 DOI: 10.1016/j.ejop.2024.126119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 09/23/2024] [Accepted: 09/24/2024] [Indexed: 10/15/2024]
Abstract
Short-branch Microsporidia were previously shown to form a basal grade within the expanded Microsporidia clade and to branch near the classical, long-branch Microsporidia. Although they share simpler versions of some morphological characteristics, they do not show accelerated evolutionary rates, making them ideal candidates to study the evolutionary trajectories that have led to long-branch microsporidian unique characteristics. However, most sequences assigned to the short-branch Microsporidia are undescribed, novel environmental lineages for which the identification requires knowledge of where they can be found. To direct future isolation, we used the EukBank database of the global UniEuk initiative that contains the majority of the publicly available environmental V4 SSU rRNA gene sequences of protists. The curated OTU table and corresponding metadata were used to evaluate the occurrence of short-branch Microsporidia across freshwater, hypersaline, marine benthic, marine pelagic, and terrestrial environments. Presence-absence analyses infer that short-branch Microsporidia are most abundant in freshwater and terrestrial environments, and alpha- and beta-diversity measures indicate that focusing our sampling effort on these two environments would cover a large part of their overall diversity. These results can be used to coordinate future isolation and sampling campaigns to better understand the enigmatic evolution of microsporidians' unique characteristics.
Collapse
Affiliation(s)
- Megan Gross
- Natural History Museum, University of Oslo, 0562 Oslo, Norway; Department of Ecology, University of Kaiserslautern-Landau RPTU, 67663 Kaiserslautern, Germany.
| | - Ľubomír Rajter
- Institute for Zoology, University of Cologne, 50923 Cologne, Germany
| | - Frédéric Mahé
- CIRAD, UMR PHIM, 34398 Montpellier, France; PHIM, Univ Montpellier, CIRAD, INRAE, Institut Agro, IRD, 34398 Montpellier, France
| | - David Bass
- Cefas, International Centre for Aquatic Animal Health, Weymouth, Dorset DT4 8UB, United Kingdom; Sustainable Aquaculture Futures, Biosciences, College of Life and Environmental Sciences, University of Exeter, Stocker Road, Exeter EX4 4QD, United Kingdom; Department of Life Sciences, The Natural History Museum, London SW7 5BD, United Kingdom
| | - Cédric Berney
- CNRS, Sorbonne Université, FR2424, ABiMS, Station Biologique de Roscoff, 29680 Roscoff, France; Sorbonne Université, CNRS, Station Biologique de Roscoff, UMR7144, ECOMAP, 29680 Roscoff, France
| | - Nicolas Henry
- CNRS, Sorbonne Université, FR2424, ABiMS, Station Biologique de Roscoff, 29680 Roscoff, France; Research Federation for the Study of Global Ocean Systems Ecology and Evolution, FR2022/Tara GOSEE, 75016 Paris, France
| | - Colomban de Vargas
- CNRS, Sorbonne Université, FR2424, ABiMS, Station Biologique de Roscoff, 29680 Roscoff, France; Sorbonne Université, CNRS, Station Biologique de Roscoff, UMR7144, ECOMAP, 29680 Roscoff, France
| | - Micah Dunthorn
- Natural History Museum, University of Oslo, 0562 Oslo, Norway
| |
Collapse
|
6
|
Romashchenko N, Linard B, Pardi F, Rivals E. EPIK: precise and scalable evolutionary placement with informative k-mers. Bioinformatics 2023; 39:btad692. [PMID: 37975872 PMCID: PMC10701097 DOI: 10.1093/bioinformatics/btad692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 09/20/2023] [Accepted: 11/16/2023] [Indexed: 11/19/2023] Open
Abstract
MOTIVATION Phylogenetic placement enables phylogenetic analysis of massive collections of newly sequenced DNA, when de novo tree inference is too unreliable or inefficient. Assuming that a high-quality reference tree is available, the idea is to seek the correct placement of the new sequences in that tree. Recently, alignment-free approaches to phylogenetic placement have emerged, both to circumvent the need to align the new sequences and to avoid the calculations that typically follow the alignment step. A promising approach is based on the inference of k-mers that can be potentially related to the reference sequences, also called phylo-k-mers. However, its usage is limited by the time and memory-consuming stage of reference data preprocessing and the large numbers of k-mers to consider. RESULTS We suggest a filtering method for selecting informative phylo-k-mers based on mutual information, which can significantly improve the efficiency of placement, at the cost of a small loss in placement accuracy. This method is implemented in IPK, a new tool for computing phylo-k-mers that significantly outperforms the software previously available. We also present EPIK, a new software for phylogenetic placement, supporting filtered phylo-k-mer databases. Our experiments on real-world data show that EPIK is the fastest phylogenetic placement tool available, when placing hundreds of thousands and millions of queries while still providing accurate placements. AVAILABILITY AND IMPLEMENTATION IPK and EPIK are freely available at https://github.com/phylo42/IPK and https://github.com/phylo42/EPIK. Both are implemented in C++ and Python and supported on Linux and MacOS.
Collapse
Affiliation(s)
| | | | - Fabio Pardi
- LIRMM, University of Montpellier, CNRS, Montpellier, France
| | - Eric Rivals
- LIRMM, University of Montpellier, CNRS, Montpellier, France
| |
Collapse
|
7
|
Lamża Ł. Diversity of 'simple' multicellular eukaryotes: 45 independent cases and six types of multicellularity. Biol Rev Camb Philos Soc 2023; 98:2188-2209. [PMID: 37475165 DOI: 10.1111/brv.13001] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 07/10/2023] [Accepted: 07/13/2023] [Indexed: 07/22/2023]
Abstract
Multicellularity evolved multiple times in the history of life, with most reviewers agreeing that it appeared at least 20 times in eukaryotes. However, a specific list of multicellular eukaryotes with clear criteria for inclusion has not yet been published. Herein, an updated critical review of eukaryotic multicellularity is presented, based on current understanding of eukaryotic phylogeny and new discoveries in microbiology, phycology and mycology. As a result, 45 independent multicellular lineages are identified that fall into six distinct types. Functional criteria, as distinct from a purely topological definition of a cell, are introduced to bring uniformity and clarity to the existing definitions of terms such as colony, multicellularity, thallus or plasmodium. The category of clonal multicellularity is expanded to include: (i) septated multinucleated thalli found in Pseudofungi and early-branching Fungi such as Chytridiomycota and Blastocladiomycota; and (ii) multicellular reproductive structures formed by plasmotomy in intracellular parasites such as Phytomyxea. Furthermore, (iii) endogeneous budding, as found in Paramyxida, is described as a form of multicellularity. The best-known case of clonal multicellularity, i.e. (iv) non-separation of cells after cell division, as known from Metazoa and Ochrophyta, is also discussed. The category of aggregative multicellularity is expanded to include not only (v) pseudoplasmodial forms, such a sorocarp-forming Acrasida, but also (vi) meroplasmodial organisms, such as members of Variosea or Filoreta. A common set of topological, geometric, genetic and life-cycle criteria are presented that form a coherent, philosophically sound framework for discussing multicellularity. A possibility of a seventh type of multicellularity is discussed, that of multi-species superorganisms formed by protists with obligatory bacterial symbionts, such as some members of Oxymonada or Parabasalia. Its inclusion is dependent on the philosophical stance taken towards the concepts of individuality and organism in biology. Taxa that merit special attention are identified, such as colonial Centrohelea, and a new speculative form of multicellularity, possibly present in some reticulopodial amoebae, is briefly described. Because of insufficient phylogenetic and morphological data, not all lineages could be unequivocally identified, and the true total number of all multicellular eukaryotic lineages is therefore higher, likely close to a hundred.
Collapse
Affiliation(s)
- Łukasz Lamża
- Copernicus Center for Interdisciplinary Studies, Jagiellonian University, Szczepanska 1, Kraków, 31-011, Poland
| |
Collapse
|
8
|
Thomé PC, Irisarri I, Wolinska J, Monaghan MT, Strassert JFH. Single-cell genomics reveals new rozellid lineages and supports their sister relationship to Microsporidia. Biol Lett 2023; 19:20230398. [PMID: 38087939 PMCID: PMC10716661 DOI: 10.1098/rsbl.2023.0398] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 11/20/2023] [Indexed: 12/18/2023] Open
Abstract
The phylum Rozellomycota has been proposed for a group of early-branching holomycotan lineages representing obligate parasites and hyperparasites of zoosporic fungi, oomycotes or phytoplankton. Given their predominantly intracellular lifestyle, rozellids are typically known from environmental ribosomal DNA data, except for the well-studied Rozella species. To date, the phylogenetic relationship between rozellids and microsporidians (Microsporidia) is not fully understood and most reliable hypotheses are based on phylogenomic analyses that incorporate the only publicly available rozellid genome of Rozella allomycis. Here, we provide genomic data of three new rozellid lineages obtained by single-cell sequencing from environmental samples and show with a phylogenomic approach that rozellids form a monophyletic group that is sister to microsporidians, corroborating the previously proposed phylum Rozellomycota. Whereas no mitochondrial genes coding for the respiratory Complex I could be found, we discovered a gene coding for a nucleotide phosphate transporter in one of the three draft genomes. The scattered absence of Complex I genes and scattered presence of nucleotide transporter genes across diverse microsporidian and rozellid lineages suggest that these adaptations to a parasitic lifestyle, which reduce the parasite's capability to synthesize ATP but enables it to steal ATP from its host, evolved independently in microsporidians and rozellids.
Collapse
Affiliation(s)
- Pauline C. Thomé
- Department of Evolutionary and Integrative Ecology, Leibniz Institute of Freshwater Ecology and Inland Fisheries (IGB), Berlin, Germany
| | - Iker Irisarri
- Section Phylogenomics, Centre for Molecular Biodiversity Research, Leibniz Institute for the Analysis of Biodiversity Change, Museum of Nature Hamburg, Hamburg, Germany
| | - Justyna Wolinska
- Department of Evolutionary and Integrative Ecology, Leibniz Institute of Freshwater Ecology and Inland Fisheries (IGB), Berlin, Germany
- Institut für Biologie, Freie Universität Berlin, Berlin, Germany
| | - Michael T. Monaghan
- Department of Evolutionary and Integrative Ecology, Leibniz Institute of Freshwater Ecology and Inland Fisheries (IGB), Berlin, Germany
- Institut für Biologie, Freie Universität Berlin, Berlin, Germany
| | - Jürgen F. H. Strassert
- Department of Evolutionary and Integrative Ecology, Leibniz Institute of Freshwater Ecology and Inland Fisheries (IGB), Berlin, Germany
| |
Collapse
|
9
|
Doliwa A, Grabner D, Sures B, Dunthorn M. Comparing Microsporidia-targeting primers for environmental DNA sequencing. Parasite 2023; 30:52. [PMID: 38015008 PMCID: PMC10683580 DOI: 10.1051/parasite/2023056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 11/13/2023] [Indexed: 11/29/2023] Open
Abstract
Metabarcoding is a powerful tool to detect classical, and well-known "long-branch" Microsporidia in environmental samples. Several primer pairs were developed to target these unique microbial parasites, the majority of which remain undetected when using general metabarcoding primers. Most of these Microsporidia-targeting primer pairs amplify fragments of different length of the small subunit ribosomal RNA (SSU-rRNA) gene. However, we lack a broad comparison of the efficacy of those primers. Here, we conducted in silico PCRs with three short-read (which amplify a few-hundred base pairs) and two long-read (which amplify over a thousand base pairs) metabarcoding primer pairs on a variety of publicly available Microsporidia sensu lato SSU-rRNA gene sequences to test which primers capture most of the Microsporidia diversity. Our results indicate that the primer pairs do result in slight differences in inferred richness. Furthermore, some of the reverse primers are also able to bind to microsporidian subtaxa beyond the classical Microsporidia, which include the metchnikovellidan Amphiamblys spp., the chytridiopsid Chytridiopsis typographi and the "short-branch" microsporidian Mitosporidium daphniae.
