1
|
He Z, Xiao F, Yang D, Deng F, Ding W, He Z, Wang S, Chen Q, Wang H, Chen M, Gao K, Xiong J, Tang Z, Zhang M, Yan T. Protein expression patterns and metal metabolites in a protogynous hermaphrodite fish, the ricefield eel (Monopterus albus). BMC Genomics 2024; 25:500. [PMID: 38773374 PMCID: PMC11106920 DOI: 10.1186/s12864-024-10397-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 05/08/2024] [Indexed: 05/23/2024] Open
Abstract
BACKGROUND The ricefield eel Monopterus albus undergoes a natural sex change from female to male during its life cycle, and previous studies have shown the potential mechanisms of this transition at the transcriptional and protein levels. However, the changes in protein levels have not been fully explored, especially in the intersexual stage. RESULTS In the present study, the protein expression patterns in the gonadal tissues from five different periods, the ovary (OV), early intersexual stage gonad (IE), middle intersexual stage gonad (IM), late intersexual stage gonad (IL), and testis (TE), were determined by untargeted proteomics sequencing. A total of 5125 proteins and 394 differentially expressed proteins (DEPs) were detected in the gonadal tissues. Of the 394 DEPs, there were 136 between the OV and IE groups, 20 between the IM and IE groups, 179 between the IL and IM groups, and 59 between the TE and IL groups. Three candidate proteins, insulin-like growth factor 2 mRNA-binding protein 3 isoform X1 (Igf2bp3), triosephosphate isomerase (Tpi), and Cu-Zn superoxide dismutase isoform X1 [(Cu-Zn) Sod1], were validated by western blotting to verify the reliability of the data. Furthermore, metal metabolite-related proteins were enriched in the IL vs. IM groups and TE vs. IL groups, which had close relationships with sex change, including Cu2+-, Ca2+-, Zn2+- and Fe2+/Fe3+-related proteins. Analysis of the combined transcriptome data revealed consistent protein/mRNA expression trends for two metal metabolite-related proteins/genes [LOC109953912 and calcium Binding Protein 39 Like (cab39l)]. Notably, we detected significantly higher levels of Cu2+ during the sex change process, suggesting that Cu2+ is a male-related metal metabolite that may have an important function in male reproductive development. CONCLUSIONS In summary, we analyzed the protein profiles of ricefield eel gonadal tissues in five sexual stages (OV, IE, IM, IL, and TE) and verified the plausibility of the data. After preforming the functional enrichment of metal metabolite-related DEPs, we detected the contents of the metal metabolites Zn2+, Cu2+, Ca2+, and Fe2+/Fe3+ at these five stages and screened for (Cu-Zn) Sod1 and Mmp-9 as possible key proteins in the sex reversal process.
Collapse
Affiliation(s)
- Zhi He
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
- Fish Resources and Environment in Upper Reaches of the Yangtze River Observation and Research Station of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Feng Xiao
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Deying Yang
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
- Fish Resources and Environment in Upper Reaches of the Yangtze River Observation and Research Station of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Faqiang Deng
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Wenxiang Ding
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Zhide He
- Fish Resources and Environment in Upper Reaches of the Yangtze River Observation and Research Station of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Siqi Wang
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Qiqi Chen
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Haochen Wang
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Mingqiang Chen
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Kuo Gao
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Jinxing Xiong
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Ziting Tang
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
- Fish Resources and Environment in Upper Reaches of the Yangtze River Observation and Research Station of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Mingwang Zhang
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
- Fish Resources and Environment in Upper Reaches of the Yangtze River Observation and Research Station of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Taiming Yan
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China.
- Fish Resources and Environment in Upper Reaches of the Yangtze River Observation and Research Station of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China.
| |
Collapse
|
2
|
Wang P, Gong Y, Li D, Zhao X, Zhang Y, Zhang J, Geng X, Zhang X, Tian Y, Li W, Sun G, Han R, Kang X, Li Z, Jiang R. Effect of induced molting on ovarian function remodeling in laying hens. Poult Sci 2023; 102:102820. [PMID: 37329628 PMCID: PMC10404790 DOI: 10.1016/j.psj.2023.102820] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 05/22/2023] [Accepted: 05/26/2023] [Indexed: 06/19/2023] Open
Abstract
Induced molting (IM) can restore the laying rate of aged laying hens to the peak level of laying and rejuvenate ovarian function for the second laying cycle. To explore the mechanism of ovarian function remodeling during IM in laying hens, in this study, ninety 71-wk-old laying lady hens with 60% laying rate and uniform weight were selected for molting induction by fasting. Samples (serum and fresh ovarian tissue) were collected on the day before fasting (F0), the 3rd and 16th days of fasting (F3, F16), and the 6th, 15th, 32nd days of refeeding (R6, R15, and R32), and the number of follicles in each period was counted. Then, the reproductive hormone levels in serum and antioxidant levels in ovarian tissues were detected at different stages, and the gene expression of the KIT-PI3K-PTEN-AKT pathway and GDF-9 in ovaries was measured by qRT-PCR. The results showed that the laying rate increased rapidly after refeeding and returned to the prefasting level by R32. At F16 and R6, the number of mature follicles significantly decreased; the number of primary and secondary follicles significantly increased; the contents of follicle stimulating hormone (FSH), luteinizing hormone (LH), estradiol (E2), and progesterone (P4) in serum decreased; the relative expression of KIT, PI3K, AKT, and GDF-9 significantly increased; and that of PTEN significantly decreased. At R15 and R32, except for GDF-9, which maintained a high expression state, other indicators showed opposing trends to those observed at F16 and R6. In conclusion, IM activated the KIT-PI3K-PTEN-AKT signaling pathway and promoted the activation of primordial follicles during the fasting period and early resumption of feeding; gonadotropin secretion increased gradually, which promoted the rapid development of primary and secondary follicles to mature follicles and ovulation. This study explained the mechanism of ovarian function remodeling in the process of IM and provided a theoretical basis for improving the ovarian function of laying hens and optimizing the IM program.
Collapse
Affiliation(s)
- Pengyu Wang
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China; Key Laboratory of Livestock and Poultry Resources (Poultry) Evaluation and Utilization, Ministry of Agriculture and Rural Affairs, Zhengzhou 450046, China
| | - Yujie Gong
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China; Key Laboratory of Livestock and Poultry Resources (Poultry) Evaluation and Utilization, Ministry of Agriculture and Rural Affairs, Zhengzhou 450046, China
| | - Donghua Li
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China; Key Laboratory of Livestock and Poultry Resources (Poultry) Evaluation and Utilization, Ministry of Agriculture and Rural Affairs, Zhengzhou 450046, China
| | - Xinlong Zhao
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China; Key Laboratory of Livestock and Poultry Resources (Poultry) Evaluation and Utilization, Ministry of Agriculture and Rural Affairs, Zhengzhou 450046, China
| | - Yihui Zhang
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China; Key Laboratory of Livestock and Poultry Resources (Poultry) Evaluation and Utilization, Ministry of Agriculture and Rural Affairs, Zhengzhou 450046, China
| | - Jun Zhang
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China; Key Laboratory of Livestock and Poultry Resources (Poultry) Evaluation and Utilization, Ministry of Agriculture and Rural Affairs, Zhengzhou 450046, China
| | - Xiaoqing Geng
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China; Key Laboratory of Livestock and Poultry Resources (Poultry) Evaluation and Utilization, Ministry of Agriculture and Rural Affairs, Zhengzhou 450046, China
| | - Xiaoran Zhang
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China; Key Laboratory of Livestock and Poultry Resources (Poultry) Evaluation and Utilization, Ministry of Agriculture and Rural Affairs, Zhengzhou 450046, China
| | - Yadong Tian
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China; Key Laboratory of Livestock and Poultry Resources (Poultry) Evaluation and Utilization, Ministry of Agriculture and Rural Affairs, Zhengzhou 450046, China
| | - Wenting Li
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China; Key Laboratory of Livestock and Poultry Resources (Poultry) Evaluation and Utilization, Ministry of Agriculture and Rural Affairs, Zhengzhou 450046, China
| | - Guirong Sun
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China; Key Laboratory of Livestock and Poultry Resources (Poultry) Evaluation and Utilization, Ministry of Agriculture and Rural Affairs, Zhengzhou 450046, China
| | - Ruili Han
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China; Key Laboratory of Livestock and Poultry Resources (Poultry) Evaluation and Utilization, Ministry of Agriculture and Rural Affairs, Zhengzhou 450046, China
| | - Xiangtao Kang
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China; Key Laboratory of Livestock and Poultry Resources (Poultry) Evaluation and Utilization, Ministry of Agriculture and Rural Affairs, Zhengzhou 450046, China
| | - Zhuanjian Li
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China; Key Laboratory of Livestock and Poultry Resources (Poultry) Evaluation and Utilization, Ministry of Agriculture and Rural Affairs, Zhengzhou 450046, China
| | - Ruirui Jiang
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China; Key Laboratory of Livestock and Poultry Resources (Poultry) Evaluation and Utilization, Ministry of Agriculture and Rural Affairs, Zhengzhou 450046, China.