Collapse
Affiliation(s)
- Annemie Doliwa
- Aquatic Ecology and Centre for Water and Environmental Research (ZWU), University of Duisburg-Essen Universitätsstrasse 5 45141 Essen Germany
| | - Daniel Grabner
- Aquatic Ecology and Centre for Water and Environmental Research (ZWU), University of Duisburg-Essen Universitätsstrasse 5 45141 Essen Germany
| | - Bernd Sures
- Aquatic Ecology and Centre for Water and Environmental Research (ZWU), University of Duisburg-Essen Universitätsstrasse 5 45141 Essen Germany
- Research Center One Health Ruhr, Research Alliance Ruhr, University of Duisburg-Essen 45141 Essen Germany
| | - Micah Dunthorn
- Natural History Museum, University of Oslo 0562 Oslo Norway
| |
Collapse
|
10
|
Whelan TA, Fast NM. Microsporidia. Curr Biol 2023; 33:R936-R938. [PMID: 37751700 DOI: 10.1016/j.cub.2023.06.076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/28/2023]
Abstract
In this Quick guide, Thomas Whelan and Naomi Fast introduce the microsporidia: obligate intracellular parasites with the most extremely reduced genomes known in eukaryotes.
Collapse
Affiliation(s)
- Thomas A Whelan
- Biodiversity Research Centre, Department of Botany, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Naomi M Fast
- Biodiversity Research Centre, Department of Botany, University of British Columbia, Vancouver, BC V6T 1Z4, Canada.
| |
Collapse
|
11
|
Ewers I, Rajter L, Czech L, Mahé F, Stamatakis A, Dunthorn M. Interpreting phylogenetic placements for taxonomic assignment of environmental DNA. J Eukaryot Microbiol 2023; 70:e12990. [PMID: 37448139 DOI: 10.1111/jeu.12990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 05/29/2023] [Accepted: 06/17/2023] [Indexed: 07/15/2023]
Abstract
Taxonomic assignment of operational taxonomic units (OTUs) is an important bioinformatics step in analyzing environmental sequencing data. Pairwise alignment and phylogenetic-placement methods represent two alternative approaches to taxonomic assignments, but their results can differ. Here we used available colpodean ciliate OTUs from forest soils to compare the taxonomic assignments of VSEARCH (which performs pairwise alignments) and EPA-ng (which performs phylogenetic placements). We showed that when there are differences in taxonomic assignments between pairwise alignments and phylogenetic placements at the subtaxon level, there is a low pairwise similarity of the OTUs to the reference database. We then showcase how the output of EPA-ng can be further evaluated using GAPPA to assess the taxonomic assignments when there exist multiple equally likely placements of an OTU, by taking into account the sum over the likelihood weights of the OTU placements within a subtaxon, and the branch distances between equally likely placement locations. We also inferred the evolutionary and ecological characteristics of the colpodean OTUs using their placements within subtaxa. This study demonstrates how to fully analyze the output of EPA-ng, by using GAPPA in conjunction with knowledge of the taxonomic diversity of the clade of interest.
Collapse
Affiliation(s)
- Isabelle Ewers
- Eukaryotic Microbiology, Faculty of Biology, University of Duisburg-Essen, Essen, Germany
| | - Lubomír Rajter
- Eukaryotic Microbiology, Faculty of Biology, University of Duisburg-Essen, Essen, Germany
- Phycology, Faculty of Biology, University of Duisburg-Essen, Essen, Germany
| | - Lucas Czech
- Department of Plant Biology, Carnegie Institution for Science, Stanford, California, USA
| | - Frédéric Mahé
- CIRAD, UMR PHIM, Montpellier, France
- PHIM Plant Health Institute, CIRAD, INRAE, Institut Agro, IRD, University of Montpellier, Montpellier, France
| | - Alexandros Stamatakis
- Computational Molecular Evolution Group, Heidelberg Institute for Theoretical Studies, Heidelberg, Germany
- Institute for Theoretical Informatics, Karlsruhe Institute of Technology, Karlsruhe, Germany
| | - Micah Dunthorn
- Natural History Museum, University of Oslo, Oslo, Norway
| |
Collapse
|
12
|
Yang J, Yun J, Liu X, Du W, Xiang M. Niche and ecosystem preference of earliest diverging fungi in soils. Mycology 2023; 14:239-255. [PMID: 37583459 PMCID: PMC10424602 DOI: 10.1080/21501203.2023.2237047] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 07/11/2023] [Indexed: 08/17/2023] Open
Abstract
Within the supergroup Rotosphaeromycetes, or "Holomycota"/"Nucletmycea", there are several well-recognised unicellular clades in the earliest diverging fungi (EDF). However, we know little about their occurrence. Here, we investigated EDF in the rhizosphere and bulk soils from cropland, forest, orchard, and wetland ecosystems around the Beijing-Hebei area, China, to illustrate their niche and ecosystem preference. More than 500 new operational taxonomic units (OTUs) of EDF were detected based on the 18S rRNA genes. Microsporida and Aphelida constitute dominant groups, whereas Rozellosporida was quite rare. Although the EDF community was site-specific, the soil chemical characteristics, vegetation, and other eukaryotic microorganisms were the key factors driving the occurrence of EDF. Moreover, the stochastic process consisted the most of the EDF community assembly.
Collapse
Affiliation(s)
- Jiarui Yang
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- College of Life Sciences, University of the Chinese Academy of Sciences, Beijing, China
| | - Juanli Yun
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- School of Environmental Science and Engineering, Shaanxi University of Science and Technology, Xi’an, China
| | - Xingzhong Liu
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- College of Life Sciences, University of the Chinese Academy of Sciences, Beijing, China
- Department of Microbiology, College of Life Sciences, Nankai University, Tianjin, China
| | - Wenbin Du
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- School of Environmental Science and Engineering, Shaanxi University of Science and Technology, Xi’an, China
| | - Meichun Xiang
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- College of Life Sciences, University of the Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
13
|
Microsporidians (Microsporidia) parasitic on mosquitoes (Culicidae) in central Europe are often multi-host species. J Invertebr Pathol 2023; 197:107873. [PMID: 36577478 DOI: 10.1016/j.jip.2022.107873] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Revised: 12/19/2022] [Accepted: 12/21/2022] [Indexed: 12/26/2022]
Abstract
Microsporidians (Microsporidia) are a diverse group of obligate and intracellular parasites of eukaryotes. There is evidence that the real species diversity in the phylum could be greatly underestimated, especially for microsporidians parasitic on invertebrates. Mosquitoes (Culicidae) are among very important microsporidian host groups. However, to date, no extensive survey on the prevalence of microsporidians in European mosquitoes has been performed. Here, we used mosquitoes collected in west-central Poland and a metabarcoding approach to examine the prevalence and diversity of microsporidian species among European mosquitoes. We found that up to one-third of mosquitoes in Europe may be infected with at least 13 microsporidian species belonging to the genera Amblyospora, Hazardia, Encephalitozoon, Enterocytospora, and Nosema and the holding genus Microsporidium. The lack of a difference in microsporidian prevalence between mosquito sexes implies that other factors, e.g., temperature or humidity, affect microsporidian occurrence in adult mosquitoes. Each microsporidian species was found in at least three mosquito species, which suggests that these microsporidians are polyxenic rather than monoxenic parasites. The co-occurrence of at least two different microsporidian species was found in 3.6% of host individuals. The abundance of microsporidian DNA sequences suggests interactions between co-occurring parasites; however, these results should be confirmed by microscopic and quantitative methods. In addition, further histological research is required to describe Microsporidium sp. PL01 or match its DNA to that of an already described species.
Collapse
|
14
|
Sendra KM, Watson AK, Kozhevnikova E, Moore AL, Embley TM, Hirt RP. Inhibition of mitosomal alternative oxidase causes lifecycle arrest of early-stage Trachipleistophora hominis meronts during intracellular infection of mammalian cells. PLoS Pathog 2022; 18:e1011024. [PMID: 36538568 PMCID: PMC9767352 DOI: 10.1371/journal.ppat.1011024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 11/24/2022] [Indexed: 12/24/2022] Open
Abstract
Mitosomes are highly reduced forms of mitochondria which have lost two of the 'defining' features of the canonical organelle, the mitochondrial genome, and the capacity to generate energy in the form of ATP. Mitosomes are found in anaerobic protists and obligate parasites and, in most of the studied organisms, have a conserved function in the biosynthesis of iron-sulfur clusters (ISC) that are indispensable cofactors of many essential proteins. The genomes of some mitosome-bearing human pathogenic Microsporidia encode homologues of an alternative oxidase (AOX). This mitochondrial terminal respiratory oxidase is absent from the human host, and hence is a potential target for the development of new antimicrobial agents. Here we present experimental evidence for the mitosomal localization of AOX in the microsporidian Trachipleistophora hominis and demonstrate that it has an important role during the parasite's life cycle progression. Using a recently published methodology for synchronising T. hominis infection of mammalian cell lines, we demonstrated specific inhibition of T. hominis early meront growth and replication by an AOX inhibitor colletochlorin B. Treatment of T. hominis-infected host cells with the drug also inhibited re-infection by newly formed dispersive spores. Addition of the drug during the later stages of the parasite life cycle, when our methods suggest that AOX is not actively produced and T. hominis mitosomes are mainly active in Fe/S cluster biosynthesis, had no inhibitory effects on the parasites. Control experiments with the AOX-deficient microsporidian species Encephalitozoon cuniculi, further demonstrated the specificity of inhibition by the drug. Using the same methodology, we demonstrate effects of two clinically used anti-microsporidian drugs albendazole and fumagillin on the cell biology and life cycle progression of T. hominis infecting mammalian host cells. In summary, our results reveal that T. hominis mitosomes have an active role to play in the progression of the parasite life cycle as well as an important role in the biosynthesis of essential Fe/S clusters. Our work also demonstrates that T. hominis is a useful model for testing the efficacy of therapeutic agents and for studying the physiology and cell biology of microsporidian parasites growing inside infected mammalian cells.
Collapse
Affiliation(s)
- Kacper M. Sendra
- Biosciences Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Andrew K. Watson
- Biosciences Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
| | | | - Anthony L. Moore
- Department of Biochemistry and Biomedicine, School of Life Sciences, University of Sussex, Falmer, Brighton, United Kingdom
| | - T. Martin Embley
- Biosciences Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Robert P. Hirt
- Biosciences Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
| |
Collapse
|
15
|
Structure of the reduced microsporidian proteasome bound by PI31-like peptides in dormant spores. Nat Commun 2022; 13:6962. [PMID: 36379934 PMCID: PMC9666519 DOI: 10.1038/s41467-022-34691-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Accepted: 11/02/2022] [Indexed: 11/17/2022] Open
Abstract
Proteasomes play an essential role in the life cycle of intracellular pathogens with extracellular stages by ensuring proteostasis in environments with limited resources. In microsporidia, divergent parasites with extraordinarily streamlined genomes, the proteasome complexity and structure are unknown, which limits our understanding of how these unique pathogens adapt and compact essential eukaryotic complexes. We present cryo-electron microscopy structures of the microsporidian 20S and 26S proteasome isolated from dormant or germinated Vairimorpha necatrix spores. The discovery of PI31-like peptides, known to inhibit proteasome activity, bound simultaneously to all six active sites within the central cavity of the dormant spore proteasome, suggests reduced activity in the environmental stage. In contrast, the absence of the PI31-like peptides and the existence of 26S particles post-germination in the presence of ATP indicates that proteasomes are reactivated in nutrient-rich conditions. Structural and phylogenetic analyses reveal that microsporidian proteasomes have undergone extensive reductive evolution, lost at least two regulatory proteins, and compacted nearly every subunit. The highly derived structure of the microsporidian proteasome, and the minimized version of PI31 presented here, reinforce the feasibility of the development of specific inhibitors and provide insight into the unique evolution and biology of these medically and economically important pathogens.