| |
Collapse
|
3
|
Gan R, Cai J, Sun C, Wang Z, Yang W, Meng F, Zhang L, Zhang W. Transcription factors Dmrt1a, Foxl2, and Nr5a1a potentially interact to regulate cyp19a1a transcription in ovarian follicles of ricefield eel (Monopterus albus). J Steroid Biochem Mol Biol 2023; 231:106310. [PMID: 37044240 DOI: 10.1016/j.jsbmb.2023.106310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 03/19/2023] [Accepted: 04/09/2023] [Indexed: 04/14/2023]
Abstract
Aromatase (encoded by Cyp19a1) in the ovarian follicular cells catalyzes the production of estradiol from testosterone, which plays important roles in the ovarian development of vertebrates. In the present study, the interaction of Dmrt1, Foxl2, and Nr5a1a on the regulation of cyp19a1a transcription in ovarian follicles was examined in a teleost, the ricefield eel Monopterus albus. The expression of dmrt1a, foxl2, and nr5a1a was detected in ovarian follicular cells together with cyp19a1a at the mRNA and/or protein levels. Sequence analysis identified one conserved Foxo binding site in the proximal promoter region of ricefield eel cyp19a1a. Transient transfection assay showed that Foxl2 may bind to the conserved Foxo site to activate cyp19a1a transcription and act synergistically with Nr5a1a. Mutation of either the conserved Nr5a1 site or Foxo site abolished or significantly decreased the synergistic effects of Nr5a1a and Foxl2 on cyp19a1a transcription. The sequence between Region III and I-box of Nr5a1a was critical to this synergistic effect. Dmrt1a modulated the Foxl2- and Nr5a1a-induced activation of cyp19a1a transcription and their synergistic effects in a biphasic manner, with inhibitory roles observed at lower doses (10 to 50ng) but release of the inhibition or even potentiating effects observed at higher doses (100 to 200ng). Collectively, data of the present study suggest that the interaction of Dmrt1a, Foxl2, and Nr5a1a in the ovarian follicular cells may facilitate the adequate expression of cyp19a1a and the production of estradiol, and contribute to the development and maturation of ovarian follicles in ricefield eels and other vertebrates as well.
Collapse
Affiliation(s)
- Riping Gan
- Institute of Aquatic Economic Animals and Guangdong Province Key Laboratory for Aquatic Economic Animals, School of Life Sciences, Sun Yat-Sen University, Guangzhou, PR China
| | - Jinfeng Cai
- Institute of Aquatic Economic Animals and Guangdong Province Key Laboratory for Aquatic Economic Animals, School of Life Sciences, Sun Yat-Sen University, Guangzhou, PR China
| | - Chao Sun
- Institute of Aquatic Economic Animals and Guangdong Province Key Laboratory for Aquatic Economic Animals, School of Life Sciences, Sun Yat-Sen University, Guangzhou, PR China
| | - Zhiguo Wang
- Institute of Aquatic Economic Animals and Guangdong Province Key Laboratory for Aquatic Economic Animals, School of Life Sciences, Sun Yat-Sen University, Guangzhou, PR China
| | - Wei Yang
- Institute of Aquatic Economic Animals and Guangdong Province Key Laboratory for Aquatic Economic Animals, School of Life Sciences, Sun Yat-Sen University, Guangzhou, PR China
| | - Feiyan Meng
- Institute of Aquatic Economic Animals and Guangdong Province Key Laboratory for Aquatic Economic Animals, School of Life Sciences, Sun Yat-Sen University, Guangzhou, PR China
| | - Lihong Zhang
- Institute of Aquatic Economic Animals and Guangdong Province Key Laboratory for Aquatic Economic Animals, School of Life Sciences, Sun Yat-Sen University, Guangzhou, PR China; Biology Department, School of Life Sciences, Sun Yat-Sen University, Guangzhou, PR China.
| | - Weimin Zhang
- Institute of Aquatic Economic Animals and Guangdong Province Key Laboratory for Aquatic Economic Animals, School of Life Sciences, Sun Yat-Sen University, Guangzhou, PR China; Biology Department, School of Life Sciences, Sun Yat-Sen University, Guangzhou, PR China.
| |
Collapse
|
4
|
He Z, Ma Z, Yang D, Chen Q, He Z, Hu J, Deng F, Zhang Q, He J, Ye L, Chen H, He L, Huang X, Luo W, Yang S, Gu X, Zhang M, Yan T. Circular RNA expression profiles and CircSnd1-miR-135b/c-foxl2 axis analysis in gonadal differentiation of protogynous hermaphroditic ricefield eel Monopterus albus. BMC Genomics 2022; 23:552. [PMID: 35922747 PMCID: PMC9347082 DOI: 10.1186/s12864-022-08783-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Accepted: 07/21/2022] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND The expression and biological functions of circular RNAs (circRNAs) in reproductive organs have been extensively reported. However, it is still unclear whether circRNAs are involved in sex change. To this end, RNA sequencing (RNA-seq) was performed in gonads at 5 sexual stages (ovary, early intersexual stage gonad, middle intersexual stage gonad, late intersexual stage gonad, and testis) of ricefield eel, and the expression profiles and potential functions of circRNAs were studied. RESULTS Seven hundred twenty-one circRNAs were identified, and the expression levels of 10 circRNAs were verified by quantitative real-time PCR (qRT-PCR) and found to be in accordance with the RNA-seq data, suggesting that the RNA-seq data were reliable. Then, the sequence length, category, sequence composition and the relationship between the parent genes of the circRNAs were explored. A total of 147 circRNAs were differentially expressed in the sex change process, and GO and KEGG analyses revealed that some differentially expressed (such as novel_circ_0000659, novel_circ_0004005 and novel_circ_0005865) circRNAs were closely involved in sex change. Furthermore, expression pattern analysis demonstrated that both circSnd1 and foxl2 were downregulated in the process of sex change, which was contrary to mal-miR-135b. Finally, dual-luciferase reporter assay and RNA immunoprecipitation showed that circSnd1 and foxl2 can combine with mal-miR-135b and mal-miR-135c. These data revealed that circSnd1 regulates foxl2 expression in the sex change of ricefield eel by acting as a sponge of mal-miR-135b/c. CONCLUSION Our results are the first to demonstrate that circRNAs have potential effects on sex change in ricefield eel; and circSnd1 could regulate foxl2 expression in the sex change of ricefield eel by acting as a sponge of mal-miR-135b/c. These data will be useful for enhancing our understanding of sequential hermaphroditism and sex change in ricefield eel or other teleosts.
Collapse
Affiliation(s)
- Zhi He
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Zhijun Ma
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Deying Yang
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Qiqi Chen
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Zhide He
- Luzhou City Department of Agricultural and Rural Affairs, Luzhou, 646000, Sichuan, China
| | - Jiaxiang Hu
- Sichuan Water Conservancy Vocational College, Chengdu, 611231, Sichuan, China
| | - Faqiang Deng
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Qian Zhang
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Jiayang He
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Lijuan Ye
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Hongjun Chen
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Liang He
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Xiaoli Huang
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Wei Luo
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Shiyong Yang
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Xiaobin Gu
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Mingwang Zhang
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Taiming Yan
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China.
| |
Collapse
|
5
|
Hou M, Feng K, Luo H, Jiang Y, Xu W, Li Y, Song Y, Chen J, Tao B, Zhu Z, Hu W. Complete Depletion of Primordial Germ Cells Results in Masculinization of Monopterus albus, a Protogynous Hermaphroditic Fish. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2022; 24:320-334. [PMID: 35303208 DOI: 10.1007/s10126-022-10106-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Accepted: 02/21/2022] [Indexed: 06/14/2023]
Abstract
Primordial germ cells (PGCs) play an important role in sexual fate determination and gonadal development in gonochoristic fish, such as zebrafish and medaka. However, little is known about the function of PGCs in hermaphroditic fish. Rice field eel (Monopterus albus), a protogynous hermaphroditic fish, is an economically valuable aquaculture species. We eliminated PGCs in rice field eels during embryogenesis via morpholino-mediated knockdown dead end (dnd). The PGCs-depleted gonads developed into testis-like structures with Sertoli cells and Leydig cells. The gene expression pattern of 15-month-old PGCs-depleted gonads showed that male-biased genes, dmrt1, sox9a, gsdf, and amh, were significantly higher than that of the WT, whereas female-biased genes, foxl2 and cyp19a1a, were significantly decreased. These results indicate that PGCs are essential for ovarian differentiation in rice field eel, and PGCs-depleted gonads develop into sterile males without undergoing the female and intersex stages. Our study is the first to identify the role of PGCs in sex differentiation in rice field eel, a protogynous hermaphrodite teleost. And it is of great significance in rice field eel for discovering the underlying mechanism of sex differentiation and establishing sex control technology.