Collapse
|
16
|
OTU Delimitation with Earthworm DNA Barcodes: A Comparison of Methods. DIVERSITY 2022. [DOI: 10.3390/d14100866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Although DNA barcodes-based operational taxonomic units (OTUs) are increasingly used in earthworm research, the relative efficiency of the different methods available to delimit them has not yet been tested on a comprehensive dataset. For this study, we used three datasets containing 651, 2304 and 4773 COI barcodes of earthworms from French Guiana, respectively, to compare five of these methods: two phylogenetic methods—namely Poisson Tree Processes (PTP) and General Mixed Yule Coalescence (GMYC)—and three distance matrix methods—namely Refined Single Linkage (RESL, used for assigning Barcode Index Numbers in the Barcode of Life Data systems), Automatic Barcode Gap Discovery (ABGD), and Assemble Species by Automatic Partitioning (ASAP). We found that phylogenetic approaches are less suitable for delineating OTUs from DNA barcodes in earthworms, especially for large sets of sequences. The computation times are unreasonable, they often fail to converge, and they also show a strong tendency to oversplit species. Among distance-based methods, RESL also has a clear tendency to oversplitting, while ABGD and ASAP are less prone to mismatches and have short computation times. ASAP requires less a priori knowledge for model parameterisation than AGBD, provides efficient graphical outputs, and has a much lower tendency to generate mismatches.
Collapse
|
17
|
Bojko J. Systematic identity and phylogenetic analysis of Knowlespora clinchi (Knowles et al. 2022) gen. et comb. nov. From pheasantshell mussels (Actinonaiais pectorosa). J Invertebr Pathol 2022; 194:107817. [PMID: 35964677 DOI: 10.1016/j.jip.2022.107817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Revised: 05/31/2022] [Accepted: 07/23/2022] [Indexed: 10/15/2022]
Abstract
A microsporidian parasite infecting the pheasantshell mussel, Actinonaiais pectorosa, was discovered in a freshwater system in the USA. The original description of this species placed it into the holding genus "Microsporidium"; however, the availability of ecological, environmental, histological, electron microscopy, and genetic data, suffice to provide a complete formal taxonomic account of this species. In this note, the genus Knowlespora n. gen. is erected and described to hold the type species: Knowlespora clinchi gen. et comb. nov., originally described as 'Microsporidium clinchi'. A discussion is presented to suggest that this novel species is unlikely to be closely related to other molluscan microsporidians (all of which lack genetic data, to date) and highlights the diversity of oocyte-infecting species across the Microsporidia.
Collapse
Affiliation(s)
- Jamie Bojko
- School of Health and Life Sciences, Teesside University, Middlesbrough TS1 3BA, UK; National Horizons Centre, Teesside University, Darlington DL1 1HG, UK.
| |
Collapse
|
18
|
Bukhari T, Pevsner R, Herren JK. Microsporidia: a promising vector control tool for residual malaria transmission. FRONTIERS IN TROPICAL DISEASES 2022. [DOI: 10.3389/fitd.2022.957109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Long-lasting insecticidal nets (LLINs) and indoor residual spraying (IRS) have resulted in a major decrease in malaria transmission. However, it has become apparent that malaria can be effectively transmitted despite high coverage of LLINs/IRS. Residual transmission can occur due to Plasmodium-carrying Anopheles mosquitoes that are insecticide resistant and have feeding and resting behavior that reduces their chance of encountering the currently deployed indoor malaria control tools. Residual malaria transmission is likely to be the most significant hurdle to achieving the goal of malaria eradication and research and development towards new tools and strategies that can control residual malaria transmission is therefore critical. One of the most promising strategies involves biological agents that are part of the mosquito microbiome and influence the ability of Anopheles to transmit Plasmodium. These differ from biological agents previously used for vector control in that their primary effect is on vectoral capacity rather than the longevity and fitness of Anopheles (which may or may not be affected). An example of this type of biological agent is Microsporidia MB, which was identified in field collected Anopheles arabiensis and caused complete inhibition of Plasmodium falciparum transmission without effecting the longevity and fitness of the host. Microsporidia MB belongs to a unique group of rapidly adapting and evolving intracellular parasites and symbionts called microsporidia. In this review we discuss the general biology of microsporidians and the inherent characteristics that make some of them particularly suitable for malaria control. We then discuss the research priorities for developing a transmission blocking strategy for the currently leading microsporidian candidate Microsporidia MB for malaria control.
Collapse
|
19
|
Strassert JFH, Monaghan MT. Phylogenomic insights into the early diversification of fungi. Curr Biol 2022; 32:3628-3635.e3. [PMID: 35830854 DOI: 10.1016/j.cub.2022.06.057] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 05/10/2022] [Accepted: 06/16/2022] [Indexed: 11/25/2022]
Abstract
Phylogenomic analyses have boosted our understanding of the evolutionary trajectories of all living forms by providing continuous improvements to the tree of life.1-5 Within this tree, fungi represent an ancient eukaryote group,6 having diverged from the animals ∼1.35 billion years ago.7 Estimates of the number of extant species range between 1.5 and 3.8 million.8,9 Recent reclassifications and the discovery of the deep-branching Sanchytriomycota lineage10 have brought the number of proposed phyla to 20,11 21 if the Microsporidia are included.12-14 Uncovering how the diverse and globally distributed fungi are related to each other is fundamental for understanding how their lifestyles, morphologies, and metabolic capacities evolved. To date, many of the proposed relationships among the phyla remain controversial and no phylogenomic study has examined the entire fungal tree using a taxonomically comprehensive dataset and suitable models of evolution. We assembled and curated a 299-protein dataset with a taxon sampling broad enough to encompass all recognized fungal diversity with available data, but selective enough to run computationally intensive analyses using best-fitting models. Using a range of reconstruction methods, we were able to resolve many contested nodes, such as a sister relationship of Chytridiomyceta to all other non-Opisthosporidia fungi (with Chytridiomycota being sister to Monoblepharomycota + Neocallimastigomycota), a branching of Blastocladiomycota + Sanchytriomycota after the Chytridiomyceta but before other non-Opisthosporidia fungi, and a branching of Glomeromycota as sister to the Dikarya. Our up-to-date fungal tree of life will serve as a springboard for future investigations on the early evolution of fungi.
Collapse
Affiliation(s)
- Jürgen F H Strassert
- Department of Evolutionary and Integrative Ecology, Leibniz Institute of Freshwater Ecology and Inland Fisheries (IGB), Berlin, Germany.
| | - Michael T Monaghan
- Department of Evolutionary and Integrative Ecology, Leibniz Institute of Freshwater Ecology and Inland Fisheries (IGB), Berlin, Germany; Institut für Biologie, Freie Universität Berlin, Berlin, Germany
| |
Collapse
|
20
|
Seatamanoch N, Kongdachalert S, Sunantaraporn S, Siriyasatien P, Brownell N. Microsporidia, a Highly Adaptive Organism and Its Host Expansion to Humans. Front Cell Infect Microbiol 2022; 12:924007. [PMID: 35782144 PMCID: PMC9245026 DOI: 10.3389/fcimb.2022.924007] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 05/23/2022] [Indexed: 12/05/2022] Open
Abstract
Emerging infectious disease has become the center of attention since the outbreak of COVID-19. For the coronavirus, bats are suspected to be the origin of the pandemic. Consequently, the spotlight has fallen on zoonotic diseases, and the focus now expands to organisms other than viruses. Microsporidia is a single-cell organism that can infect a wide range of hosts such as insects, mammals, and humans. Its pathogenicity differs among species, and host immunological status plays an important role in infectivity and disease severity. Disseminated disease from microsporidiosis can be fatal, especially among patients with a defective immune system. Recently, there were two Trachipleistophora hominis, a microsporidia species which can survive in insects, case reports in Thailand, one patient had disseminated microsporidiosis. This review gathered data of disseminated microsporidiosis and T. hominis infections in humans covering the biological and clinical aspects. There was a total of 22 cases of disseminated microsporidiosis reports worldwide. Ten microsporidia species were identified. Maximum likelihood tree results showed some possible correlations with zoonotic transmissions. For T. hominis, there are currently eight case reports in humans, seven of which had Human Immunodeficiency Virus (HIV) infection. It is observed that risks are higher for the immunocompromised to acquire such infections, however, future studies should look into the entire life cycle, to identify the route of transmission and establish preventive measures, especially among the high-risk groups.
Collapse
Affiliation(s)
- Nirin Seatamanoch
- Department of Parasitology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
- Vector Biology and Vector Borne Disease Research Unit, Department of Parasitology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Switt Kongdachalert
- Department of Parasitology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
- Vector Biology and Vector Borne Disease Research Unit, Department of Parasitology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Sakone Sunantaraporn
- Vector Biology and Vector Borne Disease Research Unit, Department of Parasitology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Padet Siriyasatien
- Department of Parasitology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
- Vector Biology and Vector Borne Disease Research Unit, Department of Parasitology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Narisa Brownell
- Department of Parasitology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
- Vector Biology and Vector Borne Disease Research Unit, Department of Parasitology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
- *Correspondence: Narisa Brownell,
| |
Collapse
|
21
|
Gabaldón T, Völcker E, Torruella G. On the Biology, Diversity and Evolution of Nucleariid Amoebae (Amorphea, Obazoa, Opisthokonta. Protist 2022; 173:125895. [DOI: 10.1016/j.protis.2022.125895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 06/10/2022] [Accepted: 06/13/2022] [Indexed: 10/18/2022]
|
22
|
Czech L, Stamatakis A, Dunthorn M, Barbera P. Metagenomic Analysis Using Phylogenetic Placement-A Review of the First Decade. FRONTIERS IN BIOINFORMATICS 2022; 2:871393. [PMID: 36304302 PMCID: PMC9580882 DOI: 10.3389/fbinf.2022.871393] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Accepted: 04/11/2022] [Indexed: 12/20/2022] Open
Abstract
Phylogenetic placement refers to a family of tools and methods to analyze, visualize, and interpret the tsunami of metagenomic sequencing data generated by high-throughput sequencing. Compared to alternative (e. g., similarity-based) methods, it puts metabarcoding sequences into a phylogenetic context using a set of known reference sequences and taking evolutionary history into account. Thereby, one can increase the accuracy of metagenomic surveys and eliminate the requirement for having exact or close matches with existing sequence databases. Phylogenetic placement constitutes a valuable analysis tool per se, but also entails a plethora of downstream tools to interpret its results. A common use case is to analyze species communities obtained from metagenomic sequencing, for example via taxonomic assignment, diversity quantification, sample comparison, and identification of correlations with environmental variables. In this review, we provide an overview over the methods developed during the first 10 years. In particular, the goals of this review are 1) to motivate the usage of phylogenetic placement and illustrate some of its use cases, 2) to outline the full workflow, from raw sequences to publishable figures, including best practices, 3) to introduce the most common tools and methods and their capabilities, 4) to point out common placement pitfalls and misconceptions, 5) to showcase typical placement-based analyses, and how they can help to analyze, visualize, and interpret phylogenetic placement data.
Collapse
Affiliation(s)
- Lucas Czech
- Department of Plant Biology, Carnegie Institution for Science, Stanford, CA, United States
| | - Alexandros Stamatakis
- Computational Molecular Evolution Group, Heidelberg Institute for Theoretical Studies, Heidelberg, Germany
- Institute for Theoretical Informatics, Karlsruhe Institute of Technology, Karlsruhe, Germany
| | - Micah Dunthorn
- Natural History Museum, University of Oslo, Oslo, Norway
| | | |
Collapse
|
23
|
Wang Y, Ying N, Huang Y, Zou X, Liu X, Li L, Zhou J, Zhao S, Ma R, Li X, Tan H, Fang W. Nucleospora hippocampi n. sp., an Intranuclear Microsporidian Infecting the Seahorse Hippocampus erectus From China. Front Cell Infect Microbiol 2022; 12:882843. [PMID: 35601100 PMCID: PMC9114889 DOI: 10.3389/fcimb.2022.882843] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Accepted: 04/11/2022] [Indexed: 11/13/2022] Open
Abstract
The life cycle, ultrastructure, and molecular phylogeny of a new intranuclear microsporidian, Nucleospora hippocampi n. sp., infecting the intestine of the Hippocampus erectus, were described. The histopathology revealed an extensive infection, mainly in the columnar epithelium of the intestinal mucosa layer. The enterocytes were the important target cell for Nucleospora hippocampi n. sp. infection. Transmission electron microscopy results showed that this microsporidian developed directly within the host cell nucleoplasm. In the intranuclear life cycle, the transformation from meront to sporogonial plasmodium was recognized by forming electron-dense disc structures, which were considered the polar tube precursors. The microsporidian showed the typical morphological characteristics of the family Enterocytozoonidae in the formation and development of spore organelles prior to the division of the sporogonial plasmodium. According to wet smear observation, eight spores were generally formed in a single host nucleus. Mature spores were elongated ovoids that were slightly bent and measured 1.93 × 0.97 μm. The isofilar polar tube was arranged in 7~8 coils in one row. Phylogenetic analysis of its small subunit ribosomal DNA sequences demonstrated that the parasite belonged to the Nucleospora group clade. The histological, ultrastructural, and molecular data support the emergence of a new species in the genus Nucleospora. This is the first report of Nucleospora species in Asia and threatened syngnathid fishes.
Collapse
Affiliation(s)
- Yuan Wang
- East China Sea Fisheries Research Institute, China Academy of Fishery Sciences, Shanghai, China
- College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, China
| | - Na Ying
- East China Sea Fisheries Research Institute, China Academy of Fishery Sciences, Shanghai, China
| | - Yanqing Huang
- East China Sea Fisheries Research Institute, China Academy of Fishery Sciences, Shanghai, China
| | - Xiong Zou
- East China Sea Fisheries Research Institute, China Academy of Fishery Sciences, Shanghai, China
| | - Xin Liu
- East China Sea Fisheries Research Institute, China Academy of Fishery Sciences, Shanghai, China
| | - Letian Li
- East China Sea Fisheries Research Institute, China Academy of Fishery Sciences, Shanghai, China
- College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, China
| | - Junfang Zhou
- East China Sea Fisheries Research Institute, China Academy of Fishery Sciences, Shanghai, China
| | - Shu Zhao
- East China Sea Fisheries Research Institute, China Academy of Fishery Sciences, Shanghai, China
| | - Rongrong Ma
- College of Marine Sciences, Ningbo University, Ningbo, China
| | - Xincang Li
- East China Sea Fisheries Research Institute, China Academy of Fishery Sciences, Shanghai, China
| | - Hongxin Tan
- College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, China
- *Correspondence: Hongxin Tan, ; Wenhong Fang,
| | - Wenhong Fang
- East China Sea Fisheries Research Institute, China Academy of Fishery Sciences, Shanghai, China
- *Correspondence: Hongxin Tan, ; Wenhong Fang,
| |
Collapse
|
24
|
Chauvet M, Debroas D, Moné A, Dubuffet A, Lepère C. Temporal variations of Microsporidia diversity and discovery of new host-parasite interactions in a lake ecosystem. Environ Microbiol 2022; 24:1672-1686. [PMID: 35246918 DOI: 10.1111/1462-2920.15950] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 02/09/2022] [Accepted: 02/21/2022] [Indexed: 11/29/2022]
Abstract
Microsporidia are a large group of obligate intracellular eukaryotic parasites related to Fungi. Recent studies suggest that their diversity has been greatly underestimated and little is known about their hosts other than metazoans, and thus about their impact on the communities at the base of the food web. In this work, we therefore studied the diversity of Microsporidia over one year and identified potential new hosts in small-sized fractions (<150 μm) in a lake ecosystem using a metabarcoding approach coupled with co-occurrence networks and tyramide signal amplification-fluorescent in situ hybridization. Our analysis shows a great Microsporidia diversity (1 472 OTUs), with an important part of this diversity being unknown. Temporal variations of this diversity have been observed, which might follow temporal variations of their potential hosts such as protists and microzooplankton. New hosts among them were identified as well as associations with phytoplankton. Indeed, repeated infections were observed in Kellicottia (rotifers) with a prevalence of 38% (infected individuals). Microsporidia inside a Stentor (ciliate) were also observed. Finally, potential infections of the diatom Asterionella were identified (prevalence <0.1%). The microsporidian host spectrum could be therefore even more important than previously described, and their role in the functioning of lake ecosystems is undoubtedly largely unknown.
Collapse
Affiliation(s)
- Marina Chauvet
- CNRS, Laboratoire Microorganismes: Génome et Environnement, Université Clermont Auvergne, Clermont-Ferrand, F-63000, France
| | - Didier Debroas
- CNRS, Laboratoire Microorganismes: Génome et Environnement, Université Clermont Auvergne, Clermont-Ferrand, F-63000, France
| | - Anne Moné
- CNRS, Laboratoire Microorganismes: Génome et Environnement, Université Clermont Auvergne, Clermont-Ferrand, F-63000, France
| | - Aurore Dubuffet
- CNRS, Laboratoire Microorganismes: Génome et Environnement, Université Clermont Auvergne, Clermont-Ferrand, F-63000, France
| | - Cécile Lepère
- CNRS, Laboratoire Microorganismes: Génome et Environnement, Université Clermont Auvergne, Clermont-Ferrand, F-63000, France
| |
Collapse
|
25
|
Proteomic Analysis of Spore Surface Proteins and Characteristics of a Novel Spore Wall Protein and Biomarker, EhSWP3, from the Shrimp Microsporidium Enterocytozoon hepatopenaei (EHP). Microorganisms 2022; 10:microorganisms10020367. [PMID: 35208822 PMCID: PMC8874471 DOI: 10.3390/microorganisms10020367] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 01/31/2022] [Accepted: 02/01/2022] [Indexed: 12/10/2022] Open
Abstract
Enterocytozoon hepatopenaei, a spore-forming and obligate intracellular microsporidium, mainly infects shrimp and results in growth retardation and body length variation, causing huge economic losses to the Asian shrimp aquaculture industry. However, the lack of a full understanding of the surface proteins of spores associated with host infection has hindered the development of technologies for the detection of EHP. In this study, the surface proteins of EHP spores were extracted using the improved SDS method, and 130 proteins were identified via LC-MS/MS analysis. Bioinformatic analysis revealed that these proteins were enriched in biological processes (67), cellular components (62), and molecular functions (71) based on GO terms. KEGG pathway analysis showed that 20 pathways, including the proteasome (eight proteins) and the fatty acid metabolism (15 proteins), were enriched. Among 15 high-abundance surface proteins (HASPs), EhSWP3 was identified as a novel spore wall protein (SWP), and was localized on the endospore of the EHP spores with an indirect immunofluorescence and immunoelectron microscopy assay. Polyclonal antibodies against EhSWP3 showed strong species specificity and high sensitivity to the hepatopancreas of EHP-infected shrimp. As a specific high-abundance protein, EhSWP3 is therefore a promising target for the development of immunoassay tools for EHP detection, and may play a crucial role in the invasion of EHP into the host.
Collapse
|
26
|
Williams BAP, Williams TA, Trew J. Comparative Genomics of Microsporidia. EXPERIENTIA SUPPLEMENTUM (2012) 2022; 114:43-69. [PMID: 35543998 DOI: 10.1007/978-3-030-93306-7_2] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The microsporidia are a phylum of intracellular parasites that represent the eukaryotic cell in a state of extreme reduction, with genomes and metabolic capabilities embodying eukaryotic cells in arguably their most streamlined state. Over the past 20 years, microsporidian genomics has become a rapidly expanding field starting with sequencing of the genome of Encephalitozoon cuniculi, one of the first ever sequenced eukaryotes, to the current situation where we have access to the data from over 30 genomes across 20+ genera. Reaching back further in evolutionary history, to the point where microsporidia diverged from other eukaryotic lineages, we now also have genomic data for some of the closest known relatives of the microsporidia such as Rozella allomycis, Metchnikovella spp. and Amphiamblys sp. Data for these organisms allow us to better understand the genomic processes that shaped the emergence of the microsporidia as a group. These intensive genomic efforts have revealed some of the processes that have shaped microsporidian cells and genomes including patterns of genome expansions and contractions through gene gain and loss, whole genome duplication, differential patterns of invasion and purging of transposable elements. All these processes have been shown to occur across short and longer time scales to give rise to a phylum of parasites with dynamic genomes with a diversity of sizes and organisations.
Collapse
Affiliation(s)
| | - Tom A Williams
- School of Biological Sciences, University of Bristol, Bristol, UK
| | - Jahcub Trew
- School of Biosciences, University of Exeter, Exeter, UK
| |
Collapse
|
27
|
Pang KL, Hassett BT, Shaumi A, Guo SY, Sakayaroj J, Chiang MWL, Yang CH, Jones EG. Pathogenic fungi of marine animals: A taxonomic perspective. FUNGAL BIOL REV 2021. [DOI: 10.1016/j.fbr.2021.03.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
28
|
Briscoe AG, Nichols S, Hartikainen H, Knipe H, Foster R, Green AJ, Okamura B, Bass D. High-Throughput Sequencing of faeces provides evidence for dispersal of parasites and pathogens by migratory waterbirds. Mol Ecol Resour 2021; 22:1303-1318. [PMID: 34758191 DOI: 10.1111/1755-0998.13548] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Revised: 10/26/2021] [Accepted: 11/02/2021] [Indexed: 11/28/2022]
Abstract
Examination of faecal material has demonstrated how a broad range of organisms are distributed by bird movements. Such research has largely focused on dispersal of plant seeds by frugivores and of freshwater organisms by waterbirds. However, with few exceptions (e.g. avian influenza, Ebola virus), there is a dearth of evidence for transport of parasites and pathogens. High-throughput sequencing methods now provide a powerful means of addressing this knowledge gap by elucidating faecal contents in unprecedented detail. We collected faeces excreted by a range of migratory waterbirds in south-west Spain and pooled faecal DNA to create libraries reflective of feeding behavior. We created sets of libraries using high-throughput metagenomic and amplicon sequencing. For the latter we employed two sets of primers to broadly target the V4 region of the 18S rRNA gene (one set amplifying the region across all eukaryotes, the other excluding amplification of metazoans). Libraries revealed a wide diversity of eukaryotes, including parasites of the faecal producers themselves, parasites of food items, or those incidentally ingested. We also detected novel microbial eukaryotic taxa and found that parasite assemblage profiles were relatively distinct. Comparing the performance of the methods used supports their joint use for future studies of diversity and abundance. Because viable stages of many parasites are likely to be present in faeces, our results suggest significant levels of bird-mediated dispersal of parasites (both from avian and other hosts). Our methods revealed much hidden biodiversity, and allowed identification of the individuals who produced the faecal samples to species level, facilitating the study of interaction networks.
Collapse
Affiliation(s)
- Andrew G Briscoe
- Department of Life Sciences, Natural History Museum, London, United Kingdom.,Core Research Laboratories, Natural History Museum, London, United Kingdom
| | - Sarah Nichols
- Department of Life Sciences, Natural History Museum, London, United Kingdom
| | - Hanna Hartikainen
- Department of Life Sciences, Natural History Museum, London, United Kingdom.,Eawag and Institute for Integrative Biology, Eidgenössische Technische Hochschule (ETH), Zurich, Switzerland
| | - Hazel Knipe
- Department of Life Sciences, Natural History Museum, London, United Kingdom
| | - Rachel Foster
- Department of Life Sciences, Natural History Museum, London, United Kingdom
| | - Andy J Green
- Department of Wetland Ecology, Estación Biológica de Doñana, EBD-CSIC, 41092, Sevilla, Spain
| | - Beth Okamura
- Department of Life Sciences, Natural History Museum, London, United Kingdom
| | - David Bass
- Department of Life Sciences, Natural History Museum, London, United Kingdom.,Centre for Environment, Aquaculture and Fisheries Science (Cefas), Weymouth, UK
| |
Collapse
|
29
|
Rajter Ľ, Dunthorn M. Ciliate SSU-rDNA reference alignments and trees for phylogenetic placements of metabarcoding data. METABARCODING AND METAGENOMICS 2021. [DOI: 10.3897/mbmg.5.69602] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Although ciliates are one of the most dominant microbial eukaryotic groups in many environments, there is a lack of updated global ciliate alignments and reference trees that can be used for phylogenetic placement methods to analyze environmental metabarcoding data. Here we fill this gap by providing reference alignments and trees for those ciliates taxa with available SSU-rDNA sequences derived from identified species. Each alignment contains 478 ciliate and six outgroup taxa, and they were made using different masking strategies for alignment positions (unmasked, masked and masked except the hypervariable V4 region). We constrained the monophyly of the major ciliate groups based on the recently updated classification of protists and based on phylogenomic data. Taxa of uncertain phylogenetic position were kept unconstrained, except for Mesodinium species that we constrained to form a clade with the Litostomatea. These ciliate reference alignments and trees can be used to perform taxonomic assignments of metabarcoding data, discover novel ciliate clades, estimate species richness, and overlay measured ecological parameters onto the phylogenetic placements.