Collapse
Affiliation(s)
- Mingxi Hou
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, The Innovation Academy of Seed Design, Chinese Academy of Sciences, Hubei Hongshan Laboratory, Wuhan, 430072, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Ke Feng
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, The Innovation Academy of Seed Design, Chinese Academy of Sciences, Hubei Hongshan Laboratory, Wuhan, 430072, China
| | - Hongrui Luo
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, The Innovation Academy of Seed Design, Chinese Academy of Sciences, Hubei Hongshan Laboratory, Wuhan, 430072, China
| | - Yinjun Jiang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, The Innovation Academy of Seed Design, Chinese Academy of Sciences, Hubei Hongshan Laboratory, Wuhan, 430072, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Wen Xu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, The Innovation Academy of Seed Design, Chinese Academy of Sciences, Hubei Hongshan Laboratory, Wuhan, 430072, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yongming Li
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, The Innovation Academy of Seed Design, Chinese Academy of Sciences, Hubei Hongshan Laboratory, Wuhan, 430072, China
| | - Yanlong Song
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, The Innovation Academy of Seed Design, Chinese Academy of Sciences, Hubei Hongshan Laboratory, Wuhan, 430072, China
| | - Ji Chen
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, The Innovation Academy of Seed Design, Chinese Academy of Sciences, Hubei Hongshan Laboratory, Wuhan, 430072, China
| | - Binbin Tao
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, The Innovation Academy of Seed Design, Chinese Academy of Sciences, Hubei Hongshan Laboratory, Wuhan, 430072, China.
| | - Zuoyan Zhu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, The Innovation Academy of Seed Design, Chinese Academy of Sciences, Hubei Hongshan Laboratory, Wuhan, 430072, China
| | - Wei Hu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, The Innovation Academy of Seed Design, Chinese Academy of Sciences, Hubei Hongshan Laboratory, Wuhan, 430072, China.
- Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
6
|
Xie QP, Li BB, Zhan W, Liu F, Tan P, Wang X, Lou B. A Transient Hermaphroditic Stage in Early Male Gonadal Development in Little Yellow Croaker, Larimichthys polyactis. Front Endocrinol (Lausanne) 2021; 11:542942. [PMID: 33584533 PMCID: PMC7873647 DOI: 10.3389/fendo.2020.542942] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Accepted: 12/07/2020] [Indexed: 01/13/2023] Open
Abstract
Animal taxa show remarkable variability in sexual reproduction, where separate sexes, or gonochorism, is thought to have evolved from hermaphroditism for most cases. Hermaphroditism accounts for 5% in animals, and sequential hermaphroditism has been found in teleost. In this study, we characterized a novel form of the transient hermaphroditic stage in little yellow croaker (Larimichthys polyactis) during early gonadal development. The ovary and testis were indistinguishable from 7 to 40 days post-hatching (dph). Morphological and histological examinations revealed an intersex stage of male gonads between 43 and 80 dph, which consist of germ cells, somatic cells, efferent duct, and early primary oocytes (EPOs). These EPOs in testis degenerate completely by 90 dph through apoptosis yet can be rescued by exogenous 17-β-estradiol. Male germ cells enter the mitotic flourishing stage before meiosis is initiated at 180 dph, and they undergo normal spermatogenesis to produce functional sperms. This transient hermaphroditic stage is male-specific, and the ovary development appears to be normal in females. This developmental pattern is not found in the sister species Larimichthys crocea or any other closely related species. Further examinations of serum hormone levels indicate that the absence of 11-ketotestosterone and elevated levels of 17-β-estradiol delineate the male intersex gonad stage, providing mechanistic insights on this unique phenomenon. Our research is the first report on male-specific transient hermaphroditism and will advance the current understanding of fish reproductive biology. This unique gonadal development pattern can serve as a useful model for studying the evolutionary relationship between hermaphroditism and gonochorism, as well as teleost sex determination and differentiation strategies.