Collapse
|
30
|
Phylogenomics of a new fungal phylum reveals multiple waves of reductive evolution across Holomycota. Nat Commun 2021; 12:4973. [PMID: 34404788 PMCID: PMC8371127 DOI: 10.1038/s41467-021-25308-w] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Accepted: 07/29/2021] [Indexed: 02/07/2023] Open
Abstract
Compared to multicellular fungi and unicellular yeasts, unicellular fungi with free-living flagellated stages (zoospores) remain poorly known and their phylogenetic position is often unresolved. Recently, rRNA gene phylogenetic analyses of two atypical parasitic fungi with amoeboid zoospores and long kinetosomes, the sanchytrids Amoeboradix gromovi and Sanchytrium tribonematis, showed that they formed a monophyletic group without close affinity with known fungal clades. Here, we sequence single-cell genomes for both species to assess their phylogenetic position and evolution. Phylogenomic analyses using different protein datasets and a comprehensive taxon sampling result in an almost fully-resolved fungal tree, with Chytridiomycota as sister to all other fungi, and sanchytrids forming a well-supported, fast-evolving clade sister to Blastocladiomycota. Comparative genomic analyses across fungi and their allies (Holomycota) reveal an atypically reduced metabolic repertoire for sanchytrids. We infer three main independent flagellum losses from the distribution of over 60 flagellum-specific proteins across Holomycota. Based on sanchytrids' phylogenetic position and unique traits, we propose the designation of a novel phylum, Sanchytriomycota. In addition, our results indicate that most of the hyphal morphogenesis gene repertoire of multicellular fungi had already evolved in early holomycotan lineages.
Collapse
|
31
|
Doliwa A, Dunthorn M, Rassoshanska E, Mahé F, Bass D, Duarte Ritter C. Identifying Potential Hosts of Short-Branch Microsporidia. MICROBIAL ECOLOGY 2021; 82:549-553. [PMID: 33420911 PMCID: PMC8384821 DOI: 10.1007/s00248-020-01657-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Accepted: 12/03/2020] [Indexed: 05/17/2023]
Abstract
Microsporidia are obligate parasites that are closely related to Fungi. While the widely known "long-branch" Microsporidia infect mostly metazoans, the hosts of "short-branch" Microsporidia are only partially characterized or not known at all. Here, we used network analyses from Neotropical rainforest soil metabarcoding data, to infer co-occurrences between environmental lineages of short-branch microsporidians and their potential hosts. We found significant co-occurrences with several taxa, especially with Apicomplexa, Cercozoa, and Fungi, as well as some Metazoa. Our results are the first step to identify potential hosts of the environmental lineages of short-branch microsporidians, which can be targeted in future molecular and microscopic studies.
Collapse
Affiliation(s)
- Annemie Doliwa
- Eukaryotic Microbiology, University of Duisburg-Essen, Universitätsstrasse 5, S05 R04 H83, 45141, Essen, Germany
| | - Micah Dunthorn
- Eukaryotic Microbiology, University of Duisburg-Essen, Universitätsstrasse 5, S05 R04 H83, 45141, Essen, Germany
- Centre for Water and Environmental Research (ZWU), University of Duisburg-Essen, 45141, Essen, Germany
| | - Erika Rassoshanska
- Eukaryotic Microbiology, University of Duisburg-Essen, Universitätsstrasse 5, S05 R04 H83, 45141, Essen, Germany
| | - Frédéric Mahé
- CIRAD, UMR BGPI, F-34398, Montpellier, France
- BGPI, Université de Montpellier, CIRAD, IRD, Montpellier SupAgro, Montpellier, France
| | - David Bass
- Centre for Environment, Aquaculture and Fisheries Science (Cefas), Barrack Road, Weymouth, Dorset, DT4 8UB, UK
- Department of Life Sciences, The Natural History Museum, Cromwell Road, London, SW7 5BD, UK
- Sustainable Aquaculture Futures, University of Exeter, Exeter, EX4 4QD, UK
| | - Camila Duarte Ritter
- Eukaryotic Microbiology, University of Duisburg-Essen, Universitätsstrasse 5, S05 R04 H83, 45141, Essen, Germany.
| |
Collapse
|
32
|
Generation of a Microsporidia Species Attribute Database and Analysis of the Extensive Ecological and Phenotypic Diversity of Microsporidia. mBio 2021; 12:e0149021. [PMID: 34182782 PMCID: PMC8262960 DOI: 10.1128/mbio.01490-21] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Microsporidia are a large group of fungus-related obligate intracellular parasites. Though many microsporidia species have been identified over the past 160 years, depiction of the full diversity of this phylum is lacking. To systematically describe the characteristics of these parasites, we created a database of 1,440 species and their attributes, including the hosts they infect and spore characteristics. We find that microsporidia have been reported to infect 16 metazoan and 4 protozoan phyla, with smaller phyla being underrepresented. Most species are reported to infect only a single host, but those that are generalists are also more likely to infect a broader set of host tissues. Strikingly, polar tubes are threefold longer in species that infect tissues besides the intestine, suggesting that polar tube length is a determinant of tissue specificity. Phylogenetic analysis revealed four clades which each contain microsporidia that infect hosts from all major habitats. Although related species are more likely to infect similar hosts, we observe examples of changes in host specificity and convergent evolution. Taken together, our results show that microsporidia display vast diversity in their morphology and the hosts they infect, illustrating the flexibility of these parasites to evolve new traits.
Collapse
|
33
|
Huang Q, Wu ZH, Li WF, Guo R, Xu JS, Dang XQ, Ma ZG, Chen YP, Evans JD. Genome and Evolutionary Analysis of Nosema ceranae: A Microsporidian Parasite of Honey Bees. Front Microbiol 2021; 12:645353. [PMID: 34149635 PMCID: PMC8206274 DOI: 10.3389/fmicb.2021.645353] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Accepted: 04/29/2021] [Indexed: 01/18/2023] Open
Abstract
Microsporidia comprise a phylum of single cell, intracellular parasites and represent the earliest diverging branch in the fungal kingdom. The microsporidian parasite Nosema ceranae primarily infects honey bee gut epithelial cells, leading to impaired memory, suppressed host immune responses and colony collapse under certain circumstances. As the genome of N. ceranae is challenging to assembly due to very high genetic diversity and repetitive region, the genome was re-sequenced using long reads. We present a robust 8.8 Mbp genome assembly of 2,280 protein coding genes, including a high number of genes involved in transporting nutrients and energy, as well as drug resistance when compared with sister species Nosema apis. We also describe the loss of the critical protein Dicer in approximately half of the microsporidian species, giving new insights into the availability of RNA interference pathway in this group. Our results provided new insights into the pathogenesis of N. ceranae and a blueprint for treatment strategies that target this parasite without harming honey bees. The unique infectious apparatus polar filament and transportation pathway members can help to identify treatments to control this parasite.
Collapse
Affiliation(s)
- Qiang Huang
- Honeybee Research Institute, Jiangxi Agricultural University, Nanchang, China.,Jiangxi Province Key Laboratory of Honeybee Biology and Beekeeping, Jiangxi Agricultural University, Nanchang, China
| | - Zhi Hao Wu
- Honeybee Research Institute, Jiangxi Agricultural University, Nanchang, China.,Jiangxi Province Key Laboratory of Honeybee Biology and Beekeeping, Jiangxi Agricultural University, Nanchang, China
| | - Wen Feng Li
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou, China
| | - Rui Guo
- College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou, China
| | - Jin Shan Xu
- College of Life Sciences, Chongqing Normal University, Chongqing, China
| | - Xiao Qun Dang
- College of Life Sciences, Chongqing Normal University, Chongqing, China
| | - Zheng Gang Ma
- College of Life Sciences, Chongqing Normal University, Chongqing, China
| | - Yan Ping Chen
- US Department of Agriculture-Aricultural Research Service (USDA-ARS) Bee Research Laboratory, Beltsville, MD, United States
| | - Jay D Evans
- US Department of Agriculture-Aricultural Research Service (USDA-ARS) Bee Research Laboratory, Beltsville, MD, United States
| |
Collapse
|
34
|
Frolova EV, Paskerova GG, Smirnov AV, Nassonova ES. Molecular phylogeny and new light microscopic data of Metchnikovella spiralis (Microsporidia: Metchnikovellidae), a hyperparasite of eugregarine Polyrhabdina sp. from the polychaete Pygospio elegans. Parasitology 2021; 148:779-786. [PMID: 33843504 PMCID: PMC11010189 DOI: 10.1017/s0031182021000603] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Revised: 03/19/2021] [Accepted: 03/29/2021] [Indexed: 11/07/2022]
Abstract
Metchnikovellids are a deep-branching group of microsporidia, parasites of gregarines inhabiting the alimentary tract of polychaetes and some other invertebrates. The diversity and phylogeny of these hyperparasites remain poorly studied. Modern descriptions and molecular data are still lacking for many species. The results of a light microscopy study and molecular data for Metchnikovella spiralis Sokolova et al., 2014, a hyperparasite of the eugregarine Polyrhabdina sp., isolated from the polychaete Pygospio elegans, were obtained. The original description of M. spiralis was based primarily on the analysis of stained preparations and transmission electron microscopy images. Here, the species description was complemented with the results of in vivo observations and phylogenetic analysis based on the SSU rRNA gene. It was shown that in this species, free sporogony precedes sac-bound sporogony, as it occurs in the life cycle of most other metchnikovellids. Spore sacs are entwined with spirally wound cords, and possess only one polar plug. Phylogenetic analyses did not group M. spiralis with M. incurvata, another metchnikovellid from the same gregarine species, but placed it as a sister branch to Amphiacantha. The paraphyletic nature of the genus Metchnikovella was discussed. The taxonomic summary for M. spiralis was emended.