Collapse
Affiliation(s)
- Qing-Ping Xie
- Institute of Hydrobiology, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
- Marine Fisheries Research Institute of Zhejiang Province, Zhoushan, China
| | - Bing-Bing Li
- School of Fishery, Zhejiang Ocean University, Zhoushan, China
| | - Wei Zhan
- Institute of Hydrobiology, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Feng Liu
- Institute of Hydrobiology, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Peng Tan
- Marine Fisheries Research Institute of Zhejiang Province, Zhoushan, China
| | - Xu Wang
- Department of Pathobiology, College of Veterinary Medicine, Auburn University, Auburn, AL, United States
- Alabama Agricultural Experiment Station, Auburn, AL, United States
- The HudsonAlpha Institute for Biotechnology, Huntsville, AL, United States
| | - Bao Lou
- Institute of Hydrobiology, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| |
Collapse
|
7
|
Xiao Q, Sun Y, Liang X, Zhang L, Onxayvieng K, Li Z, Li D. Visualizing primordial germ cell migration in embryos of rice field eel (Monopterus albus) using fluorescent protein tagged 3' untranslated regions of nanos3, dead end and vasa. Comp Biochem Physiol B Biochem Mol Biol 2019; 235:62-69. [PMID: 31176867 DOI: 10.1016/j.cbpb.2019.06.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 05/25/2019] [Accepted: 06/03/2019] [Indexed: 11/17/2022]
Abstract
In rice field eel (Monopterus albus), germ cell development in the developing gonad has been revealed in detail. However, it is unclear how primordial germ cells (PGCs) migrate to the somatic part of the gonad (genital ridge). This study visualized PGC migration by injecting a chimeric mRNA containing a fluorescent protein fused to the 3' untranslated region (3'UTR) of three different genes, nanos3 of zebrafish (Danio rerio) and dead end (dnd) and vasa of rice field eel. The mRNAs were injected either alone or in pairs into embryos at the one-cell stage. The results showed that mRNAs containing nanos3 and dnd 3'UTRs labeled PGCs over a wider time frame than those containing vasa 3'UTR, suggesting that nanos3 and dnd 3'UTRs are suitable for visualizing PGCs in rice field eel. Using this direct visualization method, the normal migration route of PGCs was observed from the 50%-epiboly stage to hatching stage for the first time, and the ectopic PGCs were also visualized during this period in rice field eel. These findings extend our knowledge of germ cell development, and lay a foundation for further research on the relationship between PGCs and sex differentiation, and on incubation conditions for embryos in rice field eel.
Collapse
Affiliation(s)
- Qing Xiao
- Hubei Provincial Engineering Laboratory for Pond Aquaculture, College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China
| | - Yiqing Sun
- Hubei Provincial Engineering Laboratory for Pond Aquaculture, College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China
| | - Xiao Liang
- Hubei Provincial Engineering Laboratory for Pond Aquaculture, College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China
| | - Lihan Zhang
- Hubei Provincial Engineering Laboratory for Pond Aquaculture, College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China
| | - Kommaly Onxayvieng
- Hubei Provincial Engineering Laboratory for Pond Aquaculture, College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China
| | - Zhong Li
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan 430223, China.
| | - Dapeng Li
- Hubei Provincial Engineering Laboratory for Pond Aquaculture, College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China.