Collapse
Affiliation(s)
- Ekaterina V. Frolova
- Laboratory of Cytology of Unicellular Organisms, Institute of Cytology RAS, Tikhoretsky ave. 4, Saint Petersburg194064, Russian Federation
- Department of Invertebrate Zoology, Faculty of Biology, Saint Petersburg State University, Universitetskaya emb. 7/9, Saint Petersburg199034, Russian Federation
| | - Gita G. Paskerova
- Department of Invertebrate Zoology, Faculty of Biology, Saint Petersburg State University, Universitetskaya emb. 7/9, Saint Petersburg199034, Russian Federation
| | - Alexey V. Smirnov
- Department of Invertebrate Zoology, Faculty of Biology, Saint Petersburg State University, Universitetskaya emb. 7/9, Saint Petersburg199034, Russian Federation
| | - Elena S. Nassonova
- Laboratory of Cytology of Unicellular Organisms, Institute of Cytology RAS, Tikhoretsky ave. 4, Saint Petersburg194064, Russian Federation
- Department of Invertebrate Zoology, Faculty of Biology, Saint Petersburg State University, Universitetskaya emb. 7/9, Saint Petersburg199034, Russian Federation
| |
Collapse
|
35
|
Tria FDK, Brueckner J, Skejo J, Xavier JC, Kapust N, Knopp M, Wimmer JLE, Nagies FSP, Zimorski V, Gould SB, Garg SG, Martin WF. Gene Duplications Trace Mitochondria to the Onset of Eukaryote Complexity. Genome Biol Evol 2021; 13:evab055. [PMID: 33739376 PMCID: PMC8175051 DOI: 10.1093/gbe/evab055] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/14/2021] [Indexed: 12/15/2022] Open
Abstract
The last eukaryote common ancestor (LECA) possessed mitochondria and all key traits that make eukaryotic cells more complex than their prokaryotic ancestors, yet the timing of mitochondrial acquisition and the role of mitochondria in the origin of eukaryote complexity remain debated. Here, we report evidence from gene duplications in LECA indicating an early origin of mitochondria. Among 163,545 duplications in 24,571 gene trees spanning 150 sequenced eukaryotic genomes, we identify 713 gene duplication events that occurred in LECA. LECA's bacterial-derived genes include numerous mitochondrial functions and were duplicated significantly more often than archaeal-derived and eukaryote-specific genes. The surplus of bacterial-derived duplications in LECA most likely reflects the serial copying of genes from the mitochondrial endosymbiont to the archaeal host's chromosomes. Clustering, phylogenies and likelihood ratio tests for 22.4 million genes from 5,655 prokaryotic and 150 eukaryotic genomes reveal no evidence for lineage-specific gene acquisitions in eukaryotes, except from the plastid in the plant lineage. That finding, and the functions of bacterial genes duplicated in LECA, suggests that the bacterial genes in eukaryotes are acquisitions from the mitochondrion, followed by vertical gene evolution and differential loss across eukaryotic lineages, flanked by concomitant lateral gene transfer among prokaryotes. Overall, the data indicate that recurrent gene transfer via the copying of genes from a resident mitochondrial endosymbiont to archaeal host chromosomes preceded the onset of eukaryotic cellular complexity, favoring mitochondria-early over mitochondria-late hypotheses for eukaryote origin.
Collapse
Affiliation(s)
- Fernando D K Tria
- Institute for Molecular Evolution, Heinrich Heine University Düsseldorf, Germany
| | - Julia Brueckner
- Institute for Molecular Evolution, Heinrich Heine University Düsseldorf, Germany
| | - Josip Skejo
- Institute for Molecular Evolution, Heinrich Heine University Düsseldorf, Germany
- Faculty of Science, University of Zagreb, Croatia
| | - Joana C Xavier
- Institute for Molecular Evolution, Heinrich Heine University Düsseldorf, Germany
| | - Nils Kapust
- Institute for Molecular Evolution, Heinrich Heine University Düsseldorf, Germany
| | - Michael Knopp
- Institute for Molecular Evolution, Heinrich Heine University Düsseldorf, Germany
| | - Jessica L E Wimmer
- Institute for Molecular Evolution, Heinrich Heine University Düsseldorf, Germany
| | - Falk S P Nagies
- Institute for Molecular Evolution, Heinrich Heine University Düsseldorf, Germany
| | - Verena Zimorski
- Institute for Molecular Evolution, Heinrich Heine University Düsseldorf, Germany
| | - Sven B Gould
- Institute for Molecular Evolution, Heinrich Heine University Düsseldorf, Germany
| | - Sriram G Garg
- Institute for Molecular Evolution, Heinrich Heine University Düsseldorf, Germany
| | - William F Martin
- Institute for Molecular Evolution, Heinrich Heine University Düsseldorf, Germany
| |
Collapse
|
36
|
Li Y, Steenwyk JL, Chang Y, Wang Y, James TY, Stajich JE, Spatafora JW, Groenewald M, Dunn CW, Hittinger CT, Shen XX, Rokas A. A genome-scale phylogeny of the kingdom Fungi. Curr Biol 2021; 31:1653-1665.e5. [PMID: 33607033 PMCID: PMC8347878 DOI: 10.1016/j.cub.2021.01.074] [Citation(s) in RCA: 141] [Impact Index Per Article: 35.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2020] [Revised: 12/10/2020] [Accepted: 01/21/2021] [Indexed: 12/22/2022]
Abstract
Phylogenomic studies using genome-scale amounts of data have greatly improved understanding of the tree of life. Despite the diversity, ecological significance, and biomedical and industrial importance of fungi, evolutionary relationships among several major lineages remain poorly resolved, especially those near the base of the fungal phylogeny. To examine poorly resolved relationships and assess progress toward a genome-scale phylogeny of the fungal kingdom, we compiled a phylogenomic data matrix of 290 genes from the genomes of 1,644 species that includes representatives from most major fungal lineages. We also compiled 11 data matrices by subsampling genes or taxa from the full data matrix based on filtering criteria previously shown to improve phylogenomic inference. Analyses of these 12 data matrices using concatenation- and coalescent-based approaches yielded a robust phylogeny of the fungal kingdom, in which ∼85% of internal branches were congruent across data matrices and approaches used. We found support for several historically poorly resolved relationships as well as evidence for polytomies likely stemming from episodes of ancient diversification. By examining the relative evolutionary divergence of taxonomic groups of equivalent rank, we found that fungal taxonomy is broadly aligned with both genome sequence divergence and divergence time but also identified lineages where current taxonomic circumscription does not reflect their levels of evolutionary divergence. Our results provide a robust phylogenomic framework to explore the tempo and mode of fungal evolution and offer directions for future fungal phylogenetic and taxonomic studies.
Collapse
Affiliation(s)
- Yuanning Li
- Department of Biological Sciences, Vanderbilt University, Nashville, TN 37235, USA
| | - Jacob L Steenwyk
- Department of Biological Sciences, Vanderbilt University, Nashville, TN 37235, USA
| | - Ying Chang
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR 97331, USA
| | - Yan Wang
- Department of Microbiology and Plant Pathology, Institute for Integrative Genome Biology, University of California, Riverside, CA 92521, USA; Department of Biological Sciences, University of Toronto Scarborough and Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, ON, Canada
| | - Timothy Y James
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Jason E Stajich
- Department of Microbiology and Plant Pathology, Institute for Integrative Genome Biology, University of California, Riverside, CA 92521, USA
| | - Joseph W Spatafora
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR 97331, USA
| | - Marizeth Groenewald
- Westerdijk Fungal Biodiversity Institute, 3584 CT, Utrecht 85167, the Netherlands
| | - Casey W Dunn
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT 06520, USA
| | - Chris Todd Hittinger
- Laboratory of Genetics, Center for Genomic Science Innovation, J.F. Crow Institute for the Study of Evolution, DOE Great Lakes Bioenergy Research Center, Wisconsin Energy Institute, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Xing-Xing Shen
- State Key Laboratory of Rice Biology and Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou 310058, China.
| | - Antonis Rokas
- Department of Biological Sciences, Vanderbilt University, Nashville, TN 37235, USA.
| |
Collapse
|
37
|
Park E, Poulin R. Revisiting the phylogeny of microsporidia. Int J Parasitol 2021; 51:855-864. [PMID: 33891934 DOI: 10.1016/j.ijpara.2021.02.005] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 02/15/2021] [Accepted: 02/15/2021] [Indexed: 12/18/2022]
Abstract
Canonical microsporidians are a group of obligate intracellular parasites of a wide range of hosts comprising ~1,300 species of >220 genera. Microsporidians are related to fungi, and many characterised and uncharacterized groups closely related to them have been discovered recently, filling the knowledge gaps between them. These groups assigned to the superphylum Opisthosporidia have provided several important insights into the evolution of diverse intracellular parasitic lineages within the tree of eukaryotes. The most studied among opisthosporidians, canonical microsporidians, were known to science more than 160 years ago, however, the classification of canonical Microsporidia has been challenging due to common morphological homoplasy, and accelerated evolutionary rates. Instead of morphological characters, ssrRNA sequences have been used as the primary data for the classification of canonical microsporidians. Previous studies have produced a useful backbone of the microsporidian phylogeny, but provided only some nodal support, causing some confusion. Here, we reconstructed phylogenetic trees of canonical microsporidians using Bayesian and Maximum Likelihood inferences. We included rRNA sequences of 126 described/named genera, by far the broadest taxon coverage to date. Overall, our trees show similar topology and recovered four of the five main clades demonstrated in previous studies (Clades 1, 3, 4 and 5). Family level clades were well resolved within each major clade, but many were discordant with the recently revised classification. Therefore, revision and some reshuffling, especially within and between Clades 1 and 3 are required. We also reconstructed phylogenetic trees of Opisthosporidia to better integrate the evolutionary history of canonical microsporidians in a broader context. We discuss several traits shared only by canonical microsporidians that may have contributed to their striking ecological success in diverse metazoans. More targeted studies on the neglected host groups will be of value for a better understanding of the evolutionary history of these interesting intracellular parasites.
Collapse
Affiliation(s)
- Eunji Park
- Department of Zoology, University of Otago, 340 Great King Street, Dunedin 9016, New Zealand.
| | - Robert Poulin
- Department of Zoology, University of Otago, 340 Great King Street, Dunedin 9016, New Zealand
| |
Collapse
|
38
|
Phylogenomic Analyses of Nucleotide-Sugar Biosynthetic and Interconverting Enzymes Illuminate Cell Wall Composition in Fungi. mBio 2021; 12:mBio.03540-20. [PMID: 33849982 PMCID: PMC8092308 DOI: 10.1128/mbio.03540-20] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The fungi are an enormously successful eukaryotic lineage that has colonized every aerobic habitat on Earth. This spectacular expansion is reflected in the dynamism and diversity of the fungal cell wall, a matrix of polysaccharides and glycoproteins pivotal to fungal life history strategies and a major target in the development of antifungal compounds. Cell wall polysaccharides are typically synthesized by Leloir glycosyltransferases, enzymes that are notoriously difficult to characterize, but their nucleotide-sugar substrates are well known and provide the opportunity to inspect the monosaccharides available for incorporation into cell wall polysaccharides and glycoproteins. In this work, we have used phylogenomic analyses of the enzymatic pathways that synthesize and interconvert nucleotide-sugars to predict potential cell wall monosaccharide composition across 491 fungal taxa. The results show a complex evolutionary history of these cell wall enzyme pathways and, by association, of the fungal cell wall. In particular, we see a significant reduction in monosaccharide diversity during fungal evolution, most notably in the colonization of terrestrial habitats. However, monosaccharide distribution is also shown to be varied across later-diverging fungal lineages.IMPORTANCE This study provides new insights into the complex evolutionary history of the fungal cell wall. We analyzed fungal enzymes that convert sugars acquired from the environment into the diverse sugars that make up the fundamental building blocks of the cell wall. Species-specific profiles of these nucleotide-sugar interconverting (NSI) enzymes for 491 fungi demonstrated multiple losses and gains of NSI proteins, revealing the rich diversity of cell wall architecture across the kingdom. Pragmatically, because cell walls are essential to fungi, our observations of variation in sugar diversity have important implications for the development of antifungal compounds that target the sugar profiles of specific pathogens.
Collapse
|
39
|
Williams TA, Schrempf D, Szöllősi GJ, Cox CJ, Foster PG, Embley TM. Inferring the deep past from molecular data. Genome Biol Evol 2021; 13:6192802. [PMID: 33772552 PMCID: PMC8175050 DOI: 10.1093/gbe/evab067] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/22/2021] [Indexed: 12/17/2022] Open
Abstract
There is an expectation that analyses of molecular sequences might be able to distinguish between alternative hypotheses for ancient relationships, but the phylogenetic methods used and types of data analyzed are of critical importance in any attempt to recover historical signal. Here, we discuss some common issues that can influence the topology of trees obtained when using overly simple models to analyze molecular data that often display complicated patterns of sequence heterogeneity. To illustrate our discussion, we have used three examples of inferred relationships which have changed radically as models and methods of analysis have improved. In two of these examples, the sister-group relationship between thermophilic Thermus and mesophilic Deinococcus, and the position of long-branch Microsporidia among eukaryotes, we show that recovering what is now generally considered to be the correct tree is critically dependent on the fit between model and data. In the third example, the position of eukaryotes in the tree of life, the hypothesis that is currently supported by the best available methods is fundamentally different from the classical view of relationships between major cellular domains. Since heterogeneity appears to be pervasive and varied among all molecular sequence data, and even the best available models can still struggle to deal with some problems, the issues we discuss are generally relevant to phylogenetic analyses. It remains essential to maintain a critical attitude to all trees as hypotheses of relationship that may change with more data and better methods.
Collapse
Affiliation(s)
- Tom A Williams
- School of Biological Sciences, University of Bristol, Bristol BS8 1TQ, United Kingdom
| | - Dominik Schrempf
- Dept. of Biological Physics, Eötvös Loránd University, 1117 Budapest, Hungary
| | - Gergely J Szöllősi
- Dept. of Biological Physics, Eötvös Loránd University, 1117 Budapest, Hungary.,MTA-ELTE "Lendület" Evolutionary Genomics Research Group, 1117 Budapest, Hungary.,Institute of Evolution, Centre for Ecological Research, 1121 Budapest, Hungary
| | - Cymon J Cox
- Centro de Ciências do Mar, Universidade do Algarve, Gambelas, 8005-319 Faro, Portugal
| | - Peter G Foster
- Department of Life Sciences, Natural History Museum, London SW7 5BD, United Kingdom
| | - T Martin Embley
- Biosciences Institute, Centre for Bacterial Cell Biology, Newcastle University, Newcastle upon Tyne NE2 4AX, United Kingdom
| |
Collapse
|
40
|
Nassonova ES, Bondarenko NI, Paskerova GG, Kováčiková M, Frolova EV, Smirnov AV. Evolutionary relationships of Metchnikovella dogieli Paskerova et al., 2016 (Microsporidia: Metchnikovellidae) revealed by multigene phylogenetic analysis. Parasitol Res 2021; 120:525-534. [PMID: 33415389 DOI: 10.1007/s00436-020-06976-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Accepted: 11/12/2020] [Indexed: 12/12/2022]
Abstract
The species Metchnikovella dogieli (Paskerova et al. Protistology 10:148-157, 2016) belongs to one of the early diverging microsporidian groups, the metchnikovellids (Microsporidia: Metchnikovellidae). In relation to typical ('core') microsporidia, this group is considered primitive. The spores of metchnikovellids have no classical polar sac-anchoring disk complex, no coiled polar tube, no posterior vacuole, and no polaroplast. Instead, they possess a short thick manubrium that expands into a manubrial cistern. These organisms are hyperparasites; they infect gregarines that parasitise marine invertebrates. M. dogieli is a parasite of the archigregarine Selenidium pygospionis (Paskerova et al. Protist 169:826-852, 2018), which parasitises the polychaete Pygospio elegans. This species was discovered in samples collected in the silt littoral zone at the coast of the White Sea, North-West Russia, and was described based on light microscopy. No molecular data are available for this species, and the publicly accessible genomic data for metchnikovellids are limited to two species: M. incurvata Caullery & Mesnil, 1914 and Amphiamblys sp. WSBS2006. In the present study, we applied single-cell genomics methods with whole-genome amplification to perform next-generation sequencing of M. dogieli genomic DNA. We performed a phylogenetic analysis based on the SSU rRNA gene and reconstructed a multigene phylogeny using a concatenated alignment that included 46 conserved single-copy protein domains. The analyses recovered a fully supported clade of metchnikovellids as a basal group to the core microsporidia. Two members of the genus Metchnikovella did not form a clade in our tree. This may indicate that this genus is paraphyletic and requires revision.
Collapse
Affiliation(s)
- Elena S Nassonova
- Laboratory of Cytology of Unicellular Organisms, Institute of Cytology RAS, Tikhoretsky ave. 4, St. Petersburg, Russia, 194064. .,Department of Invertebrate Zoology, Faculty of Biology, St. Petersburg State University, Universitetskaya nab. 7/9, St. Petersburg, Russia, 199034.
| | - Natalya I Bondarenko
- Laboratory of Cytology of Unicellular Organisms, Institute of Cytology RAS, Tikhoretsky ave. 4, St. Petersburg, Russia, 194064.,Department of Invertebrate Zoology, Faculty of Biology, St. Petersburg State University, Universitetskaya nab. 7/9, St. Petersburg, Russia, 199034
| | - Gita G Paskerova
- Department of Invertebrate Zoology, Faculty of Biology, St. Petersburg State University, Universitetskaya nab. 7/9, St. Petersburg, Russia, 199034
| | - Magdaléna Kováčiková
- Department of Botany and Zoology, Faculty of Science, Masaryk University, Kotlářská 2, 611 37, Brno, Czech Republic
| | - Ekaterina V Frolova
- Laboratory of Cytology of Unicellular Organisms, Institute of Cytology RAS, Tikhoretsky ave. 4, St. Petersburg, Russia, 194064.,Department of Invertebrate Zoology, Faculty of Biology, St. Petersburg State University, Universitetskaya nab. 7/9, St. Petersburg, Russia, 199034
| | - Alexey V Smirnov
- Department of Invertebrate Zoology, Faculty of Biology, St. Petersburg State University, Universitetskaya nab. 7/9, St. Petersburg, Russia, 199034
| |
Collapse
|
41
|
Zhang Y, Koehler AV, Wang T, Gasser RB. Enterocytozoon bieneusi of animals-With an 'Australian twist'. ADVANCES IN PARASITOLOGY 2021; 111:1-73. [PMID: 33482973 DOI: 10.1016/bs.apar.2020.10.001] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Enterocytozoon bieneusi is a microsporidian microorganism that causes intestinal disease in animals including humans. E. bieneusi is an obligate intracellular pathogen, typically causing severe or chronic diarrhoea, malabsorption and/or wasting. Currently, E. bieneusi is recognised as a fungus, although its exact classification remains contentious. The transmission of E. bieneusi can occur from person to person and/or animals to people. Transmission is usually via the faecal-oral route through E. bieneusi spore-contaminated water, environment or food, or direct contact with infected individuals. Enterocytozoon bieneusi genotypes are usually identified and classified by PCR-based sequencing of the internal transcribed spacer region (ITS) of nuclear ribosomal DNA. To date, ~600 distinct genotypes of E. bieneusi have been recorded in ~170 species of animals, including various orders of mammals and reptiles as well as insects in >40 countries. Moreover, E. bieneusi has also been found in recreational water, irrigation water, and treated raw- and waste-waters. Although many studies have been conducted on the epidemiology of E. bieneusi, prevalence surveys of animals and humans are scant in some countries, such as Australia, and transmission routes of individual genotypes and related risk factors are poorly understood. This article/chapter reviews aspects of the taxonomy, biology and epidemiology of E. bieneusi; the diagnosis, treatment and prevention of microsporidiosis; critically appraises the naming system for E. bieneusi genotypes as well as the phylogenetic relationships of these genotypes; provides new insights into the prevalence and genetic composition of E. bieneusi populations in animals in parts of Australia using molecular epidemiological tools; and proposes some areas for future research in the E. bieneusi/microsporidiosis field.
Collapse
Affiliation(s)
- Yan Zhang
- Department of Veterinary Biosciences, Melbourne Veterinary School, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, VIC, Australia
| | - Anson V Koehler
- Department of Veterinary Biosciences, Melbourne Veterinary School, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, VIC, Australia.
| | - Tao Wang
- Department of Veterinary Biosciences, Melbourne Veterinary School, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, VIC, Australia
| | - Robin B Gasser
- Department of Veterinary Biosciences, Melbourne Veterinary School, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, VIC, Australia.
| |
Collapse
|
42
|
Tetra disseminated microsporidiosis: a novel disease in ornamental fish caused by Fusasporis stethaprioni n. gen. n. sp. Parasitol Res 2021; 120:497-514. [PMID: 33415390 DOI: 10.1007/s00436-020-06988-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Accepted: 11/24/2020] [Indexed: 10/22/2022]
Abstract
A novel microsporidial disease was documented in two ornamental fish species, black tetra Gymnocorymbus ternetzi Boulenger 1895 and cardinal tetra Paracheirodon axelrodi Schultz 1956. The non-xenoma-forming microsporidium occurred diffusely in most internal organs and the gill, thus referring to the condition as tetra disseminated microsporidiosis (TDM). The occurrence of TDM in black tetra was associated with chronic mortality in a domestic farmed population, while the case in cardinal tetra occurred in moribund fish while in quarantine at a public aquarium. Histology showed that coelomic visceral organs were frequently necrotic and severely disrupted by extensive infiltrates of macrophages. Infected macrophages were presumed responsible for the dissemination of spores throughout the body. Ultrastructural characteristics of the parasite developmental cycle included uninucleate meronts directly in the host cell cytoplasm. Sporonts were bi-nucleated as a result of karyokinesis and a parasite-produced sporophorous vesicle (SPV) became apparent at this stage. Cytokinesis resulted in two spores forming within each SPV. Spores were uniform in size, measuring about 3.9 ± 0.33 long by 2.0 ± 0.2 μm wide. Ultrastructure demonstrated two spore types, one with 9-12 polar filament coils and a double-layered exospore and a second type with 4-7 polar filament coils and a homogenously electron-dense exospore, with differences perhaps related to parasite transmission mechanisms. The 16S rDNA sequences showed closest identity to the genus Glugea (≈ 92%), though the developmental cycle, specifically being a non-xenoma-forming species and having two spores forming within a SPV, did not fit within the genus. Based on combined phylogenetic and ultrastructural characteristics, a new genus (Fusasporis) is proposed, with F. stethaprioni n. gen. n. sp. as the type species.
Collapse
|
43
|
Ritter CD, Machado AF, Ribeiro KF, Dunthorn M. Metabarcoding advances for ecology and biogeography of Neotropical protists: what do we know, where do we go? BIOTA NEOTROPICA 2021. [DOI: 10.1590/1676-0611-bn-2021-1214] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/30/2023]
Abstract
Abstract: The Neotropics is one of the most diverse regions of the globe in terms of plants and animal species. Regarding the microbial world, however, little is known about the diversity and biogeography patterns of microorganisms in the Neotropics. The biogeography of several microbial taxonomic groups is still missing and/or incomplete, such as the protists. Despite the hard taxonomic identification of protists, the advance of molecular techniques (e.g., metabarcoding) have allowed to better explore the distribution of several protistan groups. Our goal here was to summarize the available information of Neotropical protists, focusing on metabarcoding studies, to explore what these data evidence on their ecology and biogeography. For this, we reviewed the findings from all articles that focused on or included the terrestrial protists using a metabarcoding approach and identified the gaps and future perspectives in this research field. We found that Neotropical protistan diversity patterns seem to be, at least in part, congruent with that of macro-organisms and, different than plants and bacteria, just weakly explained by environmental variables. We argue that studies with standardized protocols including different ecoregions are necessary, such as temperate forests, grasslands, and savannas from Southern of South America and Northern Atlantic Forest, to fully characterize the ecology and biogeography on Neotropical protists. Furthermore, dismembering evolutionary lineages and functional guilds of protists are important to better understand the relationship between diversity, dispersal abilities, and functionality of particular taxa of protists in their habitats.
Collapse
Affiliation(s)
| | | | | | - Micah Dunthorn
- University of Duisburg-Essen, Germany; University of Duisburg-Essen, Germany; University of Oslo, Norway
| |
Collapse
|
44
|
David GM, Moreira D, Reboul G, Annenkova NV, Galindo LJ, Bertolino P, López-Archilla AI, Jardillier L, López-García P. Environmental drivers of plankton protist communities along latitudinal and vertical gradients in the oldest and deepest freshwater lake. Environ Microbiol 2020; 23:1436-1451. [PMID: 33270368 DOI: 10.1111/1462-2920.15346] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 11/25/2020] [Accepted: 11/30/2020] [Indexed: 01/04/2023]
Abstract
Identifying which abiotic and biotic factors determine microbial community assembly is crucial to understand ecological processes and predict how communities will respond to environmental change. While global surveys aim at addressing this question in the world's oceans, equivalent studies in large freshwater systems are virtually lacking. Being the oldest, deepest and most voluminous freshwater lake on Earth, Lake Baikal offers a unique opportunity to test the effect of horizontal versus vertical gradients in community structure. Here, we characterized the structure of planktonic microbial eukaryotic communities (0.2-30 μm cell size) along a North-South latitudinal gradient (~600 km) from samples collected in coastal and pelagic waters and from surface to the deepest zones (5-1400 m) using an 18S rRNA gene metabarcoding approach. Our results show complex and diverse protist communities dominated by alveolates (ciliates and dinoflagellates), ochrophytes and holomycotan lineages, with cryptophytes, haptophytes, katablepharids and telonemids in moderate abundance and many low-frequency lineages, including several typical marine members, such as diplonemids, syndinians and radiolarians. Depth had a strong significant effect on protist community stratification. By contrast, the effect of the latitudinal gradient was marginal and no significant difference was observed between coastal and surface open water communities. Co-occurrence network analyses showed that epipelagic communities were significantly more interconnected than communities from the dark water column and suggest specific biotic interactions between autotrophic, heterotrophic and parasitic lineages that influence protist community structure. Since climate change is rapidly affecting Siberia and Lake Baikal, our comprehensive protist survey constitutes a useful reference to monitor ongoing community shifts.