| |
Collapse
|
8
|
Xiao J, Cao K, Zou Y, Xiao S, Wang Z, Cai M. Sex-biased gene discovery from the gonadal transcriptomes of the large yellow croaker (Larimichthys crocea). AQUACULTURE AND FISHERIES 2019. [DOI: 10.1016/j.aaf.2019.01.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
9
|
Yang Y, Liu Q, Xiao Y, Wang X, An H, Song Z, You F, Wang Y, Ma D, Li J. Germ Cell Migration, Proliferation and Differentiation during Gonadal Morphogenesis in All-Female Japanese Flounder (Paralichthys Olivaceus
). Anat Rec (Hoboken) 2018; 301:727-741. [DOI: 10.1002/ar.23698] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2016] [Revised: 04/23/2017] [Accepted: 05/03/2017] [Indexed: 11/10/2022]
Affiliation(s)
- Yang Yang
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology; Chinese Academy of Sciences; Qingdao 266071 China
- University of Chinese Academy of Sciences; Beijing 100049 China
- Laboratory for Marine Biology and Biotechnology; Qingdao National Laboratory for Marine Science and Technology; Qingdao 266071 China
| | - Qinghua Liu
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology; Chinese Academy of Sciences; Qingdao 266071 China
- University of Chinese Academy of Sciences; Beijing 100049 China
| | - Yongshuang Xiao
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology; Chinese Academy of Sciences; Qingdao 266071 China
- University of Chinese Academy of Sciences; Beijing 100049 China
| | - Xueying Wang
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology; Chinese Academy of Sciences; Qingdao 266071 China
- Laboratory for Marine Biology and Biotechnology; Qingdao National Laboratory for Marine Science and Technology; Qingdao 266071 China
| | - Hao An
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology; Chinese Academy of Sciences; Qingdao 266071 China
- University of Chinese Academy of Sciences; Beijing 100049 China
- Laboratory for Marine Biology and Biotechnology; Qingdao National Laboratory for Marine Science and Technology; Qingdao 266071 China
| | - Zongcheng Song
- Weihai Shenghang Aquatic Product Science and Technology Co. Ltd; Weihai 264200 China
| | - Feng You
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology; Chinese Academy of Sciences; Qingdao 266071 China
- University of Chinese Academy of Sciences; Beijing 100049 China
- Laboratory for Marine Biology and Biotechnology; Qingdao National Laboratory for Marine Science and Technology; Qingdao 266071 China
| | - Yanfeng Wang
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology; Chinese Academy of Sciences; Qingdao 266071 China
- Laboratory for Marine Biology and Biotechnology; Qingdao National Laboratory for Marine Science and Technology; Qingdao 266071 China
| | - Daoyuan Ma
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology; Chinese Academy of Sciences; Qingdao 266071 China
- Laboratory for Marine Biology and Biotechnology; Qingdao National Laboratory for Marine Science and Technology; Qingdao 266071 China
| | - Jun Li
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology; Chinese Academy of Sciences; Qingdao 266071 China
- Laboratory for Marine Biology and Biotechnology; Qingdao National Laboratory for Marine Science and Technology; Qingdao 266071 China
| |
Collapse
|
10
|
Cai J, Yang W, Chen D, Zhang Y, He Z, Zhang W, Zhang L. Transcriptomic analysis of the differentiating ovary of the protogynous ricefield eel Monopterus albus. BMC Genomics 2017; 18:573. [PMID: 28768496 PMCID: PMC5541746 DOI: 10.1186/s12864-017-3953-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2016] [Accepted: 07/23/2017] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND The ricefield eel is a protogynous hermaphroditic Synbranchiform species that changes sex naturally from female to male, which offers an interesting model for studying gonadal (particularly ovarian) differentiation in vertebrates. In the present study, transcriptome sequencing of the gonad of ricefield eel larvae was performed to explore the molecular mechanisms underlying the ovarian differentiation and development. RESULTS A total of 301,267,988 clean reads were generated from cDNA libraries of gonadal tissues of ricefield eel larvae at 6, 9, 12, and 20 days post hatching (dph), which contained undifferentiated gonads, differentiating ovaries, ovaries with oogonia, and ovaries with meiotic oocytes, respectively. De-novo assembly of all the clean reads generated a total of 265,896 unigenes with a mean size of 720 bp and a N50 of 1107 bp. RT-qPCR analysis of the developmental expression of 13 gonadal development-related functional genes indicated that RNA-seq data are reliable. Transcriptome data suggest that high expression of female development-related genes and low expression of male development-related genes in the early gonads of ricefield eel larvae participate in the cascade of sex differentiation leading to the final female phenotype. The contrasting expression patterns of genes involved in retinoid acid (RA) synthesis and degradation might result in peak production of RA at 12 dph in the gonad of ricefield eel larvae, and induce molecular events responsible for the initiation of meiosis before the meiotic signs could be observed at 20 dph. In addition, only stra6 but not stra8 could be identified in gonadal transcriptome data of ricefield eel larvae, and the expression pattern of stra6 paralleled those of genes involved in RA synthesis, suggesting that stra6 may be a downstream target of RA and play a role in RA metabolism and/or meiotic initiation in the gonad of ricefield eel larvae. CONCLUSIONS The present study depicted the first large-scale RNA sequencing of the gonad of ricefield eel larvae, and identified many important functional genes, GO terms and KEGG pathways involved in gonadal development and germ cell meiosis. Results of the present study will facilitate future study on the ovarian differentiation of ricefield eels and other teleosts as well.