Collapse
Affiliation(s)
- Gwendoline M David
- Ecologie Systématique Evolution, Centre National de la Recherche Scientifique - CNRS, Université Paris-Saclay, AgroParisTech, Orsay, France
| | - David Moreira
- Ecologie Systématique Evolution, Centre National de la Recherche Scientifique - CNRS, Université Paris-Saclay, AgroParisTech, Orsay, France
| | - Guillaume Reboul
- Ecologie Systématique Evolution, Centre National de la Recherche Scientifique - CNRS, Université Paris-Saclay, AgroParisTech, Orsay, France
| | - Nataliia V Annenkova
- Limnological Institute, Siberian Branch of the Russian Academy of Sciences, Irkutsk, Russia
| | - Luis J Galindo
- Ecologie Systématique Evolution, Centre National de la Recherche Scientifique - CNRS, Université Paris-Saclay, AgroParisTech, Orsay, France
| | - Paola Bertolino
- Ecologie Systématique Evolution, Centre National de la Recherche Scientifique - CNRS, Université Paris-Saclay, AgroParisTech, Orsay, France
| | | | - Ludwig Jardillier
- Ecologie Systématique Evolution, Centre National de la Recherche Scientifique - CNRS, Université Paris-Saclay, AgroParisTech, Orsay, France
| | - Purificación López-García
- Ecologie Systématique Evolution, Centre National de la Recherche Scientifique - CNRS, Université Paris-Saclay, AgroParisTech, Orsay, France
| |
Collapse
|
45
|
Orosz F. On the TPPP-like proteins of flagellated fungi. Fungal Biol 2020; 125:357-367. [PMID: 33910677 DOI: 10.1016/j.funbio.2020.12.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Revised: 12/02/2020] [Accepted: 12/06/2020] [Indexed: 12/12/2022]
Abstract
TPPP-like proteins, exhibiting microtubule stabilizing function, constitute a eukaryotic superfamily, characterized by the presence of the p25alpha domain. TPPPs in the strict sense are present in animals except Trichoplax adhaerens, which instead contains apicortin where a part of the p25alpha domain is combined with a DCX domain. Apicortin is absent in other animals and occurs mostly in the protozoan phylum, Apicomplexa. A strong correlation between the occurrence of p25alpha domain and that of the eukaryotic cilium/flagellum was suggested. Species of the deeper branching clades of Fungi possess flagellum but others lost it thus investigation of fungal genomes can help testing of this suggestion. Indeed, these proteins are present in early branching Fungi. Both TPPP and apicortin are present in Rozellomycota (Cryptomycota) and Chytridiomycota, TPPP in Blastocladiomycota, apicortin in Neocallimastigomycota, Monoblepharomycota and the non-flagellated Mucoromycota. Beside the "normal" TPPP occurring in animals, a special, fungal-type TPPP is also present in Fungi, in which a part of the p25alpha domain is duplicated. Dikarya, the most developed subkingdom of Fungi, lacks both flagellum and TPPPs. Thus it is strengthened that each ciliated/flagellated organism contains p25alpha domain-containing proteins while there are very few non-flagellated ones where p25alpha domain can be found.
Collapse
Affiliation(s)
- Ferenc Orosz
- Institute of Enzymology, Research Centre for Natural Sciences, Magyar Tudósok Körútja 2, 1117, Budapest, Hungary.
| |
Collapse
|
46
|
Where are the basal fungi? Current status on diversity, ecology, evolution, and taxonomy. Biologia (Bratisl) 2020. [DOI: 10.2478/s11756-020-00642-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
47
|
Gottschling M, Czech L, Mahé F, Adl S, Dunthorn M. The Windblown: Possible Explanations for Dinophyte DNA in Forest Soils. J Eukaryot Microbiol 2020; 68:e12833. [PMID: 33155377 DOI: 10.1111/jeu.12833] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 10/12/2020] [Accepted: 10/28/2020] [Indexed: 11/28/2022]
Abstract
Dinophytes are widely distributed in marine- and fresh-waters, but have yet to be conclusively documented in terrestrial environments. Here, we evaluated the presence of these protists from an environmental DNA metabarcoding dataset of Neotropical rainforest soils. Using a phylogenetic placement approach with a reference alignment and tree, we showed that the numerous sequencing reads that were phylogenetically placed as dinophytes did not correlate with taxonomic assignment, environmental preference, nutritional mode, or dormancy. All the dinophytes in the soils are rather windblown dispersal units of aquatic species and are not biologically active residents of terrestrial environments.
Collapse
Affiliation(s)
- Marc Gottschling
- Department Biologie, Systematische Botanik und Mykologie, GeoBio-Center, Ludwig-Maximilians-Universität München, Munich, D-80638, Germany
| | - Lucas Czech
- Computational Molecular Evolution Group, Heidelberg Institute for Theoretical Studies, Heidelberg, D-69118, Germany.,Department of Plant Biology, Carnegie Institution for Science, Stanford, California, 94305, USA
| | - Frédéric Mahé
- CIRAD, UMR BGPI, Montpellier, F-34398, France.,BGPI, Université de Montpellier, CIRAD, IRD, Montpellier SupAgro, , Montpellier, France
| | - Sina Adl
- Department of Soil Sciences, College of Agriculture and Bioresources, University of Saskatchewan, Saskatoon, SK, S7N 5A8, Canada
| | - Micah Dunthorn
- Eukaryotic Microbiology, Faculty of Biology, Universität Duisburg-Essen, Essen, D-45141, Germany.,Centre for Water and Environmental Research (ZWU), Universität Duisburg-Essen, Essen, D-45141, Germany
| |
Collapse
|
48
|
Park E, Jorge F, Poulin R. Shared geographic histories and dispersal contribute to congruent phylogenies between amphipods and their microsporidian parasites at regional and global scales. Mol Ecol 2020; 29:3330-3345. [PMID: 32706932 DOI: 10.1111/mec.15562] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 07/16/2020] [Accepted: 07/17/2020] [Indexed: 12/13/2022]
Abstract
In parasites that strongly rely on a host for dispersal, geographic barriers that act on the host will simultaneously influence parasite distribution as well. If their association persists over macroevolutionary time it may result in congruent phylogenetic and phylogeographic patterns due to shared geographic histories. Here, we investigated the level of congruent evolutionary history at a regional and global scale in a highly specialised parasite taxon infecting hosts with limited dispersal abilities: the microsporidians Dictyocoela spp. and their amphipod hosts. Dictyocoela can be transmitted both vertically and horizontally and is the most common microsporidian genus occurring in amphipods in Eurasia. However, little is known about its distribution elsewhere. We started by conducting molecular screening to detect microsporidian parasites in endemic amphipod species in New Zealand; based on phylogenetic analyses, we identified nine species-level microsporidian taxa including six belonging to Dictyocoela. With a distance-based cophylogenetic analysis at the regional scale, we identified overall congruent phylogenies between Paracalliope, the most common New Zealand freshwater amphipod taxon, and their Dictyocoela parasites. Also, hosts and parasites showed similar phylogeographic patterns suggesting shared biogeographic histories. Similarly, at a global scale, phylogenies of amphipod hosts and their Dictyocoela parasites showed broadly congruent phylogenies. The observed patterns may have resulted from covicariance and/or codispersal, suggesting that the intimate association between amphipods and Dictyocoela may have persisted over macroevolutionary time. We highlight that shared biogeographic histories could play a role in the codiversification of hosts and parasites at a macroevolutionary scale.
Collapse
Affiliation(s)
- Eunji Park
- Department of Zoology, University of Otago, Dunedin, New Zealand
| | - Fátima Jorge
- Department of Zoology, University of Otago, Dunedin, New Zealand
| | - Robert Poulin
- Department of Zoology, University of Otago, Dunedin, New Zealand
| |
Collapse
|
49
|
Tedersoo L, Anslan S, Bahram M, Kõljalg U, Abarenkov K. Identifying the ‘unidentified’ fungi: a global-scale long-read third-generation sequencing approach. FUNGAL DIVERS 2020. [DOI: 10.1007/s13225-020-00456-4] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
50
|
Yakovleva Y, Nassonova E, Lebedeva N, Lanzoni O, Petroni G, Potekhin A, Sabaneyeva E. The first case of microsporidiosis in Paramecium. Parasitology 2020; 147:957-971. [PMID: 32338239 PMCID: PMC10317679 DOI: 10.1017/s0031182020000633] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Revised: 02/29/2020] [Accepted: 04/08/2020] [Indexed: 11/06/2022]
Abstract
A new microsporidian species, Globosporidium paramecii gen. nov., sp. nov., from Paramecium primaurelia is described on the basis of morphology, fine structure, and SSU rRNA gene sequence. This is the first case of microsporidiosis in Paramecium reported so far. All observed stages of the life cycle are monokaryotic. The parasites develop in the cytoplasm, at least some part of the population in endoplasmic reticulum and its derivates. Meronts divide by binary fission. Sporogonial plasmodium divides by rosette-like budding. Early sporoblasts demonstrate a well-developed exospore forming blister-like structures. Spores with distinctive spherical shape are dimorphic in size (3.7 ± 0.2 and 1.9 ± 0.2 μm). Both types of spores are characterized by a thin endospore, a short isofilar polar tube making one incomplete coil, a bipartite polaroplast, and a large posterior vacuole. Experimental infection was successful for 5 of 10 tested strains of the Paramecium aurelia species complex. All susceptible strains belong to closely related P. primaurelia and P. pentaurelia species. Phylogenetic analysis placed the new species in the Clade 4 of Microsporidia and revealed its close relationship to Euplotespora binucleata (a microsporidium from the ciliate Euplotes woodruffi), to Helmichia lacustris and Mrazekia macrocyclopis, microsporidia from aquatic invertebrates.
Collapse
Affiliation(s)
- Yulia Yakovleva
- Department of Cytology and Histology, Saint Petersburg State University, Universitetskaya emb. 7/9, 199034Saint Petersburg, Russian Federation
| | - Elena Nassonova
- Laboratory of Cytology of Unicellular Organisms, Institute of Cytology RAS, Tikhoretsky ave. 4, 194064Saint Petersburg, Russian Federation
- Department of Invertebrate Zoology, Saint Petersburg State University, Universitetskaya emb. 7/9, 199034Saint Petersburg, Russian Federation
| | - Natalia Lebedeva
- Core Facility Center for Cultivation of Microorganisms, Saint Petersburg State University, Peterhof, Botanicheskaya st. 17, 198504Saint Petersburg, Russian Federation
| | - Olivia Lanzoni
- Department of Biology, University of Pisa, via A Volta 4, 56126Pisa, Italy
| | - Giulio Petroni
- Department of Biology, University of Pisa, via A Volta 4, 56126Pisa, Italy
| | - Alexey Potekhin
- Department of Microbiology, Saint Petersburg State University, 16th line, Vasilyevsky Island, 29, 199178Saint Petersburg, Russian Federation
| | - Elena Sabaneyeva
- Department of Cytology and Histology, Saint Petersburg State University, Universitetskaya emb. 7/9, 199034Saint Petersburg, Russian Federation
| |
Collapse
|