Collapse
Affiliation(s)
- Jinfeng Cai
- Department of Biology, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, People's Republic of China
| | - Wei Yang
- Institute of Aquatic Economic Animals and Guangdong Province Key Laboratory for Aquatic Economic Animals, Sun Yat-Sen University, Guangzhou, 510275, P. R. China
| | - Dong Chen
- Department of Biology, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, People's Republic of China
| | - Yize Zhang
- Institute of Aquatic Economic Animals and Guangdong Province Key Laboratory for Aquatic Economic Animals, Sun Yat-Sen University, Guangzhou, 510275, P. R. China
| | - Zhi He
- College of Animal Sciences and Technology, Sichuan Agricultural University, Ya'an, 625014, P. R. China
| | - Weimin Zhang
- Department of Biology, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, People's Republic of China. .,Institute of Aquatic Economic Animals and Guangdong Province Key Laboratory for Aquatic Economic Animals, Sun Yat-Sen University, Guangzhou, 510275, P. R. China.
| | - Lihong Zhang
- Department of Biology, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, People's Republic of China.
| |
Collapse
|
11
|
Li Y, He Z, Shi S, Zhang Y, Chen D, Zhang W, Zhang L. Scp3 expression in relation to the ovarian differentiation in the protogynous hermaphroditic ricefield eel Monopterus albus. FISH PHYSIOLOGY AND BIOCHEMISTRY 2016; 42:1609-1619. [PMID: 27277446 DOI: 10.1007/s10695-016-0244-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2016] [Accepted: 05/30/2016] [Indexed: 06/06/2023]
Abstract
Synaptonemal complex protein 3 (Scp3), which is encoded by scp3, is a meiotic marker commonly used to trace the timing of gonadal differentiation in vertebrates. In the present study, the ricefield eel scp3 cDNA was cloned, and a fragment encoding amino acids 49 to 244 was overexpressed. The recombinant Scp3 polypeptide was purified and used to generate a rabbit anti-Scp3 polyclonal antiserum. In adult ricefield eels, scp3 mRNA was predominantly detected in the gonads and faintly detected in discrete brain areas. In the gonads, Scp3 immunoreactivities were shown to be localized to the germ cells, including meiotic primary growth oocytes, spermatocytes, and pre-meiotic spermatogonia. During early ovarian differentiation, immunoreactive Scp3 was not detected in the gonads of ricefield eels at 6 days post-hatching (dph) but was found to be abundantly localized in the cytoplasm of some oogonia at 7 dph, coinciding with the appearance of the ovarian cavity and ovarian differentiation. At 14 dph, strong Scp3 immunostaining was detected on one side of the nucleus with a distinct polarity in some germ cells, presumably at the leptotene stage. Consistent with these results, the expression of scp3 mRNA was faintly detected in the gonads of ricefield eels at 6 dph, increased at 8 dph, and then remained relatively high thereafter. Taken together, these results suggest that the appearance of immunoreactive Scp3 in oogonia could be a marker for early ovarian differentiation in ricefield eels. The translocation of the Scp3 protein from the cytoplasm to the nucleus in the oogonium of ricefield eels appears to be a controlled process that warrants further study.
Collapse
Affiliation(s)
- Yixue Li
- Institute of Aquatic Economic Animals and Guangdong Province Key Laboratory for Aquatic Economic Animals, School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, People's Republic of China
- Biology Department, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, People's Republic of China
| | - Zhi He
- Institute of Aquatic Economic Animals and Guangdong Province Key Laboratory for Aquatic Economic Animals, School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, People's Republic of China
- College of Animal Sciences and Technology, Sichuan Agricultural University, Ya'an, 625014, People's Republic of China
| | - Shuxia Shi
- Biology Department, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, People's Republic of China
| | - Yize Zhang
- Institute of Aquatic Economic Animals and Guangdong Province Key Laboratory for Aquatic Economic Animals, School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, People's Republic of China
- Biology Department, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, People's Republic of China
| | - Dong Chen
- Institute of Aquatic Economic Animals and Guangdong Province Key Laboratory for Aquatic Economic Animals, School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, People's Republic of China
- Biology Department, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, People's Republic of China
| | - Weimin Zhang
- Institute of Aquatic Economic Animals and Guangdong Province Key Laboratory for Aquatic Economic Animals, School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, People's Republic of China.
- Biology Department, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, People's Republic of China.
| | - Lihong Zhang
- Biology Department, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, People's Republic of China.
| |
Collapse
|